AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.
AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.
When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:
Iterative development with unit tests
Continuous integration and build
Pushing the ETL pipeline to a test environment
Pushing the ETL pipeline to a production environment
Testing ETL applications using real data (live test)
The following diagram shows the pipeline workflow:
This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:
1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.
2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.
The LiveTest stage includes the following actions:
Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval
3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.
Try it out
This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).
To get started with this solution, choose Launch Stack:
This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.
In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.
After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.
Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.
In the CodeCommit console, choose Code in the navigation pane to view the solution files.
Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.
At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.
At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.
Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:
Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.
SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";
The following shows the raw data:
The following shows the transformed data:
The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.
Add comments as needed, and choose Approve.
The LiveTestApproval stage now appears as Approved on the console.
After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.
Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.
After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.
Conclusion
In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.
If you have questions or suggestions, please comment below.
Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.
We can’t believe that there are just few days left before re:Invent 2017. If you are attending this year, you’ll want to check out our Big Data sessions! The Big Data and Machine Learning categories are bigger than ever. As in previous years, you can find these sessions in various tracks, including Analytics & Big Data, Deep Learning Summit, Artificial Intelligence & Machine Learning, Architecture, and Databases.
We have great sessions from organizations and companies like Vanguard, Cox Automotive, Pinterest, Netflix, FINRA, Amtrak, AmazonFresh, Sysco Foods, Twilio, American Heart Association, Expedia, Esri, Nextdoor, and many more. All sessions are recorded and made available on YouTube. In addition, all slide decks from the sessions will be available on SlideShare.net after the conference.
This post highlights the sessions that will be presented as part of the Analytics & Big Data track, as well as relevant sessions from other tracks like Architecture, Artificial Intelligence & Machine Learning, and IoT. If you’re interested in Machine Learning sessions, don’t forget to check out our Guide to Machine Learning at re:Invent 2017.
This year’s session catalog contains the following breakout sessions.
Raju Gulabani, VP, Database, Analytics and AI at AWS will discuss the evolution of database and analytics services in AWS, the new database and analytics services and features we launched this year, and our vision for continued innovation in this space. We are witnessing an unprecedented growth in the amount of data collected, in many different forms. Storage, management, and analysis of this data require database services that scale and perform in ways not possible before. AWS offers a collection of database and other data services—including Amazon Aurora, Amazon DynamoDB, Amazon RDS, Amazon Redshift, Amazon ElastiCache, Amazon Kinesis, and Amazon EMR—to process, store, manage, and analyze data. In this session, we provide an overview of AWS database and analytics services and discuss how customers are using these services today.
Deep dive customer use cases
ABD401 – How Netflix Monitors Applications in Near Real-Time with Amazon Kinesis Thousands of services work in concert to deliver millions of hours of video streams to Netflix customers every day. These applications vary in size, function, and technology, but they all make use of the Netflix network to communicate. Understanding the interactions between these services is a daunting challenge both because of the sheer volume of traffic and the dynamic nature of deployments. In this session, we first discuss why Netflix chose Kinesis Streams to address these challenges at scale. We then dive deep into how Netflix uses Kinesis Streams to enrich network traffic logs and identify usage patterns in real time. Lastly, we cover how Netflix uses this system to build comprehensive dependency maps, increase network efficiency, and improve failure resiliency. From this session, you will learn how to build a real-time application monitoring system using network traffic logs and get real-time, actionable insights.
In this session, learn how Nextdoor replaced their home-grown data pipeline based on a topology of Flume nodes with a completely serverless architecture based on Kinesis and Lambda. By making these changes, they improved both the reliability of their data and the delivery times of billions of records of data to their Amazon S3–based data lake and Amazon Redshift cluster. Nextdoor is a private social networking service for neighborhoods.
ABD205 – Taking a Page Out of Ivy Tech’s Book: Using Data for Student Success Data speaks. Discover how Ivy Tech, the nation’s largest singly accredited community college, uses AWS to gather, analyze, and take action on student behavioral data for the betterment of over 3,100 students. This session outlines the process from inception to implementation across the state of Indiana and highlights how Ivy Tech’s model can be applied to your own complex business problems.
ABD207 – Leveraging AWS to Fight Financial Crime and Protect National Security Banks aren’t known to share data and collaborate with one another. But that is exactly what the Mid-Sized Bank Coalition of America (MBCA) is doing to fight digital financial crime—and protect national security. Using the AWS Cloud, the MBCA developed a shared data analytics utility that processes terabytes of non-competitive customer account, transaction, and government risk data. The intelligence produced from the data helps banks increase the efficiency of their operations, cut labor and operating costs, and reduce false positive volumes. The collective intelligence also allows greater enforcement of Anti-Money Laundering (AML) regulations by helping members detect internal risks—and identify the challenges to detecting these risks in the first place. This session demonstrates how the AWS Cloud supports the MBCA to deliver advanced data analytics, provide consistent operating models across financial institutions, reduce costs, and strengthen national security.
ABD208 – Cox Automotive Empowered to Scale with Splunk Cloud & AWS and Explores New Innovation with Amazon Kinesis Firehose In this session, learn how Cox Automotive is using Splunk Cloud for real time visibility into its AWS and hybrid environments to achieve near instantaneous MTTI, reduce auction incidents by 90%, and proactively predict outages. We also introduce a highly anticipated capability that allows you to ingest, transform, and analyze data in real time using Splunk and Amazon Kinesis Firehose to gain valuable insights from your cloud resources. It’s now quicker and easier than ever to gain access to analytics-driven infrastructure monitoring using Splunk Enterprise & Splunk Cloud.
ABD209 – Accelerating the Speed of Innovation with a Data Sciences Data & Analytics Hub at Takeda Historically, silos of data, analytics, and processes across functions, stages of development, and geography created a barrier to R&D efficiency. Gathering the right data necessary for decision-making was challenging due to issues of accessibility, trust, and timeliness. In this session, learn how Takeda is undergoing a transformation in R&D to increase the speed-to-market of high-impact therapies to improve patient lives. The Data and Analytics Hub was built, with Deloitte, to address these issues and support the efficient generation of data insights for functions such as clinical operations, clinical development, medical affairs, portfolio management, and R&D finance. In the AWS hosted data lake, this data is processed, integrated, and made available to business end users through data visualization interfaces, and to data scientists through direct connectivity. Learn how Takeda has achieved significant time reductions—from weeks to minutes—to gather and provision data that has the potential to reduce cycle times in drug development. The hub also enables more efficient operations and alignment to achieve product goals through cross functional team accountability and collaboration due to the ability to access the same cross domain data.
ABD210 – Modernizing Amtrak: Serverless Solution for Real-Time Data Capabilities As the nation’s only high-speed intercity passenger rail provider, Amtrak needs to know critical information to run their business such as: Who’s onboard any train at any time? How are booking and revenue trending? Amtrak was faced with unpredictable and often slow response times from existing databases, ranging from seconds to hours; existing booking and revenue dashboards were spreadsheet-based and manual; multiple copies of data were stored in different repositories, lacking integration and consistency; and operations and maintenance (O&M) costs were relatively high. Join us as we demonstrate how Deloitte and Amtrak successfully went live with a cloud-native operational database and analytical datamart for near-real-time reporting in under six months. We highlight the specific challenges and the modernization of architecture on an AWS native Platform as a Service (PaaS) solution. The solution includes cloud-native components such as AWS Lambda for microservices, Amazon Kinesis and AWS Data Pipeline for moving data, Amazon S3 for storage, Amazon DynamoDB for a managed NoSQL database service, and Amazon Redshift for near-real time reports and dashboards. Deloitte’s solution enabled “at scale” processing of 1 million transactions/day and up to 2K transactions/minute. It provided flexibility and scalability, largely eliminate the need for system management, and dramatically reduce operating costs. Moreover, it laid the groundwork for decommissioning legacy systems, anticipated to save at least $1M over 3 years.
ABD211 – Sysco Foods: A Journey from Too Much Data to Curated Insights In this session, we detail Sysco’s journey from a company focused on hindsight-based reporting to one focused on insights and foresight. For this shift, Sysco moved from multiple data warehouses to an AWS ecosystem, including Amazon Redshift, Amazon EMR, AWS Data Pipeline, and more. As the team at Sysco worked with Tableau, they gained agile insight across their business. Learn how Sysco decided to use AWS, how they scaled, and how they became more strategic with the AWS ecosystem and Tableau.
ABD217 – From Batch to Streaming: How Amazon Flex Uses Real-time Analytics to Deliver Packages on Time Reducing the time to get actionable insights from data is important to all businesses, and customers who employ batch data analytics tools are exploring the benefits of streaming analytics. Learn best practices to extend your architecture from data warehouses and databases to real-time solutions. Learn how to use Amazon Kinesis to get real-time data insights and integrate them with Amazon Aurora, Amazon RDS, Amazon Redshift, and Amazon S3. The Amazon Flex team describes how they used streaming analytics in their Amazon Flex mobile app, used by Amazon delivery drivers to deliver millions of packages each month on time. They discuss the architecture that enabled the move from a batch processing system to a real-time system, overcoming the challenges of migrating existing batch data to streaming data, and how to benefit from real-time analytics.
ABD218 – How EuroLeague Basketball Uses IoT Analytics to Engage Fans IoT and big data have made their way out of industrial applications, general automation, and consumer goods, and are now a valuable tool for improving consumer engagement across a number of industries, including media, entertainment, and sports. The low cost and ease of implementation of AWS analytics services and AWS IoT have allowed AGT, a leader in IoT, to develop their IoTA analytics platform. Using IoTA, AGT brought a tailored solution to EuroLeague Basketball for real-time content production and fan engagement during the 2017-18 season. In this session, we take a deep dive into how this solution is architected for secure, scalable, and highly performant data collection from athletes, coaches, and fans. We also talk about how the data is transformed into insights and integrated into a content generation pipeline. Lastly, we demonstrate how this solution can be easily adapted for other industries and applications.
ABD222 – How to Confidently Unleash Data to Meet the Needs of Your Entire Organization Where are you on the spectrum of IT leaders? Are you confident that you’re providing the technology and solutions that consistently meet or exceed the needs of your internal customers? Do your peers at the executive table see you as an innovative technology leader? Innovative IT leaders understand the value of getting data and analytics directly into the hands of decision makers, and into their own. In this session, Daren Thayne, Domo’s Chief Technology Officer, shares how innovative IT leaders are helping drive a culture change at their organizations. See how transformative it can be to have real-time access to all of the data that’ is relevant to YOUR job (including a complete view of your entire AWS environment), as well as understand how it can help you lead the way in applying that same pattern throughout your entire company
ABD303 – Developing an Insights Platform – Sysco’s Journey from Disparate Systems to Data Lake and Beyond Sysco has nearly 200 operating companies across its multiple lines of business throughout the United States, Canada, Central/South America, and Europe. As the global leader in food services, Sysco identified the need to streamline the collection, transformation, and presentation of data produced by the distributed units and systems, into a central data ecosystem. Sysco’s Business Intelligence and Analytics team addressed these requirements by creating a data lake with scalable analytics and query engines leveraging AWS services. In this session, Sysco will outline their journey from a hindsight reporting focused company to an insights driven organization. They will cover solution architecture, challenges, and lessons learned from deploying a self-service insights platform. They will also walk through the design patterns they used and how they designed the solution to provide predictive analytics using Amazon Redshift Spectrum, Amazon S3, Amazon EMR, AWS Glue, Amazon Elasticsearch Service and other AWS services.
ABD309 – How Twilio Scaled Its Data-Driven Culture As a leading cloud communications platform, Twilio has always been strongly data-driven. But as headcount and data volumes grew—and grew quickly—they faced many new challenges. One-off, static reports work when you’re a small startup, but how do you support a growth stage company to a successful IPO and beyond? Today, Twilio’s data team relies on AWS and Looker to provide data access to 700 colleagues. Departments have the data they need to make decisions, and cloud-based scale means they get answers fast. Data delivers real-business value at Twilio, providing a 360-degree view of their customer, product, and business. In this session, you hear firsthand stories directly from the Twilio data team and learn real-world tips for fostering a truly data-driven culture at scale.
ABD310 – How FINRA Secures Its Big Data and Data Science Platform on AWS FINRA uses big data and data science technologies to detect fraud, market manipulation, and insider trading across US capital markets. As a financial regulator, FINRA analyzes highly sensitive data, so information security is critical. Learn how FINRA secures its Amazon S3 Data Lake and its data science platform on Amazon EMR and Amazon Redshift, while empowering data scientists with tools they need to be effective. In addition, FINRA shares AWS security best practices, covering topics such as AMI updates, micro segmentation, encryption, key management, logging, identity and access management, and compliance.
ABD331 – Log Analytics at Expedia Using Amazon Elasticsearch Service Expedia uses Amazon Elasticsearch Service (Amazon ES) for a variety of mission-critical use cases, ranging from log aggregation to application monitoring and pricing optimization. In this session, the Expedia team reviews how they use Amazon ES and Kibana to analyze and visualize Docker startup logs, AWS CloudTrail data, and application metrics. They share best practices for architecting a scalable, secure log analytics solution using Amazon ES, so you can add new data sources almost effortlessly and get insights quickly
ABD316 – American Heart Association: Finding Cures to Heart Disease Through the Power of Technology Combining disparate datasets and making them accessible to data scientists and researchers is a prevalent challenge for many organizations, not just in healthcare research. American Heart Association (AHA) has built a data science platform using Amazon EMR, Amazon Elasticsearch Service, and other AWS services, that corrals multiple datasets and enables advanced research on phenotype and genotype datasets, aimed at curing heart diseases. In this session, we present how AHA built this platform and the key challenges they addressed with the solution. We also provide a demo of the platform, and leave you with suggestions and next steps so you can build similar solutions for your use cases
ABD319 – Tooling Up for Efficiency: DIY Solutions @ Netflix At Netflix, we have traditionally approached cloud efficiency from a human standpoint, whether it be in-person meetings with the largest service teams or manually flipping reservations. Over time, we realized that these manual processes are not scalable as the business continues to grow. Therefore, in the past year, we have focused on building out tools that allow us to make more insightful, data-driven decisions around capacity and efficiency. In this session, we discuss the DIY applications, dashboards, and processes we built to help with capacity and efficiency. We start at the ten thousand foot view to understand the unique business and cloud problems that drove us to create these products, and discuss implementation details, including the challenges encountered along the way. Tools discussed include Picsou, the successor to our AWS billing file cost analyzer; Libra, an easy-to-use reservation conversion application; and cost and efficiency dashboards that relay useful financial context to 50+ engineering teams and managers.
ABD312 – Deep Dive: Migrating Big Data Workloads to AWS Customers are migrating their analytics, data processing (ETL), and data science workloads running on Apache Hadoop, Spark, and data warehouse appliances from on-premise deployments to AWS in order to save costs, increase availability, and improve performance. AWS offers a broad set of analytics services, including solutions for batch processing, stream processing, machine learning, data workflow orchestration, and data warehousing. This session will focus on identifying the components and workflows in your current environment; and providing the best practices to migrate these workloads to the right AWS data analytics product. We will cover services such as Amazon EMR, Amazon Athena, Amazon Redshift, Amazon Kinesis, and more. We will also feature Vanguard, an American investment management company based in Malvern, Pennsylvania with over $4.4 trillion in assets under management. Ritesh Shah, Sr. Program Manager for Cloud Analytics Program at Vanguard, will describe how they orchestrated their migration to AWS analytics services, including Hadoop and Spark workloads to Amazon EMR. Ritesh will highlight the technical challenges they faced and overcame along the way, as well as share common recommendations and tuning tips to accelerate the time to production.
ABD402 – How Esri Optimizes Massive Image Archives for Analytics in the Cloud Petabyte scale archives of satellites, planes, and drones imagery continue to grow exponentially. They mostly exist as semi-structured data, but they are only valuable when accessed and processed by a wide range of products for both visualization and analysis. This session provides an overview of how ArcGIS indexes and structures data so that any part of it can be quickly accessed, processed, and analyzed by reading only the minimum amount of data needed for the task. In this session, we share best practices for structuring and compressing massive datasets in Amazon S3, so it can be analyzed efficiently. We also review a number of different image formats, including GeoTIFF (used for the Public Datasets on AWS program, Landsat on AWS), cloud optimized GeoTIFF, MRF, and CRF as well as different compression approaches to show the effect on processing performance. Finally, we provide examples of how this technology has been used to help image processing and analysis for the response to Hurricane Harvey.
ABD329 – A Look Under the Hood – How Amazon.com Uses AWS Services for Analytics at Massive Scale Amazon’s consumer business continues to grow, and so does the volume of data and the number and complexity of the analytics done in support of the business. In this session, we talk about how Amazon.com uses AWS technologies to build a scalable environment for data and analytics. We look at how Amazon is evolving the world of data warehousing with a combination of a data lake and parallel, scalable compute engines such as Amazon EMR and Amazon Redshift.
ABD327 – Migrating Your Traditional Data Warehouse to a Modern Data Lake In this session, we discuss the latest features of Amazon Redshift and Redshift Spectrum, and take a deep dive into its architecture and inner workings. We share many of the recent availability, performance, and management enhancements and how they improve your end user experience. You also hear from 21st Century Fox, who presents a case study of their fast migration from an on-premises data warehouse to Amazon Redshift. Learn how they are expanding their data warehouse to a data lake that encompasses multiple data sources and data formats. This architecture helps them tie together siloed business units and get actionable 360-degree insights across their consumer base. MCL202 – Ally Bank & Cognizant: Transforming Customer Experience Using Amazon Alexa Given the increasing popularity of natural language interfaces such as Voice as User technology or conversational artificial intelligence (AI), Ally® Bank was looking to interact with customers by enabling direct transactions through conversation or voice. They also needed to develop a capability that allows third parties to connect to the bank securely for information sharing and exchange, using oAuth, an authentication protocol seen as the future of secure banking technology. Cognizant’s Architecture team partnered with Ally Bank’s Enterprise Architecture group and identified the right product for oAuth integration with Amazon Alexa and third-party technologies. In this session, we discuss how building products with conversational AI helps Ally Bank offer an innovative customer experience; increase retention through improved data-driven personalization; increase the efficiency and convenience of customer service; and gain deep insights into customer needs through data analysis and predictive analytics to offer new products and services.
MCL317 – Orchestrating Machine Learning Training for Netflix Recommendations At Netflix, we use machine learning (ML) algorithms extensively to recommend relevant titles to our 100+ million members based on their tastes. Everything on the member home page is an evidence-driven, A/B-tested experience that we roll out backed by ML models. These models are trained using Meson, our workflow orchestration system. Meson distinguishes itself from other workflow engines by handling more sophisticated execution graphs, such as loops and parameterized fan-outs. Meson can schedule Spark jobs, Docker containers, bash scripts, gists of Scala code, and more. Meson also provides a rich visual interface for monitoring active workflows and inspecting execution logs. It has a powerful Scala DSL for authoring workflows as well as the REST API. In this session, we focus on how Meson trains recommendation ML models in production, and how we have re-architected it to scale up for a growing need of broad ETL applications within Netflix. As a driver for this change, we have had to evolve the persistence layer for Meson. We talk about how we migrated from Cassandra to Amazon RDS backed by Amazon Aurora
MCL350 – Humans vs. the Machines: How Pinterest Uses Amazon Mechanical Turk’s Worker Community to Improve Machine Learning Ever since the term “crowdsourcing” was coined in 2006, it’s been a buzzword for technology companies and social institutions. In the technology sector, crowdsourcing is instrumental for verifying machine learning algorithms, which, in turn, improves the user’s experience. In this session, we explore how Pinterest adapted to an increased reliability on human evaluation to improve their product, with a focus on how they’ve integrated with Mechanical Turk’s platform. This presentation is aimed at engineers, analysts, program managers, and product managers who are interested in how companies rely on Mechanical Turk’s human evaluation platform to better understand content and improve machine learning algorithms. The discussion focuses on the analysis and product decisions related to building a high quality crowdsourcing system that takes advantage of Mechanical Turk’s powerful worker community.
ABD201 – Big Data Architectural Patterns and Best Practices on AWS In this session, we simplify big data processing as a data bus comprising various stages: collect, store, process, analyze, and visualize. Next, we discuss how to choose the right technology in each stage based on criteria such as data structure, query latency, cost, request rate, item size, data volume, durability, and so on. Finally, we provide reference architectures, design patterns, and best practices for assembling these technologies to solve your big data problems at the right cost
ABD202 – Best Practices for Building Serverless Big Data Applications Serverless technologies let you build and scale applications and services rapidly without the need to provision or manage servers. In this session, we show you how to incorporate serverless concepts into your big data architectures. We explore the concepts behind and benefits of serverless architectures for big data, looking at design patterns to ingest, store, process, and visualize your data. Along the way, we explain when and how you can use serverless technologies to streamline data processing, minimize infrastructure management, and improve agility and robustness and share a reference architecture using a combination of cloud and open source technologies to solve your big data problems. Topics include: use cases and best practices for serverless big data applications; leveraging AWS technologies such as Amazon DynamoDB, Amazon S3, Amazon Kinesis, AWS Lambda, Amazon Athena, and Amazon EMR; and serverless ETL, event processing, ad hoc analysis, and real-time analytics.
ABD206 – Building Visualizations and Dashboards with Amazon QuickSight Just as a picture is worth a thousand words, a visual is worth a thousand data points. A key aspect of our ability to gain insights from our data is to look for patterns, and these patterns are often not evident when we simply look at data in tables. The right visualization will help you gain a deeper understanding in a much quicker timeframe. In this session, we will show you how to quickly and easily visualize your data using Amazon QuickSight. We will show you how you can connect to data sources, generate custom metrics and calculations, create comprehensive business dashboards with various chart types, and setup filters and drill downs to slice and dice the data.
ABD203 – Real-Time Streaming Applications on AWS: Use Cases and Patterns To win in the marketplace and provide differentiated customer experiences, businesses need to be able to use live data in real time to facilitate fast decision making. In this session, you learn common streaming data processing use cases and architectures. First, we give an overview of streaming data and AWS streaming data capabilities. Next, we look at a few customer examples and their real-time streaming applications. Finally, we walk through common architectures and design patterns of top streaming data use cases.
ABD213 – How to Build a Data Lake with AWS Glue Data Catalog As data volumes grow and customers store more data on AWS, they often have valuable data that is not easily discoverable and available for analytics. The AWS Glue Data Catalog provides a central view of your data lake, making data readily available for analytics. We introduce key features of the AWS Glue Data Catalog and its use cases. Learn how crawlers can automatically discover your data, extract relevant metadata, and add it as table definitions to the AWS Glue Data Catalog. We will also explore the integration between AWS Glue Data Catalog and Amazon Athena, Amazon EMR, and Amazon Redshift Spectrum.
ABD214 – Real-time User Insights for Mobile and Web Applications with Amazon Pinpoint With customers demanding relevant and real-time experiences across a range of devices, digital businesses are looking to gather user data at scale, understand this data, and respond to customer needs instantly. This requires tools that can record large volumes of user data in a structured fashion, and then instantly make this data available to generate insights. In this session, we demonstrate how you can use Amazon Pinpoint to capture user data in a structured yet flexible manner. Further, we demonstrate how this data can be set up for instant consumption using services like Amazon Kinesis Firehose and Amazon Redshift. We walk through example data based on real world scenarios, to illustrate how Amazon Pinpoint lets you easily organize millions of events, record them in real-time, and store them for further analysis.
ABD223 – IT Innovators: New Technology for Leveraging Data to Enable Agility, Innovation, and Business Optimization Companies of all sizes are looking for technology to efficiently leverage data and their existing IT investments to stay competitive and understand where to find new growth. Regardless of where companies are in their data-driven journey, they face greater demands for information by customers, prospects, partners, vendors and employees. All stakeholders inside and outside the organization want information on-demand or in “real time”, available anywhere on any device. They want to use it to optimize business outcomes without having to rely on complex software tools or human gatekeepers to relevant information. Learn how IT innovators at companies such as MasterCard, Jefferson Health, and TELUS are using Domo’s Business Cloud to help their organizations more effectively leverage data at scale.
ABD301 – Analyzing Streaming Data in Real Time with Amazon Kinesis Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. In this session, we present an end-to-end streaming data solution using Kinesis Streams for data ingestion, Kinesis Analytics for real-time processing, and Kinesis Firehose for persistence. We review in detail how to write SQL queries using streaming data and discuss best practices to optimize and monitor your Kinesis Analytics applications. Lastly, we discuss how to estimate the cost of the entire system
ABD302 – Real-Time Data Exploration and Analytics with Amazon Elasticsearch Service and Kibana In this session, we use Apache web logs as example and show you how to build an end-to-end analytics solution. First, we cover how to configure an Amazon ES cluster and ingest data using Amazon Kinesis Firehose. We look at best practices for choosing instance types, storage options, shard counts, and index rotations based on the throughput of incoming data. Then we demonstrate how to set up a Kibana dashboard and build custom dashboard widgets. Finally, we review approaches for generating custom, ad-hoc reports.
ABD304 – Best Practices for Data Warehousing with Amazon Redshift & Redshift Spectrum Most companies are over-run with data, yet they lack critical insights to make timely and accurate business decisions. They are missing the opportunity to combine large amounts of new, unstructured big data that resides outside their data warehouse with trusted, structured data inside their data warehouse. In this session, we take an in-depth look at how modern data warehousing blends and analyzes all your data, inside and outside your data warehouse without moving the data, to give you deeper insights to run your business. We will cover best practices on how to design optimal schemas, load data efficiently, and optimize your queries to deliver high throughput and performance.
ABD305 – Design Patterns and Best Practices for Data Analytics with Amazon EMR Amazon EMR is one of the largest Hadoop operators in the world, enabling customers to run ETL, machine learning, real-time processing, data science, and low-latency SQL at petabyte scale. In this session, we introduce you to Amazon EMR design patterns such as using Amazon S3 instead of HDFS, taking advantage of both long and short-lived clusters, and other Amazon EMR architectural best practices. We talk about lowering cost with Auto Scaling and Spot Instances, and security best practices for encryption and fine-grained access control. Finally, we dive into some of our recent launches to keep you current on our latest features.
ABD307 – Deep Analytics for Global AWS Marketing Organization To meet the needs of the global marketing organization, the AWS marketing analytics team built a scalable platform that allows the data science team to deliver custom econometric and machine learning models for end user self-service. To meet data security standards, we use end-to-end data encryption and different AWS services such as Amazon Redshift, Amazon RDS, Amazon S3, Amazon EMR with Apache Spark and Auto Scaling. In this session, you see real examples of how we have scaled and automated critical analysis, such as calculating the impact of marketing programs like re:Invent and prioritizing leads for our sales teams.
ABD311 – Deploying Business Analytics at Enterprise Scale with Amazon QuickSight One of the biggest tradeoffs customers usually make when deploying BI solutions at scale is agility versus governance. Large-scale BI implementations with the right governance structure can take months to design and deploy. In this session, learn how you can avoid making this tradeoff using Amazon QuickSight. Learn how to easily deploy Amazon QuickSight to thousands of users using Active Directory and Federated SSO, while securely accessing your data sources in Amazon VPCs or on-premises. We also cover how to control access to your datasets, implement row-level security, create scheduled email reports, and audit access to your data.
ABD315 – Building Serverless ETL Pipelines with AWS Glue Organizations need to gain insight and knowledge from a growing number of Internet of Things (IoT), APIs, clickstreams, unstructured and log data sources. However, organizations are also often limited by legacy data warehouses and ETL processes that were designed for transactional data. In this session, we introduce key ETL features of AWS Glue, cover common use cases ranging from scheduled nightly data warehouse loads to near real-time, event-driven ETL flows for your data lake. We discuss how to build scalable, efficient, and serverless ETL pipelines using AWS Glue. Additionally, Merck will share how they built an end-to-end ETL pipeline for their application release management system, and launched it in production in less than a week using AWS Glue.
ABD318 – Architecting a data lake with Amazon S3, Amazon Kinesis, and Amazon Athena Learn how to architect a data lake where different teams within your organization can publish and consume data in a self-service manner. As organizations aim to become more data-driven, data engineering teams have to build architectures that can cater to the needs of diverse users – from developers, to business analysts, to data scientists. Each of these user groups employs different tools, have different data needs and access data in different ways. In this talk, we will dive deep into assembling a data lake using Amazon S3, Amazon Kinesis, Amazon Athena, Amazon EMR, and AWS Glue. The session will feature Mohit Rao, Architect and Integration lead at Atlassian, the maker of products such as JIRA, Confluence, and Stride. First, we will look at a couple of common architectures for building a data lake. Then we will show how Atlassian built a self-service data lake, where any team within the company can publish a dataset to be consumed by a broad set of users.
Companies have valuable data that they may not be analyzing due to the complexity, scalability, and performance issues of loading the data into their data warehouse. However, with the right tools, you can extend your analytics to query data in your data lake—with no loading required. Amazon Redshift Spectrum extends the analytic power of Amazon Redshift beyond data stored in your data warehouse to run SQL queries directly against vast amounts of unstructured data in your Amazon S3 data lake. This gives you the freedom to store your data where you want, in the format you want, and have it available for analytics when you need it. Join a discussion with AWS solution architects to ask question.
ABD330 – Combining Batch and Stream Processing to Get the Best of Both Worlds Today, many architects and developers are looking to build solutions that integrate batch and real-time data processing, and deliver the best of both approaches. Lambda architecture (not to be confused with the AWS Lambda service) is a design pattern that leverages both batch and real-time processing within a single solution to meet the latency, accuracy, and throughput requirements of big data use cases. Come join us for a discussion on how to implement Lambda architecture (batch, speed, and serving layers) and best practices for data processing, loading, and performance tuning
ABD335 – Real-Time Anomaly Detection Using Amazon Kinesis Amazon Kinesis Analytics offers a built-in machine learning algorithm that you can use to easily detect anomalies in your VPC network traffic and improve security monitoring. Join us for an interactive discussion on how to stream your VPC flow Logs to Amazon Kinesis Streams and identify anomalies using Kinesis Analytics.
ABD339 – Deep Dive and Best Practices for Amazon Athena Amazon Athena is an interactive query service that enables you to process data directly from Amazon S3 without the need for infrastructure. Since its launch at re:invent 2016, several organizations have adopted Athena as the central tool to process all their data. In this talk, we dive deep into the most common use cases, including working with other AWS services. We review the best practices for creating tables and partitions and performance optimizations. We also dive into how Athena handles security, authorization, and authentication. Lastly, we hear from a customer who has reduced costs and improved time to market by deploying Athena across their organization.
We look forward to meeting you at re:Invent 2017!
About the Author
Roy Ben-Alta is a solution architect and principal business development manager at Amazon Web Services in New York. He focuses on Data Analytics and ML Technologies, working with AWS customers to build innovative data-driven products.
AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. It offers powerful integration with other AWS services, such as AWS CodeBuild, AWS CodeDeploy, AWS CodeCommit, AWS CloudFormation and with third-party tools such as Jenkins and GitHub. These services make it possible for AWS customers to successfully automate various tasks, including infrastructure provisioning, blue/green deployments, serverless deployments, AMI baking, database provisioning, and release management.
Developers have been able to use CodePipeline to build sophisticated automation pipelines that often require a single CodePipeline action to perform multiple tasks, fork into different execution paths, and deal with asynchronous behavior. For example, to deploy a Lambda function, a CodePipeline action might first inspect the changes pushed to the code repository. If only the Lambda code has changed, the action can simply update the Lambda code package, create a new version, and point the Lambda alias to the new version. If the changes also affect infrastructure resources managed by AWS CloudFormation, the pipeline action might have to create a stack or update an existing one through the use of a change set. In addition, if an update is required, the pipeline action might enforce a safety policy to infrastructure resources that prevents the deletion and replacement of resources. You can do this by creating a change set and having the pipeline action inspect its changes before updating the stack. Change sets that do not conform to the policy are deleted.
This use case is a good illustration of workflow-driven pipeline actions. These are actions that run multiple tasks, deal with async behavior and loops, need to maintain and propagate state, and fork into different execution paths. Implementing workflow-driven actions directly in CodePipeline can lead to complex pipelines that are hard for developers to understand and maintain. Ideally, a pipeline action should perform a single task and delegate the complexity of dealing with workflow-driven behavior associated with that task to a state machine engine. This would make it possible for developers to build simpler, more intuitive pipelines and allow them to use state machine execution logs to visualize and troubleshoot their pipeline actions.
In this blog post, we discuss how AWS Step Functions state machines can be used to handle workflow-driven actions. We show how a CodePipeline action can trigger a Step Functions state machine and how the pipeline and the state machine are kept decoupled through a Lambda function. The advantages of using state machines include:
Simplified logic (complex tasks are broken into multiple smaller tasks).
Ease of handling asynchronous behavior (through state machine wait states).
Built-in support for choices and processing different execution paths (through state machine choices).
Built-in visualization and logging of the state machine execution.
This figure shows the components in the CodePipeline-Step Functions integration that will be described in this post. The pipeline contains two stages: a Source stage represented by a CodeCommit Git repository and a Prod stage with a single Deploy action that represents the workflow-driven action.
This action invokes a Lambda function (1) called the State Machine Trigger Lambda, which, in turn, triggers a Step Function state machine to process the request (2). The Lambda function sends a continuation token back to the pipeline (3) to continue its execution later and terminates. Seconds later, the pipeline invokes the Lambda function again (4), passing the continuation token received. The Lambda function checks the execution state of the state machine (5,6) and communicates the status to the pipeline. The process is repeated until the state machine execution is complete. Then the Lambda function notifies the pipeline that the corresponding pipeline action is complete (7). If the state machine has failed, the Lambda function will then fail the pipeline action and stop its execution (7). While running, the state machine triggers various Lambda functions to perform different tasks. The state machine and the pipeline are fully decoupled. Their interaction is handled by the Lambda function.
The Deploy State Machine
The sample state machine used in this post is a simplified version of the use case, with emphasis on infrastructure deployment. The state machine will follow distinct execution paths and thus have different outcomes, depending on:
The current state of the AWS CloudFormation stack.
The nature of the code changes made to the AWS CloudFormation template and pushed into the pipeline.
If the stack does not exist, it will be created. If the stack exists, a change set will be created and its resources inspected by the state machine. The inspection consists of parsing the change set results and detecting whether any resources will be deleted or replaced. If no resources are being deleted or replaced, the change set is allowed to be executed and the state machine completes successfully. Otherwise, the change set is deleted and the state machine completes execution with a failure as the terminal state.
Let’s dive into each of these execution paths.
Path 1: Create a Stack and Succeed Deployment
The Deploy state machine is shown here. It is triggered by the Lambda function using the following input parameters stored in an S3 bucket.
Note that some values used here are for the use case example only. Account-specific parameters like revisionS3Bucket and revisionS3Key will be different when you deploy this use case in your account.
These input parameters are used by various states in the state machine and passed to the corresponding Lambda functions to perform different tasks. For example, stackName is used to create a stack, check the status of stack creation, and create a change set. The environmentName represents the environment (for example, dev, test, prod) to which the code is being deployed. It is used to prefix the name of stacks and change sets.
With the exception of built-in states such as wait and choice, each state in the state machine invokes a specific Lambda function. The results received from the Lambda invocations are appended to the state machine’s original input. When the state machine finishes its execution, several parameters will have been added to its original input.
The first stage in the state machine is “Check Stack Existence”. It checks whether a stack with the input name specified in the stackName input parameter already exists. The output of the state adds a Boolean value called doesStackExist to the original state machine input as follows:
The following stage, “Does Stack Exist?”, is represented by Step Functions built-in choice state. It checks the value of doesStackExist to determine whether a new stack needs to be created (doesStackExist=true) or a change set needs to be created and inspected (doesStackExist=false).
If the stack does not exist, the states illustrated in green in the preceding figure are executed. This execution path creates the stack, waits until the stack is created, checks the status of the stack’s creation, and marks the deployment successful after the stack has been created. Except for “Stack Created?” and “Wait Stack Creation,” each of these stages invokes a Lambda function. “Stack Created?” and “Wait Stack Creation” are implemented by using the built-in choice state (to decide which path to follow) and the wait state (to wait a few seconds before proceeding), respectively. Each stage adds the results of their Lambda function executions to the initial input of the state machine, allowing future stages to process them.
Path 2: Safely Update a Stack and Mark Deployment as Successful
If the stack indicated by the stackName parameter already exists, a different path is executed. (See the green states in the figure.) This path will create a change set and use wait and choice states to wait until the change set is created. Afterwards, a stage in the execution path will inspect the resources affected before the change set is executed.
The inspection procedure represented by the “Inspect Change Set Changes” stage consists of parsing the resources affected by the change set and checking whether any of the existing resources are being deleted or replaced. The following is an excerpt of the algorithm, where changeSetChanges.Changes is the object representing the change set changes:
...
var RESOURCES_BEING_DELETED_OR_REPLACED = "RESOURCES-BEING-DELETED-OR-REPLACED";
var CAN_SAFELY_UPDATE_EXISTING_STACK = "CAN-SAFELY-UPDATE-EXISTING-STACK";
for (var i = 0; i < changeSetChanges.Changes.length; i++) {
var change = changeSetChanges.Changes[i];
if (change.Type == "Resource") {
if (change.ResourceChange.Action == "Delete") {
return RESOURCES_BEING_DELETED_OR_REPLACED;
}
if (change.ResourceChange.Action == "Modify") {
if (change.ResourceChange.Replacement == "True") {
return RESOURCES_BEING_DELETED_OR_REPLACED;
}
}
}
}
return CAN_SAFELY_UPDATE_EXISTING_STACK;
The algorithm returns different values to indicate whether the change set can be safely executed (CAN_SAFELY_UPDATE_EXISTING_STACK or RESOURCES_BEING_DELETED_OR_REPLACED). This value is used later by the state machine to decide whether to execute the change set and update the stack or interrupt the deployment.
The output of the “Inspect Change Set” stage is shown here.
At this point, these parameters have been added to the state machine’s original input:
changeSetName, which is added by the “Create Change Set” state.
changeSetCreationStatus, which is added by the “Get Change Set Creation Status” state.
changeSetAction, which is added by the “Inspect Change Set Changes” state.
The “Safe to Update Infra?” step is a choice state (its JSON spec follows) that simply checks the value of the changeSetAction parameter. If the value is equal to “CAN-SAFELY-UPDATE-EXISTING-STACK“, meaning that no resources will be deleted or replaced, the step will execute the change set by proceeding to the “Execute Change Set” state. The deployment is successful (the state machine completes its execution successfully).
If the changeSetAction parameter is different from “CAN-SAFELY-UPDATE-EXISTING-STACK“, the state machine will interrupt the deployment by deleting the change set and proceeding to the “Deployment Fail” step, which is a built-in Fail state. (Its JSON spec follows.) This state causes the state machine to stop in a failed state and serves to indicate to the Lambda function that the pipeline deployment should be interrupted in a fail state as well.
In all three scenarios, there’s a state machine’s visual representation available in the AWS Step Functions console that makes it very easy for developers to identify what tasks have been executed or why a deployment has failed. Developers can also inspect the inputs and outputs of each state and look at the state machine Lambda function’s logs for details. Meanwhile, the corresponding CodePipeline action remains very simple and intuitive for developers who only need to know whether the deployment was successful or failed.
The State Machine Trigger Lambda Function
The Trigger Lambda function is invoked directly by the Deploy action in CodePipeline. The CodePipeline action must pass a JSON structure to the trigger function through the UserParameters attribute, as follows:
The s3Bucket parameter specifies the S3 bucket location for the state machine input parameters file. The stateMachineFile parameter specifies the file holding the input parameters. By being able to specify different input parameters to the state machine, we make the Trigger Lambda function and the state machine reusable across environments. For example, the same state machine could be called from a test and prod pipeline action by specifying a different S3 bucket or state machine input file for each environment.
The Trigger Lambda function performs two main tasks: triggering the state machine and checking the execution state of the state machine. Its core logic is shown here:
Util.isContinuingPipelineTask(event) is a utility function that checks if the Trigger Lambda function is being called for the first time (that is, no continuation token is passed by CodePipeline) or as a continuation of a previous call. In its first execution, the Lambda function will trigger the state machine and send a continuation token to CodePipeline that contains the state machine execution ARN. The state machine ARN is exposed to the Lambda function through a Lambda environment variable called stateMachineArn. Here is the code that triggers the state machine:
function triggerStateMachine(event, context, callback) {
var stateMachineArn = process.env.stateMachineArn;
var s3Bucket = Util.actionUserParameter(event, "s3Bucket");
var stateMachineFile = Util.actionUserParameter(event, "stateMachineFile");
getStateMachineInputData(s3Bucket, stateMachineFile)
.then(function (data) {
var initialParameters = data.Body.toString();
var stateMachineInputJSON = createStateMachineInitialInput(initialParameters, event);
console.log("State machine input JSON: " + JSON.stringify(stateMachineInputJSON));
return stateMachineInputJSON;
})
.then(function (stateMachineInputJSON) {
return triggerStateMachineExecution(stateMachineArn, stateMachineInputJSON);
})
.then(function (triggerStateMachineOutput) {
var continuationToken = { "stateMachineExecutionArn": triggerStateMachineOutput.executionArn };
var message = "State machine has been triggered: " + JSON.stringify(triggerStateMachineOutput) + ", continuationToken: " + JSON.stringify(continuationToken);
return continueExecution(Util.jobId(event), continuationToken, callback, message);
})
.catch(function (err) {
console.log("Error triggering state machine: " + stateMachineArn + ", Error: " + err.message);
failure(Util.jobId(event), callback, context.invokeid, err.message);
})
}
The Trigger Lambda function fetches the state machine input parameters from an S3 file, triggers the execution of the state machine using the input parameters and the stateMachineArn environment variable, and signals to CodePipeline that the execution should continue later by passing a continuation token that contains the state machine execution ARN. In case any of these operations fail and an exception is thrown, the Trigger Lambda function will fail the pipeline immediately by signaling a pipeline failure through the putJobFailureResult CodePipeline API.
If the Lambda function is continuing a previous execution, it will extract the state machine execution ARN from the continuation token and check the status of the state machine, as shown here.
function monitorStateMachineExecution(event, context, callback) {
var stateMachineArn = process.env.stateMachineArn;
var continuationToken = JSON.parse(Util.continuationToken(event));
var stateMachineExecutionArn = continuationToken.stateMachineExecutionArn;
getStateMachineExecutionStatus(stateMachineExecutionArn)
.then(function (response) {
if (response.status === "RUNNING") {
var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " is still " + response.status;
return continueExecution(Util.jobId(event), continuationToken, callback, message);
}
if (response.status === "SUCCEEDED") {
var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
return success(Util.jobId(event), callback, message);
}
// FAILED, TIMED_OUT, ABORTED
var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
return failure(Util.jobId(event), callback, context.invokeid, message);
})
.catch(function (err) {
var message = "Error monitoring execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + ", Error: " + err.message;
failure(Util.jobId(event), callback, context.invokeid, message);
});
}
If the state machine is in the RUNNING state, the Lambda function will send the continuation token back to the CodePipeline action. This will cause CodePipeline to call the Lambda function again a few seconds later. If the state machine has SUCCEEDED, then the Lambda function will notify the CodePipeline action that the action has succeeded. In any other case (FAILURE, TIMED-OUT, or ABORT), the Lambda function will fail the pipeline action.
This behavior is especially useful for developers who are building and debugging a new state machine because a bug in the state machine can potentially leave the pipeline action hanging for long periods of time until it times out. The Trigger Lambda function prevents this.
Also, by having the Trigger Lambda function as a means to decouple the pipeline and state machine, we make the state machine more reusable. It can be triggered from anywhere, not just from a CodePipeline action.
The Pipeline in CodePipeline
Our sample pipeline contains two simple stages: the Source stage represented by a CodeCommit Git repository and the Prod stage, which contains the Deploy action that invokes the Trigger Lambda function. When the state machine decides that the change set created must be rejected (because it replaces or deletes some the existing production resources), it fails the pipeline without performing any updates to the existing infrastructure. (See the failed Deploy action in red.) Otherwise, the pipeline action succeeds, indicating that the existing provisioned infrastructure was either created (first run) or updated without impacting any resources. (See the green Deploy stage in the pipeline on the left.)
The JSON spec for the pipeline’s Prod stage is shown here. We use the UserParameters attribute to pass the S3 bucket and state machine input file to the Lambda function. These parameters are action-specific, which means that we can reuse the state machine in another pipeline action.
In this blog post, we discussed how state machines in AWS Step Functions can be used to handle workflow-driven actions. We showed how a Lambda function can be used to fully decouple the pipeline and the state machine and manage their interaction. The use of a state machine greatly simplified the associated CodePipeline action, allowing us to build a much simpler and cleaner pipeline while drilling down into the state machine’s execution for troubleshooting or debugging.
Here are two exercises you can complete by using the source code.
Exercise #1: Do not fail the state machine and pipeline action after inspecting a change set that deletes or replaces resources. Instead, create a stack with a different name (think of blue/green deployments). You can do this by creating a state machine transition between the “Safe to Update Infra?” and “Create Stack” stages and passing a new stack name as input to the “Create Stack” stage.
Exercise #2: Add wait logic to the state machine to wait until the change set completes its execution before allowing the state machine to proceed to the “Deployment Succeeded” stage. Use the stack creation case as an example. You’ll have to create a Lambda function (similar to the Lambda function that checks the creation status of a stack) to get the creation status of the change set.
Have fun and share your thoughts!
About the Author
Marcilio Mendonca is a Sr. Consultant in the Canadian Professional Services Team at Amazon Web Services. He has helped AWS customers design, build, and deploy best-in-class, cloud-native AWS applications using VMs, containers, and serverless architectures. Before he joined AWS, Marcilio was a Software Development Engineer at Amazon. Marcilio also holds a Ph.D. in Computer Science. In his spare time, he enjoys playing drums, riding his motorcycle in the Toronto GTA area, and spending quality time with his family.
Just as a herd can move only as fast as its slowest member, companies must increase the speed of all parts of their release process, especially the database change process, which is often manual. One bad database change can bring down an app or compromise data security.
We need to make database code deployment as fast and easy as application release automation, while eliminating risks that cause application downtime and data security vulnerabilities. Let’s take a page from the application development playbook and bring a continuous deployment approach to the database.
By creating a continuous deployment database, you can:
Discover mistakes more quickly.
Deliver updates faster and frequently.
Help developers write better code.
Automate the database release management process.
The database deployment package can be promoted automatically with application code changes. With database continuous deployment, application development teams can deliver smaller, less risky deployments, making it possible to respond more quickly to business or customer needs.
In this post, we walk through steps for building a continuous deployment workflow for databases using AWS CodePipeline (a fully managed continuous delivery service) and Datical DB (a database release automation application). We use AWS CodeCommit for source code control and Amazon RDS for database hosting to demonstrate end-to-end database change management — from check-in to final deployment.
As part of this example, we will show how a database change that does not meet standards is rejected automatically and actionable feedback is provided to the developer. Just like a code unit test, Datical DB evaluates changes and enforces your organization’s standards. In the sample use case, database table indexes of more than three columns are disallowed. In some cases, this type of index can slow performance.
From Datical DB, you’ll need access to software.datical.com portal, your license key, a database, and JDBC drivers. You can request a free trial of Datical here.
Overview
Here are the steps:
Install and configure Datical DB.
Create an RDS database instance running the Oracle database engine.
Configure Datical DB to manage database changes across your software development life cycle (SDLC).
Set up database version control using AWS CodeCommit.
Set up a continuous integration server to stage database changes.
Integrate the continuous integration server with Datical DB.
Set up automated release management for your database through AWS CodePipeline.
Enforce security governance and standards with the Datical DB Rules Engine.
1. Install and configure Datical DB
Navigate to https://software.datical.com and sign in with your credentials. From the left navigation menu, expand the Common folder, and then open the Datical_DB_Folder. Choose the latest version of the application by reviewing the date suffix in the name of the folder. Download the installer for your platform — Windows (32-bit or 64-bit) or Linux (32-bit or 64-bit).
Verify the JDK Version
In a terminal window, run the following command to ensure you’re running JDK version 1.7.x or later.
# java –version
java version "1.7.0_75"
Java(TM) SE Runtime Environment (build 1.7.0_75-b13)
Java HotSpot(TM) Client VM (build 24.75-b04, mixed mode, sharing)
The Datical DB installer contains a graphical (GUI) and command line (CLI) interface that can be installed on Windows and Linux operating systems.
Install Datical DB (GUI)
Double-click on the installer
Follow the prompts to install the application.
When prompted, type the path to a valid license.
Install JDBC drivers
Open the Datical DB application.
From the menu, choose Help, and then choose Install New Software.
2. Create an RDS instance running the Oracle database engine
Datical DB supports database engines like Oracle, MySQL, Microsoft SQL Server, PostgreSQL, and IBM DB2. The example in this post uses a DB instance running Oracle. To create a DB instance running Oracle, follow these steps. Make sure that you can access the Oracle port (1521) from the location where you will be using Datical DB. Just like SQLPlus or other database management tools, Datical DB must be able to connect to the Oracle port. When you configure the security group for your RDS instance, make sure you can access port 1521 from your location.
3. Manage database changes across the SDLC
This one-time process is required to ensure databases are in sync so that you can manage database changes across the SDLC:
Create a Datical DB deployment plan with connections to the databases to be managed.
Baseline the first database (DEV/CI). This must be the original or best configured database – your reference database.
For each additional database (TEST and PROD): a. Compare databases to ensure the application schema are in sync. b. Resolve any differences. c. Perform a change log sync to get each setup for Datical DB management.
Datical DB creates an initial model change log from one of the databases. It also creates in each database a metadata table named DATABASECHANGELOG that will be used to track the state. Now the databases look like this:
Note: In the preceding figure, the Datical DB model and metadata table are a representation of the actual model.
Create a deployment plan
In Datical DB, right-click Deployment Plans, and choose New.
On the New Deployment Plan page, type a name for your project (for example, AWS-Sample-Project), and then choose Next.
Select Oracle 11g Instant Client, type a name for the database (for example, DevDatabase), and then choose Next.
On the following page, provide the database connection information.
For Hostname, enter the RDS endpoint..
Select SID, and then type ORCL.
Type the user name and password used to connect to the RDS instance running Oracle.
Before you choose Finish, choose the Test Connection button.
When Datical DB creates the project, it also creates a baseline snapshot that captures the current state of the database schema. Datical DB stores the snapshot in Datical change sets for future forecasting and modification.
Create a database change set
A change set describes the change/refactoring to apply to the database. From the AWS-Sample-Project project in the left pane, right-click Change Log, select New, and then select Change Set. Choose the type of change to make, and then choose Next. In this example, we’re creating a table. For Table Name, type a name. Choose Add Column, and then provide information to add one or more columns to the new table. Follow the prompts, and then choose Finish.
The new change set will be added at the end of your current change log. You can tag change sets with a sprint label. Depending on the environment, changes can be deployed based on individual labels or by the higher-level grouping construct. Datical DB also provides an option to load SQL scripts into a database, where the change sets are labeled and captured as objects. This makes them ready for deployment in other environments.
Best practices for continuous delivery
Change sets are stored in an XML file inside the Datical DB project. The file, changelog.xml, is stored inside the Changelog folder. (In the Datical DB UI, it is called Change Log.)
Just like any other files stored in your source code repository, the Datical DB change log can be branched and merged to support agile software development, where individual work spaces are isolated until changes are merged into the parent branch.
To implement this best practice, your Datical DB project should be checked into the same location as your application source code. That way, branches and merges will be applied to your Datical DB project automatically. Use unique change set IDs to avoid collisions with other scrum teams.
4. Set up database version control using AWS CodeCommit
Note: On some versions of Windows and Linux, you might see a pop-up dialog box asking for your user name and password. This is the built-in credential management system, but it is not compatible with the credential helper for AWS CodeCommit. Choose Cancel.
Commit the contents located in the Datical working directory (for example, ~/datical/AWS-Sample-Project) to the AWS CodeCommit repository.
5. Set up a continuous integration server to stage database changes
In this example, Jenkins is the continuous integration server. To create a Jenkins server, follow these steps. Be sure your instance security group allows port 8080 access.
To configure Jenkins with Datical DB, navigate to Jenkins, choose Manage Jenkins, and then choose Configure System. In the Datical DB section, provide the requested directory information.
For example:
Add a build step:
Go to your newly created Jenkins project and choose Configure. On the Build tab, under Build, choose Add build step, and choose Datical DB.
In Project Dir, enter the Datical DB project directory (in this example, /var/lib/jenkins/workspace/demo/MyProject). You can use Jenkins environment variables like $WORKSPACE. The first build action is Check Drivers. This allow you to verify that Datical DB and Jenkins are configured correctly.
Choose Save. Choose Build Now to test the configuration.
After you’ve verified the drivers are installed, add forecast and deploy steps.
Add forecast and deploy steps:
Choose Save. Then choose Build Now to test the configuration.
6. Configure the continuous integration server to publish Datical DB reports
In this step, we will configure Jenkins to publish Datical DB forecast and HTML reports. In your Jenkins project, select Delete workspace before build starts.
Add post-build steps
1. Archive the Datical DB reports, logs, and snapshots
To expose Datical DB reports in Jenkins, you must create a post-build task step to copy the forecast and deployment HTML reports to a location easily published, and then publish the HTML reports.
On the introductory page, choose Get started. If you see the All pipelines page, choose Create pipeline.
In Step 1: Name, in Pipeline name, type DatabasePipeline, and then choose Next step.
In Step 2: Source, in Source provider, choose AWS CodeCommit. In Repository name, choose the name of the AWS CodeCommit repository you created earlier. In Branch name, choose the name of the branch that contains your latest code update. Choose Next step.
8. Enforce database standards and compliance with the Datical DB Rules Engine
The Datical DB Dynamic Rules Engine automatically inspects the Virtual Database Model to make sure that proposed database code changes are safe and in compliance with your organization’s database standards. The Rules Engine also makes it easy to identify complex changes that warrant further review and empowers DBAs to efficiently focus only on the changes that require their attention. It also provides application developers with a self-service validation capability that uses the same automated build process established for the application. The consistent evaluation provided by the Dynamic Rules Engine removes uncertainty about what is acceptable and empowers application developers to write safe, compliant changes every time.
Earlier, you created a Datical DB project with no changes. To demonstrate rules, you will now create changes that violate a rule.
First, create a table with four columns. Then try to create an index on the table that comprises all four columns. For some databases, having more than three columns in an index can cause performance issues. For this reason, create a rule that will prevent the creation of an index on more than three columns, long before the change is proposed for production. Like a unit test that will fail the build, the Datical DB Rules Engine fails the build at the forecast step and provides feedback to the development team about the rule and the change to fix.
Create a Datical DB rule
To create a Datical DB rule, open the Datical DB UI and navigate to your project. Expand the Rules folder. In this example, you will create a rule in the Forecast folder.
Right-click the Forecast folder, and then select Create Rules File. In the dialog box, type a unique file name for your rule. Use a .drl extension.
.
In the editor window that opens, type the following:
package com.datical.hammer.core.forecast
import java.util.Collection;
import java.util.List;
import java.util.Arrays;
import java.util.ArrayList;
import org.apache.commons.lang.StringUtils;
import org.apache.commons.collections.ListUtils;
import com.datical.db.project.Project;
import com.datical.hammer.core.rules.Response;
import com.datical.hammer.core.rules.Response.ResponseType;
// ************************************* Models *************************************
// Database Models
import com.datical.dbsim.model.DbModel;
import com.datical.dbsim.model.Schema;
import com.datical.dbsim.model.Table;
import com.datical.dbsim.model.Index;
import com.datical.dbsim.model.Column;
import org.liquibase.xml.ns.dbchangelog.CreateIndexType;
import org.liquibase.xml.ns.dbchangelog.ColumnType;
/* @return false if validation fails; true otherwise */
function boolean validate(List columns)
{
// FAIL If more than 3 columns are included in new index
if (columns.size() > 3)
return false;
else
return true;
}
rule "Index Too Many Columns Error"
salience 1
when
$createIndex : CreateIndexType($indexName: indexName, $columns: columns, $tableName: tableName, $schemaName: schemaName)
eval(!validate($columns))
then
String errorMessage = "The new index [" + $indexName + "] contains more than 3 columns.";
insert(new Response(ResponseType.FAIL, errorMessage, drools.getRule().getName()));
end
Save the new rule file, and then right-click the Forecast folder, and select Check Rules. You should see “Rule Validation returned no errors.”
Now check your rule into source code control and request a new build. The build will fail, which is expected. Go back to Datical DB, and change the index to comprise only three columns. After your check-in, you will see a successful deployment to your RDS instance.
The following forecast report shows the Datical DB rule violation:
To implement database continuous delivery into your existing continuous delivery process, consider creating a separate project for your database changes that use the Datical DB forecast functionality at the same time unit tests are run on your code. This will catch database changes that violate standards before deployment.
Summary:
In this post, you learned how to build a modern database continuous integration and automated release management workflow on AWS. You also saw how Datical DB can be seamlessly integrated with AWS services to enable database release automation, while eliminating risks that cause application downtime and data security vulnerabilities. This fully automated delivery mechanism for databases can accelerate every organization’s ability to deploy software rapidly and reliably while improving productivity, performance, compliance, and auditability, and increasing data security. These methodologies simplify process-related overhead and make it possible for organizations to serve their customers efficiently and compete more effectively in the market.
I hope you enjoyed this post. If you have any feedback, please leave a comment below.
About the Authors
Balaji Iyer is an Enterprise Consultant for the Professional Services Team at Amazon Web Services. In this role, he has helped several Fortune 500 customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly scalable distributed systems, serverless architectures, large scale migrations, operational security, and leading strategic AWS initiatives. Before he joined Amazon, Balaji spent more than a decade building operating systems, big data analytics solutions, mobile services, and web applications. In his spare time, he enjoys experiencing the great outdoors and spending time with his family.
Robert Reeves is a Chief Technology Officer at Datical. In this role, he advocates for Datical’s customers and provides technical architecture leadership. Prior to cofounding Datical, Robert was a Director at the Austin Technology Incubator. At ATI, he provided real-world entrepreneurial expertise to ATI member companies to aid in market validation, product development, and fundraising efforts. Robert cofounded Phurnace Software in 2005. He invented and created the flagship product, Phurnace Deliver, which provides middleware infrastructure management to multiple Fortune 500 companies. As Chief Technology Officer for Phurnace, he led technical evangelism efforts, product vision, and large account technical sales efforts. After BMC Software acquired Phurnace in 2009, Robert served as Chief Architect and lead worldwide technology evangelism.
The collective thoughts of the interwebz
By continuing to use the site, you agree to the use of cookies. more information
The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.