Tag Archives: Raspberry Pi 3B+

Quick Fix — a vending machine for likes and followers

Post Syndicated from Liz Upton original https://www.raspberrypi.org/blog/quick-fix-a-vending-machine-for-likes-and-followers/

Sometimes we come across a project that just scores a perfect 10 on all fronts. This is one of them: an art installation using Raspberry Pi that has something interesting to say, does it elegantly, and is implemented beautifully (nothing presses our buttons like a make that’s got a professionally glossy finish like this).

Quick Fix is a vending machine (and art installation) that sells social media likes and followers. Drop in a coin, enter your social media account name, and an army of fake accounts will like or follow you. I’ll leave the social commentary to you. Here’s a video from the maker, Dries Depoorter:

Quick Fix – the vending machine selling likes and followers

Quick Fix in an interactive installation by Dries Depoorter. The artwork makes it possible to buy followers or likes in just a few seconds. For a few euros you already have 200 of likes on Instagram. “Quick Fix “is easy to use. Choose your product, pay and fill in your social media username.

There’s a Raspberry Pi 3B+ in there, along with an Arduino, powering a coin acceptor and some I2C LCD screens. Then there’s a stainless steel heavy-duty keyboard, which we’re lusting after (a spot of Googling unearthed this, which appears to be the same thing, if you’re in the market for a panel-mounted beast of a keyboard).

This piece was commissioned by Pixelache, a cultural association from Helsinki, whose work looks absolutely fascinating if you’ve got a few minutes to browse. Thanks to them and to Dries Depoorter — I have a feeling this won’t be the last of his projects we’re going to feature here.

The post Quick Fix — a vending machine for likes and followers appeared first on Raspberry Pi.

The NSFW Roomba that screams when it bumps into stuff

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/the-nsfw-roomba-that-screams-when-it-bumps-into-stuff/

Hide yo’ kids, hide yo’ wife — today’s project is NSF(some)W, or for your kids. LOTS OF SWEARS. You have been warned. We’re not embedding the video here so you can decide for yourself whether or not to watch it — click on the image below to watch a sweary robot on YouTube.

Sweary Roomba

Michael Reeves is best known for such… educational Raspberry Pi projects as:

He’s back, this time with yet another NSFW (depending on your W) project that triggers the sensors in a Roomba smart vacuum to scream in pain whenever it bumps into an object.

Because why not?

How it’s made

We have no clue. So very done with fans asking for the project to be made — “I hate every single one of you!” — Michael refuses to say how he did it. But we know this much is true: the build uses optical sensors, relays, a radio receiver, and a Raspberry Pi. How do I know this? Because he showed us:

Roomba innards

But as for the rest? We leave it up to you, our plucky community of tinkerers, to figure it out. Share your guesses in the comments.

More Michael Reeves

Michael is one of our Pi Towers guilty pleasures and if, like us, you want to watch more of his antics, you should subscribe to him on YouTube.

The post The NSFW Roomba that screams when it bumps into stuff appeared first on Raspberry Pi.

Play musical chairs with Marvel’s Avengers

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/play-musical-chairs-marvels-avengers/

You read that title correctly.

I played musical chairs against the Avengers in AR

Planning on teaching a 12 week class on mixed reality development starting in June. Apply if interested – http://bit.ly/3016EdH

Playing with the Avengers

Abhishek Singh recently shared his latest Unity creation on Reddit. And when Simon, Righteous Keeper of the Swag at Pi Towers, shared it with us on Slack because it uses a Raspberry Pi, we all went a little doolally.

As Abhishek explains in the video, the game uses a Raspberry Pi to control sensors and lights, bridging the gap between augmented reality and the physical world.

“The physical world communicates with the virtual world through these buttons. So, when I sit down on a physical chair, and press down on it, the virtual characters know that this chair is occupied,” he explains, highlighting that the chairs’ sensors are attached to a Raspberry Pi. To save the physical-world player from accidentally sitting on Thanos’s lap, LEDs, also attached to the Pi, turn on when a chair is occupied in the virtual world.

Turning the losing Avenger to dust? Priceless 👌

Why do you recognise Abhishek Singh?

You might be thinking, “Where do I recognise Abhishek Singh from?” I was asking myself this for a solid hour — until I remembered Peeqo, his robot that only communicates through GIF reactions. And Instagif NextStep, his instant camera that prints GIFs!

First GIFs, and now musical chairs with the Avengers? Abhishek, it’s as if you’ve understood the very soul of the folks who work at Pi Towers, and for that, well…

The post Play musical chairs with Marvel’s Avengers appeared first on Raspberry Pi.

Video call with a Raspberry Pi and Google Duo

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/video-call-with-a-raspberry-pi-and-google-duo/

Use Google Duo and a Raspberry Pi to build a video doorbell for your home so you can always be there to answer your door, even when you’re not actually there to answer your door.

“Martin Mander builds a good build,” I reply to Liz Upton as she shares this project, Martin’s latest one, with me on Slack. We’re pretty familiar with his work here at Raspberry Pi! Previously, we’ve shared his Google AIY retrofit intercom, upcycled 1970s TV with built-in Raspberry Pi TV HAT, and Batinator. We love the extra step that Martin always takes to ensure the final result of each project is clean-cut and gorgeous-looking, with not even a hint of hot glue in sight.

Raspberry Pi video doorbell

“I’ve always fancied making a video doorbell using a Raspberry Pi,” explains Martin in the introduction to his project on Hackster.io. “[B]ut until recently I couldn’t find an easy way to make video calls that would both work in a project and be straightforward for others to recreate.”

By ‘recently’, he means February of this year, when Google released their Duo video chat application for web browsers.

With a Raspberry Pi 3B+ and a webcam in hand, Martin tested the new release, and lo and behold, he was able to video-call his wife with relative ease via Chromium, Raspbian‘s default browser.

“The webcam I tested had a built-in microphone, and even on the first thrown-together test call, the quality was great. This was a very exciting moment, unlocking the potential of the video doorbell project as well as many other possibilities.”

By accident, Martin also discovered that you can run Google Duo out of the browser, even on the Raspberry Pi. This allowed him to strip away all the unnecessary “Chromium furniture”.

But, if this was to be a video doorbell, how was he to tell the Raspberry Pi to call his mobile phone when the doorbell was activated?

“If Duo were a full app, then command line options might be available, for example to launch the app and immediately call a specific contact. In the absence of this (for now?) I needed to find a way to automatically start a call with a GPIO button press.”

To accomplish this, Martin decided to use PyUserInput, a community-built cross-platform module for Python. “The idea was to set up a script to wait for a button press, then move the mouse to the Contacts textbox, type the name of the contact, press Enter and click Video Call“, Martin explains. And after some trial and error — and calls to the wrong person — his project was a working success.

To complete the build, Martin fitted the doorbell components into a 1980s intercom (see his previous intercom build), wired them through to a base unit inside the home, and then housed it all within an old Sony cassette player.

The final result? A functional video doorbell that is both gorgeous and practical. You can find out more about the project on the Hackster.io project page.

The post Video call with a Raspberry Pi and Google Duo appeared first on Raspberry Pi.

Make a retro console with RetroPie and a Raspberry Pi — part 2

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retro-console-with-retropie-raspberry-pi-2/

Here’s part two of Lucy Hattersley’s wonderful retro games console tutorial. Part 1 of the tutorial lives here, for those of you who missed it.

Choose the network locale

RetroPie boots into EmulationStation, which is your starter interface. It’s currently displaying just the one option, RetroPie, which is used to set up the emulation options. As you add games to RetroPie, other systems will appear in EmulationStation.

With RetroPie selected, press the A button on the gamepad to open the configuration window. Use the D-pad to move down the options and select WiFi. You will see a warning message: ‘You don’t currently have your WiFi country set…’. Press the D-pad left to choose Yes, and press A. The interface will open raspi-config. At this point, it’s handy to switch to the keyboard and use that instead.

Choose 4 Localisation Options, and press the right arrow key on the keyboard to highlight Select, then press Enter.

Now choose 4 Change Wi-fi Country and pick your country from the list. We used GB Britain (UK). Highlight OK and press Enter to select it.

Now move right twice to choose Finish and press Enter. This will reboot the system.

Connect to wireless LAN

If you have a Raspberry Pi with an Ethernet connection, you can use an Ethernet cable to connect directly to your router/modem or network.

More likely, you’ll connect the Raspberry Pi to a wireless LAN network so you can access it when it’s beneath your television.

Head back into RetroPie from EmulationStation and down to the WiFi setting; choose Connect to WiFi network.

The window will display a list of nearby wireless LAN networks. Choose your network and use the keyboard to enter the wireless LAN password. Press Enter when you’re done. Choose the Exit option to return to the RetroPie interface.

Configuration tools

Now choose RetroPie Setup and then Configuration Tools. Here, in the Choose an option window, you’ll find a range of useful tools. As we’re using a USB gamepad, we don’t need the Bluetooth settings, but it’s worth noting they’re here.

We want to turn on Samba so we can share files from our computer directly to RetroPie. Choose Samba and Install RetroPie Samba shares, then select OK.

Now choose Cancel to back up to the Choose an option window, and then Back to return to the RetroPie-Setup script.

Run the setup script

Choose Update RetroPie-Setup script and press Enter. After the script has updated, press Enter again and you’ll be back at the Notice: window. Press Enter and choose Basic install; press Enter, choose Yes, and press Enter again to begin the setup and run the configuration script.

When the script has finished, choose Perform a reboot and Yes.

Turn on Samba in Windows

We’re going to use Samba to copy a ROM file (a video game image) from our computer to RetroPie.

Samba used to be installed by default in Windows, but it has recently become an optional installation. In Windows 10, click on the Search bar and type ‘Control Panel’. Click on Control Panel in the search results.

Now click Programs and Turn Windows features on or off. Scroll down to find SMB 1.0/CIFS File Sharing Support and click the + expand icon to reveal its options. Place a check in the box marked SMB 1.0/CIFS Client. Click OK. This will enable Samba client support on your Windows 10 PC so it can access the Raspberry Pi.

We’ve got more information on how Samba works on The MagPi’s website.

Get the game

On your Windows PC or Mac, open a web browser, and visit the Blade Buster website. This is a homebrew video game designed by High Level Challenge for old NES systems. The developer’s website is in Japanese — just click BLADE BUSTER Download to save the ROM file to your Downloads folder.

Open a File Explorer (or Finder) window and locate the BB_20120301.zip file in your Downloads folder. Don’t unzip the file.

Click on Network and you’ll see a RETROPIE share. Open it and locate the roms folder. Double-click roms and you’ll see folders for many classic systems. Drag and drop the BB_20120301.zip file and place it inside the nes folder.

Play the game

Press the Start button on your gamepad to bring up the Main Menu. Choose Quit and Restart EmulationStation. You’ll now see a Nintendo Entertainment System option with 1 Games Available below it. Click it and you’ll see BB_20120301 — this is Blade Buster. Press A to start the game. Have fun shooting aliens. Press Start and Analog (or whatever you’ve set as your hotkey) together when you’re finished; this will take you back to the game selection in EmulationStation.

If you’ve been setting up RetroPie on your monitor, now is the time to move it across to your main television. The RetroPie console will boot automatically and connect to the network, and then you can move ROM files over to it from your PC or Mac. At this point, you may notice black borders around the screen; if so, see the Fix the borders tip.

Enjoy your gaming system!

More top tips from Lucy

Change the resolution

Some games were designed for a much lower resolution, and scaling them up can look blocky on modern televisions. If you’d prefer to alter the resolution, choose ‘RetroPie setup’. Open raspi-config, Advanced Options, and Resolution. Here you’ll find a range of other resolution options to choose from.

Fix the borders

These are caused by overscan. Choose RetroPie from EmulationStation and raspi-config. Now select Advanced Options > Overscan and select No on the ‘Would you like to enable compensation for displays with overscan?’ window. Choose OK and then Finish. Choose Yes on the Reboot Now window. When the system has rebooted, you will see the borders are gone.

The MagPi magazine issue 81

This article is from the latest issue of The MagPi magazine, which is out today and can be purchased online, at the Raspberry Pi Store, or from many newsagents and bookshops, such as WHSmith and Barnes & Noble.

The MagPi magazine issue 81

You can also download issue 81 for free from The MagPi website, where you’ll also find information on subscription options, and the complete MagPi catalogue, including Essentials guides and books, all available to download for free.

the MagPi subscription

The post Make a retro console with RetroPie and a Raspberry Pi — part 2 appeared first on Raspberry Pi.

Make a retro console with RetroPie and a Raspberry Pi — part 1

Post Syndicated from Lucy Hattersley original https://www.raspberrypi.org/blog/retro-console-with-retropie-raspberry-pi-1/

Discover classic gaming on the Raspberry Pi and play homebrew ROMs, with this two-part tutorial from The MagPi Editor Lucy Hattersley.

Raspberry Pi retro games console

Turning a Raspberry Pi device into a retro games console is a fun project, and it’s one of the first things many a new Pi owner turns their hand to.

The appeal is obvious. Retro games are fun, and from a programming perspective, they’re a lot easier to understand than modern 3D powerhouses. The Raspberry Pi board’s small form factor, low power usage, HDMI connection, and wireless networking make it a perfect micro-console that can sit under your television.

RetroPie

There are a bunch of different emulators around for Raspberry Pi. In this tutorial, we’re going to look at RetroPie.

RetroPie combines Raspbian, EmulationStation, and RetroArch into one handy image. With RetroPie you can emulate arcade games, as well as titles originally released on a host of 8-bit, 16-bit, and even 32- and 64-bit systems. You can hook up a joypad; we’re going to use the Wireless USB Game Controller, but most other USB game controllers will work.

You can also use Bluetooth to connect a controller from most video games consoles. RetroPie has an interface that will be very familiar to anyone who has used a modern games console, and because it is open-source, it is constantly being improved.

You can look online for classic games, but we prefer homebrew and modern releases coded for classic systems. In this tutorial, we will walk you through the process of setting up RetroPie, configuring a gamepad, and running a homebrew game called Blade Buster.

Get your microSD card ready

RetroPie is built on top of Raspbian (the operating system for Raspberry Pi). While it is possible to install RetroPie from the desktop interface, it’s far easier to format a microSD card† and copy a new RetroPie image to the blank card. This ensures all the settings are correct and makes setup much easier. Our favourite method of wiping microSD cards on a PC or Apple Mac is to use SD Memory Card Formatter.

Attach the microSD card to your Windows or Mac computer and open SD Card Formatter. Ensure the card is highlighted in the Select card section, then click Format.

Download RetroPie

Download the RetroPie image. It’ll be downloaded as a gzip file; the best way to expand this on Windows is using 7-Zip (7-zip.org).

With 7-Zip installed, right-click the retropie-4.4-rpi2_rpi3.img.gz file and choose 7-Zip > Extract here. Extract GZ files on a Mac or Linux PC using gunzip -k <filename.gz> (the -k option keeps the original GZ file).

gunzip -k retropie-4.4-rpi2_rpi3.img.gz

Flash the image

We’re going to use Etcher to copy the retropie-4.4-rpi2_rpi3.img file to our freshly formatted microSD card. Download Etcher. Open Etcher and click Select Image, then choose the retropie-4.4-rpi2_rpi3.img image file and click Open.

Etcher should have already located the microSD card; remove and replace it if you see a Select Drive button. Click Flash! to copy the RetroPie image to the microSD card.

See our guide for more information on how to use Etcher to flash SD cards.

Set up the Raspberry Pi

Insert the flashed microSD card to your Raspberry Pi. Now attach the Raspberry Pi to a TV or monitor using the HDMI cable. Connect the USB dongle from the Wireless USB Game Controller to the Raspberry Pi. Also attach a keyboard (you’ll need this for the setup process).

Insert the batteries in the Wireless USB Game Controller and set the power switch (on the back of the device) to On. Once everything is connected, attach a power supply to the Raspberry Pi.

See our quickstart guide for more detailed information on setting up a Raspberry Pi.

Configure the gamepad

When RetroPie starts, you should see Welcome screen displaying the message ‘1 gamepad detected’. Press and hold one of the buttons on the pad, and you will see the Configuring screen with a list of gamepad buttons and directions.

Tap the D-pad (the four-way directional control pad on the far left) up on the controller and ‘HAT 0 UP’ will appear. Now tap the D-pad down.
Map the A, B, X, Y buttons to:

A: red circle
B: blue cross
X: green triangle
Y: purple square

The Left and Right Shoulder buttons refer to the topmost buttons on the rear of the controller, while the Triggers are the larger lower buttons.

Push the left and right analogue sticks in for the Left and Right Thumbs. Click OK when you’re done.

Top tips from Lucy

Install Raspbian desktop

RetroPie is built on top of the Raspbian operating system. You might be tempted to install RetroPie on top of the Raspbian with Desktop interface, but it’s actually much easier to do it the other way around. Open RetroPie from EmulationStation and choose RetroPie setup. Select Configuration tools and Raspbian tools. Then choose Install Pixel desktop environment and Yes.

When it’s finished, choose Quit and Restart EmulationStation. When restarted, EmulationStation will display a Ports option. Select it and choose Desktop to boot into the Raspbian desktop interface.

Username and password

If RetroPie asks you for the username and password during boot, the defaults are pi and raspberry.

The MagPi magazine issue 81

The rest of this article can be found in the latest issue of The MagPi magazine, which is out now and can be purchased online, at the Raspberry Pi Store, or from many independent bookshops, such as WHSmith and Barnes & Noble. We’ll also post the second half on the blog tomorrow!

The MagPi magazine issue 81

You can also download issue 81 for free from The MagPi website, where you’ll find information on subscription options, and the complete MagPi catalogue, including Essentials guides and books, all available to download for free.

the MagPi subscription

The post Make a retro console with RetroPie and a Raspberry Pi — part 1 appeared first on Raspberry Pi.

Build a SatNOGS ground station with a Raspberry Pi 3B+ | HackSpace magazine #18

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-a-satnogs-ground-station-raspberry-pi-3b-hackspace-magazine-18/

The big feature on outer space in issue 18 of HackSpace magazine, available from today, shows you how to build your own satellite and launch it into orbit.

No, we’re not kidding, this is an actual thing you can do.

And to track the satellite you’ve launched, or another satellite you’re interested in, here’s how to build your own SatNOGS ground station with a Raspberry Pi 3B+.

Building a Raspberry Pi ground station

Once you’ve built and launched your small satellite, you’ll want to listen to all the glorious telemetry and data it‘s sending back as it hurtles around the Earth. Or perhaps you aspire to have a satellite up there, but in the meantime you want to listen to some other objects? What you need is a ground station, but a single ground station has one slight flaw. Most of the time a satellite will not be overhead of a single ground station; in fact, it may only pass over a ground station once every few days, massively reducing the amount of information or data we can receive. So we need a network of ground stations. The SatNOGS network solves this by creating a global network of stations that can work together to increase coverage.

SatNOGS is an open-source project that has numerous designs for satellite ground stations, but whichever design you pick, you can join the network that links them all via the web.

A station owner can use the website to browse for future passes of a satellite, and then click a button to schedule for their station to turn on, tune to frequency, and record the pass, sometimes even rotating the antenna on the station to track the satellite. Not only can a station owner schedule an observation on their own station, but they can schedule observations on any station on the global network.

As we can see from this map of data being collected of a recent SSTV broadcast from the ISS (sends single-frame images transmitted via audio from the ISS), the SatNOGS network has near-global coverage, rivalling most professional institutions in the world.

Simple setup

The simplest form of a SatNOGS station is one that doesn’t move or track and is made from a static antenna, a Raspberry Pi, and a cheap software-defined radio (SDR) dongle. The SDR dongle has become ubiquitous in maker circles as it is an affordable entry item into the world of receiving signals via SDR. Looking at our ingredients in the image below, let’s explore them a little more before we get started.

While a permanent station may do better connected by Ethernet cable, using the Raspberry Pi’s built-in wireless LAN functionality means we can run this simply with only a power cable. While many have used the cheapest Realtek SDR dongles with success, some people have found the slightly more refined versions can be more stable – a current recommendation is the RTL-SDR V3, which has a better casing for thermal dissipation, and slightly upgraded components. The RTL-SDR V3 is available here.

The classic antenna recommended for a static SatNOGS setup shown above is a ‘turnstile’ antenna; commercial models are available, such as the Wimo TA-1, but people have designed and built lots of different static antennas for different frequencies and with small budgets – check out the tutorial Make a Slim Jim antenna on page 112 (in HackSpace issue 18, links below).

In order to set up a ground station, one of the first tasks we need to do is set up an account on network.satnogs.org. Registering on the site then gives us a dashboard where we can begin to set up a station. Click to add a station — we then need to supply it with some basic details as per the image below: a name for the station, a location in latitude and longitude (Google is your friend here!), and the elevation of the station above sea-level.

You need to decide what frequency your station is going to cover; the most common ranges are UHF and VHF, which would require different antennas, but either range has a huge number of objects you can schedule to observe. Many people opt for VHF, as this includes the frequency range for a lot of the different transmissions from the ISS, so we are going to choose VHF as well. You also need to add a minimum elevation value — this is the minimum angle that a satellite must be in terms of height for your station to see it — if you aren’t sure, either ask for help on the forums, or leave it for now at the default 10 degrees.

Having filled in the boxes to create the station (leave the ‘this is in testing’ box ticked for now), you should now see a ground station entry has been made on your account, as above. You will see (even though it isn’t set up yet) a list populating underneath the entry with ‘Pass Predictions’, which are things you could schedule to observe once you are up and running. Before we leave the website, we need to make a note of the number assigned to the ground station, and also our own personal API key — which we can find in our dashboard by clicking the API key button. These two pieces of information are what will ultimately connect our ground station hardware to the website account.

The next task is to sort out the Raspberry Pi. You can find the current custom SatNOGS image here.

Flash this to your microSD card as you would for a regular Raspberry Pi setup — the free app Etcher, for example, is a simple tool that allows you to flash an image to a card.

Once done, boot the Raspberry Pi, and you can either SSH into the Pi, or connect a keyboard and monitor and interact with the setup that way. The first things we need to do are not SatNOGS-specific, but are the usual things we do when setting up a Raspberry Pi. We need to set up a different password by running the sudo raspi‐config command. Once you’ve set a password and expanded the file system, it’s also useful to set the time zone to UTC, as this is used throughout the SatNOGS network. If you want to run this test station wirelessly, then you need to configure your network connection at this point. If you are connecting via an Ethernet cable, then you don’t need to do anything else. Apply the changes and reboot (then see ‘Final setup’ box above in HackSpace issue 18, links below).

Now, if we go back to our dashboard on the SatNOGS website (perhaps wait a few minutes and click Refresh), we should see that the station is now online, as above. We should see an orange spot on the network map showing our proud station in testing. Being in testing means that only you can schedule observations on the station, but when you are ready, you can change settings to take it out of testing and then it is fully on the network.

On the hunt

Power down one last time and connect the RTL-SDR dongle and the antenna, then reboot — you are now ready to hunt satellites! Scheduling observations is as simple as selecting passes from the list and clicking Schedule. There may be drop-down choices for different transmitters to listen for on the same satellite, and other choices, but essentially you click Calculate to create the observation and then Schedule for the job to be created and sent to the queue for your station. There are hundreds of satellites to try to observe, so don’t worry if you don’t understand what any of them are — in the pass predictions list, if you click the name of a satellite you will get a pop-up with information about it. For a more detailed walkthrough of scheduling an observation on the SatNOGS network, check out this blog post.

After the time of the pass, return to the observation page and, hopefully, you should see some signals. Don’t worry if your first few observations aren’t successful: try at least a dozen observations before making any changes, as there are many possible reasons for a signal not getting picked up; indeed, the satellite may not even have been transmitting. If you have received a signal, you should ‘vet’ the observation as good; this is particularly important if you have scheduled on someone else’s station – etiquette says we should check and vet our own observations. Check out the Slim Jim antenna (see page 112 of HackSpace magazine issue 18, links below) for a link to a successful observation you can listen to.

Happy satellite hunting!

Finally, it’s a great idea to join the Libre Space Foundation community forum (or IRC), as it hosts the SatNOGS community channels, and there is a wealth of expertise and help available there from a very welcoming community. If you build a station, go and share your achievement on the forum — everyone will be pleased to see it.

Get HackSpace magazine issue 18 — out today

HackSpace magazine issue 18 is out today, and available online, or from many high-street retailers such as WHSmith and Sainsbury’s in the UK, and Barnes & Nobel in the US.

You can also download issue 18 for free, today as a PDF, so there really is no reason not to give HackSpace a spin.

The post Build a SatNOGS ground station with a Raspberry Pi 3B+ | HackSpace magazine #18 appeared first on Raspberry Pi.

Beowulf Clusters, node visualisation and more with Pi VizuWall

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/beowulf-clusters-node-visualisation-pi-vizuwall/

Pi VizuWall is a multi-Raspberry Pi MPI computing system with a difference. And the difference is servo motors!

Pi VizWall at Maker Faire Miami

We can thank Estefannie for this gem. While attending Maker Faire Miami earlier this month, she shared a video of Pi VizWall on her Instagram Stories. And it didn’t take long for me to ask for an introduction to the project’s owner, Matt Trask.

I sent Matt a series of questions in relation to the project so I could write a blog post, but Matt’s replies were so wonderfully detailed that it seems foolish to try and reword them.

So here are the contents of Matt’s email replies, in their entirety, for you all to enjoy.

Parallel computing system

The project is a parallel computing system built according to the Beowulf cluster architecture, the same as most of the world’s largest and fastest supercomputers. It runs a system called MPI (Message Passing Interface) that breaks a program up into smaller pieces that can be sent over the network to other nodes for execution.

A Beowulf cluster at Michigan Tech

Beowulf clusters and MPI were invented in 1994 by a pair of NASA contractors, and they totally disrupted the high-performance computer industry by driving the cost of parallel computing way down. By now, twenty-five years later, the Beowulf cluster architecture is found in approximately 88% of the world’s largest parallel computing systems.

Going back to university

I’m currently an undergraduate student at Florida Atlantic University, completing a neglected Bachelor’s Degree from 1983. In the interim, I have had a wonderful career as a Computer Engineer, working with every generation of Personal Computer technology. My main research that I do at the University is focused on a new architecture for parallel clusters that uses traditional Beowulf hardware (enterprise-class servers with InfiniBand as the interconnect fabric) but modifies the Linux operating system in order to combine the resources (RAM, processor cores) from all the nodes in the cluster and make them appear as a single system that is the sum of all the resources. This is also known as a ‘virtual mainframe’.

The Ninja Gap

In the world of parallel supercomputers (branded ‘high-performance computing, or HPC), system manufacturers are motivated to sell their HPC products to industry, but industry has pushed back due to what they call the “Ninja Gap”. MPI programming is hard. It is usually not learned until the programmer is in grad school at the earliest, and given that it takes a couple of years to achieve mastery of any particular discipline, most of the proficient MPI programmers are PhDs. And this, is the Ninja Gap — industry understands that the academic system cannot and will not be able to generate enough ‘ninjas’ to meet the needs of industry if industry were to adopt HPC technology.

Studying Message Passing Interface

As part of my research into parallel computing systems, I have studied the process of learning to program with MPI and have found that almost all current practitioners are self-taught, coming from disciplines other than computer science. Actual undergraduate CS programs rarely offer MPI programming. Thus my motivation for building a low-cost cluster system with Raspberry Pis, in order to drive down the entry-level costs.

This parallel computing system, with a cost of under $1000, could be deployed at any college or community college rather than just at elite research institutions, as is done [for parallel computing systems] today.

Moving parts

The system is entirely open source, using only standard Raspberry Pi 3B+ boards and Raspbian Linux. The version of MPI that is used is called MPICH, another open-source technology that is readily available.

Perhaps one of the more interesting features of the cluster is that each of the Pi boards is mounted on a clear acrylic plate that is attached to a hinging mechanism. Each node is capable of moving through about 90 degrees under software control because a small electric servo motor is embedded in the hinging mechanism. The acrylic parts are laser-cut, and the hinge parts have been 3D printed for this prototype.

Raspbian Linux, like every other Linux version, contains information about CPU utilization as part of the kernel’s internal data. This performance data is available through the /proc filesystem at runtime, allowing a relatively simple program to maintain percent-busy averages over time. This data is used to position the node via its servo, with a fully idle node laying down against the backboard and a full busy node rotating up to ninety degrees.

Visualizing node activity

The purpose of this motion-related activity is to permit the user to visualize the operation of the cluster while executing a parallel program, showing the level of activity at each node via proportional motion. Thus the name Pi VizuWall.

Other than the twelve Pi 3s, I used 12 Tower Pro micro servos (SG90 Digital) and assorted laser-cut acrylic and 3D-printed parts (AI and STL files available on request), as well as a 14-port Ethernet switch for interconnects and two 12A 6-port USB power supplies along with Ethernet cable and USB cables for power.

The future of Pi VizuWall

The original plan for this project was to make a 4ft × 8ft cluster with 300 Raspberry Pis wired as a Beowulf cluster running MPICH. When I proposed this project to my Lab Directors at the university, they balked at the estimated cost of $20–25K and suggested a scaled-down prototype first. We have learned a number of lessons while building this prototype that should serve us well when we move on to building the bigger one. The first lesson is to use CNC’d aluminum for the motor housings instead of 3D-printed plastic — we’ve seen some minor distortion of the printed plastic from the heat generated in the servos. But mainly, this will permit us to have finer resolution when creating the splines that engage with the shaft of the servo motor, solving the problem of occasional slippage under load that we have seen with this version.

The other major challenge was power distribution. We look forward to using the Pi’s PoE capabilities in the next version to simplify power distribution. We also anticipate evaluating whether the Pi’s wireless LAN capability is suitable for carrying the MPI message traffic, given that the wired Ethernet has greater bandwidth. If the wireless bandwidth is sufficient, we will potentially use Pi Zero W computers instead of Pi 3s, doubling the number of nodes we can install on a 4×8’ backboard.

The post Beowulf Clusters, node visualisation and more with Pi VizuWall appeared first on Raspberry Pi.

Raspberry Pi-controlled brass bell for ultimate the wake-up call

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-controlled-brass-bell-for-ultimate-the-wake-up-call/

Not one for rising with the sun, and getting more and more skilled at throwing their watch across the room to snooze their alarm, Reddit user ravenspired decided to hook up a physical bell to a Raspberry Pi and servo motor to create the ultimate morning wake-up call.

DIY RASPBERRY PI BELL RINGING ALARM CLOCK!

This has to be the harshest thing to wake up to EVER!

Wake up, Boo

“I have difficulty waking up in the morning” admits ravenspired, who goes by the name Darks Pi on YouTube. “My watch isn’t doing its job.”

Therefore, ravenspired attached a bell to a servo motor, and the servo motor to a Raspberry Pi. Then they wrote Python code in Raspbian’s free IDE software Thonny that rings the bell when it’s time to get up.

“A while loop searches for what time it is and checks it against my alarm time. When the alarm is active, it sends commands to the servo to move.”

Ouch!

While I’d be concerned about how securely attached the heavy brass bell above my head is, this is still a fun project, and an inventive way to address a common problem.

And it’s a lot less painful than this…

The Wake-up Machine TAKE #2

I built an alarm clock that slapped me in the face with a rubber arm to wake me up.I built an alarm clock that wakes me up in the morning by slapping me in the face with a rubber arm.

Have you created a completely over-engineered solution for a common problem? Then we want to see it!

The post Raspberry Pi-controlled brass bell for ultimate the wake-up call appeared first on Raspberry Pi.

Bind MIDI inputs to LED lights using a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/midi-controlled-led-lights-raspberry-pi/

Blinky lights and music created using a Raspberry Pi? Count us in! When Aaron Chambers shared his latest project, Py-Lights, on Reddit, we were quick to ask for more information. And here it is:

Controlling lights with MIDI commands

Tentatively titled Py-Lights, Aaron’s project allows users to assign light patterns to MIDI actions, creating a rather lovely blinky light display.

For his example, Aaron connected a MIDI keyboard to a strip of RGB LEDs via a Raspberry Pi that ran his custom Python code.

Aaron explains on Reddit:

The program I made lets me bind “actions” (strobe white, flash blue, disable all colors, etc.) to any input and any input type (hold, knob, trigger, etc.). And each action type has a set of parameters that I bind to the input. For example, I have a knob that changes a strobe’s intensity, and another knob that changes its speed.

The program updates each action, pulls its resulting color, and adds them together, then sends that to the LEDs. I’m using rtmidi for reading the midi device and pigpio for handling the LED output.

Aaron has updated the Py-Lights GitHub repo for the project to include a handy readme file and a more stable build.

The post Bind MIDI inputs to LED lights using a Raspberry Pi appeared first on Raspberry Pi.

Build a security camera with Raspberry Pi and OpenCV

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-security-camera-opencv/

Tired of opening the refrigerator only to find that your favourite snack is missing? Get video evidence of sneaky fridge thieves sent to your phone, with Adrian Rosebeck’s Raspberry Pi security camera project.

Building a Raspberry Pi security camera with OpenCV

Learn how to build a IoT + Raspberry Pi security camera using OpenCV and computer vision. Send TXT/MMS message notifications, images, and video clips when the security camera is triggered. Full tutorial (including code) here: https://www.pyimagesearch.com/2019/03/25/building-a-raspberry-pi-security-camera-with-opencv

Protecting hummus

Adrian loves hummus. And, as you can see from my author bio, so do I. So it wasn’t hard for me to relate to Adrian’s story about his college roommates often stealing his cherished chickpea dip.

Garlic dessert

“Of course, back then I wasn’t as familiar with computer vision and OpenCV as I am now,” he explains on his blog. “Had I known what I do at present, I would have built a Raspberry Pi security camera to capture the hummus heist in action!”

Raspberry Pi security camera

So, in homage to his time as an undergrad, Adrian decided to finally build that security camera for his fridge, despite now only needing to protect his hummus from his wife. And to build it, he opted to use OpenCV, a Raspberry Pi, and a Raspberry Pi Camera Module.

Adrian’s camera is an IoT project: it not only captures footage but also uses Twillo to send that footage, via a cloud service (AWS), to a smartphone.

Because the content of your fridge lives in the dark when you’re not inspecting it, the code for capturing video footage detects light and dark, and records everything that occurs between the fridge door opening and closing. “You could also deploy this inside a mailbox that opens/closes,” suggests Adrian.

Get the code and more

Adrian provides all the code for the project on his blog, pyimagesearch, with a full explanation of why each piece of code is used — thanks, Adrian!

For more from Adrian, check out his brilliant deep learning projects: a fully functional Pokémon Pokédex and Santa Detector.

The post Build a security camera with Raspberry Pi and OpenCV appeared first on Raspberry Pi.

Laser-engraved Raspberry Pi hologram

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/laser-engraved-raspberry-pi-hologram/

Inspired by an old episode of Pimoroni’s Bilge Tank, and with easy access to the laser cutter at the Raspberry Pi Foundation office, I thought it would be fun to create a light-up multi-layered hologram using a Raspberry Pi and the Pimoroni Unicorn pHAT.

Raspberry Pi layered light

Read more –

Break it to make it

First, I broke down the Raspberry Pi logo into three separate images — the black outline, the green leaves, and the red berry.

RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM
RASPBERRY PI HOLOGRAM

Fun fact: did you know that Pimoroni’s Paul Beech designed this logo as part of the ‘design us a logo’ contest we ran all the way back in August 2011?

Once I had the three separate files, I laser-engraved them onto 4cm-wide pieces of 3mm-thick clear acrylic. As there are four lines of LEDs on the Unicorn pHAT, I cut the fourth piece to illuminate the background.

RASPBERRY PI HOLOGRAM

To keep the engraved acrylic pieces together, I cut out a pair of acrylic brackets (see above) with four 3mm indentations. Then, after a bit of fiddling with the Unicorn pHAT library, I was able to light the pHAT’s rows of LEDs in white, red, green, and white.

RASPBERRY PI HOLOGRAM

The final result looks pretty spectacular, especially in the dark, and you can build on this basic idea to create fun animations — especially if you use a HAT with more rows of LEDs.

Iterations

This is just a prototype. I plan on building a sturdier frame for the pieces that securely fits a Raspberry Pi Zero W and lets users replace layers easily. As with many projects, I’m sure this will grow and grow as each interaction inspires a new add-on.

How would you build upon this basic principle?

Oh…

…we also laser-engraved this Cadbury’s Creme Egg.

The post Laser-engraved Raspberry Pi hologram appeared first on Raspberry Pi.

FREE NOODS with FOODBEAST and Nissin

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/free-ramen-foodbeast-nissin/

Push a button and share a hashtag to get free ramen, games, or swag with the Dream Machine, a Raspberry Pi–driven vending machine built by FOODBEAST and Nissin.

foodbeast.com on Twitter

This Instagram-powered vending machine gives away FREE @OrigCupNoodles and VIDEO GAMES 🍜🎮!! Where should it travel next? #ad https://t.co/W0YyWOCFVv

Raspberry Pi and marketing

Digital viral marketing campaigns are super popular right now, thanks to the low cost of the technology necessary to build bespoke projects for them. From story-telling phoneboxes to beer-pouring bicycles, we see more and more examples of such projects appear in our inbox every week.

The latest campaign we like is the Dream Machine, a retrofit vending machine that dispenses ramen noodles, video games, and swag in exchange for the use of an Instagram hashtag.

Free ramen from FOODBEAST and Nissin

With Dream Machines in Torrance, California and Las Vegas, Nevada, I’ve yet to convince Liz that it’s worth the time and money for me to fly out and do some field research. But, as those who have interacted with a Dream Machine know, the premise is pretty simple.

The Dream Machine vending machine from FOODBEAST and NissanPress the big yellow button on the front of the vending machine, and it will tell you a unique hashtag to use for posting a selfie with the Dream Machine on Instagram. The machine’s internet-enabled Raspberry Pi brain then uses its magic noodle powers (or, more likely, custom software) to detect the hashtag and pop out a tasty treat, video game, or gift card as a reward.

The Dream Machine vending machine from FOODBEAST and Nissan

The Dream Machines appeared at the start of March, and online sources suggest they’ll stay in their current locations throughout the month. I’d like to take this moment to suggest their next locations: Cambridge, UK and Oakland, California. Please and thank you!

Hold your horses…

We know this is a marketing ploy. We know its intention is to get Joe Public to spread the brand across social media. We know it’s all about money. We know. But still, it’s cool, harmless, and delicious. So let’s not have another robocall debate, OK 😂

The post FREE NOODS with FOODBEAST and Nissin appeared first on Raspberry Pi.

Instaframe: image recognition meets Instagram

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/instaframe-image-recognition-meets-instagram/

Bringing the digital photo frame into an even more modern age than the modern age it already resides in, Sean Tracey uses image recognition and social media to update his mother on the day-to-day happenings of her grandkids.

Sharing social media content

“Like every grandmother, my mum dotes on her grandchildren (the daughter and son of my sister, Grace and Freddie),” Sean explains in his tutorial for the project, “but they don’t live nearby, so she doesn’t get to see them as much as she might like.”

Sean tells of his mother’s lack of interest in social media platforms (they’re too complex), and of the anxiety he feels whenever she picks up his phone to catch up on the latest images of Grace and Freddie.

So I thought: “I know! Why don’t I make my mum a picture frame that filters my Instagram feed to show only pictures of my niece and nephew!”

Genius!

Image recognition and Instagram

Sean’s Instaframe project uses a Watson Visual Recognition model to recognise photos of his niece and nephew posted to his Instagram account, all via a Chrome extension. Then, via a series of smaller functions, these images are saved to a folder and displayed on a screen connected to a Raspberry Pi 3B+.

Sean has written up a full rundown of the build process on his website.

Photos and Pi

Do you like photos and Raspberry Pi? Then check out these other photo-focused Pi projects that we’re sure you’ll love (because they’re awesome) and will want to make yourself (because they’re awesome).

FlipFrame

FlipFrame, the rotating picture frame, rotates according to the orientation of the image on display.

FlipFrame

Upstagram

This tiny homage to the house from Up! takes bird’s-eye view photographs of Paris and uploads them to Instagram as it goes.

Pi-powered DSLR shutter

Adrian Bevan hacked his Raspberry Pi to act as a motion-activated shutter remote for his digital SLR — aka NatureBytes on steroids.

The post Instaframe: image recognition meets Instagram appeared first on Raspberry Pi.

IBM Q System One quantum computing on a Raspberry Pi?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/ibm-q-system-one-quantum-computing-raspberry-pi/

IBM Q System One: the world’s first commercial, integrated, universal, approximate quantum computing system…

…on a Raspberry Pi?

What is a quantum computing system?

An excellent question and, while some of you may know the answer, here is Kurzgesagt‘s ‘in a nutshell’ explanation of quantum computing for the rest of us:

Quantum Computers Explained – Limits of Human Technology

Where are the limits of human technology? And can we somehow avoid them? This is where quantum computers become very interesting.

Qrasp — quantum computing on a Raspberry Pi

After seeing a press announcement for IBM’s Q System One, the first-ever commercial quantum computer, IBM Q Ambassador Hassi Norlen decided he wanted his own, and reached for his trusty Raspberry Pi to build one.

“This will not be easy,” he admits on his Medium blog post for the Qrasp project. “IBM Q System One is, after all, a cloud-based quantum computing offering, with the main hardware, cryostats, quantum chips, and all locked away in the IBM labs.”

Hassi goes on to explain the list of required ingredients for building your own Qrasp, including the Raspberry Pi Sense HAT, and the programs one can run on the finished device.

Qrasp

Qiskit interface for Raspberry PI with SenseHat

It’s a great blog post, and to save me summarising it here, check it out for yourself. You’ll also find a link to the GitHub repo for Qrasp, and other tidbits of information on making the most out of the final build.

The post IBM Q System One quantum computing on a Raspberry Pi? appeared first on Raspberry Pi.

A smart guitar for blind, deaf, and mute people

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/smart-guitar-blind-deaf-mute/

ChordAssist aims to bring the joy of learning the guitar to those who otherwise may have problems with accessing guitar tutorials. Offering advice in Braille, in speech, and on-screen, ChordAssist has been built specifically for deaf, blind, and mute people. Creator Joe Birch, who also built the BrailleBox device, used Raspberry Pi, Google Assistant, and a variety of accessibility tools and technology for this accessible instrument.

Chord Assist: An accessible smart guitar for the blind, deaf and mute

Powered by the Google Assistant, read more at chordassist.com

Accessibility and music

Inspired by a hereditary visual impairment in his family, Buffer’s Android Lead Joe Birch spent six months working on ChordAssist, an accessible smart guitar.

The Braille converter of the ChordAssist guitar
The ChordAssist guitar
The screen of the ChordAssist guitar

“This is a project that I used to bring my love of music and accessibility (inspired by my family condition of retinitis pigmentosa) together to create something that could allow everyone to enjoy learning and playing music — currently an area which might not be accessible to all,” explained Joe when he shared his project on Twitter earlier this month.

BrailleBox

This isn’t Joe’s first step into the world of smart accessibility devices. In 2017, he created BrailleBox, an Android Things news delivery device that converts daily news stories into Braille, using wooden balls atop solenoids that move up and down to form Braille symbols.

Demonstration of Joe Birch's BrailleBox

ChordAssist

This same technology exists within ChordAssist, along with an LCD screen for visual learning, and a speaker system for text-to-speech conversion.

Chord Assist was already an Action on the Google Project that I built for the Google Home, now I wanted to take that and stick it in a guitar powered by voice, visuals, and Braille. All three of these together will hopefully help to reduce the friction that may be experienced throughout the process of learning an instrument.

ChordAssist is currently still at the prototype stage, and Joe invites everyone to offer feedback so he can make improvements.

To learn more about ChordAssist, visit the ChordAssist website and check out Joe’s write-up on Medium.

The post A smart guitar for blind, deaf, and mute people appeared first on Raspberry Pi.

Digital lava lamp!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/digital-lava-lamp/

Forget the iconic conic shape of the lava lamp from the sixties and seventies — Julian Butler’s digital lava lamp gives you all the magic of its predecessor, without any of the hassle!

My programmable digital lava lamp

Showcasing the construction and display modes of my programmable digital lava lamp. Built with the help of Processing software, FadeCandy + Raspberry Pi hardware this lamp can respond to sound and other aspects of it’s environment via wifi etc.

I lava you (I lava you not)

When I was a teenager, we had a lava lamp at home. It was orange, it took an age to get going, and once the lava was in full flow, it radiated with the heat of a thousand suns.

Julian Butler’s modern version is so much better. “Showcasing the construction and display modes of [his] programmable digital lava lamp,” Julian has shared a rather hypnotic video on his YouTube channel. He’s also created a three-part build tutorial about the project.

Inspired by his co-worker’s salt mood lamp, Julian decided to build something similiar, aiming to smoothe out the creases and add more functionality.

Using a Raspberry Pi and Micah Elizabeth Scott‘s FadeCandy board, plus 120 NeoPixel LEDs, Julian got to work programming lights and prototyping casings until he was happy with the result.

The face of Julian happy with the result

And the result is a beautiful, programmable digital lava lamp: all the mesmerising fun of a regular lava lamp, without the excruciating wait time and significant risk of second-degree burns. Plus, it will never leak, and it can be any colour you like!

Get groovy, baby

Watch Julian’s video, ooh and aah at the swirly-whirly wonderment of his digital creation, and then visit his blog for all the details of how to make your own. Julian has plans to add more interactive elements to the lamp, including voice recognition, and we can’t wait to see the final result!

The post Digital lava lamp! appeared first on Raspberry Pi.

Play multiple sounds simultaneously with a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/multiple-sounds-simultaneously-raspberry-pi/

Playing sound through a Raspberry Pi is a simple enough process. But what if you want to play multiple sounds through multiple speakers at the same time? Lucky for us, Devon Bray figured out how to do it.

Play multiple audio files simultaneously with Raspberry Pi

Artist’s Website: http://www.saradittrich.com/ Blog Post: http://www.esologic.com/multi-audio/ Ever wanted to have multiple different sound files playing on different output devices attached to a host computer? Say you’re writing a DJing application where you want one mix for headphones and one for the speakers.

Multiple audio files through multiple speakers

While working with artist Sara Dittrich on her These Blobs installation for Provincetown Art Association and Museum, Devon was faced with the challenge of playing “8 different mono sound files on 8 different loudspeakers”. Not an easy task, and one that most online tutorials simply do not cover.

These Blobs - Sarah Dittrich

These Blobs by Sara Dittrich

Turning to the sounddevice Python library for help, Devon got to work designing the hardware and code for the project.

The job was to create some kind of box that could play eight different audio files at the same time on eight different unpowered speakers. New audio files had to be able to be loaded via a USB thumb drive, enabling the user to easily switch files without having to use any sort of UI. Everything also had to be under five inches tall and super easy to power on and off.

Devon’s build uses a 12v 10 amp power supply controlled via a DC/DC converter. This supply powers the Raspberry Pi 3B+ and four $15 audio amplifiers, which in turn control simple non-powered speakers designed for use in laptops. As the sound is only required in mono, the four amplifiers can provide two audio tracks each, each track using a channel usually reserved for left or right audio output.

A full breakdown of the project can be seen in the video above, with more information available on Devon’s website, including the link to the GitHub repo.

And you can see the final project in action too! Watch a video of Sara Dittrich’s installation below, and find more of her work on her website.

These Blobs

Poem written and recorded by Daniel Sofaer, speakers, conduit, clay, spray paint, electrical components; 4′ x 4′ x 5′ ft.

 

The post Play multiple sounds simultaneously with a Raspberry Pi appeared first on Raspberry Pi.

Build a dial-up ISP server using a Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/raspberry-pi-dial-up-server/

Trying to connect an old, dial-up–compatible computer to modern-day broadband internet can be a chore. The new tutorial by Doge Microsystems walks you through the process of using a Raspberry Pi to bridge the gap.

The Sound of dial-up Internet

I was bored so I wanted to see if I could get free dial up internet so I found that NetZero still has free service so I put in the number and heard the glorious sound of the Dial-up. Remind me of years gone. Unfortunately I was not able to make a connection.

Dial-up internet

Ah, there really is nothing quite like it: listen to the sweet sound of dial-up internet in the video above and reminisce about the days of yore that you spent waiting for your computer to connect and trying to convince other members of your household to not use the landline for a few hours.

But older computers have fallen behind these times of ever faster broadband and ever more powerful processors, and getting your beloved vintage computer online isn’t as easy as it once was.

For one thing, does anyone even have a landline anymore?

Enter Doge Microsystems, who save the day with their Linux-based dial-up server, the perfect tool for connecting computers of yesteryear to today’s broadband using a Raspberry Pi.

Disclaimer: I’m going to pre-empt a specific topic of conversation in the comment section by declaring that, no, I don’t like the words ‘vintage’, ‘retro’, and yesteryear’ any more than you do. But we all need to accept that the times, they are a-changing, OK? We’re all in this together. Let’s continue.

Building a Raspberry Pi dial-in server

For the build, you’ll need a hardware modem — any model should work, as long as it presents as a serial device to the operating system. You’ll also need a Linux device such as a Raspberry Pi, a client device with a modem, and ‘some form of telephony connection to link the two modems’, described by Doge Microsystems as one of the following:

We need a way to connect our ISP modem to clients. There are many ways to approach this:

  • Use the actual PSTN (i.e. real phone lines)
  • Use a PBX to provide local connectivity
  • Build your own circuity (not covered here, as it would require extra configuration)
  • Build a fake PSTN using VoIP ATAs and a software PBX

I’ve gone with the fourth option. Here’s the breakdown:

  • Asterisk — a VoIP PBX — is configured on the dial-in server to accept connections from two SIP client accounts and route calls between them
  • A Linksys PAP2T ATA — which supports two phone lines — is set up as both of those SIP clients connected to the PBX
  • The ISP-side modem is connected to the first line, and the client device to the second line

Doge Microsystems explains how to set up everything, including the Linux device, on the wiki for the project. Have a look for yourself if you want to try out the dial-up server first-hand.

The sound of dial-up

For funsies, I asked our Twitter followers how they would write down the sound of a dial-up internet connection. Check them out.

Alex on Twitter

@Raspberry_Pi dialtone, (phone beeps), rachh racchh rachh rechhhhhhh reccchhhhhh rechhhh, DEE-DONG-DEE-DONG-DI, BachhhhhhhhhhhhBACHHHHBACHHHHHHHHHHHHHHHHHHHHHHHHH

The post Build a dial-up ISP server using a Raspberry Pi appeared first on Raspberry Pi.

Build your own Commodore PET model 8032

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/build-commodore-pet-model-8032/

Build a mini version of one of history’s most iconic personal computers with Lorenzo ‘Tin Cat’ Herrera and his Commodore PET Mini, which is based on the Commodore PET model 8032.

Commodore PET Mini Retrowave intro

3D Print your own Commodore PET Mini retro computer with a Raspberry Pi and Retropie for retro gaming or retro emulation. Fully documented DIY project: https://commodorepetmini.com The Commodore PET is one of the most iconic-looking computer of the 70’s, it reminds us of an era of frenetic innovation, harsh competition and bold design choices that shaped the computer industry as we know it today.

Commodore PET — a (very) brief history

Presented to the world in 1977, the Commodore PET represents a truly iconic piece of computer history: it was the first personal computer sold to the general public. With a built-in keyboard, screen, and cassette deck, and an introductory price of US$795 — roughly $3287 today — it offered everything a home computer user needed. And it beat the Apple II to market by a few months, despite Jobs and Wozniak offering to sell their Apple II technology to Commodore in September 1976.

Commodore PET model 8032

Commodore was also the first company to license Microsoft’s 6502 BASIC, and in the 1980s the Commodore became a staple in many school classrooms, bringing about a surge in the numbers of future computer engineers — a few of which now work in the Raspberry Pi Trading office.

The Commodore PET model was discontinued in 1982, then resurrected briefly in 1986, before finally stepping aside to make way for the popular Commodore 128, 1571, and 1581 models.

Redesigning a mini PET

Based on the Commodore PET model 8032, Lorenzo Herrera’s 3D-printable remake allows users to fit an entire computer — the Raspberry Pi — inside a miniature iconic shell. Lorenzo designed this case to house a working screen, and once you connect the Pi to a Bluetooth keyboard, your Commodore PET Mini will be fully functional as well as stylish and cute as a button.



You’ll need access to a 3D printer to build your own — all parts are listed on the project’s website. You can also purchase them as a kit directly from Lorenzo if you want to save time on sourcing your own.

3D-printing the Commodore PET

To build your own Commodore PET Mini, start by visiting its official website. And if you don’t own a 3D printer, search online for your nearest maker space or 3D printing service to get the parts made.

We’re definitely going to be building our own here at Raspberry Pi, and if you build one for yourself, or use a Raspberry Pi in any iconic computer rebuild, let us know.

The post Build your own Commodore PET model 8032 appeared first on Raspberry Pi.