Tag Archives: root domain

New .BOT gTLD from Amazon

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-bot-gtld-from-amazon/

Today, I’m excited to announce the launch of .BOT, a new generic top-level domain (gTLD) from Amazon. Customers can use .BOT domains to provide an identity and portal for their bots. Fitness bots, slack bots, e-commerce bots, and more can all benefit from an easy-to-access .BOT domain. The phrase “bot” was the 4th most registered domain keyword within the .COM TLD in 2016 with more than 6000 domains per month. A .BOT domain allows customers to provide a definitive internet identity for their bots as well as enhancing SEO performance.

At the time of this writing .BOT domains start at $75 each and must be verified and published with a supported tool like: Amazon Lex, Botkit Studio, Dialogflow, Gupshup, Microsoft Bot Framework, or Pandorabots. You can expect support for more tools over time and if your favorite bot framework isn’t supported feel free to contact us here: [email protected].

Below, I’ll walk through the experience of registering and provisioning a domain for my bot, whereml.bot. Then we’ll look at setting up the domain as a hosted zone in Amazon Route 53. Let’s get started.

Registering a .BOT domain

First, I’ll head over to https://amazonregistry.com/bot, type in a new domain, and click magnifying class to make sure my domain is available and get taken to the registration wizard.

Next, I have the opportunity to choose how I want to verify my bot. I build all of my bots with Amazon Lex so I’ll select that in the drop down and get prompted for instructions specific to AWS. If I had my bot hosted somewhere else I would need to follow the unique verification instructions for that particular framework.

To verify my Lex bot I need to give the Amazon Registry permissions to invoke the bot and verify it’s existence. I’ll do this by creating an AWS Identity and Access Management (IAM) cross account role and providing the AmazonLexReadOnly permissions to that role. This is easily accomplished in the AWS Console. Be sure to provide the account number and external ID shown on the registration page.

Now I’ll add read only permissions to our Amazon Lex bots.

I’ll give my role a fancy name like DotBotCrossAccountVerifyRole and a description so it’s easy to remember why I made this then I’ll click create to create the role and be transported to the role summary page.

Finally, I’ll copy the ARN from the created role and save it for my next step.

Here I’ll add all the details of my Amazon Lex bot. If you haven’t made a bot yet you can follow the tutorial to build a basic bot. I can refer to any alias I’ve deployed but if I just want to grab the latest published bot I can pass in $LATEST as the alias. Finally I’ll click Validate and proceed to registering my domain.

Amazon Registry works with a partner EnCirca to register our domains so we’ll select them and optionally grab Site Builder. I know how to sling some HTML and Javascript together so I’ll pass on the Site Builder side of things.

 

After I click continue we’re taken to EnCirca’s website to finalize the registration and with any luck within a few minutes of purchasing and completing the registration we should receive an email with some good news:

Alright, now that we have a domain name let’s find out how to host things on it.

Using Amazon Route53 with a .BOT domain

Amazon Route 53 is a highly available and scalable DNS with robust APIs, healthchecks, service discovery, and many other features. I definitely want to use this to host my new domain. The first thing I’ll do is navigate to the Route53 console and create a hosted zone with the same name as my domain.


Great! Now, I need to take the Name Server (NS) records that Route53 created for me and use EnCirca’s portal to add these as the authoritative nameservers on the domain.

Now I just add my records to my hosted zone and I should be able to serve traffic! Way cool, I’ve got my very own .bot domain for @WhereML.

Next Steps

  • I could and should add to the security of my site by creating TLS certificates for people who intend to access my domain over TLS. Luckily with AWS Certificate Manager (ACM) this is extremely straightforward and I’ve got my subdomains and root domain verified in just a few clicks.
  • I could create a cloudfront distrobution to front an S3 static single page application to host my entire chatbot and invoke Amazon Lex with a cognito identity right from the browser.

Randall

In Case You Missed These: AWS Security Blog Posts from January, February, and March

Post Syndicated from Craig Liebendorfer original https://aws.amazon.com/blogs/security/in-case-you-missed-these-aws-security-blog-posts-from-january-february-and-march/

Image of lock and key

In case you missed any AWS Security Blog posts published so far in 2017, they are summarized and linked to below. The posts are shown in reverse chronological order (most recent first), and the subject matter ranges from protecting dynamic web applications against DDoS attacks to monitoring AWS account configuration changes and API calls to Amazon EC2 security groups.

March

March 22: How to Help Protect Dynamic Web Applications Against DDoS Attacks by Using Amazon CloudFront and Amazon Route 53
Using a content delivery network (CDN) such as Amazon CloudFront to cache and serve static text and images or downloadable objects such as media files and documents is a common strategy to improve webpage load times, reduce network bandwidth costs, lessen the load on web servers, and mitigate distributed denial of service (DDoS) attacks. AWS WAF is a web application firewall that can be deployed on CloudFront to help protect your application against DDoS attacks by giving you control over which traffic to allow or block by defining security rules. When users access your application, the Domain Name System (DNS) translates human-readable domain names (for example, www.example.com) to machine-readable IP addresses (for example, 192.0.2.44). A DNS service, such as Amazon Route 53, can effectively connect users’ requests to a CloudFront distribution that proxies requests for dynamic content to the infrastructure hosting your application’s endpoints. In this blog post, I show you how to deploy CloudFront with AWS WAF and Route 53 to help protect dynamic web applications (with dynamic content such as a response to user input) against DDoS attacks. The steps shown in this post are key to implementing the overall approach described in AWS Best Practices for DDoS Resiliency and enable the built-in, managed DDoS protection service, AWS Shield.

March 21: New AWS Encryption SDK for Python Simplifies Multiple Master Key Encryption
The AWS Cryptography team is happy to announce a Python implementation of the AWS Encryption SDK. This new SDK helps manage data keys for you, and it simplifies the process of encrypting data under multiple master keys. As a result, this new SDK allows you to focus on the code that drives your business forward. It also provides a framework you can easily extend to ensure that you have a cryptographic library that is configured to match and enforce your standards. The SDK also includes ready-to-use examples. If you are a Java developer, you can refer to this blog post to see specific Java examples for the SDK. In this blog post, I show you how you can use the AWS Encryption SDK to simplify the process of encrypting data and how to protect your encryption keys in ways that help improve application availability by not tying you to a single region or key management solution.

March 21: Updated CJIS Workbook Now Available by Request
The need for guidance when implementing Criminal Justice Information Services (CJIS)–compliant solutions has become of paramount importance as more law enforcement customers and technology partners move to store and process criminal justice data in the cloud. AWS services allow these customers to easily and securely architect a CJIS-compliant solution when handling criminal justice data, creating a durable, cost-effective, and secure IT infrastructure that better supports local, state, and federal law enforcement in carrying out their public safety missions. AWS has created several documents (collectively referred to as the CJIS Workbook) to assist you in aligning with the FBI’s CJIS Security Policy. You can use the workbook as a framework for developing CJIS-compliant architecture in the AWS Cloud. The workbook helps you define and test the controls you operate, and document the dependence on the controls that AWS operates (compute, storage, database, networking, regions, Availability Zones, and edge locations).

March 9: New Cloud Directory API Makes It Easier to Query Data Along Multiple Dimensions
Today, we made available a new Cloud Directory API, ListObjectParentPaths, that enables you to retrieve all available parent paths for any directory object across multiple hierarchies. Use this API when you want to fetch all parent objects for a specific child object. The order of the paths and objects returned is consistent across iterative calls to the API, unless objects are moved or deleted. In case an object has multiple parents, the API allows you to control the number of paths returned by using a paginated call pattern. In this blog post, I use an example directory to demonstrate how this new API enables you to retrieve data across multiple dimensions to implement powerful applications quickly.

March 8: How to Access the AWS Management Console Using AWS Microsoft AD and Your On-Premises Credentials
AWS Directory Service for Microsoft Active Directory, also known as AWS Microsoft AD, is a managed Microsoft Active Directory (AD) hosted in the AWS Cloud. Now, AWS Microsoft AD makes it easy for you to give your users permission to manage AWS resources by using on-premises AD administrative tools. With AWS Microsoft AD, you can grant your on-premises users permissions to resources such as the AWS Management Console instead of adding AWS Identity and Access Management (IAM) user accounts or configuring AD Federation Services (AD FS) with Security Assertion Markup Language (SAML). In this blog post, I show how to use AWS Microsoft AD to enable your on-premises AD users to sign in to the AWS Management Console with their on-premises AD user credentials to access and manage AWS resources through IAM roles.

March 7: How to Protect Your Web Application Against DDoS Attacks by Using Amazon Route 53 and an External Content Delivery Network
Distributed Denial of Service (DDoS) attacks are attempts by a malicious actor to flood a network, system, or application with more traffic, connections, or requests than it is able to handle. To protect your web application against DDoS attacks, you can use AWS Shield, a DDoS protection service that AWS provides automatically to all AWS customers at no additional charge. You can use AWS Shield in conjunction with DDoS-resilient web services such as Amazon CloudFront and Amazon Route 53 to improve your ability to defend against DDoS attacks. Learn more about architecting for DDoS resiliency by reading the AWS Best Practices for DDoS Resiliency whitepaper. You also have the option of using Route 53 with an externally hosted content delivery network (CDN). In this blog post, I show how you can help protect the zone apex (also known as the root domain) of your web application by using Route 53 to perform a secure redirect to prevent discovery of your application origin.

Image of lock and key

February

February 27: Now Generally Available – AWS Organizations: Policy-Based Management for Multiple AWS Accounts
Today, AWS Organizations moves from Preview to General Availability. You can use Organizations to centrally manage multiple AWS accounts, with the ability to create a hierarchy of organizational units (OUs). You can assign each account to an OU, define policies, and then apply those policies to an entire hierarchy, specific OUs, or specific accounts. You can invite existing AWS accounts to join your organization, and you can also create new accounts. All of these functions are available from the AWS Management Console, the AWS Command Line Interface (CLI), and through the AWS Organizations API.To read the full AWS Blog post about today’s launch, see AWS Organizations – Policy-Based Management for Multiple AWS Accounts.

February 23: s2n Is Now Handling 100 Percent of SSL Traffic for Amazon S3
Today, we’ve achieved another important milestone for securing customer data: we have replaced OpenSSL with s2n for all internal and external SSL traffic in Amazon Simple Storage Service (Amazon S3) commercial regions. This was implemented with minimal impact to customers, and multiple means of error checking were used to ensure a smooth transition, including client integration tests, catching potential interoperability conflicts, and identifying memory leaks through fuzz testing.

February 22: Easily Replace or Attach an IAM Role to an Existing EC2 Instance by Using the EC2 Console
AWS Identity and Access Management (IAM) roles enable your applications running on Amazon EC2 to use temporary security credentials. IAM roles for EC2 make it easier for your applications to make API requests securely from an instance because they do not require you to manage AWS security credentials that the applications use. Recently, we enabled you to use temporary security credentials for your applications by attaching an IAM role to an existing EC2 instance by using the AWS CLI and SDK. To learn more, see New! Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI. Starting today, you can attach an IAM role to an existing EC2 instance from the EC2 console. You can also use the EC2 console to replace an IAM role attached to an existing instance. In this blog post, I will show how to attach an IAM role to an existing EC2 instance from the EC2 console.

February 22: How to Audit Your AWS Resources for Security Compliance by Using Custom AWS Config Rules
AWS Config Rules enables you to implement security policies as code for your organization and evaluate configuration changes to AWS resources against these policies. You can use Config rules to audit your use of AWS resources for compliance with external compliance frameworks such as CIS AWS Foundations Benchmark and with your internal security policies related to the US Health Insurance Portability and Accountability Act (HIPAA), the Federal Risk and Authorization Management Program (FedRAMP), and other regimes. AWS provides some predefined, managed Config rules. You also can create custom Config rules based on criteria you define within an AWS Lambda function. In this post, I show how to create a custom rule that audits AWS resources for security compliance by enabling VPC Flow Logs for an Amazon Virtual Private Cloud (VPC). The custom rule meets requirement 4.3 of the CIS AWS Foundations Benchmark: “Ensure VPC flow logging is enabled in all VPCs.”

February 13: AWS Announces CISPE Membership and Compliance with First-Ever Code of Conduct for Data Protection in the Cloud
I have two exciting announcements today, both showing AWS’s continued commitment to ensuring that customers can comply with EU Data Protection requirements when using our services.

February 13: How to Enable Multi-Factor Authentication for AWS Services by Using AWS Microsoft AD and On-Premises Credentials
You can now enable multi-factor authentication (MFA) for users of AWS services such as Amazon WorkSpaces and Amazon QuickSight and their on-premises credentials by using your AWS Directory Service for Microsoft Active Directory (Enterprise Edition) directory, also known as AWS Microsoft AD. MFA adds an extra layer of protection to a user name and password (the first “factor”) by requiring users to enter an authentication code (the second factor), which has been provided by your virtual or hardware MFA solution. These factors together provide additional security by preventing access to AWS services, unless users supply a valid MFA code.

February 13: How to Create an Organizational Chart with Separate Hierarchies by Using Amazon Cloud Directory
Amazon Cloud Directory enables you to create directories for a variety of use cases, such as organizational charts, course catalogs, and device registries. Cloud Directory offers you the flexibility to create directories with hierarchies that span multiple dimensions. For example, you can create an organizational chart that you can navigate through separate hierarchies for reporting structure, location, and cost center. In this blog post, I show how to use Cloud Directory APIs to create an organizational chart with two separate hierarchies in a single directory. I also show how to navigate the hierarchies and retrieve data. I use the Java SDK for all the sample code in this post, but you can use other language SDKs or the AWS CLI.

February 10: How to Easily Log On to AWS Services by Using Your On-Premises Active Directory
AWS Directory Service for Microsoft Active Directory (Enterprise Edition), also known as Microsoft AD, now enables your users to log on with just their on-premises Active Directory (AD) user name—no domain name is required. This new domainless logon feature makes it easier to set up connections to your on-premises AD for use with applications such as Amazon WorkSpaces and Amazon QuickSight, and it keeps the user logon experience free from network naming. This new interforest trusts capability is now available when using Microsoft AD with Amazon WorkSpaces and Amazon QuickSight Enterprise Edition. In this blog post, I explain how Microsoft AD domainless logon works with AD interforest trusts, and I show an example of setting up Amazon WorkSpaces to use this capability.

February 9: New! Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI
AWS Identity and Access Management (IAM) roles enable your applications running on Amazon EC2 to use temporary security credentials that AWS creates, distributes, and rotates automatically. Using temporary credentials is an IAM best practice because you do not need to maintain long-term keys on your instance. Using IAM roles for EC2 also eliminates the need to use long-term AWS access keys that you have to manage manually or programmatically. Starting today, you can enable your applications to use temporary security credentials provided by AWS by attaching an IAM role to an existing EC2 instance. You can also replace the IAM role attached to an existing EC2 instance. In this blog post, I show how you can attach an IAM role to an existing EC2 instance by using the AWS CLI.

February 8: How to Remediate Amazon Inspector Security Findings Automatically
The Amazon Inspector security assessment service can evaluate the operating environments and applications you have deployed on AWS for common and emerging security vulnerabilities automatically. As an AWS-built service, Amazon Inspector is designed to exchange data and interact with other core AWS services not only to identify potential security findings but also to automate addressing those findings. Previous related blog posts showed how you can deliver Amazon Inspector security findings automatically to third-party ticketing systems and automate the installation of the Amazon Inspector agent on new Amazon EC2 instances. In this post, I show how you can automatically remediate findings generated by Amazon Inspector. To get started, you must first run an assessment and publish any security findings to an Amazon Simple Notification Service (SNS) topic. Then, you create an AWS Lambda function that is triggered by those notifications. Finally, the Lambda function examines the findings and then implements the appropriate remediation based on the type of issue.

February 6: How to Simplify Security Assessment Setup Using Amazon EC2 Systems Manager and Amazon Inspector
In a July 2016 AWS Blog post, I discussed how to integrate Amazon Inspector with third-party ticketing systems by using Amazon Simple Notification Service (SNS) and AWS Lambda. This AWS Security Blog post continues in the same vein, describing how to use Amazon Inspector to automate various aspects of security management. In this post, I show you how to install the Amazon Inspector agent automatically through the Amazon EC2 Systems Manager when a new Amazon EC2 instance is launched. In a subsequent post, I will show you how to update EC2 instances automatically that run Linux when Amazon Inspector discovers a missing security patch.

Image of lock and key

January

January 30: How to Protect Data at Rest with Amazon EC2 Instance Store Encryption
Encrypting data at rest is vital for regulatory compliance to ensure that sensitive data saved on disks is not readable by any user or application without a valid key. Some compliance regulations such as PCI DSS and HIPAA require that data at rest be encrypted throughout the data lifecycle. To this end, AWS provides data-at-rest options and key management to support the encryption process. For example, you can encrypt Amazon EBS volumes and configure Amazon S3 buckets for server-side encryption (SSE) using AES-256 encryption. Additionally, Amazon RDS supports Transparent Data Encryption (TDE). Instance storage provides temporary block-level storage for Amazon EC2 instances. This storage is located on disks attached physically to a host computer. Instance storage is ideal for temporary storage of information that frequently changes, such as buffers, caches, and scratch data. By default, files stored on these disks are not encrypted. In this blog post, I show a method for encrypting data on Linux EC2 instance stores by using Linux built-in libraries. This method encrypts files transparently, which protects confidential data. As a result, applications that process the data are unaware of the disk-level encryption.

January 27: How to Detect and Automatically Remediate Unintended Permissions in Amazon S3 Object ACLs with CloudWatch Events
Amazon S3 Access Control Lists (ACLs) enable you to specify permissions that grant access to S3 buckets and objects. When S3 receives a request for an object, it verifies whether the requester has the necessary access permissions in the associated ACL. For example, you could set up an ACL for an object so that only the users in your account can access it, or you could make an object public so that it can be accessed by anyone. If the number of objects and users in your AWS account is large, ensuring that you have attached correctly configured ACLs to your objects can be a challenge. For example, what if a user were to call the PutObjectAcl API call on an object that is supposed to be private and make it public? Or, what if a user were to call the PutObject with the optional Acl parameter set to public-read, therefore uploading a confidential file as publicly readable? In this blog post, I show a solution that uses Amazon CloudWatch Events to detect PutObject and PutObjectAcl API calls in near-real time and helps ensure that the objects remain private by making automatic PutObjectAcl calls, when necessary.

January 26: Now Available: Amazon Cloud Directory—A Cloud-Native Directory for Hierarchical Data
Today we are launching Amazon Cloud Directory. This service is purpose-built for storing large amounts of strongly typed hierarchical data. With the ability to scale to hundreds of millions of objects while remaining cost-effective, Cloud Directory is a great fit for all sorts of cloud and mobile applications.

January 24: New SOC 2 Report Available: Confidentiality
As with everything at Amazon, the success of our security and compliance program is primarily measured by one thing: our customers’ success. Our customers drive our portfolio of compliance reports, attestations, and certifications that support their efforts in running a secure and compliant cloud environment. As a result of our engagement with key customers across the globe, we are happy to announce the publication of our new SOC 2 Confidentiality report. This report is available now through AWS Artifact in the AWS Management Console.

January 18: Compliance in the Cloud for New Financial Services Cybersecurity Regulations
Financial regulatory agencies are focused more than ever on ensuring responsible innovation. Consequently, if you want to achieve compliance with financial services regulations, you must be increasingly agile and employ dynamic security capabilities. AWS enables you to achieve this by providing you with the tools you need to scale your security and compliance capabilities on AWS. The following breakdown of the most recent cybersecurity regulations, NY DFS Rule 23 NYCRR 500, demonstrates how AWS continues to focus on your regulatory needs in the financial services sector.

January 9: New Amazon GameDev Blog Post: Protect Multiplayer Game Servers from DDoS Attacks by Using Amazon GameLift
In online gaming, distributed denial of service (DDoS) attacks target a game’s network layer, flooding servers with requests until performance degrades considerably. These attacks can limit a game’s availability to players and limit the player experience for those who can connect. Today’s new Amazon GameDev Blog post uses a typical game server architecture to highlight DDoS attack vulnerabilities and discusses how to stay protected by using built-in AWS Cloud security, AWS security best practices, and the security features of Amazon GameLift. Read the post to learn more.

January 6: The Top 10 Most Downloaded AWS Security and Compliance Documents in 2016
The following list includes the 10 most downloaded AWS security and compliance documents in 2016. Using this list, you can learn about what other people found most interesting about security and compliance last year.

January 6: FedRAMP Compliance Update: AWS GovCloud (US) Region Receives a JAB-Issued FedRAMP High Baseline P-ATO for Three New Services
Three new services in the AWS GovCloud (US) region have received a Provisional Authority to Operate (P-ATO) from the Joint Authorization Board (JAB) under the Federal Risk and Authorization Management Program (FedRAMP). JAB issued the authorization at the High baseline, which enables US government agencies and their service providers the capability to use these services to process the government’s most sensitive unclassified data, including Personal Identifiable Information (PII), Protected Health Information (PHI), Controlled Unclassified Information (CUI), criminal justice information (CJI), and financial data.

January 4: The Top 20 Most Viewed AWS IAM Documentation Pages in 2016
The following 20 pages were the most viewed AWS Identity and Access Management (IAM) documentation pages in 2016. I have included a brief description with each link to give you a clearer idea of what each page covers. Use this list to see what other people have been viewing and perhaps to pique your own interest about a topic you’ve been meaning to research.

January 3: The Most Viewed AWS Security Blog Posts in 2016
The following 10 posts were the most viewed AWS Security Blog posts that we published during 2016. You can use this list as a guide to catch up on your blog reading or even read a post again that you found particularly useful.

January 3: How to Monitor AWS Account Configuration Changes and API Calls to Amazon EC2 Security Groups
You can use AWS security controls to detect and mitigate risks to your AWS resources. The purpose of each security control is defined by its control objective. For example, the control objective of an Amazon VPC security group is to permit only designated traffic to enter or leave a network interface. Let’s say you have an Internet-facing e-commerce website, and your security administrator has determined that only HTTP (TCP port 80) and HTTPS (TCP 443) traffic should be allowed access to the public subnet. As a result, your administrator configures a security group to meet this control objective. What if, though, someone were to inadvertently change this security group’s rules and enable FTP or other protocols to access the public subnet from any location on the Internet? That expanded access could weaken the security posture of your assets. Consequently, your administrator might need to monitor the integrity of your company’s security controls so that the controls maintain their desired effectiveness. In this blog post, I explore two methods for detecting unintended changes to VPC security groups. The two methods address not only control objectives but also control failures.

If you have questions about or issues with implementing the solutions in any of these posts, please start a new thread on the forum identified near the end of each post.

– Craig

How to Help Protect Dynamic Web Applications Against DDoS Attacks by Using Amazon CloudFront and Amazon Route 53

Post Syndicated from Holly Willey original https://aws.amazon.com/blogs/security/how-to-protect-dynamic-web-applications-against-ddos-attacks-by-using-amazon-cloudfront-and-amazon-route-53/

Using a content delivery network (CDN) such as Amazon CloudFront to cache and serve static text and images or downloadable objects such as media files and documents is a common strategy to improve webpage load times, reduce network bandwidth costs, lessen the load on web servers, and mitigate distributed denial of service (DDoS) attacks. AWS WAF is a web application firewall that can be deployed on CloudFront to help protect your application against DDoS attacks by giving you control over which traffic to allow or block by defining security rules. When users access your application, the Domain Name System (DNS) translates human-readable domain names (for example, www.example.com) to machine-readable IP addresses (for example, 192.0.2.44). A DNS service, such as Amazon Route 53, can effectively connect users’ requests to a CloudFront distribution that proxies requests for dynamic content to the infrastructure hosting your application’s endpoints.

In this blog post, I show you how to deploy CloudFront with AWS WAF and Route 53 to help protect dynamic web applications (with dynamic content such as a response to user input) against DDoS attacks. The steps shown in this post are key to implementing the overall approach described in AWS Best Practices for DDoS Resiliency and enable the built-in, managed DDoS protection service, AWS Shield.

Background

AWS hosts CloudFront and Route 53 services on a distributed network of proxy servers in data centers throughout the world called edge locations. Using the global Amazon network of edge locations for application delivery and DNS service plays an important part in building a comprehensive defense against DDoS attacks for your dynamic web applications. These web applications can benefit from the increased security and availability provided by CloudFront and Route 53 as well as improving end users’ experience by reducing latency.

The following screenshot of an Amazon.com webpage shows how static and dynamic content can compose a dynamic web application that is delivered via HTTPS protocol for the encryption of user page requests as well as the pages that are returned by a web server.

Screenshot of an Amazon.com webpage with static and dynamic content

The following map shows the global Amazon network of edge locations available to serve static content and proxy requests for dynamic content back to the origin as of the writing of this blog post. For the latest list of edge locations, see AWS Global Infrastructure.

Map showing Amazon edge locations

How AWS Shield, CloudFront, and Route 53 work to help protect against DDoS attacks

To help keep your dynamic web applications available when they are under DDoS attack, the steps in this post enable AWS Shield Standard by configuring your applications behind CloudFront and Route 53. AWS Shield Standard protects your resources from common, frequently occurring network and transport layer DDoS attacks. Attack traffic can be geographically isolated and absorbed using the capacity in edge locations close to the source. Additionally, you can configure geographical restrictions to help block attacks originating from specific countries.

The request-routing technology in CloudFront connects each client to the nearest edge location, as determined by continuously updated latency measurements. HTTP and HTTPS requests sent to CloudFront can be monitored, and access to your application resources can be controlled at edge locations using AWS WAF. Based on conditions that you specify in AWS WAF, such as the IP addresses that requests originate from or the values of query strings, traffic can be allowed, blocked, or allowed and counted for further investigation or remediation. The following diagram shows how static and dynamic web application content can originate from endpoint resources within AWS or your corporate data center. For more details, see How CloudFront Delivers Content and How CloudFront Works with Regional Edge Caches.

Route 53 DNS requests and subsequent application traffic routed through CloudFront are inspected inline. Always-on monitoring, anomaly detection, and mitigation against common infrastructure DDoS attacks such as SYN/ACK floods, UDP floods, and reflection attacks are built into both Route 53 and CloudFront. For a review of common DDoS attack vectors, see How to Help Prepare for DDoS Attacks by Reducing Your Attack Surface. When the SYN flood attack threshold is exceeded, SYN cookies are activated to avoid dropping connections from legitimate clients. Deterministic packet filtering drops malformed TCP packets and invalid DNS requests, only allowing traffic to pass that is valid for the service. Heuristics-based anomaly detection evaluates attributes such as type, source, and composition of traffic. Traffic is scored across many dimensions, and only the most suspicious traffic is dropped. This method allows you to avoid false positives while protecting application availability.

Route 53 is also designed to withstand DNS query floods, which are real DNS requests that can continue for hours and attempt to exhaust DNS server resources. Route 53 uses shuffle sharding and anycast striping to spread DNS traffic across edge locations and help protect the availability of the service.

The next four sections provide guidance about how to deploy CloudFront, Route 53, AWS WAF, and, optionally, AWS Shield Advanced.

Deploy CloudFront

To take advantage of application delivery with DDoS mitigations at the edge, start by creating a CloudFront distribution and configuring origins:

  1. Sign in to the AWS Management Console and open the CloudFront console
  2. Choose Create Distribution.
  3. On the first page of the Create Distribution Wizard, in the Web section, choose Get Started.
  4. Specify origin settings for the distribution. The following screenshot of the CloudFront console shows an example CloudFront distribution configured with an Elastic Load Balancing load balancer origin, as shown in the previous diagram. I have configured this example to set the Origin SSL Protocols to use TLSv1.2 and the Origin Protocol Policy to HTTP Only. For more information about creating an HTTPS listener for your ELB load balancer and requesting a certificate from AWS Certificate Manager (ACM), see Getting Started with Elastic Load BalancingSupported Regions, and Requiring HTTPS for Communication Between CloudFront and Your Custom Origin.
  1. Specify cache behavior settings for the distribution, as shown in the following screenshot. You can configure each URL path pattern with a set of associated cache behaviors. For dynamic web applications, set the Minimum TTL to 0 so that CloudFront will make a GET request with an If-Modified-Since header back to the origin. When CloudFront proxies traffic to the origin from edge locations and back, multiple concurrent requests for the same object are collapsed into a single request. The request is sent over a persistent connection from the edge location to the region over networks monitored by AWS. The use of a large initial TCP window size in CloudFront maximizes the available bandwidth, and TCP Fast Open (TFO) reduces latency.
  2. To ensure that all traffic to CloudFront is encrypted and to enable SSL termination from clients at global edge locations, specify Redirect HTTP to HTTPS for Viewer Protocol Policy. Moving SSL termination to CloudFront offloads computationally expensive SSL negotiation, helps mitigate SSL abuse, and reduces latency with the use of OCSP stapling and session tickets. For more information about options for serving HTTPS requests, see Choosing How CloudFront Serves HTTPS Requests. For dynamic web applications, set Allowed HTTP Methods to include all methods, set Forward Headers to All, and for Query String Forwarding and Caching, choose Forward all, cache based on all.
  1. Specify distribution settings for the distribution, as shown in the following screenshot. Enter your domain names in the Alternate Domain Names box and choose Custom SSL Certificate.
  2. Choose Create Distribution. Note the x.cloudfront.net Domain Name of the distribution. In the next section, you will configure Route 53 to route traffic to this CloudFront distribution domain name.

Configure Route 53

When you created a web distribution in the previous section, CloudFront assigned a domain name to the distribution, such as d111111abcdef8.cloudfront.net. You can use this domain name in the URLs for your content, such as: http://d111111abcdef8.cloudfront.net/logo.jpg.

Alternatively, you might prefer to use your own domain name in URLs, such as: http://example.com/logo.jpg. You can accomplish this by creating a Route 53 alias resource record set that routes dynamic web application traffic to your CloudFront distribution by using your domain name. Alias resource record sets are virtual records specific to Route 53 that are used to map alias resource record sets for your domain to your CloudFront distribution. Alias resource record sets are similar to CNAME records except there is no charge for DNS queries to Route 53 alias resource record sets mapped to AWS services. Alias resource record sets are also not visible to resolvers, and they can be created for the root domain (zone apex) as well as subdomains.

A hosted zone, similar to a DNS zone file, is a collection of records that belongs to a single parent domain name. Each hosted zone has four nonoverlapping name servers in a delegation set. If a DNS query is dropped, the client automatically retries the next name server. If you have not already registered a domain name and have not configured a hosted zone for your domain, complete these two prerequisite steps before proceeding:

After you have registered your domain name and configured your public hosted zone, follow these steps to create an alias resource record set:

  1. Sign in to the AWS Management Console and open the Route 53 console.
  2. In the navigation pane, choose Hosted Zones.
  3. Choose the name of the hosted zone for the domain that you want to use to route traffic to your CloudFront distribution.
  4. Choose Create Record Set.
  5. Specify the following values:
    • Name – Type the domain name that you want to use to route traffic to your CloudFront distribution. The default value is the name of the hosted zone. For example, if the name of the hosted zone is example.com and you want to use acme.example.com to route traffic to your distribution, type acme.
    • Type – Choose A – IPv4 address. If IPv6 is enabled for the distribution and you are creating a second resource record set, choose AAAA – IPv6 address.
    • Alias – Choose Yes.
    • Alias Target – In the CloudFront distributions section, choose the name that CloudFront assigned to the distribution when you created it.
    • Routing Policy – Accept the default value of Simple.
    • Evaluate Target Health – Accept the default value of No.
  6. Choose Create.
  7. If IPv6 is enabled for the distribution, repeat Steps 4 through 6. Specify the same settings except for the Type field, as explained in Step 5.

The following screenshot of the Route 53 console shows a Route 53 alias resource record set that is configured to map a domain name to a CloudFront distribution.

If your dynamic web application requires geo redundancy, you can use latency-based routing in Route 53 to run origin servers in different AWS regions. Route 53 is integrated with CloudFront to collect latency measurements from each edge location. With Route 53 latency-based routing, each CloudFront edge location goes to the region with the lowest latency for the origin fetch.

Enable AWS WAF

AWS WAF is a web application firewall that helps detect and mitigate web application layer DDoS attacks by inspecting traffic inline. Application layer DDoS attacks use well-formed but malicious requests to evade mitigation and consume application resources. You can define custom security rules (also called web ACLs) that contain a set of conditions, rules, and actions to block attacking traffic. After you define web ACLs, you can apply them to CloudFront distributions, and web ACLs are evaluated in the priority order you specified when you configured them. Real-time metrics and sampled web requests are provided for each web ACL.

You can configure AWS WAF whitelisting or blacklisting in conjunction with CloudFront geo restriction to prevent users in specific geographic locations from accessing your application. The AWS WAF API supports security automation such as blacklisting IP addresses that exceed request limits, which can be useful for mitigating HTTP flood attacks. Use the AWS WAF Security Automations Implementation Guide to implement rate-based blacklisting.

The following diagram shows how the (a) flow of CloudFront access logs files to an Amazon S3 bucket (b) provides the source data for the Lambda log parser function (c) to identify HTTP flood traffic and update AWS WAF web ACLs. As CloudFront receives requests on behalf of your dynamic web application, it sends access logs to an S3 bucket, triggering the Lambda log parser. The Lambda function parses CloudFront access logs to identify suspicious behavior, such as an unusual number of requests or errors, and it automatically updates your AWS WAF rules to block subsequent requests from the IP addresses in question for a predefined amount of time that you specify.

Diagram of the process

In addition to automated rate-based blacklisting to help protect against HTTP flood attacks, prebuilt AWS CloudFormation templates are available to simplify the configuration of AWS WAF for a proactive application-layer security defense. The following diagram provides an overview of CloudFormation template input into the creation of the CommonAttackProtection stack that includes AWS WAF web ACLs used to block, allow, or count requests that meet the criteria defined in each rule.

Diagram of CloudFormation template input into the creation of the CommonAttackProtection stack

To implement these application layer protections, follow the steps in Tutorial: Quickly Setting Up AWS WAF Protection Against Common Attacks. After you have created your AWS WAF web ACLs, you can assign them to your CloudFront distribution by updating the settings.

  1. Sign in to the AWS Management Console and open the CloudFront console.
  2. Choose the link under the ID column for your CloudFront distribution.
  3. Choose Edit under the General
  4. Choose your AWS WAF Web ACL from the drop-down
  5. Choose Yes, Edit.

Activate AWS Shield Advanced (optional)

Deploying CloudFront, Route 53, and AWS WAF as described in this post enables the built-in DDoS protections for your dynamic web applications that are included with AWS Shield Standard. (There is no upfront cost or charge for AWS Shield Standard beyond the normal pricing for CloudFront, Route 53, and AWS WAF.) AWS Shield Standard is designed to meet the needs of many dynamic web applications.

For dynamic web applications that have a high risk or history of frequent, complex, or high volume DDoS attacks, AWS Shield Advanced provides additional DDoS mitigation capacity, attack visibility, cost protection, and access to the AWS DDoS Response Team (DRT). For more information about AWS Shield Advanced pricing, see AWS Shield Advanced pricing. To activate advanced protection services, follow these steps:

  1. Sign in to the AWS Management Console and open the AWS WAF console.
  2. If this is your first time signing in to the AWS WAF console, choose Get started with AWS Shield Advanced. Otherwise, choose Protected resources.
  3. Choose Activate AWS Shield Advanced.
  4. Choose the resource type and resource to protect.
  5. For Name, enter a friendly name that will help you identify the AWS resources that are protected. For example, My CloudFront AWS Shield Advanced distributions.
  6. (Optional) For Web DDoS attack, select Enable. You will be prompted to associate an existing web ACL with these resources, or create a new ACL if you don’t have any yet.
  7. Choose Add DDoS protection.

Summary

In this blog post, I outline the steps to deploy CloudFront and configure Route 53 in front of your dynamic web application to leverage the global Amazon network of edge locations for DDoS resiliency. The post also provides guidance about enabling AWS WAF for application layer traffic monitoring and automated rules creation to block malicious traffic. I also cover the optional steps to activate AWS Shield Advanced, which helps build a more comprehensive defense against DDoS attacks for your dynamic web applications.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing this solution, please open a new thread on the AWS WAF forum.

– Holly

How to Protect Your Web Application Against DDoS Attacks by Using Amazon Route 53 and an External Content Delivery Network

Post Syndicated from Shawn Marck original https://aws.amazon.com/blogs/security/how-to-protect-your-web-application-against-ddos-attacks-by-using-amazon-route-53-and-a-content-delivery-network/

Distributed Denial of Service (DDoS) attacks are attempts by a malicious actor to flood a network, system, or application with more traffic, connections, or requests than it is able to handle. To protect your web application against DDoS attacks, you can use AWS Shield, a DDoS protection service that AWS provides automatically to all AWS customers at no additional charge. You can use AWS Shield in conjunction with DDoS-resilient web services such as Amazon CloudFront and Amazon Route 53 to improve your ability to defend against DDoS attacks. Learn more about architecting for DDoS resiliency by reading the AWS Best Practices for DDoS Resiliency whitepaper.

In this blog post, I show how you can help protect the zone apex (also known as the root domain) of your web application by using Route 53 to perform a secure redirect to your externally hosted content delivery network (CDN) distribution.

Background

When browsing the Internet, a user might type example.com instead of www.example.com. To make sure these requests are routed properly, it is necessary to create a Route 53 alias resource record set for the zone apex. For example.com, this would be an alias resource record set without any subdomain (www) defined. With Route 53, you can use an alias resource record set to point www or your zone apex directly at a CloudFront distribution. As a result, anyone resolving example.com or www.example.com will see only the CloudFront distribution. This makes it difficult for a malicious actor to find and attack your application origin.

You can also use Route 53 to route end users to a CDN outside AWS. The CDN provider will ask you to create a CNAME alias resource record set to point www.example.com to your CDN distribution’s hostname. Unfortunately, it is not possible to point your zone apex with a CNAME alias resource record set because a zone apex cannot be a CNAME. As a result, users who type example.com without www will not be routed to your web application unless you point the zone apex directly to your application origin.

The benefit of a secure redirect from the zone apex to www is that it helps protect your origin from being exposed to direct attacks.

Solution overview

The following solution diagram shows the AWS services this solution uses and how the solution uses them.

Diagram showing how AWS services are used in this post's solution

Here is how the process works:

  1. A user’s browser makes a DNS request to Route 53.
  2. Route 53 has a hosted zone for the example.com domain.
  3. The hosted zone serves the record:
    1. If the request is for the apex zone, the alias resource record set for the CloudFront distribution is served.
    2. If the request is for the www subdomain, the CNAME for the externally hosted CDN is served.
  4. CloudFront forwards the request to Amazon S3.
  5. S3 performs a secure redirect from example.com to www.example.com.

Note: All of the steps in this blog post’s solution use example.com as a domain name. You must replace this domain name with your own domain name.

AWS services used in this solution

You will use three AWS services in this walkthrough to build your zone apex–to–external CDN distribution redirect:

  • Route 53 – This post assumes that you are already using Route 53 to route users to your web application, which provides you with protection against common DDoS attacks, including DNS query floods. To learn more about migrating to Route 53, see Getting Started with Amazon Route 53.
  • S3 – S3 is object storage with a simple web service interface to store and retrieve any amount of data from anywhere on the web. S3 also allows you to configure a bucket for website hosting. In this walkthrough, you will use the S3 website hosting feature to redirect users from example.com to www.example.com, which points to your externally hosted CDN.
  • CloudFront – When architecting your application for DDoS resiliency, it is important to protect origin resources, such as S3 buckets, from discovery by a malicious actor. This is known as obfuscation. In this walkthrough, you will use a CloudFront distribution to obfuscate your S3 bucket.

Prerequisites

The solution in this blog post assumes that you already have the following components as part of your architecture:

  1. A Route 53 hosted zone for your domain.
  2. A CNAME alias resource record set pointing to your CDN.

Deploy the solution

In this solution, you:

  1. Create an S3 bucket with HTTP redirection. This allows requests made to your zone apex to be redirected to your www subdomain.
  2. Create and configure a CloudFront web distribution. I use a CloudFront distribution in front of my S3 web redirect so that I can leverage the advanced DDoS protection and scale that is native to CloudFront.
  3. Configure an alias resource record set in your hosted zone. Alias resource record sets are similar to CNAME records, but you can set them at the zone apex.
  4. Validate that the redirect is working.

Step 1: Create an S3 bucket with HTTP redirection

The following steps show how to configure your S3 bucket as a static website that will perform HTTP redirects to your www URL:

  1. Open the AWS Management Console. Navigate to the S3 console and create an S3 bucket in the region of your choice.
  2. Configure static website hosting to redirect all requests to another host name:
    1. Choose the S3 bucket you just created and then choose Properties.
      Screenshot showing choosing the S3 bucket and the Properties button
    2. Choose Static Website Hosting.
      Screenshot of choosing Static Website Hosting
    3. Choose Redirect all requests to another host name, and type your zone apex (root domain) in the Redirect all requests to box, as shown in the following screenshot.
      Screenshot of Static Website Hosting settings to choose

Note: At the top of this tab, you will see an endpoint. Copy the endpoint because you will need it in Step 2 when you configure the CloudFront distribution. In this example, the endpoint is example-com.s3-website-us-east-1.amazonaws.com.

Step 2: Create and configure a CloudFront web distribution

The following steps show how to create a CloudFront web distribution that protects the S3 bucket:

  1. From the AWS Management Console, choose CloudFront.
  2. On the first page of the Create Distribution Wizard, in the Web section, choose Get Started.
  3. The Create Distribution page has many values you can specify. For this walkthrough, you need to specify only two settings:
    1. Origin Settings:
      • Origin Domain Name –When you click in this box, a menu appears with AWS resources you can choose. Choose the S3 bucket you created in Step 1, or paste the endpoint URL you copied in Step 1. In this example, the endpoint is example-com.s3-website-us-east-1.amazonaws.com.
        Screenshot of Origin Domain Name
    1. Distribution Settings:
      • Alternate Domain Names (CNAMEs) – Type the root domain (for this walkthrough, it is www.example.com).
        Screenshot of Alternate Domain Names
  4. Click Create Distribution.
  5. Wait for the CloudFront distribution to deploy completely before proceeding to Step 3. After CloudFront creates your distribution, the value of the Status column for your distribution will change from InProgress to Deployed. The distribution is then ready to process requests.

Step 3: Configure an alias resource record set in your hosted zone

In this step, you use Route 53 to configure an alias resource record set for your zone apex that resolves to the CloudFront distribution you made in Step 2:

  1. From the AWS Management Console, choose Route 53 and choose Hosted zones.
  2. On the Hosted zones page, choose your domain. This takes you to the Record sets page.
    Screenshot of choosing the domain on the Hosted zones page
  3. Click Create Record Set.
  4. Leave the Name box blank and choose Alias: Yes.
  5. Click the Alias Target box, and choose the CloudFront distribution you created in Step 2. If the distribution does not appear in the list automatically, you can copy and paste the name exactly as it appears in the CloudFront console.
  6. Click Create.
    Screenshot of creating the record set

Step 4: Validate that the redirect is working

To confirm that you have correctly configured all components of this solution and your zone apex is redirecting to the www domain as expected, open a browser and navigate to your zone apex. In this walkthrough, the zone apex is http://example.com and it should redirect automatically to http://www.example.com.

Summary

In this post, I showed how you can help protect your web application against DDoS attacks by using Route 53 to perform a secure redirect to your externally hosted CDN distribution. This helps protect your origin from being exposed to direct DDoS attacks.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about implementing the solution in this blog post, start a new thread in the Route 53 forum.

– Shawn