Tag Archives: PRS

Community profile: Dave Akerman

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-dave-akerman/

This column is from The MagPi issue 61. You can download a PDF of the full issue for free, or subscribe to receive the print edition through your letterbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve our charitable goals.

The pinned tweet on Dave Akerman’s Twitter account shows a table displaying the various components needed for a high-altitude balloon (HAB) flight. Batteries, leads, a camera and Raspberry Pi, plus an unusually themed payload. The caption reads ‘The Queen, The Duke of York, and my TARDIS”, and sums up Dave’s maker career in a heartbeat.

David Akerman on Twitter

The Queen, The Duke of York, and my TARDIS 🙂 #UKHAS #RaspberryPi

Though writing software for industrial automation pays the bills, the majority of Dave’s time is spent in the world of high-altitude ballooning and the ever-growing community that encompasses it. And, while he makes some money sending business-themed balloons to near space for the likes of Aardman Animations, Confused.com, and the BBC, Dave is best known in the Raspberry Pi community for his use of the small computer in every payload, and his work as a tutor alongside the Foundation’s staff at Skycademy events.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave continues to help others while breaking records and having a good time exploring the atmosphere.

Dave has dedicated many hours and many, many more miles to assist with the Foundation’s Skycademy programme, helping to explore high-altitude ballooning with educators from across the UK. Using a Raspberry Pi and various other pieces of lightweight tech, Dave and Foundation staff member James Robinson explored the incorporation of high-altitude ballooning into education. Through Skycademy, educators were able to learn new skills and take them to the classroom, setting off their own balloons with their students, and recording the results on Raspberry Pis.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave’s most recent flight broke a new record. On 13 August 2017, his HAB payload was able to send back the highest images taken by any amateur flight.

But education isn’t the only reason for Dave’s involvement in the HAB community. As with anyone passionate about a specific hobby, Dave strives to break records. The most recent record-breaking flight took place on 13 August 2017, when Dave’s Raspberry Pi Zero HAB sent home the highest images taken by any amateur high-altitude balloon launch: at 43014 metres. No other HAB balloon has provided images from such an altitude, and the lightweight nature of the Pi Zero definitely helped, as Dave went on to mention on Twitter a few days later.

Dave Akerman The MagPi Raspberry Pi Community Profile

Dave is recognised as being the first person to incorporate a Raspberry Pi into a HAB payload, and continues to break records with the help of the little green board. More recently, he’s been able to lighten the load by using the Raspberry Pi Zero.

When the first Pi made its way to near space, Dave tore the computer apart in order to meet the weight restriction. The Pi in the Sky board was created to add the extra features needed for the flight. Since then, the HAT has experienced a few changes.

Dave Akerman The MagPi Raspberry Pi Community Profile

The Pi in the Sky board, created specifically for HAB flights.

Dave first fell in love with high-altitude ballooning after coming across the hobby in a video shared on a photographic forum. With a lifelong interest in space thanks to watching the Moon landings as a boy, plus a talent for electronics and photography, it seems a natural progression for him. Throw in his coding skills from learning to program on a Teletype and it’s no wonder he was ready and eager to take to the skies, so to speak, and capture the curvature of the Earth. What was so great about using the Raspberry Pi was the instant gratification he got from receiving images in real time as they were taken during the flight. While other devices could control a camera and store captured images for later retrieval, thanks to the Pi Dave was able to transmit the files back down to Earth and check the progress of his balloon while attempting to break records with a flight.

Dave Akerman The MagPi Raspberry Pi Community Profile Morph

One of the many commercial flights Dave has organised featured the classic children’s TV character Morph, a creation of the Aardman Animations studio known for Wallace and Gromit. Morph took to the sky twice in his mission to reach near space, and finally succeeded in 2016.

High-altitude ballooning isn’t the only part of Dave’s life that incorporates a Raspberry Pi. Having “lost count” of how many Pis he has running tasks, Dave has also created radio receivers for APRS (ham radio data), ADS-B (aircraft tracking), and OGN (gliders), along with a time-lapse camera in his garden, and he has a few more Pi for tinkering purposes.

The post Community profile: Dave Akerman appeared first on Raspberry Pi.

AWS Documentation is Now Open Source and on GitHub

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-documentation-is-now-open-source-and-on-github/

Earlier this year we made the AWS SDK developer guides available as GitHub repos (all found within the awsdocs organization) and invited interested parties to contribute changes and improvements in the form of pull requests.

Today we are adding over 138 additional developer and user guides to the organization, and we are looking forward to receiving your requests. You can fix bugs, improve code samples (or submit new ones), add detail, and rewrite sentences and paragraphs in the interest of accuracy or clarity. You can also look at the commit history in order to learn more about new feature and service launches and to track improvements to the documents.

Making a Contribution
Before you get started, read the Amazon Open Source Code of Conduct and take a look at the Contributing Guidelines document (generally named CONTRIBUTING.md) for the AWS service of interest. Then create a GitHub account if you don’t already have one.

Once you find something to change or improve, visit the HTML version of the document and click on Edit on GitHub button at the top of the page:

This will allow you to edit the document in source form (typically Markdown or reStructuredText). The source code is used to produce the HTML, PDF, and Kindle versions of the documentation.

Once you are in GitHub, click on the pencil icon:

This creates a “fork” — a separate copy of the file that you can edit in isolation.

Next, make an edit. In general, as a new contributor to an open source project, you should gain experience and build your reputation by making small, high-quality edits. I’ll change “dozens of services” to “over one hundred services” in this document:

Then I summarize my change and click Propose file change:

I examine the differences to verify my changes and then click Create pull request:

Then I review the details and click Create pull request again:

The pull request (also known as a PR) makes its way to the Elastic Beanstalk documentation team and they get to decide if they want to accept it, reject it, or to engage in a conversation with me to learn more. The teams endeavor to respond to PRs within 48 hours, and I’ll be notified via GitHub whenever the status of the PR changes.

As is the case with most open source projects, a steady stream of focused, modest-sized pull requests is preferable to the occasional king-sized request with dozens of edits inside.

If I am interested in tracking changes to a repo over time, I can Watch and/or Star it:

If I Watch a repo, I’ll receive an email whenever there’s a new release, issue, or pull request for that service guide.

Go Fork It
This launch gives you another way to help us to improve AWS. Let me know what you think!

Jeff;

Self-Driving Cars Should Be Open Source

Post Syndicated from Bozho original https://techblog.bozho.net/self-driving-cars-open-source/

Self-driving cars are (will be) the pinnacle of consumer products automation – robot vacuum cleaners, smart fridges and TVs are just toys compared to self-driving cars. Both in terms of technology and in terms of impact. We aren’t yet on level 5 self driving cars , but they are behind the corner.

But as software engineers we know how fragile software is. And self-driving cars are basically software, so we can see all the risks involved with putting our lives in the hands anonymous (from our point of view) developers and unknown (to us) processes and quality standards. One may argue that this has been the case for every consumer product ever, but with software is different – software is way more complex than anything else.

So I have an outrageous proposal – self-driving cars should be open source. We have to be able to verify and trust the code that’s navigating our helpless bodies around the highways. Not only that, but we have to be able to verify if it is indeed that code that is currently running in our car, and not something else.

In fact, let me extend that – all cars should be open source. Before you say “but that will ruin the competitive advantage of manufacturers and will be deadly for business”, I don’t actually care how they trained their neural networks, or what their datasets are. That’s actually the secret sauce of the self-driving car and in my view it can remain proprietary and closed. What I’d like to see open-sourced is everything else. (Under what license – I’d be fine to even have it copyrighted and so not “real” open source, but that’s a separate discussion).

Why? This story about remote carjacking using the entertainment system of a Jeep is a scary example. Attackers that reverse engineer the car software can remotely control everything in the car. Why did that happen? Well, I guess it’s complicated and we have to watch the DEFCON talk.

And also read the paper, but a paragraph in wikipedia about the CAN bus used in most cars gives us a hint:

CAN is a low-level protocol and does not support any security features intrinsically. There is also no encryption in standard CAN implementations, which leaves these networks open to man-in-the-middle packet interception. In most implementations, applications are expected to deploy their own security mechanisms; e.g., to authenticate incoming commands or the presence of certain devices on the network. Failure to implement adequate security measures may result in various sorts of attacks if the opponent manages to insert messages on the bus. While passwords exist for some safety-critical functions, such as modifying firmware, programming keys, or controlling antilock brake actuators, these systems are not implemented universally and have a limited number of seed/key pair

I don’t know in what world it makes sense to even have a link between the entertainment system and the low-level network that operates the physical controls. As apparent from the talk, the two systems are supposed to be air-gapped, but in reality they aren’t.

Rookie mistakes were abound – unauthenticated “execute” method, running as root, firmware is not signed, hard-coded passwords, etc. How do we know that there aren’t tons of those in all cars out there right now, and in the self-driving cars of the future (which will likely use the same legacy technologies of the current cars)? Recently I heard a negative comment about the source code of one of the self-driving cars “players”, and I’m pretty sure there are many of those rookie mistakes.

Why this is this even more risky for self-driving cars? I’m not an expert in car programming, but it seems like the attack surface is bigger. I might be completely off target here, but on a typical car you’d have to “just” properly isolate the CAN bus. With self-driving cars the autonomous system that watches the surrounding and makes decisions on what to do next has to be connected to the CAN bus. With Tesla being able to send updates over the wire, the attack surface is even bigger (although that’s actually a good feature – to be able to patch all cars immediately once a vulnerability is discovered).

Of course, one approach would be to introduce legislation that regulates car software. It might work, but it would rely on governments to to proper testing, which won’t always be the case.

The alternative is to open-source it and let all the white-hats find your issues, so that you can close them before the car hits the road. Not only that, but consumers like me will feel safer, and geeks would be able to verify whether the car is really running the software it claims to run by verifying the fingerprints.

Richard Stallman might be seen as a fanatic when he advocates against closed source software, but in cases like … cars, his concerns seem less extreme.

“But the Jeep vulnerability was fixed”, you may say. And that might be seen as being the way things are – vulnerabilities appear, they get fixed, life goes on. No person was injured because of the bug, right? Well, not yet. And “gaining control” is the extreme scenario – there are still pretty bad scenarios, like being able to track a car through its GPS, or cause panic by controlling the entertainment system. It might be over wifi, or over GPRS, or even by physically messing with the car by inserting a flash drive. Is open source immune to those issues? No, but it has proven to be more resilient.

One industry where the problem of proprietary software on a product that the customer bought is … tractors. It turns out farmers are hacking their tractors, because of multiple issues and the inability of the vendor to resolve them in a timely manner. This is likely to happen to cars soon, when only authorized repair shops are allowed to touch anything on the car. And with unauthorized repair shops the attack surface becomes even bigger.

In fact, I’d prefer open source not just for cars, but for all consumer products. The source code of a smart fridge or a security camera is trivial, it would rarely mean sacrificing competitive advantage. But refrigerators get hacked, security cameras are active part of botnets, the “internet of shit” is getting ubiquitous. A huge amount of these issues are dumb, beginner mistakes. We have the right to know what shit we are running – in our frdges, DVRs and ultimatey – cars.

Your fridge may soon by spying on you, your vacuum cleaner may threaten your pet in demand of “ransom”. The terrorists of the future may crash planes without being armed, can crash vans into crowds without being in the van, and can “explode” home equipment without being in the particular home. And that’s not just a hypothetical.

Will open source magically solve the issue? No. But it will definitely make things better and safer, as it has done with operating systems and web servers.

The post Self-Driving Cars Should Be Open Source appeared first on Bozho's tech blog.

Your project’s RCS history affects ease of contribution (or: don’t squash PRs)

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/42759.html

Github recently introduced the option to squash commits on merge, and even before then several projects requested that contributors squash their commits after review but before merge. This is a terrible idea that makes it more difficult for people to contribute to projects.

I’m spending today working on reworking some code to integrate with a new feature that was just integrated into Kubernetes. The PR in question was absolutely fine, but just before it was merged the entire commit history was squashed down to a single commit at the request of the reviewer. This single commit contains type declarations, the functionality itself, the integration of that functionality into the scheduler, the client code and a large pile of autogenerated code.

I’ve got some familiarity with Kubernetes, but even then this commit is difficult for me to read. It doesn’t tell a story. I can’t see its growth. Looking at a single hunk of this diff doesn’t tell me whether it’s infrastructural or part of the integration. Given time I can (and have) figured it out, but it’s an unnecessary waste of effort that could have gone towards something else. For someone who’s less used to working on large projects, it’d be even worse. I’m paid to deal with this. For someone who isn’t, the probability that they’ll give up and do something else entirely is even greater.

I don’t want to pick on Kubernetes here – the fact that this Github feature exists makes it clear that a lot of people feel that this kind of merge is a good idea. And there are certainly cases where squashing commits makes sense. Commits that add broken code and which are immediately followed by a series of “Make this work” commits also impair readability and distract from the narrative that your RCS history should present, and Github present this feature as a way to get rid of them. But that ends up being a false dichotomy. A history that looks like “Commit”, “Revert Commit”, “Revert Revert Commit”, “Fix broken revert”, “Revert fix broken revert” is a bad history, as is a history that looks like “Add 20,000 line feature A”, “Add 20,000 line feature B”.

When you’re crafting commits for merge, think about your commit history as a textbook. Start with the building blocks of your feature and make them one commit. Build your functionality on top of them in another. Tie that functionality into the core project and make another commit. Add client support. Add docs. Include your tests. Allow someone to follow the growth of your feature over time, with each commit being a chapter of that story. And never, ever, put autogenerated code in the same commit as an actual functional change.

People can’t contribute to your project unless they can understand your code. Writing clear, well commented code is a big part of that. But so is showing the evolution of your features in an understandable way. Make sure your RCS history shows that, otherwise people will go and find another project that doesn’t make them feel frustrated.

(Edit to add: Sarah Sharp wrote on the same topic a couple of years ago)

comment count unavailable comments