Tag Archives: ROI

Wine 3.0 released

Post Syndicated from corbet original https://lwn.net/Articles/744741/rss

Version 3.0 of the
Wine Windows emulation layer has been released. “This release
represents a year of development effort and over 6,000 individual
changes.
” Most of the improvements seem to be around Direct3D
graphics, but it also now possible to package up Wine as an Android app;
see the release notes for
details.

Now Open – Third AWS Availability Zone in London

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-open-third-aws-availability-zone-in-london/

We expand AWS by picking a geographic area (which we call a Region) and then building multiple, isolated Availability Zones in that area. Each Availability Zone (AZ) has multiple Internet connections and power connections to multiple grids.

Today I am happy to announce that we are opening our 50th AWS Availability Zone, with the addition of a third AZ to the EU (London) Region. This will give you additional flexibility to architect highly scalable, fault-tolerant applications that run across multiple AZs in the UK.

Since launching the EU (London) Region, we have seen an ever-growing set of customers, particularly in the public sector and in regulated industries, use AWS for new and innovative applications. Here are a couple of examples, courtesy of my AWS colleagues in the UK:

Enterprise – Some of the UK’s most respected enterprises are using AWS to transform their businesses, including BBC, BT, Deloitte, and Travis Perkins. Travis Perkins is one of the largest suppliers of building materials in the UK and is implementing the biggest systems and business change in its history, including an all-in migration of its data centers to AWS.

Startups – Cross-border payments company Currencycloud has migrated its entire payments production, and demo platform to AWS resulting in a 30% saving on their infrastructure costs. Clearscore, with plans to disrupting the credit score industry, has also chosen to host their entire platform on AWS. UnderwriteMe is using the EU (London) Region to offer an underwriting platform to their customers as a managed service.

Public Sector -The Met Office chose AWS to support the Met Office Weather App, available for iPhone and Android phones. Since the Met Office Weather App went live in January 2016, it has attracted more than half a million users. Using AWS, the Met Office has been able to increase agility, speed, and scalability while reducing costs. The Driver and Vehicle Licensing Agency (DVLA) is using the EU (London) Region for services such as the Strategic Card Payments platform, which helps the agency achieve PCI DSS compliance.

The AWS EU (London) Region has achieved Public Services Network (PSN) assurance, which provides UK Public Sector customers with an assured infrastructure on which to build UK Public Sector services. In conjunction with AWS’s Standardized Architecture for UK-OFFICIAL, PSN assurance enables UK Public Sector organizations to move their UK-OFFICIAL classified data to the EU (London) Region in a controlled and risk-managed manner.

For a complete list of AWS Regions and Services, visit the AWS Global Infrastructure page. As always, pricing for services in the Region can be found on the detail pages; visit our Cloud Products page to get started.

Jeff;

Coalition Against Piracy Launches Landmark Case Against ‘Pirate’ Android Box Sellers

Post Syndicated from Andy original https://torrentfreak.com/coalition-against-piracy-launches-landmark-case-against-pirate-android-box-sellers-180112/

In 2017, anti-piracy enforcement went global when companies including Disney, HBO, Netflix, Amazon and NBCUniversal formed the Alliance for Creativity and Entertainment (ACE).

Soon after the Coalition Against Piracy (CAP) was announced. With a focus on Asia and backed by CASBAA, CAP counts many of the same companies among its members in addition to local TV providers such as StarHub.

From the outset, CAP has shown a keen interest in tackling unlicensed streaming, particularly that taking place via illicit set-top boxes stuffed with copyright-infringing apps and add-ons. One country under CAP’s spotlight is Singapore, where relevant law is said to be fuzzy at best, insufficient at worst. Now, however, a line in the sand might not be far away.

According to a court listing discovered by Singapore’s TodayOnline, today will see the Coalition Against Piracy’s general manager Neil Kevin Gane attempt to launch a pioneering private prosecution against set-top box distributor Synnex Trading and its client and wholesale goods retailer, An-Nahl.

Gane and CAP are said to be acting on behalf of four parties, one which is TV giant StarHub, a company with a huge interest in bringing media piracy under control in the region. It’s reported that they have also named Synnex Trading director Jia Xiaofen and An-Nahl director Abdul Nagib as defendants in their private criminal case after the parties failed to reach a settlement in an earlier process.

Contacted by TodayOnline, an employee of An-Nahl said the company no longer sells the boxes. However, Synnex is reportedly still selling them for S$219 each ($164) plus additional fees for maintenance and access to VOD. The company’s Facebook page is still active with the relevant offer presented prominently.

The importance of the case cannot be understated. While StarHub and other broadcasters have successfully prosecuted cases where people unlawfully decrypted broadcast signals, the provision of unlicensed streams isn’t specifically tackled by Singapore’s legislation. It’s now a major source of piracy in the region, as it is elsewhere around the globe.

Only time will tell how the process will play out but it’s clear that CAP and its members are prepared to invest significant sums into a prosecution for a favorable outcome. CAP believes that the supply of the boxes falls under Section 136 (3A) of the Copyright Act but only time will tell.

Last December, CAP separately called on the Singapore government to not only block ‘pirate’ streaming software but also unlicensed streams from entering the country.

“Within the Asia-Pacific region, Singapore is the worst in terms of availability of illicit streaming devices,” said CAP General Manager Neil Gane. “They have access to hundreds of illicit broadcasts of channels and video-on-demand content.”

CAP’s 21 members want the authorities to block the software inside devices that enables piracy but it’s far from clear how that can be achieved.

Update: The four companies taking the action are confirmed as Singtel, Starhub, Fox Network, and the English Premier League

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Physics cheats

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/06/physics-cheats/

Anonymous asks:

something about how we tweak physics to “work” better in games?

Ho ho! Work. Get it? Like in physics…?

Hitboxes

Hitbox” is perhaps not the most accurate term, since the shape used for colliding with the environment and the shape used for detecting damage might be totally different. They’re usually the same in simple platformers, though, and that’s what most of my games have been.

The hitbox is the biggest physics fudge by far, and it exists because of a single massive approximation that (most) games make: you’re controlling a single entity in the abstract, not a physical body in great detail.

That is: when you walk with your real-world meat shell, you perform a complex dance of putting one foot in front of the other, a motion you spent years perfecting. When you walk in a video game, you press a single “walk” button. Your avatar may play an animation that moves its legs back and forth, but since you’re not actually controlling the legs independently (and since simulating them is way harder), the game just treats you like a simple shape. Fairly often, this is a box, or something very box-like.

An Eevee sprite standing on faux ground; the size of the underlying image and the hitbox are outlined

Since the player has no direct control over the exact placement of their limbs, it would be slightly frustrating to have them collide with the world. This is especially true in cases like the above, where the tail and left ear protrude significantly out from the main body. If that Eevee wanted to stand against a real-world wall, she would simply tilt her ear or tail out of the way, so there’s no reason for the ear to block her from standing against a game wall. To compensate for this, the ear and tail are left out of the collision box entirely and will simply jut into a wall if necessary — a goofy affordance that’s so common it doesn’t even register as unusual. As a bonus (assuming this same box is used for combat), she won’t take damage from projectiles that merely graze past an ear.

(One extra consideration for sprite games in particular: the hitbox ought to be horizontally symmetric around the sprite’s pivot — i.e. the point where the entity is truly considered to be standing — so that the hitbox doesn’t abruptly move when the entity turns around!)

Corners

Treating the player (and indeed most objects) as a box has one annoying side effect: boxes have corners. Corners can catch on other corners, even by a single pixel. Real-world bodies tend to be a bit rounder and squishier and this can tolerate grazing a corner; even real-world boxes will simply rotate a bit.

Ah, but in our faux physics world, we generally don’t want conscious actors (such as the player) to rotate, even with a realistic physics simulator! Real-world bodies are made of parts that will generally try to keep you upright, after all; you don’t tilt back and forth much.

One way to handle corners is to simply remove them from conscious actors. A hitbox doesn’t have to be a literal box, after all. A popular alternative — especially in Unity where it’s a standard asset — is the pill-shaped capsule, which has semicircles/hemispheres on the top and bottom and a cylindrical body in 3D. No corners, no problem.

Of course, that introduces a new problem: now the player can’t balance precariously on edges without their rounded bottom sliding them off. Alas.

If you’re stuck with corners, then, you may want to use a corner bump, a term I just made up. If the player would collide with a corner, but the collision is only by a few pixels, just nudge them to the side a bit and carry on.

An Eevee sprite trying to move sideways into a shallow ledge; the game bumps her upwards slightly, so she steps onto it instead

When the corner is horizontal, this creates stairs! This is, more or less kinda, how steps work in Doom: when the player tries to cross from one sector into another, if the height difference is 24 units or less, the game simply bumps them upwards to the height of the new floor and lets them continue on.

Implementing this in a game without Doom’s notion of sectors is a little trickier. In fact, I still haven’t done it. Collision detection based on rejection gets it for free, kinda, but it’s not very deterministic and it breaks other things. But that’s a whole other post.

Gravity

Gravity is pretty easy. Everything accelerates downwards all the time. What’s interesting are the exceptions.

Jumping

Jumping is a giant hack.

Think about how actual jumping works: you tense your legs, which generally involves bending your knees first, and then spring upwards. In a platformer, you can just leap whenever you feel like it, which is nonsense. Also you go like twenty feet into the air?

Worse, most platformers allow variable-height jumping, where your jump is lower if you let go of the jump button while you’re in the air. Normally, one would expect to have to decide how much force to put into the jump beforehand.

But of course this is about convenience of controls: when jumping is your primary action, you want to be able to do it immediately, without any windup for how high you want to jump.

(And then there’s double jumping? Come on.)

Air control is a similar phenomenon: usually you’d jump in a particular direction by controlling how you push off the ground with your feet, but in a video game, you don’t have feet! You only have the box. The compromise is to let you control your horizontal movement to a limit degree in midair, even though that doesn’t make any sense. (It’s way more fun, though, and overall gives you more movement options, which are good to have in an interactive medium.)

Air control also exposes an obvious place that game physics collide with the realistic model of serious physics engines. I’ve mentioned this before, but: if you use Real Physics™ and air control yourself into a wall, you might find that you’ll simply stick to the wall until you let go of the movement buttons. Why? Remember, player movement acts as though an external force were pushing you around (and from the perspective of a Real™ physics engine, this is exactly how you’d implement it) — so air-controlling into a wall is equivalent to pushing a book against a wall with your hand, and the friction with the wall holds you in place. Oops.

Ground sticking

Another place game physics conflict with physics engines is with running to the top of a slope. On a real hill, of course, you land on top of the slope and are probably glad of it; slopes are hard to climb!

An Eevee moves to the top of a slope, and rather than step onto the flat top, she goes flying off into the air

In a video game, you go flying. Because you’re a box. With momentum. So you hit the peak and keep going in the same direction. Which is diagonally upwards.

Projectiles

To make them more predictable, projectiles generally aren’t subject to gravity, at least as far as I’ve seen. The real world does not have such an exemption. The real world imposes gravity even on sniper rifles, which in a video game are often implemented as an instant trace unaffected by anything in the world because the bullet never actually exists in the world.

Resistance

Ah. Welcome to hell.

Water

Water is an interesting case, and offhand I don’t know the gritty details of how games implement it. In the real world, water applies a resistant drag force to movement — and that force is proportional to the square of velocity, which I’d completely forgotten until right now. I am almost positive that no game handles that correctly. But then, in real-world water, you can push against the water itself for movement, and games don’t simulate that either. What’s the rough equivalent?

The Sonic Physics Guide suggests that Sonic handles it by basically halving everything: acceleration, max speed, friction, etc. When Sonic enters water, his speed is cut; when Sonic exits water, his speed is increased.

That last bit feels validating — I could swear Metroid Prime did the same thing, and built my own solution around it, but couldn’t remember for sure. It makes no sense, of course, for a jump to become faster just because you happened to break the surface of the water, but it feels fantastic.

The thing I did was similar, except that I didn’t want to add a multiplier in a dozen places when you happen to be underwater (and remember which ones need it to be squared, etc.). So instead, I calculate everything completely as normal, so velocity is exactly the same as it would be on dry land — but the distance you would move gets halved. The effect seems to be pretty similar to most platformers with water, at least as far as I can tell. It hasn’t shown up in a published game and I only added this fairly recently, so I might be overlooking some reason this is a bad idea.

(One reason that comes to mind is that velocity is now a little white lie while underwater, so anything relying on velocity for interesting effects might be thrown off. Or maybe that’s correct, because velocity thresholds should be halved underwater too? Hm!)

Notably, air is also a fluid, so it should behave the same way (just with different constants). I definitely don’t think any games apply air drag that’s proportional to the square of velocity.

Friction

Friction is, in my experience, a little handwaved. Probably because real-world friction is so darn complicated.

Consider that in the real world, we want very high friction on the surfaces we walk on — shoes and tires are explicitly designed to increase it, even. We move by bracing a back foot against the ground and using that to push ourselves forward, so we want the ground to resist our push as much as possible.

In a game world, we are a box. We move by being pushed by some invisible outside force, so if the friction between ourselves and the ground is too high, we won’t be able to move at all! That’s complete nonsense physically, but it turns out to be handy in some cases — for example, highish friction can simulate walking through deep mud, which should be difficult due to fluid drag and low friction.

But the best-known example of the fakeness of game friction is video game ice. Walking on real-world ice is difficult because the low friction means low grip; your feet are likely to slip out from under you, and you’ll simply fall down and have trouble moving at all. In a video game, you can’t fall down, so you have the opposite experience: you spend most of your time sliding around uncontrollably. Yet ice is so common in video games (and perhaps so uncommon in places I’ve lived) that I, at least, had never really thought about this disparity until an hour or so ago.

Game friction vs real-world friction

Real-world friction is a force. It’s the normal force (which is the force exerted by the object on the surface) times some constant that depends on how the two materials interact.

Force is mass times acceleration, and platformers often ignore mass, so friction ought to be an acceleration — applied against the object’s movement, but never enough to push it backwards.

I haven’t made any games where variable friction plays a significant role, but my gut instinct is that low friction should mean the player accelerates more slowly but has a higher max speed, and high friction should mean the opposite. I see from my own source code that I didn’t even do what I just said, so let’s defer to some better-made and well-documented games: Sonic and Doom.

In Sonic, friction is a fixed value subtracted from the player’s velocity (regardless of direction) each tic. Sonic has a fixed framerate, so the units are really pixels per tic squared (i.e. acceleration), multiplied by an implicit 1 tic per tic. So far, so good.

But Sonic’s friction only applies if the player isn’t pressing or . Hang on, that isn’t friction at all; that’s just deceleration! That’s equivalent to jogging to a stop. If friction were lower, Sonic would take longer to stop, but otherwise this is only tangentially related to friction.

(In fairness, this approach would decently emulate friction for non-conscious sliding objects, which are never going to be pressing movement buttons. Also, we don’t have the Sonic source code, and the name “friction” is a fan invention; the Sonic Physics Guide already uses “deceleration” to describe the player’s acceleration when turning around.)

Okay, let’s try Doom. In Doom, the default friction is 90.625%.

Hang on, what?

Yes, in Doom, friction is a multiplier applied every tic. Doom runs at 35 tics per second, so this is a multiplier of 0.032 per second. Yikes!

This isn’t anything remotely like real friction, but it’s much easier to implement. With friction as acceleration, the game has to know both the direction of movement (so it can apply friction in the opposite direction) and the magnitude (so it doesn’t overshoot and launch the object in the other direction). That means taking a semi-costly square root and also writing extra code to cap the amount of friction. With a multiplier, neither is necessary; just multiply the whole velocity vector and you’re done.

There are some downsides. One is that objects will never actually stop, since multiplying by 3% repeatedly will never produce a result of zero — though eventually the speed will become small enough to either slip below a “minimum speed” threshold or simply no longer fit in a float representation. Another is that the units are fairly meaningless: with Doom’s default friction of 90.625%, about how long does it take for the player to stop? I have no idea, partly because “stop” is ambiguous here! If friction were an acceleration, I could divide it into the player’s max speed to get a time.

All that aside, what are the actual effects of changing Doom’s friction? What an excellent question that’s surprisingly tricky to answer. (Note that friction can’t be changed in original Doom, only in the Boom port and its derivatives.) Here’s what I’ve pieced together.

Doom’s “friction” is really two values. “Friction” itself is a multiplier applied to moving objects on every tic, but there’s also a move factor which defaults to \(\frac{1}{32} = 0.03125\) and is derived from friction for custom values.

Every tic, the player’s velocity is multiplied by friction, and then increased by their speed times the move factor.

$$
v(n) = v(n – 1) \times friction + speed \times move factor
$$

Eventually, the reduction from friction will balance out the speed boost. That happens when \(v(n) = v(n – 1)\), so we can rearrange it to find the player’s effective max speed:

$$
v = v \times friction + speed \times move factor \\
v – v \times friction = speed \times move factor \\
v = speed \times \frac{move factor}{1 – friction}
$$

For vanilla Doom’s move factor of 0.03125 and friction of 0.90625, that becomes:

$$
v = speed \times \frac{\frac{1}{32}}{1 – \frac{29}{32}} = speed \times \frac{\frac{1}{32}}{\frac{3}{32}} = \frac{1}{3} \times speed
$$

Curiously, “speed” is three times the maximum speed an actor can actually move. Doomguy’s run speed is 50, so in practice he moves a third of that, or 16⅔ units per tic. (Of course, this isn’t counting SR40, a bug that lets Doomguy run ~40% faster than intended diagonally.)

So now, what if you change friction? Even more curiously, the move factor is calculated completely differently depending on whether friction is higher or lower than the default Doom amount:

$$
move factor = \begin{cases}
\frac{133 – 128 \times friction}{544} &≈ 0.244 – 0.235 \times friction & \text{ if } friction \ge \frac{29}{32} \\
\frac{81920 \times friction – 70145}{1048576} &≈ 0.078 \times friction – 0.067 & \text{ otherwise }
\end{cases}
$$

That’s pretty weird? Complicating things further is that low friction (which means muddy terrain, remember) has an extra multiplier on its move factor, depending on how fast you’re already going — the idea is apparently that you have a hard time getting going, but it gets easier as you find your footing. The extra multiplier maxes out at 8, which makes the two halves of that function meet at the vanilla Doom value.

A graph of the relationship between friction and move factor

That very top point corresponds to the move factor from the original game. So no matter what you do to friction, the move factor becomes lower. At 0.85 and change, you can no longer move at all; below that, you move backwards.

From the formula above, it’s easy to see what changes to friction and move factor will do to Doomguy’s stable velocity. Move factor is in the numerator, so increasing it will increase stable velocity — but it can’t increase, so stable velocity can only ever decrease. Friction is in the denominator, but it’s subtracted from 1, so increasing friction will make the denominator a smaller value less than 1, i.e. increase stable velocity. Combined, we get this relationship between friction and stable velocity.

A graph showing stable velocity shooting up dramatically as friction increases

As friction approaches 1, stable velocity grows without bound. This makes sense, given the definition of \(v(n)\) — if friction is 1, the velocity from the previous tic isn’t reduced at all, so we just keep accelerating freely.

All of this is why I’m wary of using multipliers.

Anyway, this leaves me with one last question about the effects of Doom’s friction: how long does it take to reach stable velocity? Barring precision errors, we’ll never truly reach stable velocity, but let’s say within 5%. First we need a closed formula for the velocity after some number of tics. This is a simple recurrence relation, and you can write a few terms out yourself if you want to be sure this is right.

$$
v(n) = v_0 \times friction^n + speed \times move factor \times \frac{friction^n – 1}{friction – 1}
$$

Our initial velocity is zero, so the first term disappears. Set this equal to the stable formula and solve for n:

$$
speed \times move factor \times \frac{friction^n – 1}{friction – 1} = (1 – 5\%) \times speed \times \frac{move factor}{1 – friction} \\
friction^n – 1 = -(1 – 5\%) \\
n = \frac{\ln 5\%}{\ln friction}
$$

Speed” and move factor disappear entirely, which makes sense, and this is purely a function of friction (and how close we want to get). For vanilla Doom, that comes out to 30.4, which is a little less than a second. For other values of friction:

A graph of time to stability which leaps upwards dramatically towards the right

As friction increases (which in Doom terms means the surface is more slippery), it takes longer and longer to reach stable speed, which is in turn greater and greater. For lesser friction (i.e. mud), stable speed is lower, but reached fairly quickly. (Of course, the extra “getting going” multiplier while in mud adds some extra time here, but including that in the graph is a bit more complicated.)

I think this matches with my instincts above. How fascinating!

What’s that? This is way too much math and you hate it? Then don’t use multipliers in game physics.

Uh

That was a hell of a diversion!

I guess the goofiest stuff in basic game physics is really just about mapping player controls to in-game actions like jumping and deceleration; the rest consists of hacks to compensate for representing everything as a box.

The disclosure on the processor bugs

Post Syndicated from corbet original https://lwn.net/Articles/742744/rss

The rumored bugs in Intel (and beyond) processors have now been disclosed:
they are called Meltdown and
Spectre
, and have the requisite cute logos. Stay tuned for more.

See also: this Project
Zero
blog post. “Variants of this issue are known to affect many
modern processors, including certain processors by Intel, AMD and ARM. For
a few Intel and AMD CPU models, we have exploits that work against real
software. We reported this issue to Intel, AMD and ARM on
2017-06-01.

See also: this
Google blog posting
on how it affects users of Google products in
particular. “[Android] devices with the latest security update are
protected. Furthermore, we are unaware of any successful reproduction of
this vulnerability that would allow unauthorized information disclosure on
ARM-based Android devices. Supported Nexus and Pixel devices with the
latest security update are protected.

Tamper-Detection App for Android

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/tamper-detectio.html

Edward Snowden and Nathan Freitas have created an Android app that detects when it’s being tampered with. The basic idea is to put the app on a second phone and put the app on or near something important, like your laptop. The app can then text you — and also record audio and video — when something happens around it: when it’s moved, when the lighting changes, and so on. This gives you some protection against the “evil maid attack” against laptops.

Micah Lee has a good article about the app, including some caveats about its use and security.

Random with care

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/02/random-with-care/

Hi! Here are a few loose thoughts about picking random numbers.

A word about crypto

DON’T ROLL YOUR OWN CRYPTO

This is all aimed at frivolous pursuits like video games. Hell, even video games where money is at stake should be deferring to someone who knows way more than I do. Otherwise you might find out that your deck shuffles in your poker game are woefully inadequate and some smartass is cheating you out of millions. (If your random number generator has fewer than 226 bits of state, it can’t even generate every possible shuffling of a deck of cards!)

Use the right distribution

Most languages have a random number primitive that spits out a number uniformly in the range [0, 1), and you can go pretty far with just that. But beware a few traps!

Random pitches

Say you want to pitch up a sound by a random amount, perhaps up to an octave. Your audio API probably has a way to do this that takes a pitch multiplier, where I say “probably” because that’s how the only audio API I’ve used works.

Easy peasy. If 1 is unchanged and 2 is pitched up by an octave, then all you need is rand() + 1. Right?

No! Pitch is exponential — within the same octave, the “gap” between C and C♯ is about half as big as the gap between B and the following C. If you pick a pitch multiplier uniformly, you’ll have a noticeable bias towards the higher pitches.

One octave corresponds to a doubling of pitch, so if you want to pick a random note, you want 2 ** rand().

Random directions

For two dimensions, you can just pick a random angle with rand() * TAU.

If you want a vector rather than an angle, or if you want a random direction in three dimensions, it’s a little trickier. You might be tempted to just pick a random point where each component is rand() * 2 - 1 (ranging from −1 to 1), but that’s not quite right. A direction is a point on the surface (or, equivalently, within the volume) of a sphere, and picking each component independently produces a point within the volume of a cube; the result will be a bias towards the corners of the cube, where there’s much more extra volume beyond the sphere.

No? Well, just trust me. I don’t know how to make a diagram for this.

Anyway, you could use the Pythagorean theorem a few times and make a huge mess of things, or it turns out there’s a really easy way that even works for two or four or any number of dimensions. You pick each coordinate from a Gaussian (normal) distribution, then normalize the resulting vector. In other words, using Python’s random module:

1
2
3
4
5
6
def random_direction():
    x = random.gauss(0, 1)
    y = random.gauss(0, 1)
    z = random.gauss(0, 1)
    r = math.sqrt(x*x + y*y + z*z)
    return x/r, y/r, z/r

Why does this work? I have no idea!

Note that it is possible to get zero (or close to it) for every component, in which case the result is nonsense. You can re-roll all the components if necessary; just check that the magnitude (or its square) is less than some epsilon, which is equivalent to throwing away a tiny sphere at the center and shouldn’t affect the distribution.

Beware Gauss

Since I brought it up: the Gaussian distribution is a pretty nice one for choosing things in some range, where the middle is the common case and should appear more frequently.

That said, I never use it, because it has one annoying drawback: the Gaussian distribution has no minimum or maximum value, so you can’t really scale it down to the range you want. In theory, you might get any value out of it, with no limit on scale.

In practice, it’s astronomically rare to actually get such a value out. I did a hundred million trials just to see what would happen, and the largest value produced was 5.8.

But, still, I’d rather not knowingly put extremely rare corner cases in my code if I can at all avoid it. I could clamp the ends, but that would cause unnatural bunching at the endpoints. I could reroll if I got a value outside some desired range, but I prefer to avoid rerolling when I can, too; after all, it’s still (astronomically) possible to have to reroll for an indefinite amount of time. (Okay, it’s really not, since you’ll eventually hit the period of your PRNG. Still, though.) I don’t bend over backwards here — I did just say to reroll when picking a random direction, after all — but when there’s a nicer alternative I’ll gladly use it.

And lo, there is a nicer alternative! Enter the beta distribution. It always spits out a number in [0, 1], so you can easily swap it in for the standard normal function, but it takes two “shape” parameters α and β that alter its behavior fairly dramatically.

With α = β = 1, the beta distribution is uniform, i.e. no different from rand(). As α increases, the distribution skews towards the right, and as β increases, the distribution skews towards the left. If α = β, the whole thing is symmetric with a hump in the middle. The higher either one gets, the more extreme the hump (meaning that value is far more common than any other). With a little fiddling, you can get a number of interesting curves.

Screenshots don’t really do it justice, so here’s a little Wolfram widget that lets you play with α and β live:

Note that if α = 1, then 1 is a possible value; if β = 1, then 0 is a possible value. You probably want them both greater than 1, which clamps the endpoints to zero.

Also, it’s possible to have either α or β or both be less than 1, but this creates very different behavior: the corresponding endpoints become poles.

Anyway, something like α = β = 3 is probably close enough to normal for most purposes but already clamped for you. And you could easily replicate something like, say, NetHack’s incredibly bizarre rnz function.

Random frequency

Say you want some event to have an 80% chance to happen every second. You (who am I kidding, I) might be tempted to do something like this:

1
2
if random() < 0.8 * dt:
    do_thing()

In an ideal world, dt is always the same and is equal to 1 / f, where f is the framerate. Replace that 80% with a variable, say P, and every tic you have a P / f chance to do the… whatever it is.

Each second, f tics pass, so you’ll make this check f times. The chance that any check succeeds is the inverse of the chance that every check fails, which is \(1 – \left(1 – \frac{P}{f}\right)^f\).

For P of 80% and a framerate of 60, that’s a total probability of 55.3%. Wait, what?

Consider what happens if the framerate is 2. On the first tic, you roll 0.4 twice — but probabilities are combined by multiplying, and splitting work up by dt only works for additive quantities. You lose some accuracy along the way. If you’re dealing with something that multiplies, you need an exponent somewhere.

But in this case, maybe you don’t want that at all. Each separate roll you make might independently succeed, so it’s possible (but very unlikely) that the event will happen 60 times within a single second! Or 200 times, if that’s someone’s framerate.

If you explicitly want something to have a chance to happen on a specific interval, you have to check on that interval. If you don’t have a gizmo handy to run code on an interval, it’s easy to do yourself with a time buffer:

1
2
3
4
5
6
timer += dt
# here, 1 is the "every 1 seconds"
while timer > 1:
    timer -= 1
    if random() < 0.8:
        do_thing()

Using while means rolls still happen even if you somehow skipped over an entire second.

(For the curious, and the nerds who already noticed: the expression \(1 – \left(1 – \frac{P}{f}\right)^f\) converges to a specific value! As the framerate increases, it becomes a better and better approximation for \(1 – e^{-P}\), which for the example above is 0.551. Hey, 60 fps is pretty accurate — it’s just accurately representing something nowhere near what I wanted. Er, you wanted.)

Rolling your own

Of course, you can fuss with the classic [0, 1] uniform value however you want. If I want a bias towards zero, I’ll often just square it, or multiply two of them together. If I want a bias towards one, I’ll take a square root. If I want something like a Gaussian/normal distribution, but with clearly-defined endpoints, I might add together n rolls and divide by n. (The normal distribution is just what you get if you roll infinite dice and divide by infinity!)

It’d be nice to be able to understand exactly what this will do to the distribution. Unfortunately, that requires some calculus, which this post is too small to contain, and which I didn’t even know much about myself until I went down a deep rabbit hole while writing, and which in many cases is straight up impossible to express directly.

Here’s the non-calculus bit. A source of randomness is often graphed as a PDF — a probability density function. You’ve almost certainly seen a bell curve graphed, and that’s a PDF. They’re pretty nice, since they do exactly what they look like: they show the relative chance that any given value will pop out. On a bog standard bell curve, there’s a peak at zero, and of course zero is the most common result from a normal distribution.

(Okay, actually, since the results are continuous, it’s vanishingly unlikely that you’ll get exactly zero — but you’re much more likely to get a value near zero than near any other number.)

For the uniform distribution, which is what a classic rand() gives you, the PDF is just a straight horizontal line — every result is equally likely.


If there were a calculus bit, it would go here! Instead, we can cheat. Sometimes. Mathematica knows how to work with probability distributions in the abstract, and there’s a free web version you can use. For the example of squaring a uniform variable, try this out:

1
PDF[TransformedDistribution[u^2, u \[Distributed] UniformDistribution[{0, 1}]], u]

(The \[Distributed] is a funny tilde that doesn’t exist in Unicode, but which Mathematica uses as a first-class operator. Also, press shiftEnter to evaluate the line.)

This will tell you that the distribution is… \(\frac{1}{2\sqrt{u}}\). Weird! You can plot it:

1
Plot[%, {u, 0, 1}]

(The % refers to the result of the last thing you did, so if you want to try several of these, you can just do Plot[PDF[…], u] directly.)

The resulting graph shows that numbers around zero are, in fact, vastly — infinitely — more likely than anything else.

What about multiplying two together? I can’t figure out how to get Mathematica to understand this, but a great amount of digging revealed that the answer is -ln x, and from there you can plot them both on Wolfram Alpha. They’re similar, though squaring has a much better chance of giving you high numbers than multiplying two separate rolls — which makes some sense, since if either of two rolls is a low number, the product will be even lower.

What if you know the graph you want, and you want to figure out how to play with a uniform roll to get it? Good news! That’s a whole thing called inverse transform sampling. All you have to do is take an integral. Good luck!


This is all extremely ridiculous. New tactic: Just Simulate The Damn Thing. You already have the code; run it a million times, make a histogram, and tada, there’s your PDF. That’s one of the great things about computers! Brute-force numerical answers are easy to come by, so there’s no excuse for producing something like rnz. (Though, be sure your histogram has sufficiently narrow buckets — I tried plotting one for rnz once and the weird stuff on the left side didn’t show up at all!)

By the way, I learned something from futzing with Mathematica here! Taking the square root (to bias towards 1) gives a PDF that’s a straight diagonal line, nothing like the hyperbola you get from squaring (to bias towards 0). How do you get a straight line the other way? Surprise: \(1 – \sqrt{1 – u}\).

Okay, okay, here’s the actual math

I don’t claim to have a very firm grasp on this, but I had a hell of a time finding it written out clearly, so I might as well write it down as best I can. This was a great excuse to finally set up MathJax, too.

Say \(u(x)\) is the PDF of the original distribution and \(u\) is a representative number you plucked from that distribution. For the uniform distribution, \(u(x) = 1\). Or, more accurately,

$$
u(x) = \begin{cases}
1 & \text{ if } 0 \le x \lt 1 \\
0 & \text{ otherwise }
\end{cases}
$$

Remember that \(x\) here is a possible outcome you want to know about, and the PDF tells you the relative probability that a roll will be near it. This PDF spits out 1 for every \(x\), meaning every number between 0 and 1 is equally likely to appear.

We want to do something to that PDF, which creates a new distribution, whose PDF we want to know. I’ll use my original example of \(f(u) = u^2\), which creates a new PDF \(v(x)\).

The trick is that we need to work in terms of the cumulative distribution function for \(u\). Where the PDF gives the relative chance that a roll will be (“near”) a specific value, the CDF gives the relative chance that a roll will be less than a specific value.

The conventions for this seem to be a bit fuzzy, and nobody bothers to explain which ones they’re using, which makes this all the more confusing to read about… but let’s write the CDF with a capital letter, so we have \(U(x)\). In this case, \(U(x) = x\), a straight 45° line (at least between 0 and 1). With the definition I gave, this should make sense. At some arbitrary point like 0.4, the value of the PDF is 1 (0.4 is just as likely as anything else), and the value of the CDF is 0.4 (you have a 40% chance of getting a number from 0 to 0.4).

Calculus ahoy: the PDF is the derivative of the CDF, which means it measures the slope of the CDF at any point. For \(U(x) = x\), the slope is always 1, and indeed \(u(x) = 1\). See, calculus is easy.

Okay, so, now we’re getting somewhere. What we want is the CDF of our new distribution, \(V(x)\). The CDF is defined as the probability that a roll \(v\) will be less than \(x\), so we can literally write:

$$V(x) = P(v \le x)$$

(This is why we have to work with CDFs, rather than PDFs — a PDF gives the chance that a roll will be “nearby,” whatever that means. A CDF is much more concrete.)

What is \(v\), exactly? We defined it ourselves; it’s the do something applied to a roll from the original distribution, or \(f(u)\).

$$V(x) = P\!\left(f(u) \le x\right)$$

Now the first tricky part: we have to solve that inequality for \(u\), which means we have to do something, backwards to \(x\).

$$V(x) = P\!\left(u \le f^{-1}(x)\right)$$

Almost there! We now have a probability that \(u\) is less than some value, and that’s the definition of a CDF!

$$V(x) = U\!\left(f^{-1}(x)\right)$$

Hooray! Now to turn these CDFs back into PDFs, all we need to do is differentiate both sides and use the chain rule. If you never took calculus, don’t worry too much about what that means!

$$v(x) = u\!\left(f^{-1}(x)\right)\left|\frac{d}{dx}f^{-1}(x)\right|$$

Wait! Where did that absolute value come from? It takes care of whether \(f(x)\) increases or decreases. It’s the least interesting part here by far, so, whatever.

There’s one more magical part here when using the uniform distribution — \(u(\dots)\) is always equal to 1, so that entire term disappears! (Note that this only works for a uniform distribution with a width of 1; PDFs are scaled so the entire area under them sums to 1, so if you had a rand() that could spit out a number between 0 and 2, the PDF would be \(u(x) = \frac{1}{2}\).)

$$v(x) = \left|\frac{d}{dx}f^{-1}(x)\right|$$

So for the specific case of modifying the output of rand(), all we have to do is invert, then differentiate. The inverse of \(f(u) = u^2\) is \(f^{-1}(x) = \sqrt{x}\) (no need for a ± since we’re only dealing with positive numbers), and differentiating that gives \(v(x) = \frac{1}{2\sqrt{x}}\). Done! This is also why square root comes out nicer; inverting it gives \(x^2\), and differentiating that gives \(2x\), a straight line.

Incidentally, that method for turning a uniform distribution into any distribution — inverse transform sampling — is pretty much the same thing in reverse: integrate, then invert. For example, when I saw that taking the square root gave \(v(x) = 2x\), I naturally wondered how to get a straight line going the other way, \(v(x) = 2 – 2x\). Integrating that gives \(2x – x^2\), and then you can use the quadratic formula (or just ask Wolfram Alpha) to solve \(2x – x^2 = u\) for \(x\) and get \(f(u) = 1 – \sqrt{1 – u}\).

Multiply two rolls is a bit more complicated; you have to write out the CDF as an integral and you end up doing a double integral and wow it’s a mess. The only thing I’ve retained is that you do a division somewhere, which then gets integrated, and that’s why it ends up as \(-\ln x\).

And that’s quite enough of that! (Okay but having math in my blog is pretty cool and I will definitely be doing more of this, sorry, not sorry.)

Random vs varied

Sometimes, random isn’t actually what you want. We tend to use the word “random” casually to mean something more like chaotic, i.e., with no discernible pattern. But that’s not really random. In fact, given how good humans can be at finding incidental patterns, they aren’t all that unlikely! Consider that when you roll two dice, they’ll come up either the same or only one apart almost half the time. Coincidence? Well, yes.

If you ask for randomness, you’re saying that any outcome — or series of outcomes — is acceptable, including five heads in a row or five tails in a row. Most of the time, that’s fine. Some of the time, it’s less fine, and what you really want is variety. Here are a couple examples and some fairly easy workarounds.

NPC quips

The nature of games is such that NPCs will eventually run out of things to say, at which point further conversation will give the player a short brush-off quip — a slight nod from the designer to the player that, hey, you hit the end of the script.

Some NPCs have multiple possible quips and will give one at random. The trouble with this is that it’s very possible for an NPC to repeat the same quip several times in a row before abruptly switching to another one. With only a few options to choose from, getting the same option twice or thrice (especially across an entire game, which may have numerous NPCs) isn’t all that unlikely. The notion of an NPC quip isn’t very realistic to start with, but having someone repeat themselves and then abruptly switch to something else is especially jarring.

The easy fix is to show the quips in order! Paradoxically, this is more consistently varied than choosing at random — the original “order” is likely to be meaningless anyway, and it already has the property that the same quip can never appear twice in a row.

If you like, you can shuffle the list of quips every time you reach the end, but take care here — it’s possible that the last quip in the old order will be the same as the first quip in the new order, so you may still get a repeat. (Of course, you can just check for this case and swap the first quip somewhere else if it bothers you.)

That last behavior is, in fact, the canonical way that Tetris chooses pieces — the game simply shuffles a list of all 7 pieces, gives those to you in shuffled order, then shuffles them again to make a new list once it’s exhausted. There’s no avoidance of duplicates, though, so you can still get two S blocks in a row, or even two S and two Z all clumped together, but no more than that. Some Tetris variants take other approaches, such as actively avoiding repeats even several pieces apart or deliberately giving you the worst piece possible.

Random drops

Random drops are often implemented as a flat chance each time. Maybe enemies have a 5% chance to drop health when they die. Legally speaking, over the long term, a player will see health drops for about 5% of enemy kills.

Over the short term, they may be desperate for health and not survive to see the long term. So you may want to put a thumb on the scale sometimes. Games in the Metroid series, for example, have a somewhat infamous bias towards whatever kind of drop they think you need — health if your health is low, missiles if your missiles are low.

I can’t give you an exact approach to use, since it depends on the game and the feeling you’re going for and the variables at your disposal. In extreme cases, you might want to guarantee a health drop from a tough enemy when the player is critically low on health. (Or if you’re feeling particularly evil, you could go the other way and deny the player health when they most need it…)

The problem becomes a little different, and worse, when the event that triggers the drop is relatively rare. The pathological case here would be something like a raid boss in World of Warcraft, which requires hours of effort from a coordinated group of people to defeat, and which has some tiny chance of dropping a good item that will go to only one of those people. This is why I stopped playing World of Warcraft at 60.

Dialing it back a little bit gives us Enter the Gungeon, a roguelike where each room is a set of encounters and each floor only has a dozen or so rooms. Initially, you have a 1% chance of getting a reward after completing a room — but every time you complete a room and don’t get a reward, the chance increases by 9%, up to a cap of 80%. Once you get a reward, the chance resets to 1%.

The natural question is: how frequently, exactly, can a player expect to get a reward? We could do math, or we could Just Simulate The Damn Thing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
from collections import Counter
import random

histogram = Counter()

TRIALS = 1000000
chance = 1
rooms_cleared = 0
rewards_found = 0
while rewards_found < TRIALS:
    rooms_cleared += 1
    if random.random() * 100 < chance:
        # Reward!
        rewards_found += 1
        histogram[rooms_cleared] += 1
        rooms_cleared = 0
        chance = 1
    else:
        chance = min(80, chance + 9)

for gaps, count in sorted(histogram.items()):
    print(f"{gaps:3d} | {count / TRIALS * 100:6.2f}%", '#' * (count // (TRIALS // 100)))
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
  1 |   0.98%
  2 |   9.91% #########
  3 |  17.00% ################
  4 |  20.23% ####################
  5 |  19.21% ###################
  6 |  15.05% ###############
  7 |   9.69% #########
  8 |   5.07% #####
  9 |   2.09% ##
 10 |   0.63%
 11 |   0.12%
 12 |   0.03%
 13 |   0.00%
 14 |   0.00%
 15 |   0.00%

We’ve got kind of a hilly distribution, skewed to the left, which is up in this histogram. Most of the time, a player should see a reward every three to six rooms, which is maybe twice per floor. It’s vanishingly unlikely to go through a dozen rooms without ever seeing a reward, so a player should see at least one per floor.

Of course, this simulated a single continuous playthrough; when starting the game from scratch, your chance at a reward always starts fresh at 1%, the worst it can be. If you want to know about how many rewards a player will get on the first floor, hey, Just Simulate The Damn Thing.

1
2
3
4
5
6
7
  0 |   0.01%
  1 |  13.01% #############
  2 |  56.28% ########################################################
  3 |  27.49% ###########################
  4 |   3.10% ###
  5 |   0.11%
  6 |   0.00%

Cool. Though, that’s assuming exactly 12 rooms; it might be worth changing that to pick at random in a way that matches the level generator.

(Enter the Gungeon does some other things to skew probability, which is very nice in a roguelike where blind luck can make or break you. For example, if you kill a boss without having gotten a new gun anywhere else on the floor, the boss is guaranteed to drop a gun.)

Critical hits

I suppose this is the same problem as random drops, but backwards.

Say you have a battle sim where every attack has a 6% chance to land a devastating critical hit. Presumably the same rules apply to both the player and the AI opponents.

Consider, then, that the AI opponents have exactly the same 6% chance to ruin the player’s day. Consider also that this gives them an 0.4% chance to critical hit twice in a row. 0.4% doesn’t sound like much, but across an entire playthrough, it’s not unlikely that a player might see it happen and find it incredibly annoying.

Perhaps it would be worthwhile to explicitly forbid AI opponents from getting consecutive critical hits.

In conclusion

An emerging theme here has been to Just Simulate The Damn Thing. So consider Just Simulating The Damn Thing. Even a simple change to a random value can do surprising things to the resulting distribution, so unless you feel like differentiating the inverse function of your code, maybe test out any non-trivial behavior and make sure it’s what you wanted. Probability is hard to reason about.

Hijacker – Reaver For Android Wifi Hacker App

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/01/hijacker-reaver-android-wifi-hacker-app/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Hijacker – Reaver For Android Wifi Hacker App

Hijacker is a native GUI which provides Reaver for Android along with Aircrack-ng, Airodump-ng and MDK3 making it a powerful Wifi hacker app.

It offers a simple and easy UI to use these tools without typing commands in a console and copy & pasting MAC addresses.

Features of Hijacker Reaver For Android Wifi Hacker App
Information Gathering

  • View a list of access points and stations (clients) around you (even hidden ones)
  • View the activity of a specific network (by measuring beacons and data packets) and its clients
  • Statistics about access points and stations
  • See the manufacturer of a device (AP or station) from the OUI database
  • See the signal power of devices and filter the ones that are closer to you
  • Save captured packets in .cap file

Reaver for Android Wifi Cracker Attacks

  • Deauthenticate all the clients of a network (either targeting each one or without specific target)
  • Deauthenticate a specific client from the network it’s connected
  • MDK3 Beacon Flooding with custom options and SSID list
  • MDK3 Authentication DoS for a specific network or to every nearby AP
  • Capture a WPA handshake or gather IVs to crack a WEP network
  • Reaver WPS cracking (pixie-dust attack using NetHunter chroot and external adapter)

Other Wifi Hacker App Features

  • Leave the app running in the background, optionally with a notification
  • Copy commands or MAC addresses to clipboard
  • Includes the required tools, no need for manual installation
  • Includes the nexmon driver and management utility for BCM4339 devices
  • Set commands to enable and disable monitor mode automatically
  • Crack .cap files with a custom wordlist
  • Create custom actions and run them on an access point or a client easily
  • Sort and filter Access Points and Stations with many parameters
  • Export all gathered information to a file
  • Add a persistent alias to a device (by MAC) for easier identification

Requirements to Crack Wifi Password with Android

This application requires an ARM Android device with an internal wireless adapter that supports Monitor Mode.

Read the rest of Hijacker – Reaver For Android Wifi Hacker App now! Only available at Darknet.

Kodi Returns to Its Roots, Now Available on Xbox One

Post Syndicated from Ernesto original https://torrentfreak.com/kodi-returns-to-its-roots-now-available-on-xbox-one-171229/

The Kodi media player software has seen a massive surge in popularity over the past few years.

With help from a wide range of third-party add-ons, some of which offer access to pirated content, millions of people now use Kodi as their main source of entertainment.

The Kodi software itself is perfectly legal, however, and has been around for more than 15 years. The roots of Kodi are directly connected to the Xbox, as the first iterations of the project were called the “Xbox Media Player.”

As time went by XBMP became XBMC, and eventually Kodi. The last name change made sense as the software was no longer being developed for Xbox, but for other devices, running on Linux, Windows, OSX, and Android.

While the broader public was perfectly happy with this, the sentimental few were missing the Xbox connection. For them, and many others, Kodi has a surprise in store today after returning to its roots.

“Let us end the year 2017 with a blast including a nostalgic reference to the past,” the Kodi team announced.

“It has long been asked for by so many and now it finally happened. Kodi for Xbox One is available worldwide through Windows and Xbox Store.”

The Kodi team provides quite a bit of history and context to the Xbox return in a detailed blog post. At the same time, it also cautions users to keep in mind that this is just the initial release, which still has some very rough edges.

“What you should really understand and keep remembering is that it is still in early stages of development and has very rough edges, might not be as stable as the regular version and may even be missing some functions,” they write.

Kodi’s look and feel on the Xbox One are very familiar though. Anyone who had Kodi installed on a different platform should have no issue navigating the interface. The usual add-ons should work fine as well.

With the new Xbox One release, Kodi has come full circle. After 15 years they are back where things began.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Our ‘Kodi Box’ Is Legal & Our Users Don’t Break the Law, TickBox Tells Hollywood

Post Syndicated from Andy original https://torrentfreak.com/our-kodi-box-is-legal-our-users-dont-break-the-law-tickbox-tells-hollywood-171229/

Georgia-based TickBox TV is a provider of set-top boxes that allow users to stream all kinds of popular content. Like other similar devices, Tickboxes use the popular Kodi media player alongside instructions how to find and use third-party addons.

Of course, these types of add-ons are considered a thorn in the side of the entertainment industries and as a result, Tickbox found itself on the receiving end of a lawsuit in the United States.

Filed in a California federal court in October, Universal, Columbia Pictures, Disney, 20th Century Fox, Paramount Pictures, Warner Bros, Amazon, and Netflix accused Tickbox of inducing and contributing to copyright infringement.

“TickBox sells ‘TickBox TV,’ a computer hardware device that TickBox urges its customers to use as a tool for the mass infringement of Plaintiffs’ copyrighted motion pictures and television shows,” the complaint reads.

“TickBox promotes the use of TickBox TV for overwhelmingly, if not exclusively, infringing purposes, and that is how its customers use TickBox TV. TickBox advertises TickBox TV as a substitute for authorized and legitimate distribution channels such as cable television or video-on-demand services like Amazon Prime and Netflix.”

The copyright holders reference a TickBox TV video which informs customers how to install ‘themes’, more commonly known as ‘builds’. These ‘builds’ are custom Kodi-setups which contain many popular add-ons that specialize in supplying pirate content. Is that illegal? TickBox TV believes not.

In a response filed yesterday, TickBox underlined its position that its device is not sold with any unauthorized or illegal content and complains that just because users may choose to download and install third-party programs through which they can search for and view unauthorized content, that’s not its fault. It goes on to attack the lawsuit on several fronts.

TickBox argues that plaintiffs’ claims, that TickBox can be held secondarily liable under the theory of contributory infringement or inducement liability as described in the famous Grokster and isoHunt cases, is unlikely to succeed. TickBox says the studios need to show four elements – distribution of a device or product, acts of infringement by users of Tickbox, an object of promoting its use to infringe copyright, and causation.

“Plaintiffs have failed to establish any of these four elements,” TickBox’s lawyers write.

Firstly, TickBox says that while its device can be programmed to infringe, it’s the third party software (the builds/themes containing addons) that do all the dirty work, and TickBox has nothing to do with them.

“The Motion spends a great deal of time describing these third-party ‘Themes’ and how they operate to search for and stream videos. But the ‘Themes’ on which Plaintiffs so heavily focus are not the [TickBox], and they have absolutely nothing to do with Defendant. Rather, they are third-party modifications of the open-source media player software [Kodi] which the Box utilizes,” the response reads.

TickBox says its device is merely a small computer, not unlike a smartphone or tablet. Indeed, when it comes to running the ‘pirate’ builds listed in the lawsuit, a device supplied by one of the plaintiffs can accomplish the same task.

“Plaintiffs have identified certain of these thirdparty ‘builds’ or ‘Themes’ which are available on the internet and which can be downloaded by users to view content streamed by third-party websites; however, this same software can be installed on many different types of devices, even one distributed by affiliates of Plaintiff Amazon Content Services, LLC,” the company adds.

Referencing the Grokster case, TickBox states that particular company was held liable for distributing a device (the Grokster software) “with the object of promoting its use to infringe copyright.” In the isoHunt case, it argues that the provision of torrent files satisfied the first element of inducement liability.

“In contrast, Defendant’s product – the Box – is not software through which users can access unauthorized content, as in Grokster, or even a necessary component of accessing unauthorized content, as in Fung [isoHunt],” TickBox writes.

“Defendant offers a computer, onto which users can voluntarily install legitimate or illegitimate software. The product about which Plaintiffs complain is third-party software which can be downloaded onto a myriad of devices, and which Defendant neither created nor supplies.”

From defending itself, TickBox switches track to highlight weaknesses in the studios’ case against users of its TickBox device. The company states that the plaintiffs have not presented any evidence that buyers of the TickBox streaming unit have actually accessed any copyrighted material.

Interestingly, however, the company also notes that even if people had streamed ‘pirate’ content, that might not constitute infringement.

First up, the company notes that there are no allegations that anyone – from TickBox itself to TickBox device owners – ever violated the plaintiffs’ exclusive right to perform its copyrighted works.

TickBox then further argues that copyright law does not impose liability for viewing streaming content, stating that an infringer is one who violates any of the exclusive rights of the copyright holder, in this case, the right to “perform the copyrighted work publicly.”

“Plaintiffs do not allege that Defendant, Defendant’s product, or the users of Defendant’s product ‘transmit or otherwise communicate a performance’ to the public; instead, Plaintiffs allege that users view streaming material on the Box.

“It is clear precedent [Perfect 10 v Google] in this Circuit that merely viewing copyrighted material online, without downloading, copying, or retransmitting such material, is not actionable.”

Taking this argument to its logical conclusion, TickBox insists that if its users aren’t infringing copyright, it’s impossible to argue that TickBox induced its customers to violate the plaintiffs’ rights. In that respect, plaintiffs’ complaints that TickBox failed to develop “filtering tools” to diminish its customers’ infringing activity are moot, since in TickBox’s eyes no infringement took place.

TickBox also argues that unlike in Grokster, where the defendant profited when users’ accessed infringing content, it does not. And, just to underline the earlier point, it claims that its place in the market is not to compete with entertainment companies, it’s actually to compete with devices such as Amazon’s Firestick – another similar Android-powered device.

Finally, TickBox notes that it has zero connection with any third-party sites that transmit copyrighted works in violation of the plaintiffs’ rights.

“Plaintiff has not alleged any element of contributory infringement vis-à-vis these unknown third-parties. Plaintiff has not alleged that Defendant has distributed any product to those third parties, that Defendant has committed any act which encourages those third parties’ infringement, or that any act of Defendant has, in fact, caused those third parties to infringe,” its response adds.

But even given the above defenses, TickBox says that it “voluntarily took steps” to remove links to the allegedly infringing Kodi builds from its device, following the plaintiffs’ lawsuit. It also claims to have modified its advertising and webpage “to attempt to appease Plaintiffs and resolve their complaint amicably.”

Given the above, TickBox says that the plaintiffs’ application for injunction is both vague and overly broad and would impose “imperssible hardship” on the company by effectively shutting it down while requiring it to “hack into and delete content” which TickBox users may have downloaded to their boxes.

TickBox raises some very interesting points around some obvious weaknesses so it will be intriguing to see how the Court handles its claims and what effect that has on the market for these devices in the US. In particular, the thorny issue of how they are advertised and promoted, which is nearly always the final stumbling block.

A copy of Tickbox’s response is available here (pdf), via Variety

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Kodi Piracy and Addon Predictions for 2018

Post Syndicated from Andy original https://torrentfreak.com/kodi-piracy-and-addon-predictions-for-2018-171228/

During 2017, Kodi and its sea of third-party addons hit the headlines hundreds of times.

Streaming in this fashion became a massive deal throughout the year and eventually, copyright holders decided to take action, cracking down on groups such as TVAddons, ZemTV, and addons offered by jsergio123 and The_Alpha.

In November, the problems continued when the Ares Project, the group behind the hugely popular Ares Wizard and Kodi repository, threw in the towel after being threatened by the MPA-led anti-piracy coalition Alliance for Creativity and Entertainment.

The combined might of Columbia, Disney, Paramount, Twentieth Century Fox, Universal, Warner, Netflix, Amazon, and Sky TV was too much, leading to Ares Project leader Tekto shutting everything down.

This was a significant development. Over a two year period, Ares serviced an estimated 100 million users. After interviewing Tekto last month, today we catch up with the developer again, listening to his thoughts on how the scene might further develop in 2018 and what threats lie ahead.

TF: Could you tell us a bit about Kodi’s suitability as an unauthorized streaming platform moving forward? Is it flexible enough to deal with threats, is its current development effort sufficient, do addon developers like the way it works, and how could it be improved?

Tekto: The public awareness of Kodi and the easy ways with which it can be customised via builds and its open source nature makes it the perfect platform for Python coders. It’s easy to fork, copy, adapt and learn, and it’s good for “builders” who modify, personalize, and “brand”.

It’s also easy for users to obtain, install, and work with the plethora of wizards and addons etc, all backed by up blogs and YouTube tutorials. It’s the perfect open source platform to develop and customise to access a massive range of content. Content that may well be contentious but regardless, it is publicly available all over the web.

TF: Obviously Kodi is the big thing at the moment but other apps, such as Showbox, TerrariumTV, and similar products are carving a decent niche for themselves. Where do you see the market sitting on these kinds of products moving forward and are they a threat to Kodi’s dominance?

Tekto: The apps and other services don’t offer the same level of personalization. That’s what will keep a certain dedicated following happy with Kodi. We’ve had Plex, Streamio, Emby and so on, but none offer the flexibility of Kodi.

TF: Does Kodi have any major weaknesses that you know of? Is it under threat from other systems perhaps?

Tekto: Lets not forget we had CCcam [card sharing] for a decade and with Sky [UK TV provider] changing their encryption to end that source, a myriad of IPTV providers sprung up to replace it. All that killing the CCcam method has done, is moved people off CCcam to IPTV. It hasn’t stopped piracy or access to “premium content”, it just moved somewhere else. It probably also makes the providers more money than CCcam accounts ever did.

TF: There have been a lot of legal threats in 2017. Are third-party addon developers and their community under serious threat?

Tekto: If Kodi third-party devs “stopped”, something else would take over. All the Android apps that have sprung up (some have been around a while anyway) are already filling some gaps or giving options for those looking to stream.

Having tried some of these, I have to say for non-tech users there are two or three apps that will suit them perfectly. Others need more work and fewer invasive ads to be more successful. Will Kodi stop? No. It is evolving and finding a new path. It has to. Well, the coders have to, at least.

TF: What is your overall assessment of the various legal attacks this year?

Tekto: What is being missed by all these legal “efforts” is the removal of the sources being accessed. Whilst the sources exist, apps and Kodi add-ons will find ways to access them.

Did taking out a few Kodi devs and a wizard remove any content? Did it stop just one movie from being accessed? No. It did nothing to stop piracy. It did, however, give those receiving HUGE fees to act for the various movie and broadcasters, something to write on their “success” boards and reports.

It just upset users for a few days whilst things adapted to the new situation. The Kodi builds listed on Ares all had their own wizards anyway – so they all carried on working. All the add-ons on Ares were mostly linked to Github, so they carried on working anyway.

The takedown of guys working on the URL resolver for Covenant didn’t work at all. The code still works and if you add, let’s say, Real Debrid, it won’t ever stop working, even Exodus still works! Let’s add to this that Covenant was then forked five or six times and re-marketed.

I’d say it probably increased “acts of copyright infringement” or at least access to “copyright infringing material”. TV Addons immediately took over development of the “URL resolver”, so it will be maintained and fixes for it released.

The URL resolver module uses regex – regular expressions to emulate a web browser (for the most part). Let that sink in; A URL resolver is a way to bypass a web browser, as most of the content is hosted on “publicly accessible” websites, that still remain publicly available with or without Covenant or whatever the forks are called.

TF: Sp there isn’t a Doomsday scenario?

Tekto: If the Kodi third-party scene is somehow stopped – all Wizards, builds, etc were all stopped this very second – there would be a dozen new apps for Android in weeks. Meanwhile, there are hundreds of websites you could switch to, to watch the same content. ACE, MPA etc need to wake up to that fact.

TF: One of the big deals this year, as far as the legal position goes, has been the clarification of “communication to the public” following cases at the European level featuring [pirate box seller] Filmspeler and The Pirate Bay. How do you think this will affect the addon and build scenes moving forward?

Tekto: I’ve long believed that Kodi wizards and scraper addons operated in a way that wasn’t illegal, in that they never provided content, never actually handled the copyright protected files themselves.

It still remains my belief that the recent efforts to use the Ziggo [Pirate Bay] ruling concerning “communicating to the public” is directly linked to torrents or at the very least actually providing content itself. It may be legal “saber rattling” – however standing your ground in the face of a well-funded legal behemoth is beyond hobbyists.

TF: An addon developer I spoke with recently said that fellow addon developers will need to be smarter in future, perhaps by developing addons that aren’t so obviously infringing and are more general in their functionality. Do you feel this is a route they’re likely to take and will it make any difference? How do you think a more ‘underground’ scene will affect the situation on the ground?

Tekto: Going Underground? Most will say grab a VPN and you’re safe – take note that a VPN isn’t enough. They may not get your logs, but they will get your payment info, or the times you are online tagged against another log etc. Anything like PayPal, Gmail, AdSense, etc is 100% out too – they will give people up in a heartbeat. People will have to avoid Facebook, Twitter and so on, as again, they will also link back to the “real you”.

I expect more will move to Tor as a first level of hiding their identities. Hosting via Tor-only sites might be a way to avoid some obvious methods of tracing people. Add-on devs could access Github and release code without ever having to reveal who they are.

Let’s not get into the whole “freedom of speech” etc scenario, however. It should mean that any developer should realistically make much greater efforts to hide their identities.

TF: Thank you for your time, Tekto. Any final messages for the readers?

Tekto: Yes, our Ares Wizard has returned. It’s a mainentance tool now.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

FilePursuit Finds Amazing Files All Year Round, Not Just at Christmas

Post Syndicated from Andy original https://torrentfreak.com/filepursuit-finds-amazing-files-all-year-round-not-just-at-christmas-171225/

Ask someone to name a search engine and it’s likely that 95 out of 100 will say ‘Google’. There are plenty of others, of course, but its sheer dominance means that even giants like Bing have to wait around for a mention.

However, if people are looking for something special, such as video and music files, for example, there’s an interesting search engine that’s largely flying under the radar. FilePursuit, accessible via the web or directly from its dedicated Android apps, is somewhat of a revelation.

What FilePursuit does is trawl the Internet looking for web servers that are not only packed with content but are readily accessible to the outside world. This means that a search on the site invariably turns up treasure troves of material, all of it for immediate and direct HTTP download.

TorrentFreak caught up with the operator of the site who himself is a very interesting character.

“I’m a 21-year-old undergrad student from New Delhi, India, currently studying engineering. I started this file search engine project all by myself to learn web development and this is my first project,” he informs TF.

“I picked this project because I was surprised to find that there are lots of ‘open directory’ websites and no one is maintaining any type of record or database on them. There are thousands of ‘open directory’ websites containing a lot of amazing stuff not discovered yet, so I made them discoverable.”

Plenty of files from almost any search

FilePursuit began its life around September 2016 and since then has been receiving website submission requests (sites to be indexed by FilePursuit) from people all over the world. As such the platform is somewhat of a community effort but in respect of running the operation, it’s all done by one man.

“FilePursuit saves time in two ways: by eliminating the need to find file manually, and by performing searches at high speeds efficiently. Without this, you would have to look at sites one by one and pore over the contents of each carefully – a tedious prospect,” he explains.

“FilePursuit automatically compares your criteria to billions of webpages and gives you results in a fraction of a second. You can perform hundreds of searches in the course of a few minutes, altering the criteria as you narrow down results.”

So if Google dominates the search space, why doesn’t it do a better job of finding files than the relatively low-key FilePursuit? Its operator says it’s all about functionality.

“FilePursuit is a file search engine, it generates file links as results while other search engines give out webpages as results. However, it’s possible to search for file links directly from Google too but it’s limited to documents only. On FilePursuit you can search for almost any filetype just by selecting ‘custom’ and typing filetype in search results.”

Of course, it would be impossible for FilePursuit to find any files if webmasters and server operators didn’t leave them open to the public. Considering it’s simplicity itself to find all the latest movies and TV shows widely accessible, is this a question of stupidity, kindness, carelessness, or something else?

“In my opinion, most people are unaware that they have created an open directory and on the other hand some people want to share interesting files from their servers, which is very generous of them,” FilePursuit’s creator says.

When carrying out searches it really is amazing what FilePursuit can turn up. Files lead to directory results and some can contain many thousands of files, from every music artist one can think of through to otherwise private text files that people really should take more care over. Other things are really quite odd.

“When I look for ‘open directory’ websites, sometimes I find really amazing stuff and sometimes even bizarre stuff too. This one time, I found a collection of funeral recordings,” FilePursuit’s owner says.

While even funeral recordings can have a copyright owner somewhere, it’s the more regular mainstream content that’s most easily found with the service. The site doesn’t carry any copyrighted content at all but that doesn’t mean it’s unresponsive to takedown demands.

“I have more than three million file links indexed in my database so it can be a bit hard for me to check for copyrighted content. Although whenever I receive a mail from copyright holders or someone representing copyright holders, I always uphold their request of deleting the file link from my database and also explain to them that the file link they requested me to delete, that particular file may still exist.”

In recent months, FilePursuit has enjoyed a significant upsurge in traffic but it’s still a relatively small player in the search engine space with around 7,000 to 10,000 hits per day. However, this clever site is able to deal with five times that traffic and upgrading servers to cope with surges can be carried out in two to three minutes, “at most.”

So the big question remains – What will you find under the tree today?

FilePursuit website here, Android apps (free, pro)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Serverless @ re:Invent 2017

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

AWS Lambda

Amazon API Gateway

  • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
  • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
  • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
  • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
  • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

AWS Serverless Application Repository

Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

AWS [email protected]

[email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.

AWS SAM

Twitch Launchpad live announcements

Other service announcements

Here are some of the other highlights that you might have missed. We think these could help you make great applications:

AWS re:Invent 2017 sessions

Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

Find the entire Serverless Track playlist on YouTube.

Talks for people new to Serverless

Advanced topics

Expert mode

Talks for specific use cases

Talks from AWS customers & partners

Looking to get hands-on with Serverless?

At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
Build a Serverless web application

Still looking for more?

We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

Power Tips for Backblaze Backup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/data-backup-tips/

Backup Power Tips

2017 has been a busy year for Backblaze. We’ve reached a total of over 400 petabytes of data stored for our customers — that’s a lot!, released a major upgrade to our backup product — Backblaze Cloud Backup 5.0, added Groups to our consumer and business backup products, further enhanced account security, and welcomed a whole lot of new customers to Backblaze.

For all of our new users (and maybe some of you more experienced ones, too), we’d like to share some power tips that will help you get the most out of Backblaze Backup for home and business.

Blazing Power Tips for Backblaze Backup

Back Up All of Your Valuable Data

Backblaze logo

Include Directly-Attached External Drives in Your Backup

Backblaze can back up external drives attached via USB, Thunderbolt, or Firewire.

Backblaze logo

Back Up Virtual Machines Installed on Your Computer

Virtual machines, such as those created by Parallels, VMware Fusion, VirtualBox, Hyper-V, or other programs, can be backed up with Backblaze.

Backblaze logo

You Can Back Up Your Mobile Phone to Backblaze

Gain extra peace-of-mind by backing up your iPhone or Android phone to your computer and including that in your computer backup.

Backblaze logo

Bring on Your Big Files

By default, Backblaze has no restrictions on the size of the files you are backing up, even that large high school reunion video you want to be sure to keep.

Backblaze logo

Rescan Your Hard Drive to Check for Changes

Backblaze works quietly and continuously in the background to keep you backed up, but you can ask Backblaze to immediately check whether anything needs backing up by holding down the Alt key and clicking on the Restore Options button in the Backblaze client.

Manage and Restore Your Backed Up Files

Backblaze logo

You Can Share Files You’ve Backed Up

You can share files with anyone directly from your Backblaze account.

Backblaze logo

Select and Restore Individual Files

You can restore a single file without zipping it using the Backblaze web interface.

Backblaze logo

Receive Your Restores from Backblaze by Mail

You have a choice of how to receive your data from Backblaze. You can download individual files, download a ZIP of the files you choose, or request that your data be shipped to you anywhere in the world via FedEx.

Backblaze logo

Put Your Account on Hold for Six Months

As long as your account is current, all the data you’ve backed up is maintained for up to six months if you’re traveling or not using your computer and don’t connect to our servers. (For active accounts, data is maintained up to 30 days.)

Backblaze logo

Groups Make Managing Business or Family Members Easy

For businesses, families, or organizations, our Groups feature makes it easy to manage billing, group membership, and individual user access to files and accounts — all at no incremental charge.

Backblaze logo

You Can Browse and Restore Previous Versions of a File

Visit the View/Restore Files page to go back in time to earlier or deleted versions of your files.

Backblaze logo

Mass Deploy Backblaze Remotely to Many Computers

Companies, organizations, schools, non-profits, and others can deploy Backblaze computer backup remotely across all their computers without any end-user interaction.

Backblaze logo

Move Your Account and Preserve Backups on a New or Restored Computer

You can move your Backblaze account to a new or restored computer with the same data — and preserve the backups you have already completed — using the Inherit Backup State feature.

Backblaze logo

Reinstall Backblaze under a Different Account

Backblaze remembers the account information when it is uninstalled and reinstalled. To install Backblaze under a different account, hold down the ALT key and click the Install Now button.

Keep Your Data Secure

Backblaze logo

Protect Your Account with Two-Factor Verification

You can (and should) protect your Backblaze account with two-factor verification. You can use backup codes and SMS verification in case you lose access to your smartphone and the authentication app. Sign in to your account to set that up.

Backblaze logo

Add Additional Security to Your Data

All transmissions of your data between your system and our servers is encrypted. For extra account security, you can add an optional private encryption key (PEK) to the data on our servers. Just be sure to remember your encryption key because it’s required to restore your data.

Get the Best Data Transfer Speeds

Backblaze logo

How Fast is your Connection to Backblaze?

You can check the speed and latency of your internet connection between your location and Backblaze’s data centers at https://www.backblaze.com/speedtest/.

Backblaze logo

Fine-Tune Your Upload Speed with Multiple Threads

Our auto-threading feature adjusts Backblaze’s CPU usage to give you the best upload speeds, but for those of you who like to tinker, the Backblaze client on Windows and Macintosh lets you fine-tune the number of threads our client is using to upload your files to our data centers.

Backblaze logo

Use the Backblaze Downloader To Get Your Restores Faster

If you are downloading a large ZIP restore, we recommend that you use the Backblaze Downloader application for Macintosh or Windows for maximum speed.

Want to Learn More About Backblaze Backup?

You can find more information on Backblaze Backup (including a free trial) on our website, and more tips about backing up in our help pages and in our Backup Guide.

Do you have a friend who should be backing up, but doesn’t? Why not give the gift of Backblaze?

The post Power Tips for Backblaze Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

HackSpace magazine 2: 3D printing and cheese making

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-magazine-issue-2/

After an incredible response to our first issue of HackSpace magazine last month, we’re excited to announce today’s release of issue 2, complete with cheese making, digital braille, and…a crochet Cthulhu?
HackSpace magazine issue 2 cover

Your spaces

This issue, we visit Swansea Hackspace to learn how to crochet, we hear about the superb things that Birmingham’s fizzPOP maker space is doing, and we’re extremely impressed by the advances in braille reader technology that are coming out of Bristol Hackspace. People are amazing.

Your projects

We’ve also collected page upon page of projects for you to try your hand at. Fancy an introduction to laser cutting? A homemade sine wave stylophone? Or how about our first foray into Adafruit’s NeoPixels, adding blinkenlights to a pair of snowboarding goggles?

And (much) older technology gets a look in too, including a tutorial showing you how to make a knife in your own cheap and cheerful backyard forge.



As always, issue 2 of HackSpace magazine is available as a free PDF download, but we’ll also be publishing online versions of selected articles for easier browsing, so be sure to follow us on Facebook and Twitter. And, of course, we want to hear your thoughts – contact us to let us know what you like and what else you’d like to see, or just to demand that we feature your project, interest or current curiosity in the next issue.

Get your copy

You can grab issue 2 of HackSpace magazine right now from WHSmith, Tesco, Sainsbury’s, and independent newsagents. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine.

Alternatively, you can get the new issue online from our store, or digitally via our Android or iOS apps. And don’t forget, as with all our publications, a free PDF of HackSpace magazine is available from release day.

That’s it from us for this year; see you in 2018 for a ton of new things to make and do!

The post HackSpace magazine 2: 3D printing and cheese making appeared first on Raspberry Pi.

MagPi 65: Newbies Guide, and something brand new!

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/magpi-65/

Hey folks, Rob from The MagPi here! We know many people might be getting their very first Raspberry Pi this Christmas, and excitedly wondering “what do I do with it?” While we can’t tell you exactly what to do with your Pi, we can show you how to immerse yourself in the world of Raspberry Pi and be inspired by our incredible community, and that’s the topic of The MagPi 65, out today tomorrow (we’re a day early because we’re simply TOO excited about the special announcement below!).

The one, the only…issue 65!

Raspberry Pi for Newbies

Raspberry Pi for Newbies covers some of the very basics you should know about the world of Raspberry Pi. After a quick set-up tutorial, we introduce you to the Raspberry Pi’s free online resources, including Scratch and Python projects from Code Club, before guiding you through the wider Raspberry Pi and maker community.

Raspberry Pi MagPi 65 Newbie Guide

Pages and pages of useful advice and starter projects

The online community is an amazing place to learn about all the incredible things you can do with the Raspberry Pi. We’ve included some information on good places to look for tutorials, advice and ideas.

And that’s not all

Want to do more after learning about the world of Pi? The rest of the issue has our usual selection of expert guides to help you build some amazing projects: you can make a Christmas memory game, build a tower of bells to ring in the New Year, and even take your first steps towards making a game using C++.

Raspberry Pi MagPi 65

Midimutant, the synthesizer “that boinks endless strange sounds”

All this along with inspiring projects, definitive reviews, and tales from around the community.

Raspberry Pi Annual

Issue 65 isn’t the only new release to look out for. We’re excited to bring you the first ever Raspberry Pi Annual, and it’s free for MagPi subscribers – in fact, subscribers should be receiving it the same day as their issue 65 delivery!

If you’re not yet a subscriber of The MagPi, don’t panic: you can still bag yourself a copy of the Raspberry Pi Annual by signing up to a 12-month subscription of The MagPi before 24 January. You’ll also receive the usual subscriber gift of a free Raspberry Pi Zero W (with case and cable).  Click here to subscribe to The MagPi – The Official Raspberry Pi magazine.

Ooooooo…aaaaaahhhhh…

The Raspberry Pi Annual is aimed at young folk wanting to learn to code, with a variety of awesome step-by-step Scratch tutorials, games, puzzles, and comics, including a robotic Babbage.

Get your copy

You can get The MagPi 65 and the Raspberry Pi Annual 2018 from our online store, and the magazine can be found in the wild at WHSmith, Tesco, Sainsbury’s, and Asda. You’ll be able to get it in the US at Barnes & Noble and Micro Center in a few days’ time. The MagPi 65 is also available digitally on our Android and iOS apps. Finally, you can also download a free PDF of The MagPi 65 and The Raspberry Pi Annual 2018.

We hope you have a merry Christmas! We’re off until the New Year. Bye!

The post MagPi 65: Newbies Guide, and something brand new! appeared first on Raspberry Pi.

16-Year-Old Boy Arrested for Running Pirate TV Service

Post Syndicated from Andy original https://torrentfreak.com/16-year-old-boy-arrested-for-running-pirate-tv-service-171211/

After more than a decade and a half in existence, public pirate sites, services, and apps remain a thorn in the side of entertainment industry groups who are determined to close them down.

That trend continued last week when French anti-piracy group ALPA teamed up with police in the Bordeaux region to raid and arrest the founder and administrator of piracy service ARTV.

According to the anti-piracy group, the ARTV.watch website first appeared during April 2017 but quickly grew to become a significant source of streaming TV piracy. Every month the site had around 150,000 visitors and in less than eight months amassed 800,000 registered users.

“Artv.watch was a public site offering live access to 176 free and paid French TV channels that are members of ALPA: Canal + Group, M6 Group, TF1 Group, France Télévision Group, Paramount, Disney, and FOX. Other thematic and sports channels were broadcast,” an ALPA statement reads.

This significant offering was reportedly lucrative for the site’s operator. While probably best taken with a grain of salt, ALPA estimates the site generated around 3,000 euros per month from advertising revenue. That’s a decent amount for anyone but even more so when one learns that ARTV’s former operator is just 16 years old.

“ARTV.WATCH it’s over. ARTV is now closed for legal reasons. Thank you for your understanding! The site was indeed illegal,” a notice on the site now reads.

“Thank you all for this experience that I have acquired in this project. And thanks to you who have believed in me.”

Closure formalities aside, ARTV’s founder also has a message for anyone else considering launching a similar platform.

“Notice to anyone wanting to do a site of the same kind, I strongly advise against it. On the criminal side, the punishment can go up to three years of imprisonment and a 300,000 euro fine. If [individual] complaints of channels (or productions) are filed against you, it will be more complicated to determine,” ARTV’s owner warns.

ALPA says that in addition to closing down the site, ARTV’s owner also deactivated the site’s Android app, which had been available for download on Google Play. The anti-piracy group adds that this action against IPTV and live streaming was a first in France.

For anyone who speaks French, the 16-year-old has published a video on YouTube talking about his predicament.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Security Vulnerabilities in Certificate Pinning

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/security_vulner_10.html

New research found that many banks offer certificate pinning as a security feature, but fail to authenticate the hostname. This leaves the systems open to man-in-the-middle attacks.

From the paper:

Abstract: Certificate verification is a crucial stage in the establishment of a TLS connection. A common security flaw in TLS implementations is the lack of certificate hostname verification but, in general, this is easy to detect. In security-sensitive applications, the usage of certificate pinning is on the rise. This paper shows that certificate pinning can (and often does) hide the lack of proper hostname verification, enabling MITM attacks. Dynamic (black-box) detection of this vulnerability would typically require the tester to own a high security certificate from the same issuer (and often same intermediate CA) as the one used by the app. We present Spinner, a new tool for black-box testing for this vulnerability at scale that does not require purchasing any certificates. By redirecting traffic to websites which use the relevant certificates and then analysing the (encrypted) network traffic we are able to determine whether the hostname check is correctly done, even in the presence of certificate pinning. We use Spinner to analyse 400 security-sensitive Android and iPhone apps. We found that 9 apps had this flaw, including two of the largest banks in the world: Bank of America and HSBC. We also found that TunnelBear, one of the most popular VPN apps was also vulnerable. These apps have a joint user base of tens of millions of users.

News article.