Tag Archives: pth

Hong Kong Customs Arrest Pirate Streaming Device Vendors

Post Syndicated from Andy original https://torrentfreak.com/hong-kong-customs-arrest-pirate-streaming-device-vendors-180529/

As Internet-capable set-top boxes pour into homes across all populated continents, authorities seem almost powerless to come up with a significant response to the growing threat.

In standard form these devices, which are often Android-based, are entirely legal. However, when configured with specialist software they become piracy powerhouses providing access to all content imaginable, often at copyright holders’ expense.

A large proportion of these devices come from Asia, China in particular, but it’s relatively rare to hear of enforcement action in that part of the world. That changed this week with an announcement from Hong Kong customs detailing a series of raids in the areas of Sham Shui Po and Wan Chai.

After conducting an in-depth investigation with the assistance of copyright holders, on May 25 and 26 Customs and Excise officers launched Operation Trojan Horse, carrying out a series of raids on four premises selling suspected piracy-configured set-top boxes.

During the operation, officers arrested seven men and one woman aged between 18 and 45. Four of them were shop owners and the other four were salespeople. Around 354 suspected ‘pirate’ boxes were seized with an estimated market value of HK$320,000 (US$40,700).

“In the past few months, the department has stepped up inspections of hotspots for TV set-top boxes,” a statement from authorities reads.

“We have discovered that some shops have sold suspected illegal set-top boxes that bypass the copyright protection measures imposed by copyright holders of pay television programs allowing people to watch pay television programs for free.”

Some of the devices seized by Hong Kong Customs

During a press conference yesterday, a representative from the Customs Copyright and Trademark Investigations (Action) Division said that in the run up to the World Cup in 2018, measures against copyright infringement will be strengthened both on and online.

The announcement was welcomed by the Cable and Satellite Broadcasting Association of Asia’s (CASBAA) Coalition Against Piracy, which is back by industry heavyweights including Disney, Fox, HBO Asia, NBCUniversal, Premier League, Turner Asia-Pacific, A&E Networks, Astro, BBC Worldwide, National Basketball Association, TV5MONDE, Viacom International, and others.

“We commend the great work of Hong Kong Customs in clamping down on syndicates who profit from the sale of Illicit Streaming Devices,” said General Manager Neil Gane.

“The prevalence of ISDs in Hong Kong and across South East Asia is staggering. The criminals who sell ISDs, as well as those who operate the ISD networks and pirate websites, are profiting from the hard work of talented creators, seriously damaging the legitimate content ecosystem as well as exposing consumers to dangerous malware.”

Malware warnings are very prevalent these days but it’s not something the majority of set-top box owners have a problem with. Indeed, a study carried by Sycamore Research found that pirates aren’t easily deterred by such warnings.

Nevertheless, there are definite risks for individuals selling devices when they’re configured for piracy.

Recent cases, particularly in the UK, have shown that hefty jail sentences can hit offenders while over in the United States (1,2,3), lawsuits filed by the Alliance for Creativity and Entertainment (ACE) have the potential to end in unfavorable rulings for multiple defendants.

Although rarely reported, offenders in Hong Kong also face stiff sentences for this kind of infringement including large fines and custodial sentences of up to four years.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

C is to low level

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/c-is-too-low-level.html

I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.

The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.

The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.

But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.

Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.

The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.

Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.

As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.

This is an intellectually compelling argument, but so far bunk.

The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.

Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.

The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.

The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.

For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).

The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.

For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.

You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.

The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.

The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.

Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.


Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.

Solving Complex Ordering Challenges with Amazon SQS FIFO Queues

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/solving-complex-ordering-challenges-with-amazon-sqs-fifo-queues/

Contributed by Shea Lutton, AWS Cloud Infrastructure Architect

Amazon Simple Queue Service (Amazon SQS) is a fully managed queuing service that helps decouple applications, distributed systems, and microservices to increase fault tolerance. SQS queues come in two distinct types:

  • Standard SQS queues are able to scale to enormous throughput with at-least-once delivery.
  • FIFO queues are designed to guarantee that messages are processed exactly once in the exact order that they are received and have a default rate of 300 transactions per second.

As customers explore SQS FIFO queues, they often have questions about how the behavior works when messages arrive and are consumed. This post walks through some common situations to identify the exact behavior that you can expect. It also covers the behavior of message groups in depth and explains why message groups are key to understanding how FIFO queues work.

The simple case

Suppose that you run a major auction platform where people buy and sell a wide range of products. Your platform requires that transactions from buyers and sellers get processed in exactly the order received. Here’s how a FIFO queue helps you keep all your transactions in one straight flow.

A seller currently is holding an auction for a laptop, and three different bids are received for the same price. Ties are awarded to the first bidder at that price so it is important to track which arrived first. Your auction platform receives the three bids and sends them to a FIFO queue before they are processed.

Now observe how messages leave the queue. When your consumer asks for a batch of up to 10 messages, SQS starts filling the batch with the oldest message (bid A1). It keeps filling until either the batch is full or the queue is empty. In this case, the batch contains the three messages and the queue is now empty. After a batch has left the queue, SQS considers that batch of messages to be “in-flight” until the consumer either deletes them or the batch’s visibility timer expires.


When you have a single consumer, this is easy to envision. The consumer gets a batch of messages (now in-flight), does its processing, and deletes the messages. That consumer is then ready to ask for the next batch of messages.

The critical thing to keep in mind is that SQS won’t release the next batch of messages until the first batch has been deleted. By adding more messages to the queue, you can see more interesting behaviors. Imagine that a burst of 11 bids is sent to your FIFO queue, with two bids for Auction A arriving last.

The FIFO queue now has at least two batches of messages in it. When your single consumer requests the first batch of 10 messages, it receives a batch starting with B1 and ending with A1. Later, after the first batch has been deleted, the consumer can get the second batch of messages containing the final A2 message from the queue.

Adding complexity with multiple message groups

A new challenge arises. Your auction platform is getting busier and your dev team added a number of new features. The combination of increased messages and extra processing time for the new features means that a single consumer is too slow. The solution is to scale to have more consumers and process messages in parallel.

To work in parallel, your team realized that only the messages related to a single auction must be kept in order. All transactions for Auction A need to be kept in order and so do all transactions for Auction B. But the two auctions are independent and it does not matter which auctions transactions are processed first.

FIFO can handle that case with a feature called message groups. Each transaction related to Auction A is placed by your producer into message group A, and so on. In the diagram below, Auction A and Auction B each received three bid transactions, with bid B1 arriving first. The FIFO queue always keeps transactions within a message group in the order in which they arrived.

How is this any different than earlier examples? The consumer now gets the messages ordered by message groups, all the B group messages followed by all the A group messages. Multiple message groups create the possibility of using multiple consumers, which I explain in a moment. If FIFO can’t fill up a batch of messages with a single message group, FIFO can place more than one message group in a batch of messages. But whenever possible, the queue gives you a full batch of messages from the same group.

The order of messages leaving a FIFO queue is governed by three rules:

  1. Return the oldest message where no other message in the same message group is currently in-flight.
  2. Return as many messages from the same message group as possible.
  3. If a message batch is still not full, go back to rule 1.

To see this behavior, add a second consumer and insert many more messages into the queue. For simplicity, the delete message action has been omitted in these diagrams but it is assumed that all messages in a batch are processed successfully by the consumer and the batch is properly deleted immediately after.

In this example, there are 11 Group A and 11 Group B transactions arriving in interleaved order and a second consumer has been added. Consumer 1 asks for a group of 10 messages and receives 10 Group A messages. Consumer 2 then asks for 10 messages but SQS knows that Group A is in flight, so it releases 10 Group B messages. The two consumers are now processing two batches of messages in parallel, speeding up throughput and then deleting their batches. When Consumer 1 requests the next batch of messages, it receives the remaining two messages, one from Group A and one from Group B.

Consider this nuanced detail from the example above. What would happen if Consumer 1 was on a faster server and processed its first batch of messages before Consumer 2 could mark its messages for deletion? See if you can predict the behavior before looking at the answer.

If Consumer 2 has not deleted its Group B messages yet when Consumer 1 asks for the next batch, then the FIFO queue considers Group B to still be in flight. It does not release any more Group B messages. Consumer 1 gets only the remaining Group A message. Later, after Consumer 2 has deleted its first batch, the remaining Group B message is released.


I hope this post answered your questions about how Amazon SQS FIFO queues work and why message groups are helpful. If you’re interested in exploring SQS FIFO queues further, here are a few ideas to get you started:

This is a really lovely Raspberry Pi tricorder

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

At the moment I’m spending my evenings watching all of Star Trek in order. Yes, I have watched it before (but with some really big gaps). Yes, including the animated series (I’m up to The Terratin Incident). So I’m gratified to find this beautiful The Original Series–style tricorder build.

Star Trek Tricorder with Working Display!

At this year’s Replica Prop Forum showcase, we meet up once again wtih Brian Mix, who brought his new Star Trek TOS Tricorder. This beautiful replica captures the weight and finish of the filming hand prop, and Brian has taken it one step further with some modern-day electronics!

A what now?

If you don’t know what a tricorder is, which I guess is faintly possible, the easiest way I can explain is to steal words that Liz wrote when Recantha made one back in 2013. It’s “a made-up thing used by the crew of the Enterprise to measure stuff, store data, and scout ahead remotely when exploring strange new worlds, seeking out new life and new civilisations, and all that jazz.”

A brief history of Picorders

We’ve seen other Raspberry Pi–based realisations of this iconic device. Recantha’s LEGO-cased tricorder delivered some authentic functionality, including temperature sensors, an ultrasonic distance sensor, a photosensor, and a magnetometer. Michael Hahn’s tricorder for element14’s Sci-Fi Your Pi competition in 2015 packed some similar functions, along with Original Series audio effects, into a neat (albeit non-canon) enclosure.

Brian Mix’s Original Series tricorder

Brian Mix’s tricorder, seen in the video above from Tested at this year’s Replica Prop Forum showcase, is based on a high-quality kit into which, he discovered, a Raspberry Pi just fits. He explains that the kit is the work of the late Steve Horch, a special effects professional who provided props for later Star Trek series, including the classic Deep Space Nine episode Trials and Tribble-ations.

A still from an episode of Star Trek: Deep Space Nine: Jadzia Dax, holding an Original Series-sylte tricorder, speaks with Benjamin Sisko

Dax, equipped for time travel

This episode’s plot required sets and props — including tricorders — replicating the USS Enterprise of The Original Series, and Steve Horch provided many of these. Thus, a tricorder kit from him is about as close to authentic as you can possibly find unless you can get your hands on a screen-used prop. The Pi allows Brian to drive a real display and a speaker: “Being the geek that I am,” he explains, “I set it up to run every single Original Series Star Trek episode.”

Even more wonderful hypothetical tricorders that I would like someone to make

This tricorder is beautiful, and it makes me think how amazing it would be to squeeze in some of the sensor functionality of the devices depicted in the show. Space in the case is tight, but it looks like there might be a little bit of depth to spare — enough for an IMU, maybe, or a temperature sensor. I’m certain the future will bring more Pi tricorder builds, and I, for one, can’t wait. Please tell us in the comments if you’re planning something along these lines, and, well, I suppose some other sci-fi franchises have decent Pi project potential too, so we could probably stand to hear about those.

If you’re commenting, no spoilers please past The Animated Series S1 E11. Thanks.

The post This is a really lovely Raspberry Pi tricorder appeared first on Raspberry Pi.

The intersection of Customer Engagement and Data Science

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/messaging-and-targeting/the-intersection-of-customer-engagement-and-data-science/

On the Messaging and Targeting team, we’re constantly inspired by the new and novel ways that customers use our services. For example, last year we took an in-depth look at a customer who built a fully featured email marketing platform based on Amazon SES and other AWS Services.

This week, our friends on the AWS Machine Learning team published a blog post that brings together the worlds of data science and customer engagement. Their solution uses Amazon SageMaker (a platform for building and deploying machine learning models) to create a system that makes purchasing predictions based on customers’ past behaviors. It then uses Amazon Pinpoint to send campaigns to customers based on these predictions.

The blog post is an interesting read that includes a primer on the process of creating a useful Machine Learning solution. It then goes in-depth, discussing the real-world considerations that are involved in implementing the solution.

Take a look at their post, Amazon Pinpoint campaigns driven by machine learning on Amazon SageMaker, on the AWS Machine Learning Blog.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

## Define variable 
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 

# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
"us-east-1" )
"us-east-2" )
"eu-west-1" )
    echo "Invalid Region Name"
    exit 1 ;  

# Start training job and creating model artifact 
S3OUTPUT="s3://<your bucket name>/model/" 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

 "Version": "2012-10-17",
 "Statement": [
 "Effect": "Allow",
 "Action": [
 "Resource": "*"

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
result = json.loads(response['Body'].read().decode())
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;


In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”



2018-05-03 python, multiprocessing, thread-ове и забивания

Post Syndicated from Vasil Kolev original https://vasil.ludost.net/blog/?p=3384

Всеки ден се убеждавам, че нищо не работи.

Открих забавен проблем с python и multiprocessing, който в момента още не мога да реша чий проблем е (в крайна сметка ще се окаже мой). Отне ми прилично количество време да го хвана и си струва да го разкажа.

Малко предистория: ползваме influxdb, в което тъпчем бая секундни данни, които после предъвкваме до минутни. InfluxDB има continuous queries, които вършат тази работа – на някакъв интервал от време хващат новите данни и ги сгъват. Тези заявки имаха няколко проблема:
– не се оправят с попълване на стари данни;
– изпълняват се рядко и минутните данни изостават;
– изпълняват се в общи линии в един thread, което кара минутните данни да изостават още повече (в нашия случай преди да ги сменим с около 12 часа).

Хванаха ме дяволите и си написах просто демонче на python, което да събира информация за различните бази какви данни могат да се сгънат, и паралелно да попълва данните. Работи в общи линии по следния начин:
– взима списък с базите данни
– пуска през multiprocessing-а да се събере за всяка база какви заявки трябва да се пуснат, на база на какви measurement-и има и докога са минутните и секундните данни в тях;
– пуска през multiprocessing-а събраните от предния pass заявки
– и така до края на света (или докато зависне).

След като навакса за няколко часа, успяваше да държи минутните данни в рамките на няколко минути от последните секундни данни, което си беше сериозно подобрение на ситуацията. Единственият проблем беше, че от време на време спираше да process-ва и увисваше.

Днес намерих време да го прегледам внимателно какво му се случва. Процесът изглежда като един parent и 5 fork()-нати child-а, като:
Parent-а спи във futex 0x22555a0;
Child 18455 във futex 0x7fdbfa366000;
Child 18546 read
Child 18457 във futex 0x7fdbfa366000
Child 18461 във futex 0x7fdbfa366000
Child 18462 във futex 0x7fdbfa366000
Child 18465 във futex 0x7fdbf908c2c0

Това не беше особено полезно, и се оказа, че стандартния python debugger (pdb) не може да се закача за съществуващи процеси, но за сметка на това gdb с подходящи debug символи може, и може да дава доста полезна информация. По този начин открих, че parent-а чака един child да приключи работата си:

#11 PyEval_EvalFrameEx (
[email protected]=Frame 0x235fb80, for file /usr/lib64/python2.7/multiprocessing/pool.py, line 543, in wait (self== 1525137960000000000 AND time < 1525138107000000000 GROUP BY time(1m), * fill(linear)\' in a read only context, please use a POST request instead', u'level': u'warning'}], u'statement_id': 0}]}, None], _callback=None, _chunksize=1, _number_left=1, _ready=False, _success=True, _cond=<_Condition(_Verbose__verbose=False, _Condition__lock=, acquire=, _Condition__waiters=[], release=) at remote 0x7fdbe0015310>, _job=45499, _cache={45499: < ...>}) a...(truncated), [email protected]=0) at /usr/src/debug/Python-2.7.5/Python/ceval.c:3040

Като в pool.py около ред 543 има следното:

class ApplyResult(object):


def wait(self, timeout=None):
if not self._ready:

Първоначално си мислех, че 18546 очаква да прочете нещо от грешното място, но излезе, че това е child-а, който е спечелил състезанието за изпълняване на следващата задача и чака да му я дадат (което изглежда се раздава през futex 0x7fdbfa366000). Един от child-овете обаче чака в друг lock:

(gdb) bt
#0 __lll_lock_wait () at ../nptl/sysdeps/unix/sysv/linux/x86_64/lowlevellock.S:135
#1 0x00007fdbf9b68dcb in _L_lock_812 () from /lib64/libpthread.so.0
#2 0x00007fdbf9b68c98 in __GI___pthread_mutex_lock ([email protected]=0x7fdbf908c2c0 ) at ../nptl/pthread_mutex_lock.c:79
#3 0x00007fdbf8e846ea in _nss_files_gethostbyname4_r ([email protected]=0x233fa44 "localhost", [email protected]=0x7fdbecfcb8e0, [email protected]=0x7fdbecfcb340 "hZ \372\333\177",
[email protected]=1064, [email protected]=0x7fdbecfcb8b0, [email protected]=0x7fdbecfcb910, [email protected]=0x0) at nss_files/files-hosts.c:381
#4 0x00007fdbf9170ed8 in gaih_inet (name=, [email protected]=0x233fa44 "localhost", service=, [email protected]=0x7fdbecfcbb90, [email protected]=0x7fdbecfcb9f0,
[email protected]=0x7fdbecfcb9e0) at ../sysdeps/posix/getaddrinfo.c:877
#5 0x00007fdbf91745cd in __GI_getaddrinfo ([email protected]=0x233fa44 "localhost", [email protected]=0x7fdbecfcbbc0 "8086", [email protected]=0x7fdbecfcbb90, [email protected]=0x7fdbecfcbb78)
at ../sysdeps/posix/getaddrinfo.c:2431
#6 0x00007fdbeed8760d in socket_getaddrinfo (self=
, args=) at /usr/src/debug/Python-2.7.5/Modules/socketmodule.c:4193
#7 0x00007fdbf9e5fbb0 in call_function (oparg=
, pp_stack=0x7fdbecfcbd10) at /usr/src/debug/Python-2.7.5/Python/ceval.c:4408
#8 PyEval_EvalFrameEx (
[email protected]=Frame 0x7fdbe8013350, for file /usr/lib/python2.7/site-packages/urllib3/util/connection.py, line 64, in create_connection (address=('localhost', 8086), timeout=3000, source_address=None, socket_options=[(6, 1, 1)], host='localhost', port=8086, err=None), [email protected]=0) at /usr/src/debug/Python-2.7.5/Python/ceval.c:3040

(gdb) frame 3
#3 0x00007fdbf8e846ea in _nss_files_gethostbyname4_r ([email protected]=0x233fa44 "localhost", [email protected]=0x7fdbecfcb8e0, [email protected]=0x7fdbecfcb340 "hZ \372\333\177",
[email protected]=1064, [email protected]=0x7fdbecfcb8b0, [email protected]=0x7fdbecfcb910, [email protected]=0x0) at nss_files/files-hosts.c:381
381 __libc_lock_lock (lock);
(gdb) list
376 enum nss_status
377 _nss_files_gethostbyname4_r (const char *name, struct gaih_addrtuple **pat,
378 char *buffer, size_t buflen, int *errnop,
379 int *herrnop, int32_t *ttlp)
380 {
381 __libc_lock_lock (lock);
383 /* Reset file pointer to beginning or open file. */
384 enum nss_status status = internal_setent (keep_stream);

Или в превод – опитваме се да вземем стандартния lock, който libc-то използва за да си пази reentrant функциите, и някой го държи. Кой ли?

(gdb) p lock
$3 = {__data = {__lock = 2, __count = 0, __owner = 16609, __nusers = 1, __kind = 0, __spins = 0, __elision = 0, __list = {__prev = 0x0, __next = 0x0}},
__size = "\002\000\000\000\000\000\000\000\[email protected]\000\000\001", '\000' , __align = 2}
(gdb) p &lock
$4 = (__libc_lock_t *) 0x7fdbf908c2c0

Тук се вижда как owner-а на lock-а всъщност е parent-а. Той обаче не смята, че го държи:

(gdb) p lock
$2 = 0
(gdb) p &lock
$3 = (__libc_lock_t *) 0x7fdbf9450df0
(gdb) x/20x 0x7fdbf9450df0
: 0x00000000 0x00000000 0x00000000 0x00000000
0x7fdbf9450e00 <__abort_msg>: 0x00000000 0x00000000 0x00000000 0x00000000
0x7fdbf9450e10 : 0x00000000 0x00000000 0x00000000 0x00000000
0x7fdbf9450e20 : 0x00000000 0x00000000 0x00000000 0x00000000
0x7fdbf9450e30 : 0x001762c9 0x00000000 0x00000000 0x00000000

… което е и съвсем очаквано, при условие, че са два процеса и тая памет не е обща.

Та, явно това, което се е случило е, че докато parent-а е правел fork(), тоя lock го е държал някой, и child-а реално не може да пипне каквото и да е, свързано с него (което значи никакви reentrant функции в glibc-то, каквито па всички ползват (и би трябвало да ползват)). Въпросът е, че по принцип това не би трябвало да е възможно, щото около fork() няма нищо, което да взима тоя lock, и би трябвало glibc да си освобождава lock-а като излиза от функциите си.

Първоначалното ми идиотско предположение беше, че в signal handler-а на SIGCHLD multiprocessing модула създава новите child-ове, и така докато нещо друго държи lock-а идва сигнал, прави се нов процес и той го “наследява” заключен. Това беше твърде глупаво, за да е истина, и се оказа, че не е…

Около въпросите с lock-а бях стигнал с търсене до две неща – issue 127 в gperftools и Debian bug 657835. Първото каза, че проблемът ми може да е от друг lock, който някой друг държи преди fork-а (което ме накара да се загледам по-внимателно какви lock-ове се държат), а второто, че като цяло ако fork-ваш thread-нато приложение, може после единствено да правиш execve(), защото всичко друго не е ясно колко ще работи.

И накрая се оказа, че ако се ползва multiprocessing модула, той пуска в главния процес няколко thread-а, които да се занимават със следенето и пускането на child-ове за обработка. Та ето какво реално се случва:

– някой child си изработва нужния брой операции и излиза
– parent-а получава SIGCHLD и си отбелязва, че трябва да види какво става
– главния thread на parent-а тръгва да събира списъка бази, и вика в някакъв момент _nss_files_gethostbyname4_r, който взима lock-а;
– по това време другия thread казва “а, нямам достатъчно child-ове, fork()”
– profit.

Текущото ми глупаво решение е да не правя нищо в главния thread, което може да взима тоя lock и да се надявам, че няма още някой такъв. Бъдещото ми решение е или да го пиша на python3 с някой друг модул по темата, или на go (което ще трябва да науча).

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

Introducing Microsoft Azure Sphere

Post Syndicated from corbet original https://lwn.net/Articles/751994/rss

Microsoft has issued a
press release
describing the security dangers involved with the
Internet of things (“a weaponized stove, baby monitors that spy, the
contents of your refrigerator being held for ransom
“) and introducing
“Microsoft Azure Sphere” as a combination of hardware and software to
address the problem. “Unlike the RTOSes common to MCUs today, our
defense-in-depth IoT OS offers multiple layers of security. It combines
security innovations pioneered in Windows, a security monitor, and a custom
Linux kernel to create a highly-secured software environment and a
trustworthy platform for new IoT experiences.

AWS AppSync – Production-Ready with Six New Features

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-appsync-production-ready-with-six-new-features/

If you build (or want to build) data-driven web and mobile apps and need real-time updates and the ability to work offline, you should take a look at AWS AppSync. Announced in preview form at AWS re:Invent 2017 and described in depth here, AWS AppSync is designed for use in iOS, Android, JavaScript, and React Native apps. AWS AppSync is built around GraphQL, an open, standardized query language that makes it easy for your applications to request the precise data that they need from the cloud.

I’m happy to announce that the preview period is over and that AWS AppSync is now generally available and production-ready, with six new features that will simplify and streamline your application development process:

Console Log Access – You can now see the CloudWatch Logs entries that are created when you test your GraphQL queries, mutations, and subscriptions from within the AWS AppSync Console.

Console Testing with Mock Data – You can now create and use mock context objects in the console for testing purposes.

Subscription Resolvers – You can now create resolvers for AWS AppSync subscription requests, just as you can already do for query and mutate requests.

Batch GraphQL Operations for DynamoDB – You can now make use of DynamoDB’s batch operations (BatchGetItem and BatchWriteItem) across one or more tables. in your resolver functions.

CloudWatch Support – You can now use Amazon CloudWatch Metrics and CloudWatch Logs to monitor calls to the AWS AppSync APIs.

CloudFormation Support – You can now define your schemas, data sources, and resolvers using AWS CloudFormation templates.

A Brief AppSync Review
Before diving in to the new features, let’s review the process of creating an AWS AppSync API, starting from the console. I click Create API to begin:

I enter a name for my API and (for demo purposes) choose to use the Sample schema:

The schema defines a collection of GraphQL object types. Each object type has a set of fields, with optional arguments:

If I was creating an API of my own I would enter my schema at this point. Since I am using the sample, I don’t need to do this. Either way, I click on Create to proceed:

The GraphQL schema type defines the entry points for the operations on the data. All of the data stored on behalf of a particular schema must be accessible using a path that begins at one of these entry points. The console provides me with an endpoint and key for my API:

It also provides me with guidance and a set of fully functional sample apps that I can clone:

When I clicked Create, AWS AppSync created a pair of Amazon DynamoDB tables for me. I can click Data Sources to see them:

I can also see and modify my schema, issue queries, and modify an assortment of settings for my API.

Let’s take a quick look at each new feature…

Console Log Access
The AWS AppSync Console already allows me to issue queries and to see the results, and now provides access to relevant log entries.In order to see the entries, I must enable logs (as detailed below), open up the LOGS, and check the checkbox. Here’s a simple mutation query that adds a new event. I enter the query and click the arrow to test it:

I can click VIEW IN CLOUDWATCH for a more detailed view:

To learn more, read Test and Debug Resolvers.

Console Testing with Mock Data
You can now create a context object in the console where it will be passed to one of your resolvers for testing purposes. I’ll add a testResolver item to my schema:

Then I locate it on the right-hand side of the Schema page and click Attach:

I choose a data source (this is for testing and the actual source will not be accessed), and use the Put item mapping template:

Then I click Select test context, choose Create New Context, assign a name to my test content, and click Save (as you can see, the test context contains the arguments from the query along with values to be returned for each field of the result):

After I save the new Resolver, I click Test to see the request and the response:

Subscription Resolvers
Your AWS AppSync application can monitor changes to any data source using the @aws_subscribe GraphQL schema directive and defining a Subscription type. The AWS AppSync client SDK connects to AWS AppSync using MQTT over Websockets and the application is notified after each mutation. You can now attach resolvers (which convert GraphQL payloads into the protocol needed by the underlying storage system) to your subscription fields and perform authorization checks when clients attempt to connect. This allows you to perform the same fine grained authorization routines across queries, mutations, and subscriptions.

To learn more about this feature, read Real-Time Data.

Batch GraphQL Operations
Your resolvers can now make use of DynamoDB batch operations that span one or more tables in a region. This allows you to use a list of keys in a single query, read records multiple tables, write records in bulk to multiple tables, and conditionally write or delete related records across multiple tables.

In order to use this feature the IAM role that you use to access your tables must grant access to DynamoDB’s BatchGetItem and BatchPutItem functions.

To learn more, read the DynamoDB Batch Resolvers tutorial.

CloudWatch Logs Support
You can now tell AWS AppSync to log API requests to CloudWatch Logs. Click on Settings and Enable logs, then choose the IAM role and the log level:

CloudFormation Support
You can use the following CloudFormation resource types in your templates to define AWS AppSync resources:

AWS::AppSync::GraphQLApi – Defines an AppSync API in terms of a data source (an Amazon Elasticsearch Service domain or a DynamoDB table).

AWS::AppSync::ApiKey – Defines the access key needed to access the data source.

AWS::AppSync::GraphQLSchema – Defines a GraphQL schema.

AWS::AppSync::DataSource – Defines a data source.

AWS::AppSync::Resolver – Defines a resolver by referencing a schema and a data source, and includes a mapping template for requests.

Here’s a simple schema definition in YAML form:

    Type: "AWS::AppSync::GraphQLSchema"
      - AppSyncGraphQLApi
      ApiId: !GetAtt AppSyncGraphQLApi.ApiId
      Definition: |
        schema {
          query: Query
          mutation: Mutation
        type Query {
          singlePost(id: ID!): Post
          allPosts: [Post]
        type Mutation {
          putPost(id: ID!, title: String!): Post
        type Post {
          id: ID!
          title: String!

Available Now
These new features are available now and you can start using them today! Here are a couple of blog posts and other resources that you might find to be of interest:




Build a house in Minecraft using Python

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/build-minecraft-house-using-python/

In this tutorial from The MagPi issue 68, Steve Martin takes us through the process of house-building in Minecraft Pi. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Minecraft Pi is provided for free as part of the Raspbian operating system. To start your Minecraft: Pi Edition adventures, try our free tutorial Getting started with Minecraft.

Minecraft Raspberry Pi

Writing programs that create things in Minecraft is not only a great way to learn how to code, but it also means that you have a program that you can run again and again to make as many copies of your Minecraft design as you want. You never need to worry about your creation being destroyed by your brother or sister ever again — simply rerun your program and get it back! Whilst it might take a little longer to write the program than to build one house, once it’s finished you can build as many houses as you want.

Co-ordinates in Minecraft

Let’s start with a review of the coordinate system that Minecraft uses to know where to place blocks. If you are already familiar with this, you can skip to the next section. Otherwise, read on.

Minecraft Raspberry Pi Edition

Plan view of our house design

Minecraft shows us a three-dimensional (3D) view of the world. Imagine that the room you are in is the Minecraft world and you want to describe your location within that room. You can do so with three numbers, as follows:

  • How far across the room are you? As you move from side to side, you change this number. We can consider this value to be our X coordinate.
  • How high off the ground are you? If you are upstairs, or if you jump, this value increases. We can consider this value to be our Y coordinate.
  • How far into the room are you? As you walk forwards or backwards, you change this number. We can consider this value to be our Z coordinate.

You might have done graphs in school with X going across the page and Y going up the page. Coordinates in Minecraft are very similar, except that we have an extra value, Z, for our third dimension. Don’t worry if this still seems a little confusing: once we start to build our house, you will see how these three dimensions work in Minecraft.

Designing our house

It is a good idea to start with a rough design for our house. This will help us to work out the values for the coordinates when we are adding doors and windows to our house. You don’t have to plan every detail of your house right away. It is always fun to enhance it once you have got the basic design written. The image above shows the plan view of the house design that we will be creating in this tutorial. Note that because this is a plan view, it only shows the X and Z co-ordinates; we can’t see how high anything is. Hopefully, you can imagine the house extending up from the screen.

We will build our house close to where the Minecraft player is standing. This a good idea when creating something in Minecraft with Python, as it saves us from having to walk around the Minecraft world to try to find our creation.

Starting our program

Type in the code as you work through this tutorial. You can use any editor you like; we would suggest either Python 3 (IDLE) or Thonny Python IDE, both of which you can find on the Raspberry Pi menu under Programming. Start by selecting the File menu and creating a new file. Save the file with a name of your choice; it must end with .py so that the Raspberry Pi knows that it is a Python program.

It is important to enter the code exactly as it is shown in the listing. Pay particular attention to both the spelling and capitalisation (upper- or lower-case letters) used. You may find that when you run your program the first time, it doesn’t work. This is very common and just means there’s a small error somewhere. The error message will give you a clue about where the error is.

It is good practice to start all of your Python programs with the first line shown in our listing. All other lines that start with a # are comments. These are ignored by Python, but they are a good way to remind us what the program is doing.

The two lines starting with from tell Python about the Minecraft API; this is a code library that our program will be using to talk to Minecraft. The line starting mc = creates a connection between our Python program and the game. Then we get the player’s location broken down into three variables: x, y, and z.

Building the shell of our house

To help us build our house, we define three variables that specify its width, height, and depth. Defining these variables makes it easy for us to change the size of our house later; it also makes the code easier to understand when we are setting the co-ordinates of the Minecraft bricks. For now, we suggest that you use the same values that we have; you can go back and change them once the house is complete and you want to alter its design.

It’s now time to start placing some bricks. We create the shell of our house with just two lines of code! These lines of code each use the setBlocks command to create a complete block of bricks. This function takes the following arguments:

setBlocks(x1, y1, z1, x2, y2, z2, block-id, data)

x1, y1, and z1 are the coordinates of one corner of the block of bricks that we want to create; x1, y1, and z1 are the coordinates of the other corner. The block-id is the type of block that we want to use. Some blocks require another value called data; we will see this being used later, but you can ignore it for now.

We have to work out the values that we need to use in place of x1, y1, z1, x1, y1, z1 for our walls. Note that what we want is a larger outer block made of bricks and that is filled with a slightly smaller block of air blocks. Yes, in Minecraft even air is actually just another type of block.

Once you have typed in the two lines that create the shell of your house, you almost ready to run your program. Before doing so, you must have Minecraft running and displaying the contents of your world. Do not have a world loaded with things that you have created, as they may get destroyed by the house that we are building. Go to a clear area in the Minecraft world before running the program. When you run your program, check for any errors in the ‘console’ window and fix them, repeatedly running the code again until you’ve corrected all the errors.

You should see a block of bricks now, as shown above. You may have to turn the player around in the Minecraft world before you can see your house.

Adding the floor and door

Now, let’s make our house a bit more interesting! Add the lines for the floor and door. Note that the floor extends beyond the boundary of the wall of the house; can you see how we achieve this?

Hint: look closely at how we calculate the x and z attributes as compared to when we created the house shell above. Also note that we use a value of y-1 to create the floor below our feet.

Minecraft doors are two blocks high, so we have to create them in two parts. This is where we have to use the data argument. A value of 0 is used for the lower half of the door, and a value of 8 is used for the upper half (the part with the windows in it). These values will create an open door. If we add 4 to each of these values, a closed door will be created.

Before you run your program again, move to a new location in Minecraft to build the house away from the previous one. Then run it to check that the floor and door are created; you will need to fix any errors again. Even if your program runs without errors, check that the floor and door are positioned correctly. If they aren’t, then you will need to check the arguments so setBlock and setBlocks are exactly as shown in the listing.

Adding windows

Hopefully you will agree that your house is beginning to take shape! Now let’s add some windows. Looking at the plan for our house, we can see that there is a window on each side; see if you can follow along. Add the four lines of code, one for each window.

Now you can move to yet another location and run the program again; you should have a window on each side of the house. Our house is starting to look pretty good!

Adding a roof

The final stage is to add a roof to the house. To do this we are going to use wooden stairs. We will do this inside a loop so that if you change the width of your house, more layers are added to the roof. Enter the rest of the code. Be careful with the indentation: I recommend using spaces and avoiding the use of tabs. After the if statement, you need to indent the code even further. Each indentation level needs four spaces, so below the line with if on it, you will need eight spaces.

Since some of these code lines are lengthy and indented a lot, you may well find that the text wraps around as you reach the right-hand side of your editor window — don’t worry about this. You will have to be careful to get those indents right, however.

Now move somewhere new in your world and run the complete program. Iron out any last bugs, then admire your house! Does it look how you expect? Can you make it better?

Customising your house

Now you can start to customise your house. It is a good idea to use Save As in the menu to save a new version of your program. Then you can keep different designs, or refer back to your previous program if you get to a point where you don’t understand why your new one doesn’t work.

Consider these changes:

  • Change the size of your house. Are you able also to move the door and windows so they stay in proportion?
  • Change the materials used for the house. An ice house placed in an area of snow would look really cool!
  • Add a back door to your house. Or make the front door a double-width door!

We hope that you have enjoyed writing this program to build a house. Now you can easily add a house to your Minecraft world whenever you want to by simply running this program.

Get the complete code for this project here.

Continue your Minecraft journey

Minecraft Pi’s programmable interface is an ideal platform for learning Python. If you’d like to try more of our free tutorials, check out:

You may also enjoy Martin O’Hanlon’s and David Whale’s Adventures in Minecraft, and the Hacking and Making in Minecraft MagPi Essentials guide, which you can download for free or buy in print here.

The post Build a house in Minecraft using Python appeared first on Raspberry Pi.

New – Encryption of Data in Transit for Amazon EFS

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-encryption-of-data-in-transit-for-amazon-efs/

Amazon Elastic File System was designed to be the file system of choice for cloud-native applications that require shared access to file-based storage. We launched EFS in mid-2016 and have added several important features since then including on-premises access via Direct Connect and encryption of data at rest. We have also made EFS available in additional AWS Regions, most recently US West (Northern California). As was the case with EFS itself, these enhancements were made in response to customer feedback, and reflect our desire to serve an ever-widening customer base.

Encryption in Transit
Today we are making EFS even more useful with the addition of support for encryption of data in transit. When used in conjunction with the existing support for encryption of data at rest, you now have the ability to protect your stored files using a defense-in-depth security strategy.

In order to make it easy for you to implement encryption in transit, we are also releasing an EFS mount helper. The helper (available in source code and RPM form) takes care of setting up a TLS tunnel to EFS, and also allows you to mount file systems by ID. The two features are independent; you can use the helper to mount file systems by ID even if you don’t make use of encryption in transit. The helper also supplies a recommended set of default options to the actual mount command.

Setting up Encryption
I start by installing the EFS mount helper on my Amazon Linux instance:

$ sudo yum install -y amazon-efs-utils

Next, I visit the EFS Console and capture the file system ID:

Then I specify the ID (and the TLS option) to mount the file system:

$ sudo mount -t efs fs-92758f7b -o tls /mnt/efs

And that’s it! The encryption is transparent and has an almost negligible impact on data transfer speed.

Available Now
You can start using encryption in transit today in all AWS Regions where EFS is available.

The mount helper is available for Amazon Linux. If you are running another distribution of Linux you will need to clone the GitHub repo and build your own RPM, as described in the README.


MagPi 68: an in-depth look at the new Raspberry Pi 3B+

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-68/

Hi folks, Rob from The MagPi here! You may remember that a couple of weeks ago, the Raspberry Pi 3 Model B+ was released, the updated version of the Raspberry Pi 3 Model B. It’s better, faster, and stronger than the original and it’s also the main topic in The MagPi issue 68, out now!

Everything you need to know about the new Raspberry Pi 3B+

What goes into ‘plussing’ a Raspberry Pi? We talked to Eben Upton and Roger Thornton about the work that went into making the Raspberry Pi 3B+, and we also have all the benchmarks to show you just how much the new Pi 3B+ has been improved.

Super fighting robots

Did you know that the next Pi Wars is soon? The 2018 Raspberry Pi robotics competition is taking place later in April, and we’ve got a full feature on what to expect, as well as top tips on how to make your own kick-punching robot for the next round.

More to read

Still want more after all that? Well, we have our usual excellent selection of outstanding project showcases, reviews, and tutorials to keep you entertained.

See pictures from Raspberry Pi’s sixth birthday, celebrated around the world!

This includes amazing projects like a custom Pi-powered, Switch-esque retro games console, a Minecraft Pi hack that creates a house at the touch of a button, and the Matrix Voice.

With a Pi and a 3D printer, you can make something as cool as this!

Get The MagPi 68

Issue 68 is available today from WHSmith, Tesco, Sainsbury’s, and Asda. If you live in the US, head over to your local Barnes & Noble or Micro Center in the next few days for a print copy. You can also get the new issue online from our store, or digitally via our Android and iOS apps. And don’t forget, there’s always the free PDF as well.

New subscription offer!

Want to support the Raspberry Pi Foundation and the magazine? We’ve launched a new way to subscribe to the print version of The MagPi: you can now take out a monthly £4 subscription to the magazine, effectively creating a rolling pre-order system that saves you money on each issue.

You can also take out a twelve-month print subscription and get a Pi Zero W, Pi Zero case, and adapter cables absolutely free! This offer does not currently have an end date.

That’s it for now. See you next month!

The post MagPi 68: an in-depth look at the new Raspberry Pi 3B+ appeared first on Raspberry Pi.

Security of Cloud HSMBackups

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/architecture/security-of-cloud-hsmbackups/

Today, our customers use AWS CloudHSM to meet corporate, contractual and regulatory compliance requirements for data security by using dedicated Hardware Security Module (HSM) instances within the AWS cloud. CloudHSM delivers all the benefits of traditional HSMs including secure generation, storage, and management of cryptographic keys used for data encryption that are controlled and accessible only by you.

As a managed service, it automates time-consuming administrative tasks such as hardware provisioning, software patching, high availability, backups and scaling for your sensitive and regulated workloads in a cost-effective manner. Backup and restore functionality is the core building block enabling scalability, reliability and high availability in CloudHSM.

You should consider using AWS CloudHSM if you require:

  • Keys stored in dedicated, third-party validated hardware security modules under your exclusive control
  • FIPS 140-2 compliance
  • Integration with applications using PKCS#11, Java JCE, or Microsoft CNG interfaces
  • High-performance in-VPC cryptographic acceleration (bulk crypto)
  • Financial applications subject to PCI regulations
  • Healthcare applications subject to HIPAA regulations
  • Streaming video solutions subject to contractual DRM requirements

We recently released a whitepaper, “Security of CloudHSM Backups” that provides in-depth information on how backups are protected in all three phases of the CloudHSM backup lifecycle process: Creation, Archive, and Restore.

About the Author

Balaji Iyer is a senior consultant in the Professional Services team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly-scalable distributed systems, operational security, large scale migrations, and leading strategic AWS initiatives.

Spotify’s Two Million Unauthorized Users Hammered Google For Alternatives

Post Syndicated from Andy original https://torrentfreak.com/spotifys-two-million-unauthorized-users-hammered-google-for-alternatives-180326/

It is now common knowledge that Spotify launched its service more than a decade ago with the aim of attracting pirates.

With the disruption of The Pirate Bay ringing in the music industry’s ears, Spotify set out to capture the hearts and minds of music fans, particularly those with an aversion to paying.

Although it is yet to turn a profit, there can be little doubt that Spotify is a rampant success, at least as far as user numbers go. With premium and ad-supported free tiers available, the service is superbly accessible, no matter the depth of one’s pockets.

Naturally, those who pay get a better and smoother service so it’s no surprise that many free tier users aspire to that level of access. But while some pay the extra, others prefer to hack their way to music utopia.

How many people were accessing Spotify’s service using mainly hacked Android APK files has remained a mystery, but late last week, as part of the company’s IPO, Spotify dropped the bombshell.

“On March 21, 2018, we detected instances of approximately two million users as of December 31, 2017, who have been suppressing advertisements without payment,” Spotify wrote.

“We previously included such users in calculations for certain of our key performance indicators, including MAUs [Monthly Active Users], Ad-Supported Users, Content Hours, and Content Hours per MAU.”

Two million users is hardly an insignificant number and it appears Spotify felt the need to disclose them since up to January 1, 2017, the company had been including these users in its accounting. A couple of million users on the free tier is great, but not if they’re riding ad-free and therefore less likely to upgrade to premium, the suggestion goes.

Earlier this month, with its IPO process underway, Spotify clearly had these freeloading users on its mind. As previously reported, the company started to send out emails to people using hacked installation files, largely on Android, putting them on notice that their activities were not going unnoticed.

“We detected abnormal activity on the app you are using so we have disabled it. Don’t worry – your Spotify account is safe,” the email from Spotify said.

“To access your Spotify account, simply uninstall any unauthorized or modified version of Spotify and download and install the Spotify app from the official Google Play Store. If you need more help, please see our support article on Reinstalling Spotify.”

At the time it became apparent that this email had gone out to a large number of people, with significant volumes of users reporting problems with their accounts. It also seemed to target users fairly methodically, in that some countries’ users retained access while others suffered, only to be hit later on as more and more waves were sent out.

As the chart below from Google Trends shows, it appears that Spotify began taking action on March 1, which drove people to start searching for Spotify APK files that were still working.

By March 3, search volumes had doubled on the index and on March 7, Google searches for ‘Spotify APK’ reached a dramatic peak never before witnessed in the history of the search term. That’s quite an achievement given how many people use these pieces of software.

No prizes for guessing when Spotify got tough….

But after a flurry of activity, on March 22 search volumes were back down to March 3 levels, which is quite interesting in itself.

Although various modified APKs are still managing to evade Spotify’s ban, there doesn’t seem to be a dominant modified client proving popular enough to stop hundreds of thousands of people from continuing to search for an APK solution. So, presuming these ‘banned’ people still want the music offered by Spotify, where have they gone?

Aside from those using the APKs that have slipped through the net, reports suggest others have migrated to Deezer downloading solutions, which are also being targeted by Deezer. Others are using tools to convert their Spotify playlists to use with other pirate services or even YouTube.

The big question then is whether hitting the ban button to potentially eject up to two million users has resulted in a net positive for Spotify?

There’s no doubt it lowered the bandwidth bill for the growing company but how many former freeloaders traded the pirate high seas for an ad-supported account or even the premium service? Only Spotify has the numbers, and it won’t be sharing those yet – if ever.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

SoFi, the underwater robotic fish

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-fish/

With the Greenland shark finally caught on video for the very first time, scientists and engineers are discussing the limitations of current marine monitoring technology. One significant advance comes from the CSAIL team at Massachusetts Institute of Technology (MIT): SoFi, the robotic fish.

A Robotic Fish Swims in the Ocean

More info: http://bit.ly/SoFiRobot Paper: http://robert.katzschmann.eu/wp-content/uploads/2018/03/katzschmann2018exploration.pdf

The untethered SoFi robot

Last week, the Computer Science and Artificial Intelligence Laboratory (CSAIL) team at MIT unveiled SoFi, “a soft robotic fish that can independently swim alongside real fish in the ocean.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Directed by a Super Nintendo controller and acoustic signals, SoFi can dive untethered to a maximum of 18 feet for a total of 40 minutes. A Raspberry Pi receives input from the controller and amplifies the ultrasound signals for SoFi via a HiFiBerry. The controller, Raspberry Pi, and HiFiBerry are sealed within a waterproof, cast-moulded silicone membrane filled with non-conductive mineral oil, allowing for underwater equalisation.

MIT CSAIL underwater fish SoFi using Raspberry Pi

The ultrasound signals, received by a modem within SoFi’s head, control everything from direction, tail oscillation, pitch, and depth to the onboard camera.

As explained on MIT’s news blog, “to make the robot swim, the motor pumps water into two balloon-like chambers in the fish’s tail that operate like a set of pistons in an engine. As one chamber expands, it bends and flexes to one side; when the actuators push water to the other channel, that one bends and flexes in the other direction.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Ocean exploration

While we’ve seen many autonomous underwater vehicles (AUVs) using onboard Raspberry Pis, SoFi’s ability to roam untethered with a wireless waterproof controller is an exciting achievement.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time. We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.” – CSAIL PhD candidate Robert Katzschmann

As the MIT news post notes, SoFi’s simple, lightweight setup of a single camera, a motor, and a smartphone lithium polymer battery set it apart it from existing bulky AUVs that require large motors or support from boats.

For more in-depth information on SoFi and the onboard tech that controls it, find the CSAIL team’s paper here.

The post SoFi, the underwater robotic fish appeared first on Raspberry Pi.

Cambridge Analytica Facebook Data Scandal

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/03/cambridge-analytica-facebook-data-scandal/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Cambridge Analytica Facebook Data Scandal

One of the biggest stories of the year so far has been the scandal surrounding Cambridge Analytica that came out after a Channel 4 expose that demonstrated the depths they are willing to go to profile voters, manipulate elections and much more.

It’s kicking off in the UK and the US and Mark Zuckerberg has had to come out publically and apologise about the involvement of Facebook.

This goes deep with ties to elections and political activities in Malaysia, Mexico, Brazil, Australia and Kenya.

Read the rest of Cambridge Analytica Facebook Data Scandal now! Only available at Darknet.

Friday Squid Blogging: Giant Squid Stealing Food from Each Other

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/friday_squid_bl_617.html

An interesting hunting strategy:

Off of northern Spain, giant squid often feed on schools of fish called blue whiting. The schools swim 400 meters or less below the surface, while the squid prefer to hang out around a mile deep. The squid must ascend to hunt, probably seizing fish from below with their tentacles, then descend again. In this scenario, a squid could save energy by pirating food from its neighbor rather than hunting its own fish, Guerra says: If the target squid has already carried its prey back to the depths to eat, the pirate could save itself a trip up to the shallow water. Staying below would also protect a pirate from predators such as dolphins and sperm whales that hang around the fish schools.

If a pirate happened to kill its victim, it would also reduce competition. The scientists think that’s what happened with the Bares squid: Its tentacles were ripped off in the fight over food. “The victim, disoriented and wounded, could enter a warmer mass of water in which the efficiency of their blood decreases markedly,” the authors write in a recent paper in the journal Ecology. “In this way, the victim, almost asphyxiated, would be at the mercy of the marine currents, being dragged toward the coast.”

It’s called “food piracy.”

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Join us at Raspberry Fields 2018!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-fields-2018/

This summer, the Raspberry Pi Foundation is bringing you an all-new community event taking place in Cambridge, UK!

Raspberry Fields 2018 Raspberry Pi festival

Raspberry Fields

On the weekend of Saturday 30 June and Sunday 1 July 2018, the Pi Towers team, with lots of help from our community of young people, educators, hobbyists, and tech enthusiasts, will be running Raspberry Fields, our brand-new annual festival of digital making!

Raspberry Fields 2018 Raspberry Pi festival

It will be a chance for people of all ages and skill levels to have a go at getting creative with tech, and it will be a celebration of all that our digital makers have already learnt and achieved, whether through taking part in Code Clubs, CoderDojos, or Raspberry Jams, or through trying our resources at home.

Dive into digital making

At Raspberry Fields, you will have the chance to inspire your inner inventor! Learn about amazing projects others in the community are working on, such as cool robots and wearable technology; have a go at a variety of hands-on activities, from home automation projects to remote-controlled vehicles and more; see fascinating science- and technology-related talks and musical performances. After your visit, you’ll be excited to go home and get making!

Raspberry Fields 2018 Raspberry Pi festivalIf you’re wondering about bringing along young children or less technologically minded family members or friends, there’ll be plenty for them to enjoy — with lots of festival-themed activities such as face painting, fun performances, free giveaways, and delicious food, Raspberry Fields will have something for everyone!

Get your tickets

This two-day ticketed event will be taking place at Cambridge Junction, the city’s leading arts centre. Tickets are £5 if you are aged 16 or older, and free for everyone under 16. Get your tickets by clicking the button on the Raspberry Fields web page!

Where: Cambridge Junction, Clifton Way, Cambridge, CB1 7GX, UK
When: Saturday 30 June 2018, 10:30 – 18:00 and Sunday 1 July 2018, 10:00 – 17:30

Get involved

We are currently looking for people who’d like to contribute activities, talks, or performances with digital themes to the festival. This could be something like live music, dance, or other show acts; talks; or drop-in Raspberry Fields 2018 Raspberry Pi festivalmaking activities. In addition, we’re looking for artists who’d like to showcase interactive digital installations, for proud makers who are keen to exhibit their projects, and for vendors who’d like to join in. We particularly encourage young people to showcase projects they’ve created or deliver talks on their digital making journey!Raspberry Fields 2018 Raspberry Pi festival

Your contribution to Raspberry Fields should focus on digital making and be fun and engaging for an audience of various ages. However, it doesn’t need to be specific to Raspberry Pi. You might be keen to demonstrate a project you’ve built, do a short Q&A session on what you’ve learnt, or present something more in-depth in the auditorium; maybe you’re one of our approved resellers wanting to showcase in our market area. We’re also looking for digital makers to run drop-in activity sessions, as well as for people who’d like to be marshals with smiling faces who will ensure that everyone has a wonderful time!

If you’d like to take part in Raspberry Fields, let us know via this form, and we’ll be in touch with you soon.

The post Join us at Raspberry Fields 2018! appeared first on Raspberry Pi.