Tag Archives: ror

Eevee mugshot set for Doom

Post Syndicated from Eevee original https://eev.ee/release/2017/11/23/eevee-mugshot-set-for-doom/

Screenshot of Industrial Zone from Doom II, with an Eevee face replacing the usual Doom marine in the status bar

A full replacement of Doomguy’s vast array of 42 expressions.

You can get it yourself if you want to play Doom as me, for some reason? It does nothing but replace a few sprites, so it works with any Doom flavor (including vanilla) on 1, 2, or Final. Just run Doom with -file eeveemug.wad. With GZDoom, you can load it automatically.


I don’t entirely know why I did this. I drew the first one on a whim, then realized there was nothing really stopping me from making a full set, so I spent a day doing that.

The funny thing is that I usually play Doom with ZDoom’s “alternate” HUD. It’s a full-screen overlay rather than a huge bar, and — crucially — it does not show the mugshot. It can’t even be configured to show the mugshot. As far as I’m aware, it can’t even be modded to show the mugshot. So I have to play with the OG status bar if I want to actually use the thing I made.

Preview of the Eevee mugshot sprites arranged in a grid, where the Eevee becomes more beaten up in each subsequent column

I’m pretty happy with the results overall! I think I did a decent job emulating the Doom “surreal grit” style. I did the shading with Aseprite‘s shading mode — instead of laying down a solid color, it shifts pixels along a ramp of colors you select every time you draw over them. Doom’s palette has a lot of browns, so I made a ramp out of all of them and kept going over furry areas, nudging pixels into being lighter or darker, until I liked the texture. It was a lot like making a texture in a sketch with a lot of scratchy pencil strokes.

I also gleaned some interesting things about smoothness and how the eye interprets contours? I tried to explain this on Twitter and had a hell of a time putting it into words, but the short version is that it’s amazing to see the difference a single misplaced pixel can make, especially as you slide that pixel between dark and light.


Doom's palette of 256 colors, many of which are very long gradients of reds and browns

Speaking of which, Doom’s palette is incredibly weird to work with. Thank goodness Eevees are brown! The game does have to draw arbitrary levels of darkness all with the same palette, which partly explains the number of dark colors and gradients — but I believe a number of the colors are exact duplicates, so close they might as well be duplicates, or completely unused in stock Doom assets. I guess they had no reason to optimize for people trying to add arbitrary art to the game 25 years later, though. (And nowadays, GZDoom includes a truecolor software renderer, so the palette is becoming less and less important.)

I originally wanted the god mode sprite to be a Sylveon, but Sylveon is made of pink and azure and blurple, and I don’t think I could’ve pulled it off with this set of colors. I even struggled with the color of the mane a bit — I usually color it with pretty pale colors, but Doom only has a couple of those, and they’re very saturated. I ended up using a lot more dark yellows than I would normally, and thankfully it worked out pretty well.

The most significant change I made between the original sprite and the final set was the eye color:

A comparison between an original Doom mugshot sprite, the first sprite I drew, and how it ended up

(This is STFST20, a frame from the default three-frame “glacing around” animation that plays when the player has between 40 and 59 health. Doom Wiki has a whole article on the mugshot if you’re interested.)

The blue eyes in my original just do not work at all. The Doom palette doesn’t have a lot of subtle colors, and its blues in particular are incredibly bad. In the end, I made the eyes basically black, though with a couple pixels of very dark blue in them.

After I decided to make the full set, I started by making a neutral and completely healthy front pose, then derived the others from that (with a very complicated system of layers). You can see some of the side effects of that here: the face doesn’t actually turn when glancing around, because hoo boy that would’ve been a lot of work, and so the cheek fluff is visible on both sides.

I also notice that there are two columns of identical pixels in each eye! I fixed that in the glance to the right, but must’ve forgotten about it here. Oh, well; I didn’t even notice until I zoomed in just now.

A general comparison between the Doom mugshots and my Eevee ones, showing each pose in its healthy state plus the neutral pose in every state of deterioration

The original sprites might not be quite aligned correctly in the above image. The available space in the status bar is 35×31, of which a couple pixels go to an inset border, leaving 33×30. I drew all of my sprites at that size, but the originals are all cropped and have varying offsets (part of the Doom sprite format). I extremely can’t be assed to check all of those offsets for over a dozen sprites, so I just told ImageMagick to center them. (I only notice right now that some of the original sprites are even a full 31 pixels tall and draw over the top border that I was so careful to stay out of!)

Anyway, this is a representative sample of the Doom mugshot poses.

The top row shows all eight frames at full health. The first three are the “idle” state, drawn when nothing else is going on; the sprite usually faces forwards, but glances around every so often at random. The forward-facing sprite is the one I finalized first.

I tried to take a lot of cues from the original sprite, seeing as I wanted to match the style. I’d never tried drawing a sprite with a large palette and a small resolution before, and the first thing that struck me was Doomguy’s lips — the upper lip, lips themselves, and shadow under the lower lip are all created with only one row of pixels each. I thought that was amazing. Now I even kinda wish I’d exaggerated that effect a bit more, but I was wary of going too dark when there’s a shadow only a couple pixels away. I suppose Doomguy has the advantage of having, ah, a chin.

I did much the same for the eyebrows, which was especially necessary because Doomguy has more of a forehead than my Eevee does. I probably could’ve exaggerated those a bit more, as well! Still, I love how they came out — especially in the simple looking-around frames, where even a two-pixel eyebrow raise is almost comically smug.

The fourth frame is a wild-ass grin (even named STFEVL0), which shows for a short time after picking up a new weapon. Come to think of it, that’s a pretty rare occurrence when playing straight through one of the Doom games; you keep your weapons between levels.

The fifth through seventh are also a set. If the player takes damage, the status bar will briefly show one of these frames to indicate where the damage is coming from. You may notice that where Doomguy bravely faces the source of the pain, I drew myself wincing and recoiling away from it.

The middle frame of that set also appears while the player is firing continuously (regardless of damage), so I couldn’t really make it match the left and right ones. I like the result anyway. It was also great fun figuring out the expressions with the mouth — that’s another place where individual pixels make a huge difference.

Finally, the eighth column is the legendary “ouch” face, which appears when the player takes more than 20 damage at once. It may look completely alien to you, because vanilla Doom has a bug that only shows this face when the player gains 20 or more health while taking damage. This is vanishingly rare (though possible!), so the frame virtually never appears in vanilla Doom. Lots of source ports have fixed this bug, making the ouch face it a bit better known, but I usually play without the mugshot visible so it still looks super weird to me. I think my own spin on it is a bit less, ah, body horror?

The second row shows deterioration. It is pretty weird drawing yourself getting beaten up.

A lot of Doomguy’s deterioration is in the form of blood dripping from under his hair, which I didn’t think would translate terribly well to a character without hair. Instead, I went a little cartoony with it, adding bandages here and there. I had a little bit of a hard time with the bloodshot eyes at this resolution, which I realize as I type it is a very poor excuse when I had eyes three times bigger than Doomguy’s. I do love the drooping ears, with the possible exception of the fifth state, which I’m not sure is how that would actually look…? Oh well. I also like the bow becoming gradually unravelled, eventually falling off entirely when you die.

Oh, yes, the sixth frame there (before the gap) is actually for a dead player. Doomguy’s bleeding becomes markedly more extreme here, but again that didn’t really work for me, so I went a little sillier with it. A little. It’s still pretty weird drawing yourself dead.

That leaves only god mode, which is incredible. I love that glow. I love the faux whisker shapes it makes. I love how it fades into the background. I love that 100% pure “oh this is pretty good” smile. It all makes me want to just play Doom in god mode forever.

Now that I’ve looked closely at these sprites again, I spy a good half dozen little inconsistencies and nitpicks, which I’m going to refrain from spelling out. I did do this in only a day, and I think it came out pretty dang well considering.

Maybe I’ll try something else like this in the future. Not quite sure what, though; there aren’t many small and self-contained sets of sprites like this in Doom. Monsters are several times bigger and have a zillion different angles. Maybe some pickups, which only have one frame?


Hmm. Parting thought: I’m not quite sure where I should host this sort of one-off thing. It arguably belongs on Itch, but seems really out of place alongside entire released games. It also arguably belongs on the idgames archive, but I’m hesitant to put it there because it’s such an obscure thing of little interest to a general audience. At the moment it’s just a file I’ve uploaded to wherever on my own space, but I now have three little Doom experiments with no real permanent home.

Serverless Automated Cost Controls, Part1

Post Syndicated from Shankar Ramachandran original https://aws.amazon.com/blogs/compute/serverless-automated-cost-controls-part1/

This post courtesy of Shankar Ramachandran, Pubali Sen, and George Mao

In line with AWS’s continual efforts to reduce costs for customers, this series focuses on how customers can build serverless automated cost controls. This post provides an architecture blueprint and a sample implementation to prevent budget overruns.

This solution uses the following AWS products:

  • AWS Budgets – An AWS Cost Management tool that helps customers define and track budgets for AWS costs, and forecast for up to three months.
  • Amazon SNS – An AWS service that makes it easy to set up, operate, and send notifications from the cloud.
  • AWS Lambda – An AWS service that lets you run code without provisioning or managing servers.

You can fine-tune a budget for various parameters, for example filtering by service or tag. The Budgets tool lets you post notifications on an SNS topic. A Lambda function that subscribes to the SNS topic can act on the notification. Any programmatically implementable action can be taken.

The diagram below describes the architecture blueprint.

In this post, we describe how to use this blueprint with AWS Step Functions and IAM to effectively revoke the ability of a user to start new Amazon EC2 instances, after a budget amount is exceeded.

Freedom with guardrails

AWS lets you quickly spin up resources as you need them, deploying hundreds or even thousands of servers in minutes. This means you can quickly develop and roll out new applications. Teams can experiment and innovate more quickly and frequently. If an experiment fails, you can always de-provision those servers without risk.

This improved agility also brings in the need for effective cost controls. Your Finance and Accounting department must budget, monitor, and control the AWS spend. For example, this could be a budget per project. Further, Finance and Accounting must take appropriate actions if the budget for the project has been exceeded, for example. Call it “freedom with guardrails” – where Finance wants to give developers freedom, but with financial constraints.

Architecture

This section describes how to use the blueprint introduced earlier to implement a “freedom with guardrails” solution.

  1. The budget for “Project Beta” is set up in Budgets. In this example, we focus on EC2 usage and identify the instances that belong to this project by filtering on the tag Project with the value Beta. For more information, see Creating a Budget.
  2. The budget configuration also includes settings to send a notification on an SNS topic when the usage exceeds 100% of the budgeted amount. For more information, see Creating an Amazon SNS Topic for Budget Notifications.
  3. The master Lambda function receives the SNS notification.
  4. It triggers execution of a Step Functions state machine with the parameters for completing the configured action.
  5. The action Lambda function is triggered as a task in the state machine. The function interacts with IAM to effectively remove the user’s permissions to create an EC2 instance.

This decoupled modular design allows for extensibility.  New actions (serially or in parallel) can be added by simply adding new steps.

Implementing the solution

All the instructions and code needed to implement the architecture have been posted on the Serverless Automated Cost Controls GitHub repo. We recommend that you try this first in a Dev/Test environment.

This implementation description can be broken down into two parts:

  1. Create a solution stack for serverless automated cost controls.
  2. Verify the solution by testing the EC2 fleet.

To tie this back to the “freedom with guardrails” scenario, the Finance department performs a one-time implementation of the solution stack. To simulate resources for Project Beta, the developers spin up the test EC2 fleet.

Prerequisites

There are two prerequisites:

  • Make sure that you have the necessary IAM permissions. For more information, see the section titled “Required IAM permissions” in the README.
  • Define and activate a cost allocation tag with the key Project. For more information, see Using Cost Allocation Tags. It can take up to 12 hours for the tags to propagate to Budgets.

Create resources

The solution stack includes creating the following resources:

  • Three Lambda functions
  • One Step Functions state machine
  • One SNS topic
  • One IAM group
  • One IAM user
  • IAM policies as needed
  • One budget

Two of the Lambda functions were described in the previous section, to a) receive the SNS notification and b) trigger the Step Functions state machine. Another Lambda function is used to create the budget, as a custom AWS CloudFormation resource. The SNS topic connects Budgets with Lambda function A. Lambda function B is configured as a task in Step Functions. A budget for $2 is created which is filtered by Service: EC2 and Tag: Project, Beta. A test IAM group and user is created to enable you to validate this Cost Control Solution.

To create the serverless automated cost control solution stack, choose the button below. It takes few minutes to spin up the stack. You can monitor the progress in the CloudFormation console.

When you see the CREATE_COMPLETE status for the stack you had created, choose Outputs. Copy the following four values that you need later:

  • TemplateURL
  • UserName
  • SignInURL
  • Password

Verify the stack

The next step is to verify the serverless automated cost controls solution stack that you just created. To do this, spin up an EC2 fleet of t2.micro instances, representative of the resources needed for Project Beta, and tag them with Project, Beta.

  1. Browse to the SignInURL, and log in using the UserName and Password values copied on from the stack output.
  2. In the CloudFormation console, choose Create Stack.
  3. For Choose a template, select Choose an Amazon S3 template URL and paste the TemplateURL value from the preceding section. Choose Next.
  4. Give this stack a name, such as “testEc2FleetForProjectBeta”. Choose Next.
  5. On the Specify Details page, enter parameters such as the UserName and Password copied in the previous section. Choose Next.
  6. Ignore any errors related to listing IAM roles. The test user has a minimal set of permissions that is just sufficient to spin up this test stack (in line with security best practices).
  7. On the Options page, choose Next.
  8. On the Review page, choose Create. It takes a few minutes to spin up the stack, and you can monitor the progress in the CloudFormation console. 
  9. When you see the status “CREATE_COMPLETE”, open the EC2 console to verify that four t2.micro instances have been spun up, with the tag of Project, Beta.

The hourly cost for these instances depends on the region in which they are running. On the average (irrespective of the region), you can expect the aggregate cost for this EC2 fleet to exceed the set $2 budget in 48 hours.

Verify the solution

The first step is to identify the test IAM group that was created in the previous section. The group should have “projectBeta” in the name, prepended with the CloudFormation stack name and appended with an alphanumeric string. Verify that the managed policy associated is: “EC2FullAccess”, which indicates that the users in this group have unrestricted access to EC2.

There are two stages of verification for this serverless automated cost controls solution: simulating a notification and waiting for a breach.

Simulated notification

Because it takes at least a few hours for the aggregate cost of the EC2 fleet to breach the set budget, you can verify the solution by simulating the notification from Budgets.

  1. Log in to the SNS console (using your regular AWS credentials).
  2. Publish a message on the SNS topic that has “budgetNotificationTopic” in the name. The complete name is appended by the CloudFormation stack identifier.  
  3. Copy the following text as the body of the notification: “This is a mock notification”.
  4. Choose Publish.
  5. Open the IAM console to verify that the policy for the test group has been switched to “EC2ReadOnly”. This prevents users in this group from creating new instances.
  6. Verify that the test user created in the previous section cannot spin up new EC2 instances.  You can log in as the test user and try creating a new EC2 instance (via the same CloudFormation stack or the EC2 console). You should get an error message indicating that you do not have the necessary permissions.
  7. If you are proceeding to stage 2 of the verification, then you must switch the permissions back to “EC2FullAccess” for the test group, which can be done in the IAM console.

Automatic notification

Within 48 hours, the aggregate cost of the EC2 fleet spun up in the earlier section breaches the budget rule and triggers an automatic notification. This results in the permissions getting switched out, just as in the simulated notification.

Clean up

Use the following steps to delete your resources and stop incurring costs.

  1. Open the CloudFormation console.
  2. Delete the EC2 fleet by deleting the appropriate stack (for example, delete the stack named “testEc2FleetForProjectBeta”).                                               
  3. Next, delete the “costControlStack” stack.                                                                                                                                                    

Conclusion

Using Lambda in tandem with Budgets, you can build Serverless automated cost controls on AWS. Find all the resources (instructions, code) for implementing the solution discussed in this post on the Serverless Automated Cost Controls GitHub repo.

Stay tuned to this series for more tips about building serverless automated cost controls. In the next post, we discuss using smart lighting to influence developer behavior and describe a solution to encourage cost-aware development practices.

If you have questions or suggestions, please comment below.

 

How to Patch, Inspect, and Protect Microsoft Windows Workloads on AWS—Part 2

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-inspect-and-protect-microsoft-windows-workloads-on-aws-part-2/

Yesterday in Part 1 of this blog post, I showed you how to:

  1. Launch an Amazon EC2 instance with an AWS Identity and Access Management (IAM) role, an Amazon Elastic Block Store (Amazon EBS) volume, and tags that Amazon EC2 Systems Manager (Systems Manager) and Amazon Inspector use.
  2. Configure Systems Manager to install the Amazon Inspector agent and patch your EC2 instances.

Today in Steps 3 and 4, I show you how to:

  1. Take Amazon EBS snapshots using Amazon EBS Snapshot Scheduler to automate snapshots based on instance tags.
  2. Use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

To catch up on Steps 1 and 2, see yesterday’s blog post.

Step 3: Take EBS snapshots using EBS Snapshot Scheduler

In this section, I show you how to use EBS Snapshot Scheduler to take snapshots of your instances at specific intervals. To do this, I will show you how to:

  • Determine the schedule for EBS Snapshot Scheduler by providing you with best practices.
  • Deploy EBS Snapshot Scheduler by using AWS CloudFormation.
  • Tag your EC2 instances so that EBS Snapshot Scheduler backs up your instances when you want them backed up.

In addition to making sure your EC2 instances have all the available operating system patches applied on a regular schedule, you should take snapshots of the EBS storage volumes attached to your EC2 instances. Taking regular snapshots allows you to restore your data to a previous state quickly and cost effectively. With Amazon EBS snapshots, you pay only for the actual data you store, and snapshots save only the data that has changed since the previous snapshot, which minimizes your cost. You will use EBS Snapshot Scheduler to make regular snapshots of your EC2 instance. EBS Snapshot Scheduler takes advantage of other AWS services including CloudFormation, Amazon DynamoDB, and AWS Lambda to make backing up your EBS volumes simple.

Determine the schedule

As a best practice, you should back up your data frequently during the hours when your data changes the most. This reduces the amount of data you lose if you have to restore from a snapshot. For the purposes of this blog post, the data for my instances changes the most between the business hours of 9:00 A.M. to 5:00 P.M. Pacific Time. During these hours, I will make snapshots hourly to minimize data loss.

In addition to backing up frequently, another best practice is to establish a strategy for retention. This will vary based on how you need to use the snapshots. If you have compliance requirements to be able to restore for auditing, your needs may be different than if you are able to detect data corruption within three hours and simply need to restore to something that limits data loss to five hours. EBS Snapshot Scheduler enables you to specify the retention period for your snapshots. For this post, I only need to keep snapshots for recent business days. To account for weekends, I will set my retention period to three days, which is down from the default of 15 days when deploying EBS Snapshot Scheduler.

Deploy EBS Snapshot Scheduler

In Step 1 of Part 1 of this post, I showed how to configure an EC2 for Windows Server 2012 R2 instance with an EBS volume. You will use EBS Snapshot Scheduler to take eight snapshots each weekday of your EC2 instance’s EBS volumes:

  1. Navigate to the EBS Snapshot Scheduler deployment page and choose Launch Solution. This takes you to the CloudFormation console in your account. The Specify an Amazon S3 template URL option is already selected and prefilled. Choose Next on the Select Template page.
  2. On the Specify Details page, retain all default parameters except for AutoSnapshotDeletion. Set AutoSnapshotDeletion to Yes to ensure that old snapshots are periodically deleted. The default retention period is 15 days (you will specify a shorter value on your instance in the next subsection).
  3. Choose Next twice to move to the Review step, and start deployment by choosing the I acknowledge that AWS CloudFormation might create IAM resources check box and then choosing Create.

Tag your EC2 instances

EBS Snapshot Scheduler takes a few minutes to deploy. While waiting for its deployment, you can start to tag your instance to define its schedule. EBS Snapshot Scheduler reads tag values and looks for four possible custom parameters in the following order:

  • <snapshot time> – Time in 24-hour format with no colon.
  • <retention days> – The number of days (a positive integer) to retain the snapshot before deletion, if set to automatically delete snapshots.
  • <time zone> – The time zone of the times specified in <snapshot time>.
  • <active day(s)>all, weekdays, or mon, tue, wed, thu, fri, sat, and/or sun.

Because you want hourly backups on weekdays between 9:00 A.M. and 5:00 P.M. Pacific Time, you need to configure eight tags—one for each hour of the day. You will add the eight tags shown in the following table to your EC2 instance.

Tag Value
scheduler:ebs-snapshot:0900 0900;3;utc;weekdays
scheduler:ebs-snapshot:1000 1000;3;utc;weekdays
scheduler:ebs-snapshot:1100 1100;3;utc;weekdays
scheduler:ebs-snapshot:1200 1200;3;utc;weekdays
scheduler:ebs-snapshot:1300 1300;3;utc;weekdays
scheduler:ebs-snapshot:1400 1400;3;utc;weekdays
scheduler:ebs-snapshot:1500 1500;3;utc;weekdays
scheduler:ebs-snapshot:1600 1600;3;utc;weekdays

Next, you will add these tags to your instance. If you want to tag multiple instances at once, you can use Tag Editor instead. To add the tags in the preceding table to your EC2 instance:

  1. Navigate to your EC2 instance in the EC2 console and choose Tags in the navigation pane.
  2. Choose Add/Edit Tags and then choose Create Tag to add all the tags specified in the preceding table.
  3. Confirm you have added the tags by choosing Save. After adding these tags, navigate to your EC2 instance in the EC2 console. Your EC2 instance should look similar to the following screenshot.
    Screenshot of how your EC2 instance should look in the console
  4. After waiting a couple of hours, you can see snapshots beginning to populate on the Snapshots page of the EC2 console.Screenshot of snapshots beginning to populate on the Snapshots page of the EC2 console
  5. To check if EBS Snapshot Scheduler is active, you can check the CloudWatch rule that runs the Lambda function. If the clock icon shown in the following screenshot is green, the scheduler is active. If the clock icon is gray, the rule is disabled and does not run. You can enable or disable the rule by selecting it, choosing Actions, and choosing Enable or Disable. This also allows you to temporarily disable EBS Snapshot Scheduler.Screenshot of checking to see if EBS Snapshot Scheduler is active
  1. You can also monitor when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule as shown in the previous screenshot and choosing Show metrics for the rule.Screenshot of monitoring when EBS Snapshot Scheduler has run by choosing the name of the CloudWatch rule

If you want to restore and attach an EBS volume, see Restoring an Amazon EBS Volume from a Snapshot and Attaching an Amazon EBS Volume to an Instance.

Step 4: Use Amazon Inspector

In this section, I show you how to you use Amazon Inspector to scan your EC2 instance for common vulnerabilities and exposures (CVEs) and set up Amazon SNS notifications. To do this I will show you how to:

  • Install the Amazon Inspector agent by using EC2 Run Command.
  • Set up notifications using Amazon SNS to notify you of any findings.
  • Define an Amazon Inspector target and template to define what assessment to perform on your EC2 instance.
  • Schedule Amazon Inspector assessment runs to assess your EC2 instance on a regular interval.

Amazon Inspector can help you scan your EC2 instance using prebuilt rules packages, which are built and maintained by AWS. These prebuilt rules packages tell Amazon Inspector what to scan for on the EC2 instances you select. Amazon Inspector provides the following prebuilt packages for Microsoft Windows Server 2012 R2:

  • Common Vulnerabilities and Exposures
  • Center for Internet Security Benchmarks
  • Runtime Behavior Analysis

In this post, I’m focused on how to make sure you keep your EC2 instances patched, backed up, and inspected for common vulnerabilities and exposures (CVEs). As a result, I will focus on how to use the CVE rules package and use your instance tags to identify the instances on which to run the CVE rules. If your EC2 instance is fully patched using Systems Manager, as described earlier, you should not have any findings with the CVE rules package. Regardless, as a best practice I recommend that you use Amazon Inspector as an additional layer for identifying any unexpected failures. This involves using Amazon CloudWatch to set up weekly Amazon Inspector scans, and configuring Amazon Inspector to notify you of any findings through SNS topics. By acting on the notifications you receive, you can respond quickly to any CVEs on any of your EC2 instances to help ensure that malware using known CVEs does not affect your EC2 instances. In a previous blog post, Eric Fitzgerald showed how to remediate Amazon Inspector security findings automatically.

Install the Amazon Inspector agent

To install the Amazon Inspector agent, you will use EC2 Run Command, which allows you to run any command on any of your EC2 instances that have the Systems Manager agent with an attached IAM role that allows access to Systems Manager.

  1. Choose Run Command under Systems Manager Services in the navigation pane of the EC2 console. Then choose Run a command.
    Screenshot of choosing "Run a command"
  2. To install the Amazon Inspector agent, you will use an AWS managed and provided command document that downloads and installs the agent for you on the selected EC2 instance. Choose AmazonInspector-ManageAWSAgent. To choose the target EC2 instance where this command will be run, use the tag you previously assigned to your EC2 instance, Patch Group, with a value of Windows Servers. For this example, set the concurrent installations to 1 and tell Systems Manager to stop after 5 errors.
    Screenshot of installing the Amazon Inspector agent
  3. Retain the default values for all other settings on the Run a command page and choose Run. Back on the Run Command page, you can see if the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances.
    Screenshot showing that the command that installed the Amazon Inspector agent executed successfully on all selected EC2 instances

Set up notifications using Amazon SNS

Now that you have installed the Amazon Inspector agent, you will set up an SNS topic that will notify you of any findings after an Amazon Inspector run.

To set up an SNS topic:

  1. In the AWS Management Console, choose Simple Notification Service under Messaging in the Services menu.
  2. Choose Create topic, name your topic (only alphanumeric characters, hyphens, and underscores are allowed) and give it a display name to ensure you know what this topic does (I’ve named mine Inspector). Choose Create topic.
    "Create new topic" page
  3. To allow Amazon Inspector to publish messages to your new topic, choose Other topic actions and choose Edit topic policy.
  4. For Allow these users to publish messages to this topic and Allow these users to subscribe to this topic, choose Only these AWS users. Type the following ARN for the US East (N. Virginia) Region in which you are deploying the solution in this post: arn:aws:iam::316112463485:root. This is the ARN of Amazon Inspector itself. For the ARNs of Amazon Inspector in other AWS Regions, see Setting Up an SNS Topic for Amazon Inspector Notifications (Console). Amazon Resource Names (ARNs) uniquely identify AWS resources across all of AWS.
    Screenshot of editing the topic policy
  5. To receive notifications from Amazon Inspector, subscribe to your new topic by choosing Create subscription and adding your email address. After confirming your subscription by clicking the link in the email, the topic should display your email address as a subscriber. Later, you will configure the Amazon Inspector template to publish to this topic.
    Screenshot of subscribing to the new topic

Define an Amazon Inspector target and template

Now that you have set up the notification topic by which Amazon Inspector can notify you of findings, you can create an Amazon Inspector target and template. A target defines which EC2 instances are in scope for Amazon Inspector. A template defines which packages to run, for how long, and on which target.

To create an Amazon Inspector target:

  1. Navigate to the Amazon Inspector console and choose Get started. At the time of writing this blog post, Amazon Inspector is available in the US East (N. Virginia), US West (N. California), US West (Oregon), EU (Ireland), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Sydney), and Asia Pacific (Tokyo) Regions.
  2. For Amazon Inspector to be able to collect the necessary data from your EC2 instance, you must create an IAM service role for Amazon Inspector. Amazon Inspector can create this role for you if you choose Choose or create role and confirm the role creation by choosing Allow.
    Screenshot of creating an IAM service role for Amazon Inspector
  3. Amazon Inspector also asks you to tag your EC2 instance and install the Amazon Inspector agent. You already performed these steps in Part 1 of this post, so you can proceed by choosing Next. To define the Amazon Inspector target, choose the previously used Patch Group tag with a Value of Windows Servers. This is the same tag that you used to define the targets for patching. Then choose Next.
    Screenshot of defining the Amazon Inspector target
  4. Now, define your Amazon Inspector template, and choose a name and the package you want to run. For this post, use the Common Vulnerabilities and Exposures package and choose the default duration of 1 hour. As you can see, the package has a version number, so always select the latest version of the rules package if multiple versions are available.
    Screenshot of defining an assessment template
  5. Configure Amazon Inspector to publish to your SNS topic when findings are reported. You can also choose to receive a notification of a started run, a finished run, or changes in the state of a run. For this blog post, you want to receive notifications if there are any findings. To start, choose Assessment Templates from the Amazon Inspector console and choose your newly created Amazon Inspector assessment template. Choose the icon below SNS topics (see the following screenshot).
    Screenshot of choosing an assessment template
  6. A pop-up appears in which you can choose the previously created topic and the events about which you want SNS to notify you (choose Finding reported).
    Screenshot of choosing the previously created topic and the events about which you want SNS to notify you

Schedule Amazon Inspector assessment runs

The last step in using Amazon Inspector to assess for CVEs is to schedule the Amazon Inspector template to run using Amazon CloudWatch Events. This will make sure that Amazon Inspector assesses your EC2 instance on a regular basis. To do this, you need the Amazon Inspector template ARN, which you can find under Assessment templates in the Amazon Inspector console. CloudWatch Events can run your Amazon Inspector assessment at an interval you define using a Cron-based schedule. Cron is a well-known scheduling agent that is widely used on UNIX-like operating systems and uses the following syntax for CloudWatch Events.

Image of Cron schedule

All scheduled events use a UTC time zone, and the minimum precision for schedules is one minute. For more information about scheduling CloudWatch Events, see Schedule Expressions for Rules.

To create the CloudWatch Events rule:

  1. Navigate to the CloudWatch console, choose Events, and choose Create rule.
    Screenshot of starting to create a rule in the CloudWatch Events console
  2. On the next page, specify if you want to invoke your rule based on an event pattern or a schedule. For this blog post, you will select a schedule based on a Cron expression.
  3. You can schedule the Amazon Inspector assessment any time you want using the Cron expression, or you can use the Cron expression I used in the following screenshot, which will run the Amazon Inspector assessment every Sunday at 10:00 P.M. GMT.
    Screenshot of scheduling an Amazon Inspector assessment with a Cron expression
  4. Choose Add target and choose Inspector assessment template from the drop-down menu. Paste the ARN of the Amazon Inspector template you previously created in the Amazon Inspector console in the Assessment template box and choose Create a new role for this specific resource. This new role is necessary so that CloudWatch Events has the necessary permissions to start the Amazon Inspector assessment. CloudWatch Events will automatically create the new role and grant the minimum set of permissions needed to run the Amazon Inspector assessment. To proceed, choose Configure details.
    Screenshot of adding a target
  5. Next, give your rule a name and a description. I suggest using a name that describes what the rule does, as shown in the following screenshot.
  6. Finish the wizard by choosing Create rule. The rule should appear in the Events – Rules section of the CloudWatch console.
    Screenshot of completing the creation of the rule
  7. To confirm your CloudWatch Events rule works, wait for the next time your CloudWatch Events rule is scheduled to run. For testing purposes, you can choose your CloudWatch Events rule and choose Edit to change the schedule to run it sooner than scheduled.
    Screenshot of confirming the CloudWatch Events rule works
  8. Now navigate to the Amazon Inspector console to confirm the launch of your first assessment run. The Start time column shows you the time each assessment started and the Status column the status of your assessment. In the following screenshot, you can see Amazon Inspector is busy Collecting data from the selected assessment targets.
    Screenshot of confirming the launch of the first assessment run

You have concluded the last step of this blog post by setting up a regular scan of your EC2 instance with Amazon Inspector and a notification that will let you know if your EC2 instance is vulnerable to any known CVEs. In a previous Security Blog post, Eric Fitzgerald explained How to Remediate Amazon Inspector Security Findings Automatically. Although that blog post is for Linux-based EC2 instances, the post shows that you can learn about Amazon Inspector findings in other ways than email alerts.

Conclusion

In this two-part blog post, I showed how to make sure you keep your EC2 instances up to date with patching, how to back up your instances with snapshots, and how to monitor your instances for CVEs. Collectively these measures help to protect your instances against common attack vectors that attempt to exploit known vulnerabilities. In Part 1, I showed how to configure your EC2 instances to make it easy to use Systems Manager, EBS Snapshot Scheduler, and Amazon Inspector. I also showed how to use Systems Manager to schedule automatic patches to keep your instances current in a timely fashion. In Part 2, I showed you how to take regular snapshots of your data by using EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

If you have comments about today’s or yesterday’s post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or the Amazon Inspector forum, or contact AWS Support.

– Koen

Your Holiday Cybersecurity Guide

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/your-holiday-cybersecurity-guide.html

Many of us are visiting parents/relatives this Thanksgiving/Christmas, and will have an opportunity to help our them with cybersecurity issues. I thought I’d write up a quick guide of the most important things.

1. Stop them from reusing passwords

By far the biggest threat to average people is that they re-use the same password across many websites, so that when one website gets hacked, all their accounts get hacked.
To demonstrate the problem, go to haveibeenpwned.com and enter the email address of your relatives. This will show them a number of sites where their password has already been stolen, like LinkedIn, Adobe, etc. That should convince them of the severity of the problem.

They don’t need a separate password for every site. You don’t care about the majority of website whether you get hacked. Use a common password for all the meaningless sites. You only need unique passwords for important accounts, like email, Facebook, and Twitter.

Write down passwords and store them in a safe place. Sure, it’s a common joke that people in offices write passwords on Post-It notes stuck on their monitors or under their keyboards. This is a common security mistake, but that’s only because the office environment is widely accessible. Your home isn’t, and there’s plenty of places to store written passwords securely, such as in a home safe. Even if it’s just a desk drawer, such passwords are safe from hackers, because they aren’t on a computer.

Write them down, with pen and paper. Don’t put them in a MyPasswords.doc, because when a hacker breaks in, they’ll easily find that document and easily hack your accounts.

You might help them out with getting a password manager, or two-factor authentication (2FA). Good 2FA like YubiKey will stop a lot of phishing threats. But this is difficult technology to learn, and of course, you’ll be on the hook for support issues, such as when they lose the device. Thus, while 2FA is best, I’m only recommending pen-and-paper to store passwords. (AccessNow has a guide, though I think YubiKey/U2F keys for Facebook and GMail are the best).

2. Lock their phone (passcode, fingerprint, faceprint)
You’ll lose your phone at some point. It has the keys all all your accounts, like email and so on. With your email, phones thieves can then reset passwords on all your other accounts. Thus, it’s incredibly important to lock the phone.

Apple has made this especially easy with fingerprints (and now faceprints), so there’s little excuse not to lock the phone.

Note that Apple iPhones are the most secure. I give my mother my old iPhones so that they will have something secure.

My mom demonstrates a problem you’ll have with the older generation: she doesn’t reliably have her phone with her, and charged. She’s the opposite of my dad who religiously slaved to his phone. Even a small change to make her lock her phone means it’ll be even more likely she won’t have it with her when you need to call her.

3. WiFi (WPA)
Make sure their home WiFi is WPA encrypted. It probably already is, but it’s worthwhile checking.

The password should be written down on the same piece of paper as all the other passwords. This is importance. My parents just moved, Comcast installed a WiFi access point for them, and they promptly lost the piece of paper. When I wanted to debug some thing on their network today, they didn’t know the password, and couldn’t find the paper. Get that password written down in a place it won’t get lost!

Discourage them from extra security features like “SSID hiding” and/or “MAC address filtering”. They provide no security benefit, and actually make security worse. It means a phone has to advertise the SSID when away from home, and it makes MAC address randomization harder, both of which allows your privacy to be tracked.

If they have a really old home router, you should probably replace it, or at least update the firmware. A lot of old routers have hacks that allow hackers (like me masscaning the Internet) to easily break in.

4. Ad blockers or Brave

Most of the online tricks that will confuse your older parents will come via advertising, such as popups claiming “You are infected with a virus, click here to clean it”. Installing an ad blocker in the browser, such as uBlock Origin, stops most all this nonsense.

For example, here’s a screenshot of going to the “Speedtest” website to test the speed of my connection (I took this on the plane on the way home for Thanksgiving). Ignore the error (plane’s firewall Speedtest) — but instead look at the advertising banner across the top of the page insisting you need to download a browser extension. This is tricking you into installing malware — the ad appears as if it’s a message from Speedtest, it’s not. Speedtest is just selling advertising and has no clue what the banner says. This sort of thing needs to be blocked — it fools even the technologically competent.

uBlock Origin for Chrome is the one I use. Another option is to replace their browser with Brave, a browser that blocks ads, but at the same time, allows micropayments to support websites you want to support. I use Brave on my iPhone.
A side benefit of ad blockers or Brave is that web surfing becomes much faster, since you aren’t downloading all this advertising. The smallest NYtimes story is 15 megabytes in size due to all the advertisements, for example.

5. Cloud Backups
Do backups, in the cloud. It’s a good idea in general, especially with the threat of ransomware these days.

In particular, consider your photos. Over time, they will be lost, because people make no effort to keep track of them. All hard drives will eventually crash, deleting your photos. Sure, a few key ones are backed up on Facebook for life, but the rest aren’t.
There are so many excellent online backup services out there, like DropBox and Backblaze. Or, you can use the iCloud feature that Apple provides. My favorite is Microsoft’s: I already pay $99 a year for Office 365 subscription, and it comes with 1-terabyte of online storage.

6. Separate email accounts
You should have three email accounts: work, personal, and financial.

First, you really need to separate your work account from personal. The IT department is already getting misdirected emails with your spouse/lover that they don’t want to see. Any conflict with your work, such as getting fired, gives your private correspondence to their lawyers.

Second, you need a wholly separate account for financial stuff, like Amazon.com, your bank, PayPal, and so on. That prevents confusion with phishing attacks.

Consider this warning today:

If you had split accounts, you could safely ignore this. The USPS would only your financial email account, which gets no phishing attacks, because it’s not widely known. When your receive the phishing attack on your personal email, you ignore it, because you know the USPS doesn’t know your personal email account.

Phishing emails are so sophisticated that even experts can’t tell the difference. Splitting financial from personal emails makes it so you don’t have to tell the difference — anything financial sent to personal email can safely be ignored.

7. Deauth those apps!

Twitter user @tompcoleman comments that we also need deauth apps.
Social media sites like Facebook, Twitter, and Google encourage you to enable “apps” that work their platforms, often demanding privileges to generate messages on your behalf. The typical scenario is that you use them only once or twice and forget about them.
A lot of them are hostile. For example, my niece’s twitter account would occasional send out advertisements, and she didn’t know why. It’s because a long time ago, she enabled an app with the permission to send tweets for her. I had to sit down and get rid of most of her apps.
Now would be a good time to go through your relatives Facebook, Twitter, and Google/GMail and disable those apps. Don’t be a afraid to be ruthless — they probably weren’t using them anyway. Some will still be necessary. For example, Twitter for iPhone shows up in the list of Twitter apps. The URL for editing these apps for Twitter is https://twitter.com/settings/applications. Google link is here (thanks @spextr). I don’t know of simple URLs for Facebook, but you should find it somewhere under privacy/security settings.
Update: Here’s a more complete guide for a even more social media services.
https://www.permissions.review/

8. Up-to-date software? maybe

I put this last because it can be so much work.

You should install the latest OS (Windows 10, macOS High Sierra), and also turn on automatic patching.

But remember it may not be worth the huge effort involved. I want my parents to be secure — but no so secure I have to deal with issues.

For example, when my parents updated their HP Print software, the icon on the desktop my mom usually uses to scan things in from the printer disappeared, and needed me to spend 15 minutes with her helping find the new way to access the software.
However, I did get my mom a new netbook to travel with instead of the old WinXP one. I want to get her a Chromebook, but she doesn’t want one.
For iOS, you can probably make sure their phones have the latest version without having these usability problems.

Conclusion

You can’t solve every problem for your relatives, but these are the more critical ones.

Google Wipes 786 Pirate Sites From Search Results

Post Syndicated from Andy original https://torrentfreak.com/google-wipes-786-pirate-sites-from-search-results-171121/

Late July, President Vladimir Putin signed a new law which requires local telecoms watchdog Rozcomnadzor to maintain a list of banned domains while identifying sites, services, and software that provide access to them.

Rozcomnadzor is required to contact the operators of such services with a request for them to block banned resources. If they do not, then they themselves will become blocked. In addition, search engines are also required to remove blocked resources from their search results, in order to discourage people from accessing them.

Removing entire domains from search results is a controversial practice and something which search providers have long protested against. They argue that it’s not their job to act as censors and in any event, content remains online, whether it’s indexed by search or not.

Nevertheless, on October 1 the new law (“On Information, Information Technologies and Information Protection”) came into effect and it appears that Russia’s major search engines have been very busy in its wake.

According to a report from Rozcomnadzor, search providers Google, Yandex, Mail.ru, Rambler, and Sputnik have stopped presenting information in results for sites that have been permanently blocked by ISPs following a decision by the Moscow City Court.

“To date, search engines have stopped access to 786 pirate sites listed in the register of Internet resources which contain content distributed in violation of intellectual property rights,” the watchdog reports.

The domains aren’t being named by Rozcomnadzor or the search engines but are almost definitely those sites that have had complaints filed against them at the City Court on multiple occasions but have failed to take remedial action. Also included will be mirror and proxy sites which either replicate or facilitate access to these blocked and apparently defiant domains.

The news comes in the wake of reports earlier this month that Russia is considering a rapid site blocking mechanism that could see domains rendered inaccessible within 24 hours, without any parties having to attend a court hearing.

While it’s now extremely clear that Russia has one of the most aggressive site-blocking regimes in the world, with both ISPs and search engines required to prevent access to infringing sites, it’s uncertain whether these measures will be enough to tackle rampant online piracy.

New research published in October by Group-IB revealed that despite thousands of domains being blocked, last year the market for pirate video in Russia more than doubled.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

How to Patch, Inspect, and Protect Microsoft Windows Workloads on AWS—Part 1

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-inspect-and-protect-microsoft-windows-workloads-on-aws-part-1/

Most malware tries to compromise your systems by using a known vulnerability that the maker of the operating system has already patched. To help prevent malware from affecting your systems, two security best practices are to apply all operating system patches to your systems and actively monitor your systems for missing patches. In case you do need to recover from a malware attack, you should make regular backups of your data.

In today’s blog post (Part 1 of a two-part post), I show how to keep your Amazon EC2 instances that run Microsoft Windows up to date with the latest security patches by using Amazon EC2 Systems Manager. Tomorrow in Part 2, I show how to take regular snapshots of your data by using Amazon EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

What you should know first

To follow along with the solution in this post, you need one or more EC2 instances. You may use existing instances or create new instances. For the blog post, I assume this is an EC2 for Microsoft Windows Server 2012 R2 instance installed from the Amazon Machine Images (AMIs). If you are not familiar with how to launch an EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. A private subnet is not directly accessible via the internet, and access to it requires either a VPN connection to your on-premises network or a jump host in a public subnet (a subnet with access to the internet). You must make sure that the EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager and Amazon Inspector. The following diagram shows how you should structure your Amazon Virtual Private Cloud (VPC). You should also be familiar with Restoring an Amazon EBS Volume from a Snapshot and Attaching an Amazon EBS Volume to an Instance.

Later on, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the AWS Identity and Access Management (IAM) user you are using for this post must have the iam:PassRole permission. This permission allows this IAM user to assign tasks to pass their own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. This safeguard ensures that the user cannot use the creation of tasks to elevate their IAM privileges because their own IAM privileges limit which tasks they can run against an EC2 instance. You should also authorize your IAM user to use EC2, Amazon Inspector, Amazon CloudWatch, and Systems Manager. You can achieve this by attaching the following AWS managed policies to the IAM user you are using for this example: AmazonInspectorFullAccess, AmazonEC2FullAccess, and AmazonSSMFullAccess.

Architectural overview

The following diagram illustrates the components of this solution’s architecture.

Diagram showing the components of this solution's architecture

For this blog post, Microsoft Windows EC2 is Amazon EC2 for Microsoft Windows Server 2012 R2 instances with attached Amazon Elastic Block Store (Amazon EBS) volumes, which are running in your VPC. These instances may be standalone Windows instances running your Windows workloads, or you may have joined them to an Active Directory domain controller. For instances joined to a domain, you can be using Active Directory running on an EC2 for Windows instance, or you can use AWS Directory Service for Microsoft Active Directory.

Amazon EC2 Systems Manager is a scalable tool for remote management of your EC2 instances. You will use the Systems Manager Run Command to install the Amazon Inspector agent. The agent enables EC2 instances to communicate with the Amazon Inspector service and run assessments, which I explain in detail later in this blog post. You also will create a Systems Manager association to keep your EC2 instances up to date with the latest security patches.

You can use the EBS Snapshot Scheduler to schedule automated snapshots at regular intervals. You will use it to set up regular snapshots of your Amazon EBS volumes. EBS Snapshot Scheduler is a prebuilt solution by AWS that you will deploy in your AWS account. With Amazon EBS snapshots, you pay only for the actual data you store. Snapshots save only the data that has changed since the previous snapshot, which minimizes your cost.

You will use Amazon Inspector to run security assessments on your EC2 for Windows Server instance. In this post, I show how to assess if your EC2 for Windows Server instance is vulnerable to any of the more than 50,000 CVEs registered with Amazon Inspector.

In today’s and tomorrow’s posts, I show you how to:

  1. Launch an EC2 instance with an IAM role, Amazon EBS volume, and tags that Systems Manager and Amazon Inspector will use.
  2. Configure Systems Manager to install the Amazon Inspector agent and patch your EC2 instances.
  3. Take EBS snapshots by using EBS Snapshot Scheduler to automate snapshots based on instance tags.
  4. Use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any common vulnerabilities and exposures (CVEs).

Step 1: Launch an EC2 instance

In this section, I show you how to launch your EC2 instances so that you can use Systems Manager with the instances and use instance tags with EBS Snapshot Scheduler to automate snapshots. This requires three things:

  • Create an IAM role for Systems Manager before launching your EC2 instance.
  • Launch your EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  • Add tags to instances so that you can automate policies for which instances you take snapshots of and when.

Create an IAM role for Systems Manager

Before launching your EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the EC2 instance you will launch. AWS already provides a preconfigured policy that you can use for your new role, and it is called AmazonEC2RoleforSSM.

  1. Sign in to the IAM console and choose Roles in the navigation pane. Choose Create new role.
    Screenshot of choosing "Create role"
  2. In the role-creation workflow, choose AWS service > EC2 > EC2 to create a role for an EC2 instance.
    Screenshot of creating a role for an EC2 instance
  3. Choose the AmazonEC2RoleforSSM policy to attach it to the new role you are creating.
    Screenshot of attaching the AmazonEC2RoleforSSM policy to the new role you are creating
  4. Give the role a meaningful name (I chose EC2SSM) and description, and choose Create role.
    Screenshot of giving the role a name and description

Launch your EC2 instance

To follow along, you need an EC2 instance that is running Microsoft Windows Server 2012 R2 and that has an Amazon EBS volume attached. You can use any existing instance you may have or create a new instance.

When launching your new EC2 instance, be sure that:

  • The operating system is Microsoft Windows Server 2012 R2.
  • You attach at least one Amazon EBS volume to the EC2 instance.
  • You attach the newly created IAM role (EC2SSM).
  • The EC2 instance can connect to the internet through a network address translation (NAT) gateway or a NAT instance.
  • You create the tags shown in the following screenshot (you will use them later).

If you are using an already launched EC2 instance, you can attach the newly created role as described in Easily Replace or Attach an IAM Role to an Existing EC2 Instance by Using the EC2 Console.

Add tags

The final step of configuring your EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this blog post and to configure Amazon Inspector in Part 2. For this example, I add a tag key, Patch Group, and set the value to Windows Servers. I could have other groups of EC2 instances that I treat differently by having the same tag key but a different tag value. For example, I might have a collection of other servers with the Patch Group tag key with a value of IAS Servers.

Screenshot of adding tags

Note: You must wait a few minutes until the EC2 instance becomes available before you can proceed to the next section.

At this point, you now have at least one EC2 instance you can use to configure Systems Manager, use EBS Snapshot Scheduler, and use Amazon Inspector.

Note: If you have a large number of EC2 instances to tag, you may want to use the EC2 CreateTags API rather than manually apply tags to each instance.

Step 2: Configure Systems Manager

In this section, I show you how to use Systems Manager to apply operating system patches to your EC2 instances, and how to manage patch compliance.

To start, I will provide some background information about Systems Manager. Then, I will cover how to:

  • Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  • Associate a Systems Manager patch baseline with your instance to define which patches Systems Manager should apply.
  • Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  • Monitor patch compliance to verify the patch state of your instances.

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is Amazon EC2 Systems Manager?

Patch management is an important measure to prevent malware from infecting your systems. Most malware attacks look for vulnerabilities that are publicly known and in most cases are already patched by the maker of the operating system. These publicly known vulnerabilities are well documented and therefore easier for an attacker to exploit than having to discover a new vulnerability.

Patches for these new vulnerabilities are available through Systems Manager within hours after Microsoft releases them. There are two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your EC2 instance. Second, you must install the Systems Manager agent on your EC2 instance. If you have used a recent Microsoft Windows Server 2012 R2 AMI published by AWS, Amazon has already installed the Systems Manager agent on your EC2 instance. You can confirm this by logging in to an EC2 instance and looking for Amazon SSM Agent under Programs and Features in Windows. To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see the documentation about installing the Systems Manager agent. If you forgot to attach the newly created role when launching your EC2 instance or if you want to attach the role to already running EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

To make sure your EC2 instance receives operating system patches from Systems Manager, you will use the default patch baseline provided and maintained by AWS, and you will define a maintenance window so that you control when your EC2 instances should receive patches. For the maintenance window to be able to run any tasks, you also must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: Systems Manager will use this role instead of EC2. Earlier we created the EC2SSM role with the AmazonEC2RoleforSSM policy, which allowed the Systems Manager agent on our instance to communicate with the Systems Manager service. Here we need a new role with the policy AmazonSSMMaintenanceWindowRole to make sure the Systems Manager service is able to execute commands on our instance.

Create the Systems Manager IAM role

To create the new IAM role for Systems Manager, follow the same procedure as in the previous section, but in Step 3, choose the AmazonSSMMaintenanceWindowRole policy instead of the previously selected AmazonEC2RoleforSSM policy.

Screenshot of creating the new IAM role for Systems Manager

Finish the wizard and give your new role a recognizable name. For example, I named my role MaintenanceWindowRole.

Screenshot of finishing the wizard and giving your new role a recognizable name

By default, only EC2 instances can assume this new role. You must update the trust policy to enable Systems Manager to assume this role.

To update the trust policy associated with this new role:

  1. Navigate to the IAM console and choose Roles in the navigation pane.
  2. Choose MaintenanceWindowRole and choose the Trust relationships tab. Then choose Edit trust relationship.
  3. Update the policy document by copying the following policy and pasting it in the Policy Document box. As you can see, I have added the ssm.amazonaws.com service to the list of allowed Principals that can assume this role. Choose Update Trust Policy.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

Associate a Systems Manager patch baseline with your instance

Next, you are going to associate a Systems Manager patch baseline with your EC2 instance. A patch baseline defines which patches Systems Manager should apply. You will use the default patch baseline that AWS manages and maintains. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your EC2 instance.

Navigate to the EC2 console, scroll down to Systems Manager Shared Resources in the navigation pane, and choose Managed Instances. Your new EC2 instance should be available there. If your instance is missing from the list, verify the following:

  1. Go to the EC2 console and verify your instance is running.
  2. Select your instance and confirm you attached the Systems Manager IAM role, EC2SSM.
  3. Make sure that you deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram at the start of this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. Check the Systems Manager Agent logs for any errors.

Now that you have confirmed that Systems Manager can manage your EC2 instance, it is time to associate the AWS maintained patch baseline with your EC2 instance:

  1. Choose Patch Baselines under Systems Manager Services in the navigation pane of the EC2 console.
  2. Choose the default patch baseline as highlighted in the following screenshot, and choose Modify Patch Groups in the Actions drop-down.
    Screenshot of choosing Modify Patch Groups in the Actions drop-down
  3. In the Patch group box, enter the same value you entered under the Patch Group tag of your EC2 instance in “Step 1: Configure your EC2 instance.” In this example, the value I enter is Windows Servers. Choose the check mark icon next to the patch group and choose Close.Screenshot of modifying the patch group

Define a maintenance window

Now that you have successfully set up a role and have associated a patch baseline with your EC2 instance, you will define a maintenance window so that you can control when your EC2 instances should receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your EC2 instances do not all reboot at the same time. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs.

To define a maintenance window:

  1. Navigate to the EC2 console, scroll down to Systems Manager Shared Resources in the navigation pane, and choose Maintenance Windows. Choose Create a Maintenance Window.
    Screenshot of starting to create a maintenance window in the Systems Manager console
  2. Select the Cron schedule builder to define the schedule for the maintenance window. In the example in the following screenshot, the maintenance window will start every Saturday at 10:00 P.M. UTC.
  3. To specify when your maintenance window will end, specify the duration. In this example, the four-hour maintenance window will end on the following Sunday morning at 2:00 A.M. UTC (in other words, four hours after it started).
  4. Systems manager completes all tasks that are in process, even if the maintenance window ends. In my example, I am choosing to prevent new tasks from starting within one hour of the end of my maintenance window because I estimated my patch operations might take longer than one hour to complete. Confirm the creation of the maintenance window by choosing Create maintenance window.
    Screenshot of completing all boxes in the maintenance window creation process
  5. After creating the maintenance window, you must register the EC2 instance to the maintenance window so that Systems Manager knows which EC2 instance it should patch in this maintenance window. To do so, choose Register new targets on the Targets tab of your newly created maintenance window. You can register your targets by using the same Patch Group tag you used before to associate the EC2 instance with the AWS-provided patch baseline.
    Screenshot of registering new targets
  6. Assign a task to the maintenance window that will install the operating system patches on your EC2 instance:
    1. Open Maintenance Windows in the EC2 console, select your previously created maintenance window, choose the Tasks tab, and choose Register run command task from the Register new task drop-down.
    2. Choose the AWS-RunPatchBaseline document from the list of available documents.
    3. For Parameters:
      1. For Role, choose the role you created previously (called MaintenanceWindowRole).
      2. For Execute on, specify how many EC2 instances Systems Manager should patch at the same time. If you have a large number of EC2 instances and want to patch all EC2 instances within the defined time, make sure this number is not too low. For example, if you have 1,000 EC2 instances, a maintenance window of 4 hours, and 2 hours’ time for patching, make this number at least 500.
      3. For Stop after, specify after how many errors Systems Manager should stop.
      4. For Operation, choose Install to make sure to install the patches.
        Screenshot of stipulating maintenance window parameters

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. Note that if you don’t want to wait, you can adjust the schedule to run sooner by choosing Edit maintenance window on the Maintenance Windows page of Systems Manager. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed on the Maintenance Windows page of Systems Manager and select your maintenance window.

Screenshot of the maintenance window successfully created

Monitor patch compliance

You also can see the overall patch compliance of all EC2 instances that are part of defined patch groups by choosing Patch Compliance under Systems Manager Services in the navigation pane of the EC2 console. You can filter by Patch Group to see how many EC2 instances within the selected patch group are up to date, how many EC2 instances are missing updates, and how many EC2 instances are in an error state.

Screenshot of monitoring patch compliance

In this section, you have set everything up for patch management on your instance. Now you know how to patch your EC2 instance in a controlled manner and how to check if your EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all EC2 instances you manage.

Summary

In Part 1 of this blog post, I have shown how to configure EC2 instances for use with Systems Manager, EBS Snapshot Scheduler, and Amazon Inspector. I also have shown how to use Systems Manager to keep your Microsoft Windows–based EC2 instances up to date. In Part 2 of this blog post tomorrow, I will show how to take regular snapshots of your data by using EBS Snapshot Scheduler and how to use Amazon Inspector to check if your EC2 instances running Microsoft Windows contain any CVEs.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing this solution, start a new thread on the EC2 forum or the Amazon Inspector forum, or contact AWS Support.

– Koen

AWS Achieves FedRAMP JAB Moderate Provisional Authorization for 20 Services in the AWS US East/West Region

Post Syndicated from Chris Gile original https://aws.amazon.com/blogs/security/aws-achieves-fedramp-jab-moderate-authorization-for-20-services-in-us-eastwest/

The AWS US East/West Region has received a Provisional Authority to Operate (P-ATO) from the Joint Authorization Board (JAB) at the Federal Risk and Authorization Management Program (FedRAMP) Moderate baseline.

Though AWS has maintained an AWS US East/West Region Agency-ATO since early 2013, this announcement represents AWS’s carefully deliberated move to the JAB for the centralized maintenance of our P-ATO for 10 services already authorized. This also includes the addition of 10 new services to our FedRAMP program (see the complete list of services below). This doubles the number of FedRAMP Moderate services available to our customers to enable increased use of the cloud and support modernized IT missions. Our public sector customers now can leverage this FedRAMP P-ATO as a baseline for their own authorizations and look to the JAB for centralized Continuous Monitoring reporting and updates. In a significant enhancement for our partners that build their solutions on the AWS US East/West Region, they can now achieve FedRAMP JAB P-ATOs of their own for their Platform as a Service (PaaS) and Software as a Service (SaaS) offerings.

In line with FedRAMP security requirements, our independent FedRAMP assessment was completed in partnership with a FedRAMP accredited Third Party Assessment Organization (3PAO) on our technical, management, and operational security controls to validate that they meet or exceed FedRAMP’s Moderate baseline requirements. Effective immediately, you can begin leveraging this P-ATO for the following 20 services in the AWS US East/West Region:

  • Amazon Aurora (MySQL)*
  • Amazon CloudWatch Logs*
  • Amazon DynamoDB
  • Amazon Elastic Block Store
  • Amazon Elastic Compute Cloud
  • Amazon EMR*
  • Amazon Glacier*
  • Amazon Kinesis Streams*
  • Amazon RDS (MySQL, Oracle, Postgres*)
  • Amazon Redshift
  • Amazon Simple Notification Service*
  • Amazon Simple Queue Service*
  • Amazon Simple Storage Service
  • Amazon Simple Workflow Service*
  • Amazon Virtual Private Cloud
  • AWS CloudFormation*
  • AWS CloudTrail*
  • AWS Identity and Access Management
  • AWS Key Management Service
  • Elastic Load Balancing

* Services with first-time FedRAMP Moderate authorizations

We continue to work with the FedRAMP Project Management Office (PMO), other regulatory and compliance bodies, and our customers and partners to ensure that we are raising the bar on our customers’ security and compliance needs.

To learn more about how AWS helps customers meet their security and compliance requirements, see the AWS Compliance website. To learn about what other public sector customers are doing on AWS, see our Government, Education, and Nonprofits Case Studies and Customer Success Stories. To review the public posting of our FedRAMP authorizations, see the FedRAMP Marketplace.

– Chris Gile, Senior Manager, AWS Public Sector Risk and Compliance

How AWS Managed Microsoft AD Helps to Simplify the Deployment and Improve the Security of Active Directory–Integrated .NET Applications

Post Syndicated from Peter Pereira original https://aws.amazon.com/blogs/security/how-aws-managed-microsoft-ad-helps-to-simplify-the-deployment-and-improve-the-security-of-active-directory-integrated-net-applications/

Companies using .NET applications to access sensitive user information, such as employee salary, Social Security Number, and credit card information, need an easy and secure way to manage access for users and applications.

For example, let’s say that your company has a .NET payroll application. You want your Human Resources (HR) team to manage and update the payroll data for all the employees in your company. You also want your employees to be able to see their own payroll information in the application. To meet these requirements in a user-friendly and secure way, you want to manage access to the .NET application by using your existing Microsoft Active Directory identities. This enables you to provide users with single sign-on (SSO) access to the .NET application and to manage permissions using Active Directory groups. You also want the .NET application to authenticate itself to access the database, and to limit access to the data in the database based on the identity of the application user.

Microsoft Active Directory supports these requirements through group Managed Service Accounts (gMSAs) and Kerberos constrained delegation (KCD). AWS Directory Service for Microsoft Active Directory, also known as AWS Managed Microsoft AD, enables you to manage gMSAs and KCD through your administrative account, helping you to migrate and develop .NET applications that need these native Active Directory features.

In this blog post, I give an overview of how to use AWS Managed Microsoft AD to manage gMSAs and KCD and demonstrate how you can configure a gMSA and KCD in six steps for a .NET application:

  1. Create your AWS Managed Microsoft AD.
  2. Create your Amazon RDS for SQL Server database.
  3. Create a gMSA for your .NET application.
  4. Deploy your .NET application.
  5. Configure your .NET application to use the gMSA.
  6. Configure KCD for your .NET application.

Solution overview

The following diagram shows the components of a .NET application that uses Amazon RDS for SQL Server with a gMSA and KCD. The diagram also illustrates authentication and access and is numbered to show the six key steps required to use a gMSA and KCD. To deploy this solution, the AWS Managed Microsoft AD directory must be in the same Amazon Virtual Private Cloud (VPC) as RDS for SQL Server. For this example, my company name is Example Corp., and my directory uses the domain name, example.com.

Diagram showing the components of a .NET application that uses Amazon RDS for SQL Server with a gMSA and KCD

Deploy the solution

The following six steps (numbered to correlate with the preceding diagram) walk you through configuring and using a gMSA and KCD.

1. Create your AWS Managed Microsoft AD directory

Using the Directory Service console, create your AWS Managed Microsoft AD directory in your Amazon VPC. In my example, my domain name is example.com.

Image of creating an AWS Managed Microsoft AD directory in an Amazon VPC

2. Create your Amazon RDS for SQL Server database

Using the RDS console, create your Amazon RDS for SQL Server database instance in the same Amazon VPC where your directory is running, and enable Windows Authentication. To enable Windows Authentication, select your directory in the Microsoft SQL Server Windows Authentication section in the Configure Advanced Settings step of the database creation workflow (see the following screenshot).

In my example, I create my Amazon RDS for SQL Server db-example database, and enable Windows Authentication to allow my db-example database to authenticate against my example.com directory.

Screenshot of configuring advanced settings

3. Create a gMSA for your .NET application

Now that you have deployed your directory, database, and application, you can create a gMSA for your .NET application.

To perform the next steps, you must install the Active Directory administration tools on a Windows server that is joined to your AWS Managed Microsoft AD directory domain. If you do not have a Windows server joined to your directory domain, you can deploy a new Amazon EC2 for Microsoft Windows Server instance and join it to your directory domain.

To create a gMSA for your .NET application:

  1. Log on to the instance on which you installed the Active Directory administration tools by using a user that is a member of the Admins security group or the Managed Service Accounts Admins security group in your organizational unit (OU). For my example, I use the Admin user in the example OU.

Screenshot of logging on to the instance on which you installed the Active Directory administration tools

  1. Identify which .NET application servers (hosts) will run your .NET application. Create a new security group in your OU and add your .NET application servers as members of this new group. This allows a group of application servers to use a single gMSA, instead of creating one gMSA for each server. In my example, I create a group, App_server_grp, in my example OU. I also add Appserver1, which is my .NET application server computer name, as a member of this new group.

Screenshot of creating a new security group

  1. Create a gMSA in your directory by running Windows PowerShell from the Start menu. The basic syntax to create the gMSA at the Windows PowerShell command prompt follows.
    PS C:\Users\admin> New-ADServiceAccount -name [gMSAname] -DNSHostName [domainname] -PrincipalsAllowedToRetrieveManagedPassword [AppServersSecurityGroup] -TrustedForDelegation $truedn <Enter>

    In my example, the gMSAname is gMSAexample, the DNSHostName is example.com, and the PrincipalsAllowedToRetrieveManagedPassword is the recently created security group, App_server_grp.

    PS C:\Users\admin> New-ADServiceAccount -name gMSAexample -DNSHostName example.com -PrincipalsAllowedToRetrieveManagedPassword App_server_grp -TrustedForDelegation $truedn <Enter>

    To confirm you created the gMSA, you can run the Get-ADServiceAccount command from the PowerShell command prompt.

    PS C:\Users\admin> Get-ADServiceAccount gMSAexample <Enter>
    
    DistinguishedName : CN=gMSAexample,CN=Managed Service Accounts,DC=example,DC=com
    Enabled           : True
    Name              : gMSAexample
    ObjectClass       : msDS-GroupManagedServiceAccount
    ObjectGUID        : 24d8b68d-36d5-4dc3-b0a9-edbbb5dc8a5b
    SamAccountName    : gMSAexample$
    SID               : S-1-5-21-2100421304-991410377-951759617-1603
    UserPrincipalName :

    You also can confirm you created the gMSA by opening the Active Directory Users and Computers utility located in your Administrative Tools folder, expand the domain (example.com in my case), and expand the Managed Service Accounts folder.
    Screenshot of confirming the creation of the gMSA

4. Deploy your .NET application

Deploy your .NET application on IIS on Amazon EC2 for Windows Server instances. For this step, I assume you are the application’s expert and already know how to deploy it. Make sure that all of your instances are joined to your directory.

5. Configure your .NET application to use the gMSA

You can configure your .NET application to use the gMSA to enforce strong password security policy and ensure password rotation of your service account. This helps to improve the security and simplify the management of your .NET application. Configure your .NET application in two steps:

  1. Grant to gMSA the required permissions to run your .NET application in the respective application folders. This is a critical step because when you change the application pool identity account to use gMSA, downtime can occur if the gMSA does not have the application’s required permissions. Therefore, make sure you first test the configurations in your development and test environments.
  2. Configure your application pool identity on IIS to use the gMSA as the service account. When you configure a gMSA as the service account, you include the $ at the end of the gMSA name. You do not need to provide a password because AWS Managed Microsoft AD automatically creates and rotates the password. In my example, my service account is gMSAexample$, as shown in the following screenshot.

Screenshot of configuring application pool identity

You have completed all the steps to use gMSA to create and rotate your .NET application service account password! Now, you will configure KCD for your .NET application.

6. Configure KCD for your .NET application

You now are ready to allow your .NET application to have access to other services by using the user identity’s permissions instead of the application service account’s permissions. Note that KCD and gMSA are independent features, which means you do not have to create a gMSA to use KCD. For this example, I am using both features to show how you can use them together. To configure a regular service account such as a user or local built-in account, see the Kerberos constrained delegation with ASP.NET blog post on MSDN.

In my example, my goal is to delegate to the gMSAexample account the ability to enforce the user’s permissions to my db-example SQL Server database, instead of the gMSAexample account’s permissions. For this, I have to update the msDS-AllowedToDelegateTo gMSA attribute. The value for this attribute is the service principal name (SPN) of the service instance that you are targeting, which in this case is the db-example Amazon RDS for SQL Server database.

The SPN format for the msDS-AllowedToDelegateTo attribute is a combination of the service class, the Kerberos authentication endpoint, and the port number. The Amazon RDS for SQL Server Kerberos authentication endpoint format is [database_name].[domain_name]. The value for my msDS-AllowedToDelegateTo attribute is MSSQLSvc/db-example.example.com:1433, where MSSQLSvc and 1433 are the SQL Server Database service class and port number standards, respectively.

Follow these steps to perform the msDS-AllowedToDelegateTo gMSA attribute configuration:

  1. Log on to your Active Directory management instance with a user identity that is a member of the Kerberos Delegation Admins security group. In this case, I will use admin.
  2. Open the Active Directory Users and Groups utility located in your Administrative Tools folder, choose View, and then choose Advanced Features.
  3. Expand your domain name (example.com in this example), and then choose the Managed Service Accounts security group. Right-click the gMSA account for the application pool you want to enable for Kerberos delegation, choose Properties, and choose the Attribute Editor tab.
  4. Search for the msDS-AllowedToDelegateTo attribute on the Attribute Editor tab and choose Edit.
  5. Enter the MSSQLSvc/db-example.example.com:1433 value and choose Add.
    Screenshot of entering the value of the multi-valued string
  6. Choose OK and Apply, and your KCD configuration is complete.

Congratulations! At this point, your application is using a gMSA rather than an embedded static user identity and password, and the application is able to access SQL Server using the identity of the application user. The gMSA eliminates the need for you to rotate the application’s password manually, and it allows you to better scope permissions for the application. When you use KCD, you can enforce access to your database consistently based on user identities at the database level, which prevents improper access that might otherwise occur because of an application error.

Summary

In this blog post, I demonstrated how to simplify the deployment and improve the security of your .NET application by using a group Managed Service Account and Kerberos constrained delegation with your AWS Managed Microsoft AD directory. I also outlined the main steps to get your .NET environment up and running on a managed Active Directory and SQL Server infrastructure. This approach will make it easier for you to build new .NET applications in the AWS Cloud or migrate existing ones in a more secure way.

For additional information about using group Managed Service Accounts and Kerberos constrained delegation with your AWS Managed Microsoft AD directory, see the AWS Directory Service documentation.

To learn more about AWS Directory Service, see the AWS Directory Service home page. If you have questions about this post or its solution, start a new thread on the Directory Service forum.

– Peter

HiveMQ 3.2.8 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-2-8-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.2.8. This is a maintenance release for the 3.2 series and brings the following improvements:

  • Improved performance for payload disk persistence
  • Improved performance for subscription disk persistence
  • Improved exception handling in OnSubscribeCallback when an Exception is not caught by a plugin
  • Fixed an issue where the metric for discarded messages “QoS 0 Queue not empty” was increased when a client is offline
  • Fixed an issue where the convenience methods for a SslCertificate might return null for certain extensions
  • Fixed an issue which could lead to the OnPubackReceivedCallback being executed when inflight queue is full
  • Fixed an issue where a scheduled background cleanup job could cause an error in the logs
  • Fixed an issue which could lead to an IllegalArgumentException when sending a QoS 0 message in a rare edge-case
  • Fixed an issue where a error “Exception while handling batched publish request” was logged without reason

You can download the new HiveMQ version here.

We recommend to upgrade if you are an HiveMQ 3.2.x user.

Have a great day,
The HiveMQ Team

Use the New Visual Editor to Create and Modify Your AWS IAM Policies

Post Syndicated from Joy Chatterjee original https://aws.amazon.com/blogs/security/use-the-new-visual-editor-to-create-and-modify-your-aws-iam-policies/

Today, AWS Identity and Access Management (IAM) made it easier for you to create and modify your IAM policies by using a point-and-click visual editor in the IAM console. The new visual editor guides you through granting permissions for IAM policies without requiring you to write policies in JSON (although you can still author and edit policies in JSON, if you prefer). This update to the IAM console makes it easier to grant least privilege for the AWS service actions you select by listing all the supported resource types and request conditions you can specify. Policy summaries identify unrecognized services and actions and permissions errors when you import existing policies, and now you can use the visual editor to correct them. In this blog post, I give a brief overview of policy concepts and show you how to create a new policy by using the visual editor.

IAM policy concepts

You use IAM policies to define permissions for your IAM entities (groups, users, and roles). Policies are composed of one or more statements that include the following elements:

  • Effect: Determines if a policy statement allows or explicitly denies access.
  • Action: Defines AWS service actions in a policy (these typically map to individual AWS APIs.)
  • Resource: Defines the AWS resources to which actions can apply. The defined resources must be supported by the actions defined in the Action element for permissions to be granted.
  • Condition: Defines when a permission is allowed or denied. The conditions defined in a policy must be supported by the actions defined in the Action element for the permission to be granted.

To grant permissions, you attach policies to groups, users, or roles. Now that I have reviewed the elements of a policy, I will demonstrate how to create an IAM policy with the visual editor.

How to create an IAM policy with the visual editor

Let’s say my human resources (HR) recruiter, Casey, needs to review files located in an Amazon S3 bucket for all the product manager (PM) candidates our HR team has interviewed in 2017. To grant this access, I will create and attach a policy to Casey that grants list and limited read access to all folders that begin with PM_Candidate in the pmrecruiting2017 S3 bucket. To create this new policy, I navigate to the Policies page in the IAM console and choose Create policy. Note that I could also use the visual editor to modify existing policies by choosing Import existing policy; however, for Casey, I will create a new policy.

Image of the "Create policy" button

On the Visual editor tab, I see a section that includes Service, Actions, Resources, and Request Conditions.

Image of the "Visual editor" tab

Select a service

To grant S3 permissions, I choose Select a service, type S3 in the search box, and choose S3 from the list.

Image of choosing "S3"

Select actions

After selecting S3, I can define actions for Casey by using one of four options:

  1. Filter actions in the service by using the search box.
  2. Type actions by choosing Add action next to Manual actions. For example, I can type List* to grant all S3 actions that begin with List*.
  3. Choose access levels from List, Read, Write, Permissions management, and Tagging.
  4. Select individual actions by expanding each access level.

In the following screenshot, I choose options 3 and 4, and choose List and s3:GetObject from the Read access level.

Screenshot of options in the "Select actions" section

We introduced access levels when we launched policy summaries earlier in 2017. Access levels give you a way to categorize actions and help you understand the permissions in a policy. The following table gives you a quick overview of access levels.

Access level Description Example actions
List Actions that allow you to see a list of resources s3:ListBucket, s3:ListAllMyBuckets
Read Actions that allow you to read the content in resources s3:GetObject, s3:GetBucketTagging
Write Actions that allow you to create, delete, or modify resources s3:PutObject, s3:DeleteBucket
Permissions management Actions that allow you to grant or modify permissions to resources s3:PutBucketPolicy
Tagging Actions that allow you to create, delete, or modify tags
Note: Some services support authorization based on tags.
s3:PutBucketTagging, s3:DeleteObjectVersionTagging

Note: By default, all actions you choose will be allowed. To deny actions, choose Switch to deny permissions in the upper right corner of the Actions section.

As shown in the preceding screenshot, if I choose the question mark icon next to GetObject, I can see the description and supported resources and conditions for this action, which can help me scope permissions.

Screenshot of GetObject

The visual editor makes it easy to decide which actions I should select by providing in an integrated documentation panel the action description, supported resources or conditions, and any required actions for every AWS service action. Some AWS service actions have required actions, which are other AWS service actions that need to be granted in a policy for an action to run. For example, the AWS Directory Service action, ds:CreateDirectory, requires seven Amazon EC2 actions to be able to create a Directory Service directory.

Choose resources

In the Resources section, I can choose the resources on which actions can be taken. I choose Resources and see two ways that I can define or select resources:

  1. Define specific resources
  2. Select all resources

Specific is the default option, and only the applicable resources are presented based on the service and actions I chose previously. Because I want to grant Casey access to some objects in a specific bucket, I choose Specific and choose Add ARN under bucket.

Screenshot of Resources section

In the pop-up, I type the bucket name, pmrecruiting2017, and choose Add to specify the S3 bucket resource.

Screenshot of specifying the S3 bucket resource

To specify the objects, I choose Add ARN under object and grant Casey access to all objects starting with PM_Candidate in the pmrecruiting2017 bucket. The visual editor helps you build your Amazon Resource Name (ARN) and validates that it is structured correctly. For AWS services that are AWS Region specific, the visual editor prompts for AWS Region and account number.

The visual editor displays all applicable resources in the Resources section based on the actions I choose. For Casey, I defined an S3 bucket and object in the Resources section. In this example, when the visual editor creates the policy, it creates three statements. The first statement includes all actions that require a wildcard (*) for the Resource element because this action does not support resource-level permissions. The second statement includes all S3 actions that support an S3 bucket. The third statement includes all actions that support an S3 object resource. The visual editor generates policy syntax for you based on supported permissions in AWS services.

Specify request conditions

For additional security, I specify a condition to restrict access to the S3 bucket from inside our internal network. To do this, I choose Specify request conditions in the Request Conditions section, and choose the Source IP check box. A condition is composed of a condition key, an operator, and a value. I choose aws:SourceIp for my Key so that I can control from where the S3 files can be accessed. By default, IpAddress is the Operator, and I set the Value to my internal network.

Screenshot of "Request conditions" section

To add other conditions, choose Add condition and choose Save changes after choosing the key, operator, and value.

After specifying my request condition, I am now able to review all the elements of these S3 permissions.

Screenshot of S3 permissions

Next, I can choose to grant permissions for another service by choosing Add new permissions (bottom left of preceding screenshot), or I can review and create this new policy. Because I have granted all the permissions Casey needs, I choose Review policy. I type a name and a description, and I review the policy summary before choosing Create policy. 

Now that I have created the policy, I attach it to Casey by choosing the Attached entities tab of the policy I just created. I choose Attach and choose Casey. I then choose Attach policy. Casey should now be able to access the interview files she needs to review.

Summary

The visual editor makes it easier to create and modify your IAM policies by guiding you through each element of the policy. The visual editor helps you define resources and request conditions so that you can grant least privilege and generate policies. To start using the visual editor, sign in to the IAM console, navigate to the Policies page, and choose Create policy.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or suggestions for this solution, start a new thread on the IAM forum.

– Joy

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

How to Recover From Ransomware

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/complete-guide-ransomware/

Here’s the scenario. You’re working on your computer and you notice that it seems slower. Or perhaps you can’t access document or media files that were previously available.

You might be getting error messages from Windows telling you that a file is of an “Unknown file type” or “Windows can’t open this file.”

Windows error message

If you’re on a Mac, you might see the message “No associated application,” or “There is no application set to open the document.”

MacOS error message

Another possibility is that you’re completely locked out of your system. If you’re in an office, you might be looking around and seeing that other people are experiencing the same problem. Some are already locked out, and others are just now wondering what’s going on, just as you are.

Then you see a message confirming your fears.

wana decrypt0r ransomware message

You’ve been infected with ransomware.

You’ll have lots of company this year. The number of ransomware attacks on businesses tripled in the past year, jumping from one attack every two minutes in Q1 to one every 40 seconds by Q3.There were over four times more new ransomware variants in the first quarter of 2017 than in the first quarter of 2016, and damages from ransomware are expected to exceed $5 billion this year.

Growth in Ransomware Variants Since December 2015

Source: Proofpoint Q1 2017 Quarterly Threat Report

This past summer, our local PBS and NPR station in San Francisco, KQED, was debilitated for weeks by a ransomware attack that forced them to go back to working the way they used to prior to computers. Five months have passed since the attack and they’re still recovering and trying to figure out how to prevent it from happening again.

How Does Ransomware Work?

Ransomware typically spreads via spam or phishing emails, but also through websites or drive-by downloads, to infect an endpoint and penetrate the network. Once in place, the ransomware then locks all files it can access using strong encryption. Finally, the malware demands a ransom (typically payable in bitcoins) to decrypt the files and restore full operations to the affected IT systems.

Encrypting ransomware or “cryptoware” is by far the most common recent variety of ransomware. Other types that might be encountered are:

  • Non-encrypting ransomware or lock screens (restricts access to files and data, but does not encrypt them)
  • Ransomware that encrypts the Master Boot Record (MBR) of a drive or Microsoft’s NTFS, which prevents victims’ computers from being booted up in a live OS environment
  • Leakware or extortionware (exfiltrates data that the attackers threaten to release if ransom is not paid)
  • Mobile Device Ransomware (infects cell-phones through “drive-by downloads” or fake apps)

The typical steps in a ransomware attack are:

1
Infection
After it has been delivered to the system via email attachment, phishing email, infected application or other method, the ransomware installs itself on the endpoint and any network devices it can access.
2
Secure Key Exchange
The ransomware contacts the command and control server operated by the cybercriminals behind the attack to generate the cryptographic keys to be used on the local system.
3
Encryption
The ransomware starts encrypting any files it can find on local machines and the network.
4
Extortion
With the encryption work done, the ransomware displays instructions for extortion and ransom payment, threatening destruction of data if payment is not made.
5
Unlocking
Organizations can either pay the ransom and hope for the cybercriminals to actually decrypt the affected files (which in many cases does not happen), or they can attempt recovery by removing infected files and systems from the network and restoring data from clean backups.

Who Gets Attacked?

Ransomware attacks target firms of all sizes — 5% or more of businesses in the top 10 industry sectors have been attacked — and no no size business, from SMBs to enterprises, are immune. Attacks are on the rise in every sector and in every size of business.

Recent attacks, such as WannaCry earlier this year, mainly affected systems outside of the United States. Hundreds of thousands of computers were infected from Taiwan to the United Kingdom, where it crippled the National Health Service.

The US has not been so lucky in other attacks, though. The US ranks the highest in the number of ransomware attacks, followed by Germany and then France. Windows computers are the main targets, but ransomware strains exist for Macintosh and Linux, as well.

The unfortunate truth is that ransomware has become so wide-spread that for most companies it is a certainty that they will be exposed to some degree to a ransomware or malware attack. The best they can do is to be prepared and understand the best ways to minimize the impact of ransomware.

“Ransomware is more about manipulating vulnerabilities in human psychology than the adversary’s technological sophistication.” — James Scott, expert in Artificial Intelligence

Phishing emails, malicious email attachments, and visiting compromised websites have been common vehicles of infection (we wrote about protecting against phishing recently), but other methods have become more common in past months. Weaknesses in Microsoft’s Server Message Block (SMB) and Remote Desktop Protocol (RDP) have allowed cryptoworms to spread. Desktop applications — in one case an accounting package — and even Microsoft Office (Microsoft’s Dynamic Data Exchange — DDE) have been the agents of infection.

Recent ransomware strains such as Petya, CryptoLocker, and WannaCry have incorporated worms to spread themselves across networks, earning the nickname, “cryptoworms.”

How to Defeat Ransomware

1
Isolate the Infection
Prevent the infection from spreading by separating all infected computers from each other, shared storage, and the network.
2
Identify the Infection
From messages, evidence on the computer, and identification tools, determine which malware strain you are dealing with.
3
Report
Report to the authorities to support and coordinate measures to counter attacks.
4
Determine Your Options
You have a number of ways to deal with the infection. Determine which approach is best for you.
5
Restore and Refresh
Use safe backups and program and software sources to restore your computer or outfit a new platform.
6
Plan to Prevent Recurrence
Make an assessment of how the infection occurred and what you can do to put measures into place that will prevent it from happening again.

1 — Isolate the Infection

The rate and speed of ransomware detection is critical in combating fast moving attacks before they succeed in spreading across networks and encrypting vital data.

The first thing to do when a computer is suspected of being infected is to isolate it from other computers and storage devices. Disconnect it from the network (both wired and Wi-Fi) and from any external storage devices. Cryptoworms actively seek out connections and other computers, so you want to prevent that happening. You also don’t want the ransomware communicating across the network with its command and control center.

Be aware that there may be more than just one patient zero, meaning that the ransomware may have entered your organization or home through multiple computers, or may be dormant and not yet shown itself on some systems. Treat all connected and networked computers with suspicion and apply measures to ensure that all systems are not infected.

This Week in Tech (TWiT.tv) did a videocast showing what happens when WannaCry is released on an isolated system and encrypts files and trys to spread itself to other computers. It’s a great lesson on how these types of cryptoworms operate.

2 — Identify the Infection

Most often the ransomware will identify itself when it asks for ransom. There are numerous sites that help you identify the ransomware, including ID Ransomware. The No More Ransomware! Project provides the Crypto Sheriff to help identify ransomware.

Identifying the ransomware will help you understand what type of ransomware you have, how it propagates, what types of files it encrypts, and maybe what your options are for removal and disinfection. It also will enable you to report the attack to the authorities, which is recommended.

wanna decryptor 2.0 ransomware message

WannaCry Ransomware Extortion Dialog

3 — Report to the Authorities

You’ll be doing everyone a favor by reporting all ransomware attacks to the authorities. The FBI urges ransomware victims to report ransomware incidents regardless of the outcome. Victim reporting provides law enforcement with a greater understanding of the threat, provides justification for ransomware investigations, and contributes relevant information to ongoing ransomware cases. Knowing more about victims and their experiences with ransomware will help the FBI to determine who is behind the attacks and how they are identifying or targeting victims.

You can file a report with the FBI at the Internet Crime Complaint Center.

There are other ways to report ransomware, as well.

4 — Determine Your Options

Your options when infected with ransomware are:

  1. Pay the ransom
  2. Try to remove the malware
  3. Wipe the system(s) and reinstall from scratch

It’s generally considered a bad idea to pay the ransom. Paying the ransom encourages more ransomware, and in most cases the unlocking of the encrypted files is not successful.

In a recent survey, more than three-quarters of respondents said their organization is not at all likely to pay the ransom in order to recover their data (77%). Only a small minority said they were willing to pay some ransom (3% of companies have already set up a Bitcoin account in preparation).

Even if you decide to pay, it’s very possible you won’t get back your data.

5 — Restore or Start Fresh

You have the choice of trying to remove the malware from your systems or wiping your systems and reinstalling from safe backups and clean OS and application sources.

Get Rid of the Infection

There are internet sites and software packages that claim to be able to remove ransomware from systems. The No More Ransom! Project is one. Other options can be found, as well.

Whether you can successfully and completely remove an infection is up for debate. A working decryptor doesn’t exist for every known ransomware, and unfortunately it’s true that the newer the ransomware, the more sophisticated it’s likely to be and a perhaps a decryptor has not yet been created.

It’s Best to Wipe All Systems Completely

The surest way of being certain that malware or ransomware has been removed from a system is to do a complete wipe of all storage devices and reinstall everything from scratch. If you’ve been following a sound backup strategy, you should have copies of all your documents, media, and important files right up to the time of the infection.

Be sure to determine as well as you can from file dates and other information what was the date of infection. Consider that an infection might have been dormant in your system for a while before it activated and made significant changes to your system. Identifying and learning about the particular malware that attacked your systems will enable you to understand how that malware operates and what your best strategy should be for restoring your systems.

Backblaze Backup enables you to go back in time and specify the date prior to which you wish to restore files. That date should precede the date your system was infected.

Choose files to restore from earlier date in Backblaze Backup

If you’ve been following a good backup policy with both local and off-site backups, you should be able to use backup copies that you are sure were not connected to your network after the time of attack and hence protected from infection. Backup drives that were completely disconnected should be safe, as are files stored in the cloud, as with Backblaze Backup.

System Restores Are not the Best Strategy for Dealing with Ransomware and Malware

You might be tempted to use a System Restore point to get your system back up and running. System Restore is not a good solution for removing viruses or other malware. Since malicious software is typically buried within all kinds of places on a system, you can’t rely on System Restore being able to root out all parts of the malware. Instead, you should rely on a quality virus scanner that you keep up to date. Also, System Restore does not save old copies of your personal files as part of its snapshot. It also will not delete or replace any of your personal files when you perform a restoration, so don’t count on System Restore as working like a backup. You should always have a good backup procedure in place for all your personal files.

Local backups can be encrypted by ransomware. If your backup solution is local and connected to a computer that gets hit with ransomware, the chances are good your backups will be encrypted along with the rest of your data.

With a good backup solution that is isolated from your local computers, such as Backblaze Backup, you can easily obtain the files you need to get your system working again. You have the flexility to determine which files to restore, from which date you want to restore, and how to obtain the files you need to restore your system.

Choose how to obtain your backup files

You’ll need to reinstall your OS and software applications from the source media or the internet. If you’ve been managing your account and software credentials in a sound manner, you should be able to reactivate accounts for applications that require it.

If you use a password manager, such as 1Password or LastPass, to store your account numbers, usernames, passwords, and other essential information, you can access that information through their web interface or mobile applications. You just need to be sure that you still know your master username and password to obtain access to these programs.

6 — How to Prevent a Ransomware Attack

“Ransomware is at an unprecedented level and requires international investigation.” — European police agency EuroPol

A ransomware attack can be devastating for a home or a business. Valuable and irreplaceable files can be lost and tens or even hundreds of hours of effort can be required to get rid of the infection and get systems working again.

Security experts suggest several precautionary measures for preventing a ransomware attack.

  1. Use anti-virus and anti-malware software or other security policies to block known payloads from launching.
  2. Make frequent, comprehensive backups of all important files and isolate them from local and open networks. Cybersecurity professionals view data backup and recovery (74% in a recent survey) by far as the most effective solution to respond to a successful ransomware attack.
  3. Keep offline backups of data stored in locations inaccessible from any potentially infected computer, such as external storage drives or the cloud, which prevents them from being accessed by the ransomware.
  4. Install the latest security updates issued by software vendors of your OS and applications. Remember to Patch Early and Patch Often to close known vulnerabilities in operating systems, browsers, and web plugins.
  5. Consider deploying security software to protect endpoints, email servers, and network systems from infection.
  6. Exercise cyber hygiene, such as using caution when opening email attachments and links.
  7. Segment your networks to keep critical computers isolated and to prevent the spread of malware in case of attack. Turn off unneeded network shares.
  8. Turn off admin rights for users who don’t require them. Give users the lowest system permissions they need to do their work.
  9. Restrict write permissions on file servers as much as possible.
  10. Educate yourself, your employees, and your family in best practices to keep malware out of your systems. Update everyone on the latest email phishing scams and human engineering aimed at turning victims into abettors.

It’s clear that the best way to respond to a ransomware attack is to avoid having one in the first place. Other than that, making sure your valuable data is backed up and unreachable by ransomware infection will ensure that your downtime and data loss will be minimal or avoided completely.

Have you endured a ransomware attack or have a strategy to avoid becoming a victim? Please let us know in the comments.

The post How to Recover From Ransomware appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Capturing Custom, High-Resolution Metrics from Containers Using AWS Step Functions and AWS Lambda

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/capturing-custom-high-resolution-metrics-from-containers-using-aws-step-functions-and-aws-lambda/

Contributed by Trevor Sullivan, AWS Solutions Architect

When you deploy containers with Amazon ECS, are you gathering all of the key metrics so that you can correctly monitor the overall health of your ECS cluster?

By default, ECS writes metrics to Amazon CloudWatch in 5-minute increments. For complex or large services, this may not be sufficient to make scaling decisions quickly. You may want to respond immediately to changes in workload or to identify application performance problems. Last July, CloudWatch announced support for high-resolution metrics, up to a per-second basis.

These high-resolution metrics can be used to give you a clearer picture of the load and performance for your applications, containers, clusters, and hosts. In this post, I discuss how you can use AWS Step Functions, along with AWS Lambda, to cost effectively record high-resolution metrics into CloudWatch. You implement this solution using a serverless architecture, which keeps your costs low and makes it easier to troubleshoot the solution.

To show how this works, you retrieve some useful metric data from an ECS cluster running in the same AWS account and region (Oregon, us-west-2) as the Step Functions state machine and Lambda function. However, you can use this architecture to retrieve any custom application metrics from any resource in any AWS account and region.

Why Step Functions?

Step Functions enables you to orchestrate multi-step tasks in the AWS Cloud that run for any period of time, up to a year. Effectively, you’re building a blueprint for an end-to-end process. After it’s built, you can execute the process as many times as you want.

For this architecture, you gather metrics from an ECS cluster, every five seconds, and then write the metric data to CloudWatch. After your ECS cluster metrics are stored in CloudWatch, you can create CloudWatch alarms to notify you. An alarm can also trigger an automated remediation activity such as scaling ECS services, when a metric exceeds a threshold defined by you.

When you build a Step Functions state machine, you define the different states inside it as JSON objects. The bulk of the work in Step Functions is handled by the common task state, which invokes Lambda functions or Step Functions activities. There is also a built-in library of other useful states that allow you to control the execution flow of your program.

One of the most useful state types in Step Functions is the parallel state. Each parallel state in your state machine can have one or more branches, each of which is executed in parallel. Another useful state type is the wait state, which waits for a period of time before moving to the next state.

In this walkthrough, you combine these three states (parallel, wait, and task) to create a state machine that triggers a Lambda function, which then gathers metrics from your ECS cluster.

Step Functions pricing

This state machine is executed every minute, resulting in 60 executions per hour, and 1,440 executions per day. Step Functions is billed per state transition, including the Start and End state transitions, and giving you approximately 37,440 state transitions per day. To reach this number, I’m using this estimated math:

26 state transitions per-execution x 60 minutes x 24 hours

Based on current pricing, at $0.000025 per state transition, the daily cost of this metric gathering state machine would be $0.936.

Step Functions offers an indefinite 4,000 free state transitions every month. This benefit is available to all customers, not just customers who are still under the 12-month AWS Free Tier. For more information and cost example scenarios, see Step Functions pricing.

Why Lambda?

The goal is to capture metrics from an ECS cluster, and write the metric data to CloudWatch. This is a straightforward, short-running process that makes Lambda the perfect place to run your code. Lambda is one of the key services that makes up “Serverless” application architectures. It enables you to consume compute capacity only when your code is actually executing.

The process of gathering metric data from ECS and writing it to CloudWatch takes a short period of time. In fact, my average Lambda function execution time, while developing this post, is only about 250 milliseconds on average. For every five-second interval that occurs, I’m only using 1/20th of the compute time that I’d otherwise be paying for.

Lambda pricing

For billing purposes, Lambda execution time is rounded up to the nearest 100-ms interval. In general, based on the metrics that I observed during development, a 250-ms runtime would be billed at 300 ms. Here, I calculate the cost of this Lambda function executing on a daily basis.

Assuming 31 days in each month, there would be 535,680 five-second intervals (31 days x 24 hours x 60 minutes x 12 five-second intervals = 535,680). The Lambda function is invoked every five-second interval, by the Step Functions state machine, and runs for a 300-ms period. At current Lambda pricing, for a 128-MB function, you would be paying approximately the following:

Total compute

Total executions = 535,680
Total compute = total executions x (3 x $0.000000208 per 100 ms) = $0.334 per day

Total requests

Total requests = (535,680 / 1000000) * $0.20 per million requests = $0.11 per day

Total Lambda Cost

$0.11 requests + $0.334 compute time = $0.444 per day

Similar to Step Functions, Lambda offers an indefinite free tier. For more information, see Lambda Pricing.

Walkthrough

In the following sections, I step through the process of configuring the solution just discussed. If you follow along, at a high level, you will:

  • Configure an IAM role and policy
  • Create a Step Functions state machine to control metric gathering execution
  • Create a metric-gathering Lambda function
  • Configure a CloudWatch Events rule to trigger the state machine
  • Validate the solution

Prerequisites

You should already have an AWS account with a running ECS cluster. If you don’t have one running, you can easily deploy a Docker container on an ECS cluster using the AWS Management Console. In the example produced for this post, I use an ECS cluster running Windows Server (currently in beta), but either a Linux or Windows Server cluster works.

Create an IAM role and policy

First, create an IAM role and policy that enables Step Functions, Lambda, and CloudWatch to communicate with each other.

  • The CloudWatch Events rule needs permissions to trigger the Step Functions state machine.
  • The Step Functions state machine needs permissions to trigger the Lambda function.
  • The Lambda function needs permissions to query ECS and then write to CloudWatch Logs and metrics.

When you create the state machine, Lambda function, and CloudWatch Events rule, you assign this role to each of those resources. Upon execution, each of these resources assumes the specified role and executes using the role’s permissions.

  1. Open the IAM console.
  2. Choose Roles, create New Role.
  3. For Role Name, enter WriteMetricFromStepFunction.
  4. Choose Save.

Create the IAM role trust relationship
The trust relationship (also known as the assume role policy document) for your IAM role looks like the following JSON document. As you can see from the document, your IAM role needs to trust the Lambda, CloudWatch Events, and Step Functions services. By configuring your role to trust these services, they can assume this role and inherit the role permissions.

  1. Open the IAM console.
  2. Choose Roles and select the IAM role previously created.
  3. Choose Trust RelationshipsEdit Trust Relationships.
  4. Enter the following trust policy text and choose Save.
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "events.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "states.us-west-2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

Create an IAM policy

After you’ve finished configuring your role’s trust relationship, grant the role access to the other AWS resources that make up the solution.

The IAM policy is what gives your IAM role permissions to access various resources. You must whitelist explicitly the specific resources to which your role has access, because the default IAM behavior is to deny access to any AWS resources.

I’ve tried to keep this policy document as generic as possible, without allowing permissions to be too open. If the name of your ECS cluster is different than the one in the example policy below, make sure that you update the policy document before attaching it to your IAM role. You can attach this policy as an inline policy, instead of creating the policy separately first. However, either approach is valid.

  1. Open the IAM console.
  2. Select the IAM role, and choose Permissions.
  3. Choose Add in-line policy.
  4. Choose Custom Policy and then enter the following policy. The inline policy name does not matter.
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [ "logs:*" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "cloudwatch:PutMetricData" ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": [ "states:StartExecution" ],
            "Resource": [
                "arn:aws:states:*:*:stateMachine:WriteMetricFromStepFunction"
            ]
        },
        {
            "Effect": "Allow",
            "Action": [ "lambda:InvokeFunction" ],
            "Resource": "arn:aws:lambda:*:*:function:WriteMetricFromStepFunction"
        },
        {
            "Effect": "Allow",
            "Action": [ "ecs:Describe*" ],
            "Resource": "arn:aws:ecs:*:*:cluster/ECSEsgaroth"
        }
    ]
}

Create a Step Functions state machine

In this section, you create a Step Functions state machine that invokes the metric-gathering Lambda function every five (5) seconds, for a one-minute period. If you divide a minute (60) seconds into equal parts of five-second intervals, you get 12. Based on this math, you create 12 branches, in a single parallel state, in the state machine. Each branch triggers the metric-gathering Lambda function at a different five-second marker, throughout the one-minute period. After all of the parallel branches finish executing, the Step Functions execution completes and another begins.

Follow these steps to create your Step Functions state machine:

  1. Open the Step Functions console.
  2. Choose DashboardCreate State Machine.
  3. For State Machine Name, enter WriteMetricFromStepFunction.
  4. Enter the state machine code below into the editor. Make sure that you insert your own AWS account ID for every instance of “676655494xxx”
  5. Choose Create State Machine.
  6. Select the WriteMetricFromStepFunction IAM role that you previously created.
{
    "Comment": "Writes ECS metrics to CloudWatch every five seconds, for a one-minute period.",
    "StartAt": "ParallelMetric",
    "States": {
      "ParallelMetric": {
        "Type": "Parallel",
        "Branches": [
          {
            "StartAt": "WriteMetricLambda",
            "States": {
             	"WriteMetricLambda": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFive",
            "States": {
            	"WaitFive": {
            		"Type": "Wait",
            		"Seconds": 5,
            		"Next": "WriteMetricLambdaFive"
          		},
             	"WriteMetricLambdaFive": {
                  "Type": "Task",
				  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitTen",
            "States": {
            	"WaitTen": {
            		"Type": "Wait",
            		"Seconds": 10,
            		"Next": "WriteMetricLambda10"
          		},
             	"WriteMetricLambda10": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
    	  {
            "StartAt": "WaitFifteen",
            "States": {
            	"WaitFifteen": {
            		"Type": "Wait",
            		"Seconds": 15,
            		"Next": "WriteMetricLambda15"
          		},
             	"WriteMetricLambda15": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait20",
            "States": {
            	"Wait20": {
            		"Type": "Wait",
            		"Seconds": 20,
            		"Next": "WriteMetricLambda20"
          		},
             	"WriteMetricLambda20": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait25",
            "States": {
            	"Wait25": {
            		"Type": "Wait",
            		"Seconds": 25,
            		"Next": "WriteMetricLambda25"
          		},
             	"WriteMetricLambda25": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait30",
            "States": {
            	"Wait30": {
            		"Type": "Wait",
            		"Seconds": 30,
            		"Next": "WriteMetricLambda30"
          		},
             	"WriteMetricLambda30": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait35",
            "States": {
            	"Wait35": {
            		"Type": "Wait",
            		"Seconds": 35,
            		"Next": "WriteMetricLambda35"
          		},
             	"WriteMetricLambda35": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait40",
            "States": {
            	"Wait40": {
            		"Type": "Wait",
            		"Seconds": 40,
            		"Next": "WriteMetricLambda40"
          		},
             	"WriteMetricLambda40": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait45",
            "States": {
            	"Wait45": {
            		"Type": "Wait",
            		"Seconds": 45,
            		"Next": "WriteMetricLambda45"
          		},
             	"WriteMetricLambda45": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait50",
            "States": {
            	"Wait50": {
            		"Type": "Wait",
            		"Seconds": 50,
            		"Next": "WriteMetricLambda50"
          		},
             	"WriteMetricLambda50": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          },
          {
            "StartAt": "Wait55",
            "States": {
            	"Wait55": {
            		"Type": "Wait",
            		"Seconds": 55,
            		"Next": "WriteMetricLambda55"
          		},
             	"WriteMetricLambda55": {
                  "Type": "Task",
                  "Resource": "arn:aws:lambda:us-west-2:676655494xxx:function:WriteMetricFromStepFunction",
                  "End": true
                } 
            }
          }
        ],
        "End": true
      }
  }
}

Now you’ve got a shiny new Step Functions state machine! However, you might ask yourself, “After the state machine has been created, how does it get executed?” Before I answer that question, create the Lambda function that writes the custom metric, and then you get the end-to-end process moving.

Create a Lambda function

The meaty part of the solution is a Lambda function, written to consume the Python 3.6 runtime, that retrieves metric values from ECS, and then writes them to CloudWatch. This Lambda function is what the Step Functions state machine is triggering every five seconds, via the Task states. Key points to remember:

The Lambda function needs permission to:

  • Write CloudWatch metrics (PutMetricData API).
  • Retrieve metrics from ECS clusters (DescribeCluster API).
  • Write StdOut to CloudWatch Logs.

Boto3, the AWS SDK for Python, is included in the Lambda execution environment for Python 2.x and 3.x.

Because Lambda includes the AWS SDK, you don’t have to worry about packaging it up and uploading it to Lambda. You can focus on writing code and automatically take a dependency on boto3.

As for permissions, you’ve already created the IAM role and attached a policy to it that enables your Lambda function to access the necessary API actions. When you create your Lambda function, make sure that you select the correct IAM role, to ensure it is invoked with the correct permissions.

The following Lambda function code is generic. So how does the Lambda function know which ECS cluster to gather metrics for? Your Step Functions state machine automatically passes in its state to the Lambda function. When you create your CloudWatch Events rule, you specify a simple JSON object that passes the desired ECS cluster name into your Step Functions state machine, which then passes it to the Lambda function.

Use the following property values as you create your Lambda function:

Function Name: WriteMetricFromStepFunction
Description: This Lambda function retrieves metric values from an ECS cluster and writes them to Amazon CloudWatch.
Runtime: Python3.6
Memory: 128 MB
IAM Role: WriteMetricFromStepFunction

import boto3

def handler(event, context):
    cw = boto3.client('cloudwatch')
    ecs = boto3.client('ecs')
    print('Got boto3 client objects')
    
    Dimension = {
        'Name': 'ClusterName',
        'Value': event['ECSClusterName']
    }

    cluster = get_ecs_cluster(ecs, Dimension['Value'])
    
    cw_args = {
       'Namespace': 'ECS',
       'MetricData': [
           {
               'MetricName': 'RunningTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['runningTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'PendingTask',
               'Dimensions': [ Dimension ],
               'Value': cluster['pendingTasksCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'ActiveServices',
               'Dimensions': [ Dimension ],
               'Value': cluster['activeServicesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           },
           {
               'MetricName': 'RegisteredContainerInstances',
               'Dimensions': [ Dimension ],
               'Value': cluster['registeredContainerInstancesCount'],
               'Unit': 'Count',
               'StorageResolution': 1
           }
        ]
    }
    cw.put_metric_data(**cw_args)
    print('Finished writing metric data')
    
def get_ecs_cluster(client, cluster_name):
    cluster = client.describe_clusters(clusters = [ cluster_name ])
    print('Retrieved cluster details from ECS')
    return cluster['clusters'][0]

Create the CloudWatch Events rule

Now you’ve created an IAM role and policy, Step Functions state machine, and Lambda function. How do these components actually start communicating with each other? The final step in this process is to set up a CloudWatch Events rule that triggers your metric-gathering Step Functions state machine every minute. You have two choices for your CloudWatch Events rule expression: rate or cron. In this example, use the cron expression.

A couple key learning points from creating the CloudWatch Events rule:

  • You can specify one or more targets, of different types (for example, Lambda function, Step Functions state machine, SNS topic, and so on).
  • You’re required to specify an IAM role with permissions to trigger your target.
    NOTE: This applies only to certain types of targets, including Step Functions state machines.
  • Each target that supports IAM roles can be triggered using a different IAM role, in the same CloudWatch Events rule.
  • Optional: You can provide custom JSON that is passed to your target Step Functions state machine as input.

Follow these steps to create the CloudWatch Events rule:

  1. Open the CloudWatch console.
  2. Choose Events, RulesCreate Rule.
  3. Select Schedule, Cron Expression, and then enter the following rule:
    0/1 * * * ? *
  4. Choose Add Target, Step Functions State MachineWriteMetricFromStepFunction.
  5. For Configure Input, select Constant (JSON Text).
  6. Enter the following JSON input, which is passed to Step Functions, while changing the cluster name accordingly:
    { "ECSClusterName": "ECSEsgaroth" }
  7. Choose Use Existing Role, WriteMetricFromStepFunction (the IAM role that you previously created).

After you’ve completed with these steps, your screen should look similar to this:

Validate the solution

Now that you have finished implementing the solution to gather high-resolution metrics from ECS, validate that it’s working properly.

  1. Open the CloudWatch console.
  2. Choose Metrics.
  3. Choose custom and select the ECS namespace.
  4. Choose the ClusterName metric dimension.

You should see your metrics listed below.

Troubleshoot configuration issues

If you aren’t receiving the expected ECS cluster metrics in CloudWatch, check for the following common configuration issues. Review the earlier procedures to make sure that the resources were properly configured.

  • The IAM role’s trust relationship is incorrectly configured.
    Make sure that the IAM role trusts Lambda, CloudWatch Events, and Step Functions in the correct region.
  • The IAM role does not have the correct policies attached to it.
    Make sure that you have copied the IAM policy correctly as an inline policy on the IAM role.
  • The CloudWatch Events rule is not triggering new Step Functions executions.
    Make sure that the target configuration on the rule has the correct Step Functions state machine and IAM role selected.
  • The Step Functions state machine is being executed, but failing part way through.
    Examine the detailed error message on the failed state within the failed Step Functions execution. It’s possible that the
  • IAM role does not have permissions to trigger the target Lambda function, that the target Lambda function may not exist, or that the Lambda function failed to complete successfully due to invalid permissions.
    Although the above list covers several different potential configuration issues, it is not comprehensive. Make sure that you understand how each service is connected to each other, how permissions are granted through IAM policies, and how IAM trust relationships work.

Conclusion

In this post, you implemented a Serverless solution to gather and record high-resolution application metrics from containers running on Amazon ECS into CloudWatch. The solution consists of a Step Functions state machine, Lambda function, CloudWatch Events rule, and an IAM role and policy. The data that you gather from this solution helps you rapidly identify issues with an ECS cluster.

To gather high-resolution metrics from any service, modify your Lambda function to gather the correct metrics from your target. If you prefer not to use Python, you can implement a Lambda function using one of the other supported runtimes, including Node.js, Java, or .NET Core. However, this post should give you the fundamental basics about capturing high-resolution metrics in CloudWatch.

If you found this post useful, or have questions, please comment below.

Under the Hood: Task Networking for Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/under-the-hood-task-networking-for-amazon-ecs/

This post courtsey of ECS Sr. Software Dev Engineer Anirudh Aithal.

Today, AWS announced Task Networking for Amazon ECS, which enables elastic network interfaces to be attached to containers.

In this post, I take a closer look at how this new container-native “awsvpc” network mode is implemented using container networking interface plugins on ECS managed instances (referred to as container instances).

This post is a deep dive into how task networking works with Amazon ECS. If you want to learn more about how you can start using task networking for your containerized applications, see Introducing Cloud Native Networking for Amazon ECS Containers. Cloud Native Computing Foundation (CNCF) hosts the Container Networking Interface (CNI) project, which consists of a specification and libraries for writing plugins to configure network interfaces in Linux containers. For more about cloud native computing in AWS, see Adrian Cockcroft’s post on Cloud Native Computing.

Container instance setup

Before I discuss the details of enabling task networking on container instances, look at how a typical instance looks in ECS.

The diagram above shows a typical container instance. The ECS agent, which itself is running as a container, is responsible for:

  • Registering the EC2 instance with the ECS backend
  • Ensuring that task state changes communicated to it by the ECS backend are enacted on the container instance
  • Interacting with the Docker daemon to create, start, stop, and monitor
  • Relaying container state and task state transitions to the ECS backend

Because the ECS agent is just acting as the supervisor for containers under its management, it offloads the problem of setting up networking for containers to either the Docker daemon (for containers configured with one of Docker’s default networking modes) or a set of CNI plugins (for containers in task with networking mode set to awsvpc).

In either case, network stacks of containers are configured via network namespaces. As per the ip-netns(8) manual, “A network namespace is logically another copy of the network stack, with its own routes, firewall rules, and network devices.” The network namespace construct makes the partitioning of network stack between processes and containers running on a host possible.

Network namespaces and CNI plugins

CNI plugins are executable files that comply with the CNI specification and configure the network connectivity of containers. The CNI project defines a specification for the plugins and provides a library for interacting with plugins, thus providing a consistent, reliable, and simple interface with which to interact with the plugins.

You specify the container or its network namespace and invoke the plugin with the ADD command to add network interfaces to a container, and then the DEL command to tear them down. For example, the reference bridge plugin adds all containers on the same host into a bridge that resides in the host network namespace.

This plugin model fits in nicely with the ECS agent’s “minimal intrusion in the container lifecycle” model, as the agent doesn’t need to concern itself with the details of the network setup for containers. It’s also an extensible model, which allows the agent to switch to a different set of plugins if the need arises in future. Finally, the ECS agent doesn’t need to monitor the liveliness of these plugins as they are only invoked when required.

Invoking CNI plugins from the ECS agent

When ECS attaches an elastic network interface to the instance and sends the message to the agent to provision the elastic network interface for containers in a task, the elastic network interface (as with any network device) shows up in the global default network namespace of the host. The ECS agent invokes a chain of CNI plugins to ensure that the elastic network interface is configured appropriately in the container’s network namespace. You can review these plugins in the amazon-ecs-cni-plugins GitHub repo.

The first plugin invoked in this chain is the ecs-eni plugin, which ensures that the elastic network interface is attached to container’s network namespace and configured with the VPC-allocated IP addresses and the default route to use the subnet gateway. The container also needs to make HTTP requests to the credentials endpoint (hosted by the ECS agent) for getting IAM role credentials. This is handled by the ecs-bridge and ecs-ipam plugins, which are invoked next. The CNI library provides mechanisms to interpret the results from the execution of these plugins, which results in an efficient error handling in the agent. The following diagram illustrates the different steps in this process:

To avoid the race condition between configuring the network stack and commands being invoked in application containers, the ECS agent creates an additional “pause” container for each task before starting the containers in the task definition. It then sets up the network namespace of the pause container by executing the previously mentioned CNI plugins. It also starts the rest of the containers in the task so that they share their network stack of the pause container. This means that all containers in a task are addressable by the IP addresses of the elastic network interface, and they can communicate with each other over the localhost interface.

In this example setup, you have two containers in a task behind an elastic network interface. The following commands show that they have a similar view of the network stack and can talk to each other over the localhost interface.

List the last three containers running on the host (you launched a task with two containers and the ECS agent launched the additional container to configure the network namespace):

$ docker ps -n 3 --format "{{.ID}}\t{{.Names}}\t{{.Command}}\t{{.Status}}"
7d7b7fbc30b9	ecs-front-envoy-5-envoy-sds-ecs-ce8bd9eca6dd81a8d101	"/bin/sh -c '/usr/..."	Up 3 days
dfdcb2acfc91	ecs-front-envoy-5-front-envoy-faeae686adf9c1d91000	"/bin/sh -c '/usr/..."	Up 3 days
f731f6dbb81c	ecs-front-envoy-5-internalecspause-a8e6e19e909fa9c9e901	"./pause"	Up 3 days

List interfaces for these containers and make sure that they are the same:

$ for id in `docker ps -n 3 -q`; do pid=`docker inspect $id -f '{{.State.Pid}}'`; echo container $id; sudo nsenter -t $pid -n ip link show; done
container 7d7b7fbc30b9
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container dfdcb2acfc91
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

container f731f6dbb81c
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default qlen 1
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
3: [email protected]: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group default
    link/ether 0a:58:a9:fe:ac:0c brd ff:ff:ff:ff:ff:ff link-netnsid 0
27: eth12: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9001 qdisc mq state UP mode DEFAULT group default qlen 1000
    link/ether 02:5a:a1:1a:43:42 brd ff:ff:ff:ff:ff:ff

Conclusion

All of this work means that you can use the new awsvpc networking mode and benefit from native networking support for your containers. You can learn more about using awsvpc mode in Introducing Cloud Native Networking for Amazon ECS Containers or the ECS documentation.

I appreciate your feedback in the comments section. You can also reach me on GitHub in either the ECS CNI Plugins or the ECS Agent repositories.

The Pirate Bay & 1337x Must Be Blocked, Austrian Supreme Court Rules

Post Syndicated from Andy original https://torrentfreak.com/the-pirate-bay-1337x-must-be-blocked-austrian-supreme-court-rules-171014/

Following a long-running case, in 2015 Austrian ISPs were ordered by the Commercial Court to block The Pirate Bay and other “structurally-infringing” sites including 1337x.to, isohunt.to, and h33t.to.

The decision was welcomed by the music industry, which looked forward to having more sites blocked in due course.

Soon after, local music rights group LSG sent its lawyers after several other large ISPs urging them to follow suit, or else. However, the ISPs dug in and a year later, in May 2016, things began to unravel. The Vienna Higher Regional Court overruled the earlier decision of the Commercial Court, meaning that local ISPs were free to unblock the previously blocked sites.

The Court concluded that ISP blocks are only warranted if copyright holders have exhausted all their options to take action against those actually carrying out the infringement. This decision was welcomed by the Internet Service Providers Austria (ISPA), which described the decision as an important milestone.

The ISPs argued that only torrent files, not the content itself, was available on the portals. They also had a problem with the restriction of access to legitimate content.

“A problem in this context is that the offending pages also have legal content and it is no longer possible to access that if barriers are put in place,” said ISPA Secretary General Maximilian Schubert.

Taking the case to its ultimate conclusion, the music companies appealed to the Supreme Court. Another year on and its decision has just been published and for the rightsholders, who represent 3,000 artists including The Beatles, Justin Bieber, Eric Clapton, Coldplay, David Guetta, Iggy Azalea, Michael Jackson, Lady Gaga, Metallica, George Michael, One Direction, Katy Perry, and Queen, to name a few, it was worth the effort.

The Court looked at whether “the provision and operation of a BitTorrent platform with the purpose of online file sharing [of non-public domain works]” represents a “communication to the public” under the EU Copyright Directive. Citing the now-familiar BREIN v Filmspeler and BREIN v Ziggo and XS4All cases that both received European Court of Justice rulings earlier this year, the Supreme Court concluded it was.

Citing another Dutch case, in which Playboy publisher Sanoma took on the blog GeenStijl.nl, the Court noted that linking to copyrighted content hosted elsewhere also amounted to a “communication to the public”, a situation mirrored on torrent sites like The Pirate Bay.

“The similarity of the technical procedure in this case when compared to BitTorrent platforms lies in the fact that in both cases the operators of the website did not provide any copyrighted works themselves, but merely provided further information on sites where the protected works were available,” the Court notes in its ruling.

In respect of the potential for blocking legitimate content as well as that infringing copyright, the Court turned the ISPs’ own arguments against them somewhat.

The ISPs had previously argued that blocking The Pirate Bay and other sites was pointless since the torrents they host would still be available elsewhere. The Court noted that point and also found that people can easily upload their torrents to sites that aren’t blocked, since there’s plenty of choice.

The ISPA criticized the Supreme Court’s ruling, noting that in future ISPs will still find themselves being held responsible for decisions concerning blocking.

“We do not support illegal content on the Internet in any way, but consider it extremely questionable that the decision on what is illegal and what is not falls to ISPs, instead of a court,” said ISPA Secretary General Maximilian.

“Although we find it positive that a court of last resort has taken the decision, the assessment of the website in the first instance continues to be left to the Internet provider. The Supreme Court’s expansion of the circle of sites that be potentially blocked further complicates this task for the operator and furthers the privatization of law enforcement.

“It is extremely unpleasant that even after more than 10 years of fierce discussion, there is still no compelling legal basis for a court decision on Internet blocking, which puts providers in the role of both judge and hangman.”

Also of interest is ISPA’s stance on how blocking of content fails to solve the underlying issue. When content is blocked, rather than removed, it simply displaces the problem, leaving others to pick up the pieces, the Internet body argues.

“Illegal content is permanently removed from the network by deletion. Everything else is a placebo with extremely dangerous side effects, which can easily be bypassed by both providers and consumers. The only thing that remains is a blocking infrastructure that can be misused for many purposes and, unfortunately, will be used in many places,” Schubert says.

“The current situation, where providers have to block the rightsholders quasi on the spot, if they do not want to engage in a time-consuming and cost-intensive litigation, is really not sustainable so we issue a call to action to the legislature.”

The domains that were listed in the case, many of which are already defunct, are: thepiratebay.se, thepiratebay.gd, thepiratebay.la, thepiratebay.mn, thepiratebay.mu, thepiratebay.sh, thepiratebay.tw, thepiratebay.fm, thepiratebay.ms, thepiratebay.vg, isohunt.to, 1337x.to and h33t.to.

Whether it will be added later is unclear, but the only domain currently used by The Pirate Bay (thepiratebay.org) is not included in the list.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Building a Multi-region Serverless Application with Amazon API Gateway and AWS Lambda

Post Syndicated from Stefano Buliani original https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/

This post written by: Magnus Bjorkman – Solutions Architect

Many customers are looking to run their services at global scale, deploying their backend to multiple regions. In this post, we describe how to deploy a Serverless API into multiple regions and how to leverage Amazon Route 53 to route the traffic between regions. We use latency-based routing and health checks to achieve an active-active setup that can fail over between regions in case of an issue. We leverage the new regional API endpoint feature in Amazon API Gateway to make this a seamless process for the API client making the requests. This post does not cover the replication of your data, which is another aspect to consider when deploying applications across regions.

Solution overview

Currently, the default API endpoint type in API Gateway is the edge-optimized API endpoint, which enables clients to access an API through an Amazon CloudFront distribution. This typically improves connection time for geographically diverse clients. By default, a custom domain name is globally unique and the edge-optimized API endpoint would invoke a Lambda function in a single region in the case of Lambda integration. You can’t use this type of endpoint with a Route 53 active-active setup and fail-over.

The new regional API endpoint in API Gateway moves the API endpoint into the region and the custom domain name is unique per region. This makes it possible to run a full copy of an API in each region and then use Route 53 to use an active-active setup and failover. The following diagram shows how you do this:

Active/active multi region architecture

  • Deploy your Rest API stack, consisting of API Gateway and Lambda, in two regions, such as us-east-1 and us-west-2.
  • Choose the regional API endpoint type for your API.
  • Create a custom domain name and choose the regional API endpoint type for that one as well. In both regions, you are configuring the custom domain name to be the same, for example, helloworldapi.replacewithyourcompanyname.com
  • Use the host name of the custom domain names from each region, for example, xxxxxx.execute-api.us-east-1.amazonaws.com and xxxxxx.execute-api.us-west-2.amazonaws.com, to configure record sets in Route 53 for your client-facing domain name, for example, helloworldapi.replacewithyourcompanyname.com

The above solution provides an active-active setup for your API across the two regions, but you are not doing failover yet. For that to work, set up a health check in Route 53:

Route 53 Health Check

A Route 53 health check must have an endpoint to call to check the health of a service. You could do a simple ping of your actual Rest API methods, but instead provide a specific method on your Rest API that does a deep ping. That is, it is a Lambda function that checks the status of all the dependencies.

In the case of the Hello World API, you don’t have any other dependencies. In a real-world scenario, you could check on dependencies as databases, other APIs, and external dependencies. Route 53 health checks themselves cannot use your custom domain name endpoint’s DNS address, so you are going to directly call the API endpoints via their region unique endpoint’s DNS address.

Walkthrough

The following sections describe how to set up this solution. You can find the complete solution at the blog-multi-region-serverless-service GitHub repo. Clone or download the repository locally to be able to do the setup as described.

Prerequisites

You need the following resources to set up the solution described in this post:

  • AWS CLI
  • An S3 bucket in each region in which to deploy the solution, which can be used by the AWS Serverless Application Model (SAM). You can use the following CloudFormation templates to create buckets in us-east-1 and us-west-2:
    • us-east-1:
    • us-west-2:
  • A hosted zone registered in Amazon Route 53. This is used for defining the domain name of your API endpoint, for example, helloworldapi.replacewithyourcompanyname.com. You can use a third-party domain name registrar and then configure the DNS in Amazon Route 53, or you can purchase a domain directly from Amazon Route 53.

Deploy API with health checks in two regions

Start by creating a small “Hello World” Lambda function that sends back a message in the region in which it has been deployed.


"""Return message."""
import logging

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the hello world message."""

    region = context.invoked_function_arn.split(':')[3]

    logger.info("message: " + "Hello from " + region)
    
    return {
		"message": "Hello from " + region
    }

Also create a Lambda function for doing a health check that returns a value based on another environment variable (either “ok” or “fail”) to allow for ease of testing:


"""Return health."""
import logging
import os

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the health."""

    logger.info("status: " + os.environ['STATUS'])
    
    return {
		"status": os.environ['STATUS']
    }

Deploy both of these using an AWS Serverless Application Model (SAM) template. SAM is a CloudFormation extension that is optimized for serverless, and provides a standard way to create a complete serverless application. You can find the full helloworld-sam.yaml template in the blog-multi-region-serverless-service GitHub repo.

A few things to highlight:

  • You are using inline Swagger to define your API so you can substitute the current region in the x-amazon-apigateway-integration section.
  • Most of the Swagger template covers CORS to allow you to test this from a browser.
  • You are also using substitution to populate the environment variable used by the “Hello World” method with the region into which it is being deployed.

The Swagger allows you to use the same SAM template in both regions.

You can only use SAM from the AWS CLI, so do the following from the command prompt. First, deploy the SAM template in us-east-1 with the following commands, replacing “<your bucket in us-east-1>” with a bucket in your account:


> cd helloworld-api
> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-east-1> --region us-east-1
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-east-1

Second, do the same in us-west-2:


> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-west-2> --region us-west-2
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-west-2

The API was created with the default endpoint type of Edge Optimized. Switch it to Regional. In the Amazon API Gateway console, select the API that you just created and choose the wheel-icon to edit it.

API Gateway edit API settings

In the edit screen, select the Regional endpoint type and save the API. Do the same in both regions.

Grab the URL for the API in the console by navigating to the method in the prod stage.

API Gateway endpoint link

You can now test this with curl:


> curl https://2wkt1cxxxx.execute-api.us-west-2.amazonaws.com/prod/helloworld
{"message": "Hello from us-west-2"}

Write down the domain name for the URL in each region (for example, 2wkt1cxxxx.execute-api.us-west-2.amazonaws.com), as you need that later when you deploy the Route 53 setup.

Create the custom domain name

Next, create an Amazon API Gateway custom domain name endpoint. As part of using this feature, you must have a hosted zone and domain available to use in Route 53 as well as an SSL certificate that you use with your specific domain name.

You can create the SSL certificate by using AWS Certificate Manager. In the ACM console, choose Get started (if you have no existing certificates) or Request a certificate. Fill out the form with the domain name to use for the custom domain name endpoint, which is the same across the two regions:

Amazon Certificate Manager request new certificate

Go through the remaining steps and validate the certificate for each region before moving on.

You are now ready to create the endpoints. In the Amazon API Gateway console, choose Custom Domain Names, Create Custom Domain Name.

API Gateway create custom domain name

A few things to highlight:

  • The domain name is the same as what you requested earlier through ACM.
  • The endpoint configuration should be regional.
  • Select the ACM Certificate that you created earlier.
  • You need to create a base path mapping that connects back to your earlier API Gateway endpoint. Set the base path to v1 so you can version your API, and then select the API and the prod stage.

Choose Save. You should see your newly created custom domain name:

API Gateway custom domain setup

Note the value for Target Domain Name as you need that for the next step. Do this for both regions.

Deploy Route 53 setup

Use the global Route 53 service to provide DNS lookup for the Rest API, distributing the traffic in an active-active setup based on latency. You can find the full CloudFormation template in the blog-multi-region-serverless-service GitHub repo.

The template sets up health checks, for example, for us-east-1:


HealthcheckRegion1:
  Type: "AWS::Route53::HealthCheck"
  Properties:
    HealthCheckConfig:
      Port: "443"
      Type: "HTTPS_STR_MATCH"
      SearchString: "ok"
      ResourcePath: "/prod/healthcheck"
      FullyQualifiedDomainName: !Ref Region1HealthEndpoint
      RequestInterval: "30"
      FailureThreshold: "2"

Use the health check when you set up the record set and the latency routing, for example, for us-east-1:


Region1EndpointRecord:
  Type: AWS::Route53::RecordSet
  Properties:
    Region: us-east-1
    HealthCheckId: !Ref HealthcheckRegion1
    SetIdentifier: "endpoint-region1"
    HostedZoneId: !Ref HostedZoneId
    Name: !Ref MultiregionEndpoint
    Type: CNAME
    TTL: 60
    ResourceRecords:
      - !Ref Region1Endpoint

You can create the stack by using the following link, copying in the domain names from the previous section, your existing hosted zone name, and the main domain name that is created (for example, hellowordapi.replacewithyourcompanyname.com):

The following screenshot shows what the parameters might look like:
Serverless multi region Route 53 health check

Specifically, the domain names that you collected earlier would map according to following:

  • The domain names from the API Gateway “prod”-stage go into Region1HealthEndpoint and Region2HealthEndpoint.
  • The domain names from the custom domain name’s target domain name goes into Region1Endpoint and Region2Endpoint.

Using the Rest API from server-side applications

You are now ready to use your setup. First, demonstrate the use of the API from server-side clients. You can demonstrate this by using curl from the command line:


> curl https://hellowordapi.replacewithyourcompanyname.com/v1/helloworld/
{"message": "Hello from us-east-1"}

Testing failover of Rest API in browser

Here’s how you can use this from the browser and test the failover. Find all of the files for this test in the browser-client folder of the blog-multi-region-serverless-service GitHub repo.

Use this html file:


<!DOCTYPE HTML>
<html>
<head>
    <meta charset="utf-8"/>
    <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
    <meta name="viewport" content="width=device-width, initial-scale=1"/>
    <title>Multi-Region Client</title>
</head>
<body>
<div>
   <h1>Test Client</h1>

    <p id="client_result">

    </p>

    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
    <script src="settings.js"></script>
    <script src="client.js"></script>
</body>
</html>

The html file uses this JavaScript file to repeatedly call the API and print the history of messages:


var messageHistory = "";

(function call_service() {

   $.ajax({
      url: helloworldMultiregionendpoint+'v1/helloworld/',
      dataType: "json",
      cache: false,
      success: function(data) {
         messageHistory+="<p>"+data['message']+"</p>";
         $('#client_result').html(messageHistory);
      },
      complete: function() {
         // Schedule the next request when the current one's complete
         setTimeout(call_service, 10000);
      },
      error: function(xhr, status, error) {
         $('#client_result').html('ERROR: '+status);
      }
   });

})();

Also, make sure to update the settings in settings.js to match with the API Gateway endpoints for the DNS-proxy and the multi-regional endpoint for the Hello World API: var helloworldMultiregionendpoint = "https://hellowordapi.replacewithyourcompanyname.com/";

You can now open the HTML file in the browser (you can do this directly from the file system) and you should see something like the following screenshot:

Serverless multi region browser test

You can test failover by changing the environment variable in your health check Lambda function. In the Lambda console, select your health check function and scroll down to the Environment variables section. For the STATUS key, modify the value to fail.

Lambda update environment variable

You should see the region switch in the test client:

Serverless multi region broker test switchover

During an emulated failure like this, the browser might take some additional time to switch over due to connection keep-alive functionality. If you are using a browser like Chrome, you can kill all the connections to see a more immediate fail-over: chrome://net-internals/#sockets

Summary

You have implemented a simple way to do multi-regional serverless applications that fail over seamlessly between regions, either being accessed from the browser or from other applications/services. You achieved this by using the capabilities of Amazon Route 53 to do latency based routing and health checks for fail-over. You unlocked the use of these features in a serverless application by leveraging the new regional endpoint feature of Amazon API Gateway.

The setup was fully scripted using CloudFormation, the AWS Serverless Application Model (SAM), and the AWS CLI, and it can be integrated into deployment tools to push the code across the regions to make sure it is available in all the needed regions. For more information about cross-region deployments, see Building a Cross-Region/Cross-Account Code Deployment Solution on AWS on the AWS DevOps blog.

I Still Prefer Eclipse Over IntelliJ IDEA

Post Syndicated from Bozho original https://techblog.bozho.net/still-prefer-eclipse-intellij-idea/

Over the years I’ve observed an inevitable shift from Eclipse to IntelliJ IDEA. Last year they were almost equal in usage, and I have the feeling things are swaying even more towards IDEA.

IDEA is like the iPhone of IDEs – its users tell you that “you will feel how much better it is once you get used to it”, “are you STILL using Eclipse??”, “IDEA is so much better, I thought everyone has switched”, etc.

I’ve been using mostly Eclipse for the past 12 years, but in some cases I did use IDEA – when I was writing Scala, when I was writing Android, and most recently – when Eclipse failed to be ready for the Java 9 release, so after half a day of trying to get it working, I just switched to IDEA until Eclipse finally gets a working Java 9 version (with Maven and the rest of the stuff).

But I will get back to Eclipse again, soon. And I still prefer it. Not just because of all the key combinations I’ve internalized (you can reuse those in IDEA), but because there are still things I find worse in IDEA. Of course, IDEA has so much more cool features like code improvement suggestions and actually working plugins for everything. But at least some of the problems I see have to do with the more basic development workflow and experience. And you can’t compensate for those with sugarcoating. So here they are:

  • Projects are not automatically built (by default), so you can end up with compilation errors that you don’t see until you open a non-compiling file or run a build. And turning the autobild on makes my machine crawl. I know I need an upgrade, but that’s not the point – not having “build on change” was a huge surprise to me the first time I tried IDEA. I recently complained about that on twitter and it turns out “it’s a feature”. The rationale seems to be that if you use refactoring, that shouldn’t happen. Well, there are dozens of cases when it does happen. Refactoring by adding a method parameter, by changing the type of a parameter, by removing a parameter (where the IDE can’t infer which parameter is removed based on the types), by changing return types. Also, a change in maven/gradle dependencies may introduces compilation issues that you don’t get to see. This is not a reasonable default at all, and I think the performance issues are the only reason it’s still the default. I think this makes the experience much worse.
  • You can have only one project per screen. Maybe there are those small companies with greenfield projects where you only need one. But I’ve never been in a situation, where you don’t at least occasionally need a separate project. Be it an “experiments” one, a “tools” one, or whatever. And no, multi-module maven projects (which IDEA handles well) are not sufficient. So each time you need to step out of your main project, you launch another screen. Apart from the bad usability, it’s double the memory, double the fun.
  • Speaking of memory, It seems to be taking more memory than Eclipse. I don’t have representative benchmarks of that, and I know that my 8 GB RAM home machine is way to small for development nowadays, but still.
  • It feels less responsive and clunky. There is some minor delay that I can’t define well, but “I feel it”. I read somewhere that they were excessively repainting the screen elements, so that might be the explanation. Eclipse feels smoother (I know that’s not a proper argument, but I can’t be more precise)
  • Due to some extra cleverness, I have “unused methods” and “never assigned fields” all around the project. It uses spring, so these methods and fields are controller methods and autowired fields. Maybe some spring plugin would take care of that, but spring is not the only framework that uses reflection. Even getters and setters on POJOs get the unused warnings. What’s the problem with those warnings? That warnings are devalued. They don’t mean anything now. There isn’t a “yellow” indicator on the class either, so you don’t actually see the amount of warnings you have. Eclipse displays warnings better, and the false positives are much less.
  • The call hierarchy is slightly worse. But since that’s the most important IDE feature for me (alongside refactoring), it matters. It doesn’t give you the call hierarchy of default constructors that are not explicitly defined. Also, from what I’ve seen IDEA users don’t often use the call hierarchy feature. “Find usage” I think predates the call hierarchy, and is also much more visible through the UI, so some of the IDEA users don’t even know what a call hierarchy is. And repeatedly do “find usage”. That’s only partly the IDE’s fault.
  • No search in the output console. Come one, why I do I have an IDE, where I have to copy the output and paste it in a text editor in order to search. Now, to clarify, the console does have search. But when I run my (spring-boot) application, it outputs stuff in a panel at the bottom that is not the console and doesn’t have search.
  • CTRL+arrows by default jumps over whole words, and not camel cased words. This is configurable, but is yet another odd default. You almost always want to be able to traverse your variables word by word (in camel case), rather than skipping over the whole variable (method/class) name.
  • A few years ago when I used it for Scala, the project never actually compiled. But I guess that’s more Scala’s fault than of the IDE

Apart from the first two, the rest are not major issues, I agree. But they add up. Ultimately, it’s a matter of personal choice whether you can turn a blind eye to these issues. But I’m getting back to Eclipse again. At some point I will propose improvements in the IntelliJ IDEA backlog and will check it again in a few years, I guess.

The post I Still Prefer Eclipse Over IntelliJ IDEA appeared first on Bozho's tech blog.

Sci-Hub Won’t Be Blocked by US ISPs Anytime Soon

Post Syndicated from Ernesto original https://torrentfreak.com/sci-hub-wont-be-blocked-by-us-isps-anytime-soon-171111/

Sci-Hub, often referred to as the “Pirate Bay of Science,” hasn’t had a particularly good run in US courts so far.

Following a $15 million defeat against Elsevier in June, the American Chemical Society won a default judgment of $4.8 million in copyright damages late last week.

In addition, the publisher was granted an unprecedented injunction, requiring various third-party services to stop providing access to the site.

The order specifically mentions domain registrars and hosting companies, but also search engines and ISPs, although only those who are in “active concert or participation” with the site. This order sparked fears that Google, Comcast, and others would be ordered to take action, but that’s not the case.

After the news broke ACS issued a press release clarifying that it would not go after search engines and ISPs when they are not in “active participation” with Sci-Hub. The problem is that this can be interpreted quite broadly, leaving plenty of room for uncertainty.

Luckily, ACS Director Glenn Ruskin was willing to provide more clarity. He stressed that search engines and ISPs won’t be targeted for simply linking users to Sci-Hub. Companies that host the content are a target though.

“The court’s affirmative ruling does not apply to search engines writ large, but only to those entities who have been in active concert or participation with Sci-Hub, such as websites that host ACS content stolen by Sci-Hub,” Ruskin said.

When we asked whether this means that ISPs such as Comcast are not likely to be targeted, the answer was affirmative.

“That is correct, unless the internet service provider has been in active concert or participation with SciHub. Simply linking to SciHub does not rise to be in active concert or participation,” Ruskin clarified.

The above suggests that ACS will go after domain name registrars, hosting companies, and perhaps Cloudflare, but not any further. Still, even if that’s the case there is cause for worry among several digital rights activists.

The Electronic Frontier Foundation believes that these type of orders set a dangerous precedent. The concept of “active concert or participation” should only cover close associates and co-conspirators, not everyone who provides a service to the defendant. Domain registrars and registries have often been compelled to take action in similar cases, but EFF says this goes too far.

“The courts need to limit who can be bound by orders like this one, to prevent them from being abused,” EFF Senior Staff Attorney Mitch Stoltz informs TorrentFreak.

“In particular, domain name registrars and registries shouldn’t be ordered to help take down a website because of a dispute over the site’s contents. That invites others to use the domain name system as a tool for censorship.”

News of the Sci-Hub injunction has sparked controversy and confusion in recent days, not least because Sci-hub.cc became unavailable soon after. Instead of showing the usual search box, visitors now see a “403 Forbidden” error message. On top of that, the bulletproof Tor version of the site also went offline.

The error message indicates that there’s a hosting issue. While it’s easy to conclude that the court’s injunction has something to do with this, that might not necessarily be the case. Sci-Hub’s hosting company isn’t tied to the US and has a history of protecting sites from takedown efforts.

We reached out to Sci-Hub founder Alexandra Elbakyan for comment but we’re yet to receive a response. The site hasn’t posted any relevant updates on its social media pages either.

That said, the site is far from done. In addition to the Tor domain, Sci-Hub has several other backups in place such as Sci-Hub.io and Sci-Hub.ac, which are up and running as usual.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Visualize AWS Cloudtrail Logs using AWS Glue and Amazon Quicksight

Post Syndicated from Luis Caro Perez original https://aws.amazon.com/blogs/big-data/streamline-aws-cloudtrail-log-visualization-using-aws-glue-and-amazon-quicksight/

Being able to easily visualize AWS CloudTrail logs gives you a better understanding of how your AWS infrastructure is being used. It can also help you audit and review AWS API calls and detect security anomalies inside your AWS account. To do this, you must be able to perform analytics based on your CloudTrail logs.

In this post, I walk through using AWS Glue and AWS Lambda to convert AWS CloudTrail logs from JSON to a query-optimized format dataset in Amazon S3. I then use Amazon Athena and Amazon QuickSight to query and visualize the data.

Solution overview

To process CloudTrail logs, you must implement the following architecture:

CloudTrail delivers log files in an Amazon S3 bucket folder. To correctly crawl these logs, you modify the file contents and folder structure using an Amazon S3-triggered Lambda function that stores the transformed files in an S3 bucket single folder. When the files are in a single folder, AWS Glue scans the data, converts it into Apache Parquet format, and catalogs it to allow for querying and visualization using Amazon Athena and Amazon QuickSight.

Walkthrough

Let’s look at the steps that are required to build the solution.

Set up CloudTrail logs

First, you need to set up a trail that delivers log files to an S3 bucket. To create a trail in CloudTrail, follow the instructions in Creating a Trail.

When you finish, the trail settings page should look like the following screenshot:

In this example, I set up log files to be delivered to the cloudtraillfcaro bucket.

Consolidate CloudTrail reports into a single folder using Lambda

AWS CloudTrail delivers log files using the following folder structure inside the configured Amazon S3 bucket:

AWSLogs/ACCOUNTID/CloudTrail/REGION/YEAR/MONTH/HOUR/filename.json.gz

Additionally, log files have the following structure:

{
    "Records": [{
        "eventVersion": "1.01",
        "userIdentity": {
            "type": "IAMUser",
            "principalId": "AIDAJDPLRKLG7UEXAMPLE",
            "arn": "arn:aws:iam::123456789012:user/Alice",
            "accountId": "123456789012",
            "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
            "userName": "Alice",
            "sessionContext": {
                "attributes": {
                    "mfaAuthenticated": "false",
                    "creationDate": "2014-03-18T14:29:23Z"
                }
            }
        },
        "eventTime": "2014-03-18T14:30:07Z",
        "eventSource": "cloudtrail.amazonaws.com",
        "eventName": "StartLogging",
        "awsRegion": "us-west-2",
        "sourceIPAddress": "72.21.198.64",
        "userAgent": "signin.amazonaws.com",
        "requestParameters": {
            "name": "Default"
        },
        "responseElements": null,
        "requestID": "cdc73f9d-aea9-11e3-9d5a-835b769c0d9c",
        "eventID": "3074414d-c626-42aa-984b-68ff152d6ab7"
    },
    ... additional entries ...
    ]

If AWS Glue crawlers are used to catalog these files as they are written, the following obstacles arise:

  1. AWS Glue identifies different tables per different folders because they don’t follow a traditional partition format.
  2. Based on the structure of the file content, AWS Glue identifies the tables as having a single column of type array.
  3. CloudTrail logs have JSON attributes that use uppercase letters. According to the Best Practices When Using Athena with AWS Glue, it is recommended that you convert these to lowercase.

To have AWS Glue catalog all log files in a single table with all the columns describing each event, implement the following Lambda function:

from __future__ import print_function
import json
import urllib
import boto3
import gzip

s3 = boto3.resource('s3')
client = boto3.client('s3')

def convertColumntoLowwerCaps(obj):
    for key in obj.keys():
        new_key = key.lower()
        if new_key != key:
            obj[new_key] = obj[key]
            del obj[key]
    return obj


def lambda_handler(event, context):

    bucket = event['Records'][0]['s3']['bucket']['name']
    key = urllib.unquote_plus(event['Records'][0]['s3']['object']['key'].encode('utf8'))
    print(bucket)
    print(key)
    try:
        newKey = 'flatfiles/' + key.replace("/", "")
        client.download_file(bucket, key, '/tmp/file.json.gz')
        with gzip.open('/tmp/out.json.gz', 'w') as output, gzip.open('/tmp/file.json.gz', 'rb') as file:
            i = 0
            for line in file: 
                for record in json.loads(line,object_hook=convertColumntoLowwerCaps)['records']:
            		if i != 0:
            		    output.write("\n")
            		output.write(json.dumps(record))
            		i += 1
        client.upload_file('/tmp/out.json.gz', bucket,newKey)
        return "success"
    except Exception as e:
        print(e)
        print('Error processing object {} from bucket {}. Make sure they exist and your bucket is in the same region as this function.'.format(key, bucket))
        raise e

The function goes over each element of the records array, changes uppercase letters to lowercase in column names, and inserts each element of the array as a single line of a new file. The new file is saved inside a flatfiles folder created by the function without any subfolders in the S3 bucket.

The function should have a role containing a policy with at least the following permissions:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Action": [
                "s3:*"
            ],
            "Resource": [
                "arn:aws:s3:::cloudtraillfcaro/*",
                "arn:aws:s3:::cloudtraillfcaro"
            ],
            "Effect": "Allow"
        }
    ]
}

In this example, CloudTrail delivers logs to the cloudtraillfcaro bucket. Make sure that you replace this name with your bucket name in the policy. For more information about how to work with inline policies, see Working with Inline Policies.

After the Lambda function is created, you can set up the following trigger using the Triggers tab on the AWS Lambda console.

Choose Add trigger, and choose S3 as a source of the trigger.

After choosing the source, configure the following settings:

In the trigger, any file that is written to the path for the log files—which in this case is AWSLogs/119582755581/CloudTrail/—is processed. Make sure that the Enable trigger check box is selected and that the bucket and prefix parameters match your use case.

After you set up the function and receive log files, the bucket (in this case cloudtraillfcaro) should contain the processed files inside the flatfiles folder.

Catalog source data

Once the files are processed by the Lambda function, set up a crawler named cloudtrail to catalog them.

The crawler must point to the flatfiles folder.

All the crawlers and AWS Glue jobs created for this solution must have a role with the AWSGlueServiceRole managed policy and an inline policy with permissions to modify the S3 buckets used on the Lambda function. For more information, see Working with Managed Policies.

The role should look like the following:

In this example, the inline policy named s3perms contains the permissions to modify the S3 buckets.

After you choose the role, you can schedule the crawler to run on demand.

A new database is created, and the crawler is set to use it. In this case, the cloudtrail database is used for all the tables.

After the crawler runs, a single table should be created in the catalog with the following structure:

The table should contain the following columns:

Create and run the AWS Glue job

To convert all the CloudTrail logs to a columnar store in Parquet, set up an AWS Glue job by following these steps.

Upload the following script into a bucket in Amazon S3:

import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
import boto3
import time

## @params: [JOB_NAME]
args = getResolvedOptions(sys.argv, ['JOB_NAME'])

sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)

datasource0 = glueContext.create_dynamic_frame.from_catalog(database = "cloudtrail", table_name = "flatfiles", transformation_ctx = "datasource0")
resolvechoice1 = ResolveChoice.apply(frame = datasource0, choice = "make_struct", transformation_ctx = "resolvechoice1")
relationalized1 = resolvechoice1.relationalize("trail", args["TempDir"]).select("trail")
datasink = glueContext.write_dynamic_frame.from_options(frame = relationalized1, connection_type = "s3", connection_options = {"path": "s3://cloudtraillfcaro/parquettrails"}, format = "parquet", transformation_ctx = "datasink4")
job.commit()

In the example, you load the script as a file named cloudtrailtoparquet.py. Make sure that you modify the script and update the “{"path": "s3://cloudtraillfcaro/parquettrails"}” with the destination in which you want to store your results.

After uploading the script, add a new AWS Glue job. Choose a name and role for the job, and choose the option of running the job from An existing script that you provide.

To avoid processing the same data twice, enable the Job bookmark setting in the Advanced properties section of the job properties.

Choose Next twice, and then choose Finish.

If logs are already in the flatfiles folder, you can run the job on demand to generate the first set of results.

Once the job starts running, wait for it to complete.

When the job is finished, its Run status should be Succeeded. After that, you can verify that the Parquet files are written to the Amazon S3 location.

Catalog results

To be able to process results from Athena, you can use an AWS Glue crawler to catalog the results of the AWS Glue job.

In this example, the crawler is set to use the same database as the source named cloudtrail.

You can run the crawler using the console. When the crawler finishes running and has processed the Parquet results, a new table should be created in the AWS Glue Data Catalog. In this example, it’s named parquettrails.

The table should have the classification set to parquet.

It should have the same columns as the flatfiles table, with the exception of the struct type columns, which should be relationalized into several columns:

In this example, notice how the requestparameters column, which was a struct in the original table (flatfiles), was transformed to several columns—one for each key value inside it. This is done using a transformation native to AWS Glue called relationalize.

Query results with Athena

After crawling the results, you can query them using Athena. For example, to query what events took place in the time frame between 2017-10-23t12:00:00 and 2017-10-23t13:00, use the following select statement:

select *
from cloudtrail.parquettrails
where eventtime > '2017-10-23T12:00:00Z' AND eventtime < '2017-10-23T13:00:00Z'
order by eventtime asc;

Be sure to replace cloudtrail.parquettrails with the names of your database and table that references the Parquet results. Replace the datetimes with an hour when your account had activity and was processed by the AWS Glue job.

Visualize results using Amazon QuickSight

Once you can query the data using Athena, you can visualize it using Amazon QuickSight. Before connecting Amazon QuickSight to Athena, be sure to grant QuickSight access to Athena and the associated S3 buckets in your account. For more information, see Managing Amazon QuickSight Permissions to AWS Resources. You can then create a new data set in Amazon QuickSight based on the Athena table that you created.

After setting up permissions, you can create a new analysis in Amazon QuickSight by choosing New analysis.

Then add a new data set.

Choose Athena as the source.

Give the data source a name (in this case, I named it cloudtrail).

Choose the name of the database and the table referencing the Parquet results.

Then choose Visualize.

After that, you should see the following screen:

Now you can create some visualizations. First, search for the sourceipaddress column, and drag it to the AutoGraph section.

You can see a list of the IP addresses that you have used to interact with AWS. To review whether these IP addresses have been used from IAM users, internal AWS services, or roles, use the type value that is inside the useridentity field of the original log files. Thanks to the relationalize transformation, this value is available as the useridentity.type column. After the column is added into the Group/Color box, the visualization should look like the following:

You can now see and distinguish the most used IPs and whether they are used from roles, AWS services, or IAM users.

After following all these steps, you can use Amazon QuickSight to add different columns from CloudTrail and perform different types of visualizations. You can build operational dashboards that continuously monitor AWS infrastructure usage and access. You can share those dashboards with others in your organization who might need to see this data.

Summary

In this post, you saw how you can use a simple Lambda function and an AWS Glue script to convert text files into Parquet to improve Athena query performance and data compression. The post also demonstrated how to use AWS Lambda to preprocess files in Amazon S3 and transform them into a format that is recognizable by AWS Glue crawlers.

This example, used AWS CloudTrail logs, but you can apply the proposed solution to any set of files that after preprocessing, can be cataloged by AWS Glue.


Additional Reading

Learn how to Harmonize, Query, and Visualize Data from Various Providers using AWS Glue, Amazon Athena, and Amazon QuickSight.


About the Authors

Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.