Tag Archives: rpi

timeShift(GrafanaBuzz, 1w) Issue 18

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/10/20/timeshiftgrafanabuzz-1w-issue-18/

Welcome to another issue of timeShift. This week we released Grafana 4.6.0-beta2, which includes some fixes for alerts, annotations, the Cloudwatch data source, and a few panel updates. We’re also gearing up for Oredev, one of the biggest tech conferences in Scandinavia, November 7-10. In addition to sponsoring, our very own Carl Bergquist will be presenting “Monitoring for everyone.” Hope to see you there – swing by our booth and say hi!

Latest Release

Grafana 4.6-beta-2 is now available! Grafana 4.6.0-beta2 adds fixes for:

  • ColorPicker display
  • Alerting test
  • Cloudwatch improvements
  • CSV export
  • Text panel enhancements
  • Annotation fix for MySQL

To see more details on what’s in the newest version, please see the release notes.

Download Grafana 4.6.0-beta-2 Now

From the Blogosphere

Screeps and Grafana: Graphing your AI: If you’re unfamiliar with Screeps, it’s a MMO RTS game for programmers, where the objective is to grow your colony through programming your units’ AI. You control your colony by writing JavaScript, which operates 247 in the single persistent real-time world filled by other players. This article walks you through graphing all your game stats with Grafana.

ntopng Grafana Integration: The Beauty of Data Visualization: Our friends at ntop created a tutorial so that you can graph ntop monitoring data in Grafana. He goes through the metrics exposed, configuring the ntopng Data Source plugin, and building your first dashboard. They’ve also created a nice video tutorial of the process.

Installing Graphite and Grafana to Display the Graphs of Centreon: This article, provides a step-by-step guide to getting your Centreon data into Graphite and visualizing the data in Grafana.

Bit v. Byte Episode 3 – Metrics for the Win: Bit v. Byte is a new weekly Podcast about the web industry, tools and techniques upcoming and in use today. This episode dives into metrics, and discusses Grafana, Prometheus and NGINX Amplify.

Code-Quickie: Visualize heating with Grafana: With the winter weather coming, Reinhard wanted to monitor the stats in his boiler room. This article covers not only the visualization of the data, but the different devices and sensors you can use to can use in your own home.

RuuviTag with C.H.I.P – BLE – Node-RED: Following the temperature-monitoring theme from the last article, Tobias writes about his journey of hooking up his new RuuviTag to Grafana to measure temperature, relative humidity, air pressure and more.

Early Bird will be Ending Soon

Early bird discounts will be ending soon, but you still have a few days to lock in the lower price. We will be closing early bird on October 31, so don’t wait until the last minute to take advantage of the discounted tickets!

Also, there’s still time to submit your talk. We’ll accept submissions through the end of October. We’re looking for technical and non-technical talks of all sizes. Submit a CFP now.

Get Your Early Bird Ticket Now

Grafana Plugins

This week we have updates to two panels and a brand new panel that can add some animation to your dashboards. Installing plugins in Grafana is easy; for on-prem Grafana, use the Grafana-cli tool, or with 1 click if you are using Hosted Grafana.


Geoloop Panel – The Geoloop panel is a simple visualizer for joining GeoJSON to Time Series data, and animating the geo features in a loop. An example of using the panel would be showing the rate of rainfall during a 5-hour storm.

Install Now


Breadcrumb Panel – This plugin keeps track of dashboards you have visited within one session and displays them as a breadcrumb. The latest update fixes some issues with back navigation and url query params.



Influx Admin Panel – The Influx Admin panel duplicates features from the now deprecated Web Admin Interface for InfluxDB and has lots of features like letting you see the currently running queries, which can also be easily killed.

Changes in the latest release:

  • Converted to typescript project based on typescript-template-datasource
  • Select Databases. This only works with PR#8096
  • Added time format options
  • Show tags from response
  • Support template variables in the query


Contribution of the week:

Each week we highlight some of the important contributions from our amazing open source community. Thank you for helping make Grafana better!

The Stockholm Go Meetup had a hackathon this week and sent a PR for letting whitelisted cookies pass through the Grafana proxy. Thanks to everyone who worked on this PR!

Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

This is awesome – we can’t get enough of these public dashboards!

We Need Your Help!

Do you have a graph that you love because the data is beautiful or because the graph provides interesting information? Please get in touch. Tweet or send us an email with a screenshot, and we’ll tell you about this fun experiment.

Tell Me More

Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions

How are we doing?

Please tell us how we’re doing. Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

RaspiReader: build your own fingerprint reader

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/raspireader-fingerprint-scanner/

Three researchers from Michigan State University have developed a low-cost, open-source fingerprint reader which can detect fake prints. They call it RaspiReader, and they’ve built it using a Raspberry Pi 3 and two Camera Modules. Joshua and his colleagues have just uploaded all the info you need to build your own version — let’s go!

GIF of fingerprint match points being aligned on fingerprint, not real output of RaspiReader software

Sadly not the real output of the RaspiReader

Falsified fingerprints

We’ve probably all seen a movie in which a burglar crosses a room full of laser tripwires and then enters the safe full of loot by tricking the fingerprint-secured lock with a fake print. Turns out, the second part is not that unrealistic: you can fake fingerprints using a range of materials, such as glue or latex.

Examples of live and fake fingerprints collected by the RaspiReader team

The RaspiReader team collected live and fake fingerprints to test the device

If the spoof print layer capping the spoofer’s finger is thin enough, it can even fool readers that detect blood flow, pulse, or temperature. This is becoming a significant security risk, not least for anyone who unlocks their smartphone using a fingerprint.

The RaspiReader

This is where Anil K. Jain comes in: Professor Jain leads a biometrics research group. Under his guidance, Joshua J. Engelsma and Kai Cao set out to develop a fingerprint reader with improved spoof-print detection. Ultimately, they aim to help the development of more secure commercial technologies. With their project, the team has also created an amazing resource for anyone who wants to build their own fingerprint reader.

So that replicating their device would be easy, they wanted to make it using inexpensive, readily available components, which is why they turned to Raspberry Pi technology.

RaspiReader fingerprint scanner by PRIP lab

The Raspireader and its output

Inside the RaspiReader’s 3D-printed housing, LEDs shine light through an acrylic prism, on top of which the user rests their finger. The prism refracts the light so that the two Camera Modules can take images from different angles. The Pi receives these images via a Multi Camera Adapter Module feeding into the CSI port. Collecting two images means the researchers’ spoof detection algorithm has more information to work with.

Comparison of live and spoof fingerprints

Real on the left, fake on the right

RaspiReader software

The Camera Adaptor uses the RPi.GPIO Python package. The RaspiReader performs image processing, and its spoof detection takes image colour and 3D friction ridge patterns into account. The detection algorithm extracts colour local binary patterns … please don’t ask me to explain! You can have a look at the researchers’ manuscript if you want to get stuck into the fine details of their project.

Build your own fingerprint reader

I’ve had my eyes glued to my inbox waiting for Josh to send me links to instructions and files for this build, and here they are (thanks, Josh)! Check out the video tutorial, which walks you through how to assemble the RaspiReader:

RaspiReader: Cost-Effective Open-Source Fingerprint Reader

Building a cost-effective, open-source, and spoof-resilient fingerprint reader for $160* in under an hour. Code: https://github.com/engelsjo/RaspiReader Links to parts: 1. PRISM – https://www.amazon.com/gp/product/B00WL3OBK4/ref=oh_aui_detailpage_o05_s00?ie=UTF8&psc=1 (Better fit) https://www.thorlabs.com/thorproduct.cfm?partnumber=PS611 2. RaspiCams – https://www.amazon.com/gp/product/B012V1HEP4/ref=oh_aui_detailpage_o00_s00?ie=UTF8&psc=1 3. Camera Multiplexer https://www.amazon.com/gp/product/B012UQWOOQ/ref=oh_aui_detailpage_o04_s01?ie=UTF8&psc=1 4. Raspberry Pi Kit: https://www.amazon.com/CanaKit-Raspberry-Clear-Power-Supply/dp/B01C6EQNNK/ref=sr_1_6?ie=UTF8&qid=1507058509&sr=8-6&keywords=raspberry+pi+3b Whitepaper: https://arxiv.org/abs/1708.07887 * Prices can vary based on Amazon’s pricing. P.s.

You can find a parts list with links to suppliers in the video description — the whole build costs around $160. All the STL files for the housing and the Python scripts you need to run on the Pi are available on Josh’s GitHub.

Enhance your home security

The RaspiReader is a great resource for researchers, and it would also be a terrific project to build at home! Is there a more impressive way to protect a treasured possession, or secure access to your computer, than with a DIY fingerprint scanner?

Check out this James-Bond-themed blog post for Raspberry Pi resources to help you build a high-security lair. If you want even more inspiration, watch this video about a laser-secured cookie jar which Estefannie made for us. And be sure to share your successful fingerprint scanner builds with us via social media!

The post RaspiReader: build your own fingerprint reader appeared first on Raspberry Pi.

US Court Orders Dozens of “Pirate” Site Domain Seizures

Post Syndicated from Ernesto original https://torrentfreak.com/us-court-orders-dozens-of-pirate-site-domain-seizures-170927/

ABS-CBN, the largest media and entertainment company in the Philippines, has delivered another strike to pirate sites in the United States.

Last week a federal court in Florida signed a default judgment against 43 websites that offered copyright-infringing streams of ABS-CBN owned movies, including Star Cinema titles.

The order was signed exactly one day after the complaint was filed, in what appears to be a streamlined process.

The media company accused the websites of trademark and copyright infringement by making free streams of its content available without permission. It then asked the court for assistance to shut these sites down as soon as possible.

“Defendants’ websites operating under the Subject Domain Names are classic examples of pirate operations, having no regard whatsoever for the rights of ABS-CBN and willfully infringing ABS-CBN’s intellectual property.

“As a result, ABS-CBN requires this Court’s intervention if any meaningful stop is to be put to Defendants’ piracy,” ABS-CBN wrote.

Instead of a lengthy legal process that can take years to complete, ABS-CBN went for an “ex-parte” request for domain seizures, which means that the websites in question are not notified or involved in the process before the order is issued.

After reviewing the proposed injunction, US District Judge Beth Bloom signed off on it. This means that all the associated registrars must hand over the domain names in question.

“The domain name registrars for the Subject Domain Names shall immediately assist in changing the registrar of record for the Subject Domain Names, to a holding account with a registrar of Plaintiffs’ choosing..,” the order (pdf) reads.

In the days that followed, several streaming-site domains were indeed taken over. Movieonline.io, 1movies.tv, 123movieshd.us, 4k-movie.us, icefilms.ws and others are now linking to a notice page with information about the lawsuit instead.

The notice

Gomovies.es, which is also included, has not been transferred yet, but the operator appears to be aware of the lawsuit as the site now redirects to Gomovies.vg. Other domains, such as Onlinefullmovie.me, Putlockerm.live and Newasiantv.io remain online as well.

While the targeted sites together are good for thousands of daily visitors, they’re certainly not the biggest fish.

That said, the most significant thing about the case is not that these domain names have been taken offline. What stands out is the ability of an ex-parte request from a copyright holder to easily take out dozens of sites in one swoop.

Given ABS-CBN’s legal track record, this is likely not the last effort of this kind. The question now is if others will follow suit.

The full list of targeted domain is as follows.

1 movieonline.io
2 1movies.tv
3 gomovies.es
4 123movieshd.us
5 4k-movie.us
6 desitvflix.net
7 globalpinoymovies.com
8 icefilms.ws
9 jhonagemini.com
10 lambinganph.info
11 mrkdrama.com
12 newasiantv.me
13 onlinefullmovie.me
14 pariwiki.net
15 pinoychannel.live
16 pinoychannel.mobi
17 pinoyfullmovies.net
18 pinoyhdtorrent.com
19 pinoylibangandito.pw
20 pinoymoviepedia.ch
21 pinoysharetv.com
22 pinoytambayanhd.com
23 pinoyteleseryerewind.info
24 philnewsnetwork.com
25 pinoytvrewind.info
26 pinoytzater.com
27 subenglike.com
28 tambayantv.org
29 teleseryi.com
30 thepinoy1tv.com
31 thepinoychannel.com
32 tvbwiki.com
33 tvnaa.com
34 urpinoytv.com
35 vikiteleserye.com
36 viralsocialnetwork.com
37 watchpinoymoviesonline.com
38 pinoysteleserye.xyz
39 pinoytambayan.world
40 lambingan.lol
41 123movies.film
42 putlockerm.live
43 yonip.zone
43 yonipzone.rocks

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Julia Reda MEP Likened to Nazi in Sweeping Anti-Pirate Rant

Post Syndicated from Andy original https://torrentfreak.com/julia-reda-mep-likened-to-nazi-in-sweeping-anti-pirate-rant-170926/

The debate over copyright and enforcement thereof is often polarized, with staunch supporters on one side, objectors firmly on the other, and never the twain shall meet.

As a result, there have been some heated battles over the years, with pro-copyright bodies accusing pirates of theft and pirates accusing pro-copyright bodies of monopolistic tendencies. While neither claim is particularly pleasant, they have become staples of this prolonged war of words and as such, many have become desensitized to their original impact.

This morning, however, musician and staunch pro-copyright activist David Lowery published an article which pours huge amounts of gas on the fire. The headline goes straight for the jugular, asking: Why is it Every Time We Turn Over a Pirate Rock White Nationalists, Nazi’s and Bigots Scurry Out?

Lowery’s opening gambit in his piece on The Trichordist is that one only has to scratch below the surface of the torrent and piracy world in order to find people aligned with the above-mentioned groups.

“Why is it every time we dig a little deeper into the pro-piracy and torrenting movement we find key figures associated with ‘white nationalists,’ Nazi memorabilia collectors, actual Nazis or other similar bigots? And why on earth do politicians, journalists and academics sing the praises of these people?” Lowery asks.

To prove his point, the Camper Van Beethoven musician digs up the fact that former Pirate Bay financier Carl Lündstrom had some fairly unsavory neo-fascist views. While this is not in doubt, Lowery is about 10 tens years too late if he wants to tar The Pirate Bay with the extremist brush.

“It’s called guilt by association,” Pirate Bay co-founder Peter Sunde explained in 2007.

“One of our previous ISPs [owned by Lündstrom] (with clients like The Red Cross, Save the Children foundation etc) gave us cheap bandwidth since one of the guys in TPB worked there; and one of the owners [has a reputation] for his political opinions. That does NOT make us in any way associated to what political views anyone else might or might not have.”

After dealing with TPB but failing to include the above explanation, Lowery moves on to a more recent target, Megaupload founder Kim Dotcom. Dotcom owns an extremely rare signed copy of Hitler’s autobiographical manifesto, Mein Kampf (My Struggle) and once wore a German World War II helmet. It’s a mistake Prince Harry made in 2005 too.

“I’ve bought memorabilia from Churchill, from Stalin, from Hitler,” Dotcom said in response to the historical allegations. “Let me make absolutely clear, OK. I’m not buying into the Nazi ideology. I’m totally against what the Nazis did.”

With Dotcom dealt with, Lowery then turns his attention to the German Pirate Party’s Julia Reda. As a Member of the European Parliament, Reda has made it her mission to deal with overreaching copyright law, which has made her a bit of a target. That being said, would anyone really try to shoehorn her into the “White Nationalists, Nazi’s and Bigots” bracket?

They would.

In his piece, Lowery highlights comments made by Reda last year, when she complained about the copyright situation developing around the diary written by Anne Frank, which detailed the horrors of living in occupied countries during World War II.

Anne Frank died in 1945 which means that the book was elevated into the public domain in the Netherlands on January 1, 2016, 70 years after her death. A copy was made available at Wikisource, a digital library of free texts maintained by the Wikimedia Foundation, which also operates Wikipedia.

However, in early February that same year, Anne Frank’s diary became unavailable, since U.S. copyright law dictates that works are protected for 95 years from date of publication.

“Today, in an unfortunate example of the overreach of the United States’ current copyright law, the Wikimedia Foundation removed the Dutch-language text of The Diary of a Young Girl,” said Jacob Rogers, Legal Counsel for the Wikimedia Foundation

“We took this action to comply with the United States’ Digital Millennium Copyright Act (DMCA), as we believe the diary is still under US copyright protection under the law as it is currently written,” he added.

Lowery ignores this background in its entirety. He actually ignores all of it in an effort to paint a picture of Reda engaging in some far-right agenda. Lowery even places emphasis on Reda’s nationality to force his point home.

“I don’t really know what to make of her except to say that this German politician really should find something other than the Anne Frank Diary and the Anne Frank Foundation to use as an example of a work that should be freely available in the public domain,” he writes.

“Think of all the copyrighted works out there for which she might reasonably argue a claim of public domain. She decided to pick the Anne Frank diary. Hmm.”

Lowery then accuses Reda of urging people on Twitter to pirate the book, in order to hurt the fight against anti-Semitism and somehow deprive Jewish people of an income.

“After all sales of the book are used by the Anne Frank Foundation to fight anti-semitism. It’s really quite a bad look for any MP, German or not. (Even if it is just the make-believe LARPing RPG EU Parliament),” Lowery writes.

“Or maybe that is the point? Defund the Anne Frank Foundation. Cause you know I read in the twittersphere that copyright producing media conglomerates are controlled by you-know-who.”

At this point, Lowery moves on to Fight For the Future, stating that their lack of racial diversity caused them to stumble into a racially charged copyright dispute involving the famous Martin Luther King speech.

The whole article can be read here but hopefully, most readers will recognize that America needs less division right now, not more hatred.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

timeShift(GrafanaBuzz, 1w) Issue 14

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/09/22/timeshiftgrafanabuzz-1w-issue-14/

Summer is officially in the rear-view mirror, but we at Grafana Labs are excited. Next week, the team will gather in Stockholm, Sweden where we’ll be discussing Grafana 5.0, GrafanaCon EU and setting other goals. If you’re attending Percona Live Europe 2017 in Dublin, be sure and catch Grafana developer, Daniel Lee on Tuesday, September 26. He’ll be showing off the new MySQL data source and a sneak peek of Grafana 5.0.

And with that – we hope you enjoy this issue of TimeShift!

Latest Release

Grafana 4.5.2 is now available! Various fixes to the Graphite data source, HTTP API, and templating.

To see details on what’s been fixed in the newest version, please see the release notes.

Download Grafana 4.5.2 Now

From the Blogosphere

A Monitoring Solution for Docker Hosts, Containers and Containerized Services: Stefan was searching for an open source, self-hosted monitoring solution. With an ever-growing number of open source TSDBs, Stefan outlines why he chose Prometheus and provides a rundown of how he’s monitoring his Docker hosts, containers and services.

Real-time API Performance Monitoring with ES, Beats, Logstash and Grafana: As APIs become a centerpiece for businesses, monitoring API performance is extremely important. Hiren recently configured real time API response time monitoring for a project and shares his implementation plan and configurations.

Monitoring SSL Certificate Expiry in GCP and Kubernetes: This article discusses how to use Prometheus and Grafana to automatically monitor SSL certificates in use by load balancers across GCP projects.

Node.js Performance Monitoring with Prometheus: This is a good primer for monitoring in general. It discusses what monitoring is, important signals to know, instrumentation, and things to consider when selecting a monitoring tool.

DIY Dashboard with Grafana and MariaDB: Mark was interested in testing out the new beta MySQL support in Grafana, so he wrote a short article on how he is using Grafana with MariaDB.

Collecting Temperature Data with Raspberry Pi Computers: Many of us use monitoring for tracking mission-critical systems, but setting up environment monitoring can be a fun way to improve your programming skills as well.

GrafanaCon EU CFP is Open

Have a big idea to share? A shorter talk or a demo you’d like to show off? We’re looking for technical and non-technical talks of all sizes. The proposals are rolling in, but we are happy to save a speaking slot for you!

I’d Like to Speak at GrafanaCon

Grafana Plugins

There were a lot of plugin updates to highlight this week, many of which were due to changes in Grafana 4.5. It’s important to keep your plugins up to date, since bug fixes and new features are added frequently. We’ve made the process of installing and updating plugins simple. On an on-prem instance, use the Grafana-cli, or on Hosted Grafana, install and update with 1-click.


Linksmart HDS Data Source – The LinkSmart Historical Data Store is a new Grafana data source plugin. LinkSmart is an open source IoT platform for developing IoT applications. IoT applications need to deal with large amounts of data produced by a growing number of sensors and other devices. The Historical Datastore is for storing, querying, and aggregating (time-series) sensor data.

Install Now


Simple JSON Data Source – This plugin received a bug fix for the query editor.

Update Now


Stagemonitor Elasticsearch App – Numerous small updates and the version updated to match the StageMonitor version number.

Update Now


Discrete Panel – Update to fix breaking change in Grafana 4.5.

Update Now


Status Dot Panel – Minor HTML Update in this version.

Update Now


Alarm Box Panel – This panel was updated to fix breaking changes in Grafana 4.5.

Update Now

This week’s MVC (Most Valuable Contributor)

Each week we highlight a contributor to Grafana or the surrounding ecosystem as a thank you for their participation in making open source software great.

Sven Klemm opened a PR for adding a new Postgres data source and has been very quick at implementing proposed changes. The Postgres data source is on our roadmap for Grafana 5.0 so this PR really helps. Thanks Sven!

Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

Glad you’re finding Grafana useful! Curious about that annotation just before midnight 🙂

We Need Your Help

Last week we announced an experiment we were conducting, and need your help! Do you have a graph that you love because the data is beautiful or because the graph provides interesting information? Please get in touch. Tweet or send us an email with a screenshot, and we’ll tell you about this fun experiment.

I Want to Help

Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions

What do you think?

What would you like to see here? Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Тортата като упражняване на свободата на изразяване

Post Syndicated from nellyo original https://nellyo.wordpress.com/2017/09/18/freedom_speech-2/

Дейвид Мълинс и Чарли Крейг са американски граждани, живеят в Колорадо и се възползват от възможността да сключат еднополов брак в щата. По този случай поръчват торта по поръчка.

Джак Филипс прави торти. Именно той отказва да направи торта за празника на Дейвид и Чарли, защото християнската му вяра не позволява и защото Първата поправка на Конституцията му гарантира свобода на изразяване. Приготвям нещо повече от торта, казва той, това е произведение на изкуството. Не мога да бъда  принуден да използвам   моите таланти и изкуството си за събитие – значимо религиозно събитие – което нарушава моята  вяра.

Не става дума за свобода на словото, става дума за дискриминация, смята другата страна. Ако една пекарна може да дискриминира, тогава всички, които в някаква форма се изразяват –  цветари, фотографи, шивачи, хореографи, фризьорски салони, ресторантьори, бижутери, архитекти и адвокати – ще могат да отказват услуги. Подобно решение би дало широк мандат за дискриминация.

И така: от една страна   правителството не трябва да принуждава вярващи да нарушават принципите си, за да си изкарват прехраната. От другата страна са двойките от един и същи пол, които заявяват, че имат право на равно третиране от предприятия, предоставящи обществени услуги. “Въпросът не е в това, че не можем да получим торта другаде. Въпросът е в отказа от услуга на основание кои сме и кого обичаме.”

Комисията за граждански права е разпоредила на г-н Филипс да произвежда торти и за еднополови бракове, ако произвежда за хетеросексуални бракове. В резултат той е спрял да работи: “Единственият начин да избегна неспазването на решението   е да не правя сватбени торти, точка.”  Интересното е, че администрацията на Тръмп подкрепя сладкаря и смята, че правенето на обичайните торти е форма на свободно изразяване, защитена от Първата поправка на Конституцията на САЩ.

Случаят е Masterpiece Cakeshop v. Colorado Civil Rights Commission, No. 16-111. Очаква се решение на Върховния съд.



Filed under: Media Law, US Law

Implement Continuous Integration and Delivery of Apache Spark Applications using AWS

Post Syndicated from Luis Caro Perez original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-apache-spark-applications-using-aws/

When you develop Apache Spark–based applications, you might face some additional challenges when dealing with continuous integration and deployment pipelines, such as the following common issues:

  • Applications must be tested on real clusters using automation tools (live test)
  • Any user or developer must be able to easily deploy and use different versions of both the application and infrastructure to be able to debug, experiment on, and test different functionality.
  • Infrastructure needs to be evaluated and tested along with the application that uses it.

In this post, we walk you through a solution that implements a continuous integration and deployment pipeline supported by AWS services. The pipeline offers the following workflow:

  • Deploy the application to a QA stage after a commit is performed to the source code.
  • Perform a unit test using Spark local mode.
  • Deploy to a dynamically provisioned Amazon EMR cluster and test the Spark application on it
  • Update the application as an AWS Service Catalog product version, allowing a user to deploy any version (commit) of the application on demand.

Solution overview

The following diagram shows the pipeline workflow.

The solution uses AWS CodePipeline, which allows users to orchestrate and automate the build, test, and deploy stages for application source code. The solution consists of a pipeline that contains the following stages:

  • Source: Both the Spark application source code in addition to the AWS CloudFormation template file for deploying the application are committed to version control. In this example, we use AWS CodeCommit. For an example of the application source code, see zip. 
  • Build: In this stage, you use Apache Maven both to generate the application .jar binaries and to execute all of the application unit tests that end with *Spec.scala. In this example, we use AWS CodeBuild, which runs the unit tests given that they are designed to use Spark local mode.
  • QADeploy: In this stage, the .jar file built previously is deployed using the CloudFormation template included with the application source code. All the resources are created in this stage, such as networks, EMR clusters, and so on. 
  • LiveTest: In this stage, you use Apache Maven to execute all the application tests that end with *SpecLive.scala. The tests submit EMR steps to the cluster created as part of the QADeploy step. The tests verify that the steps ran successfully and their results. 
  • LiveTestApproval: This stage is included in case a pipeline administrator approval is required to deploy the application to the next stages. The pipeline pauses in this stage until an administrator manually approves the release. 
  • QACleanup: In this stage, you use an AWS Lambda function to delete the CloudFormation template deployed as part of the QADeploy stage. The function does not affect any resources other than those deployed as part of the QADeploy stage. 
  • DeployProduct: In this stage, you use a Lambda function that creates or updates an AWS Service Catalog product and portfolio. Every time the pipeline releases a change to the application, the AWS Service Catalog product gets a new version, with the commit of the change as the version description. 

Try it out!

Use the provided sample template to get started using this solution. This template creates the pipeline described earlier with all of its stages. It performs an initial commit of the sample Spark application in order to trigger the first release change. To deploy the template, use the following AWS CLI command:

aws cloudformation create-stack  --template-url https://s3.amazonaws.com/aws-bigdata-blog/artifacts/sparkAppDemoForPipeline/emrSparkpipeline.yaml --stack-name emr-spark-pipeline --capabilities CAPABILITY_NAMED_IAM

After the template finishes creating resources, you see the pipeline name on the stack Outputs tab. After that, open the AWS CodePipeline console and select the newly created pipeline.

After a couple of minutes, AWS CodePipeline detects the initial commit applied by the CloudFormation stack and starts the first release.

You can watch how the pipeline goes through the Build, QADeploy, and LiveTest stages until it finally reaches the LiveTestApproval stage.

At this point, you can check the results of the test in the log files of the Build and LiveTest stage jobs on AWS CodeBuild. If you check the CloudFormation console, you see that a new template has been deployed as part of the QADeploy stage.

You can also visit the EMR console and view how the LiveTest stage submitted steps to the EMR cluster.

After performing the review, manually approve the revision on the LiveTestApproval stage by using the AWS CodePipeline console.

After the revision is approved, the pipeline proceeds to use a Lambda function that destroys the resources deployed on the QAdeploy stage. Finally, it creates or updates a product and portfolio in AWS Service Catalog. After the final stage of the pipeline is complete, you can check that the product is created successfully on the AWS Service Catalog console.

You can check the product versions and notice that the first version is the initial commit performed by the CloudFormation template.

You can proceed to share the created portfolio with any users in your AWS account and allow them to deploy any version of the Spark application. You can also perform a commit on the AWS CodeCommit repository. The pipeline is triggered automatically and repeats the pipeline execution to deploy a new version of the product.

To destroy all of the resources created by the stack, make sure all the deployed stacks using AWS Service Catalog or the QAdeploy stage are destroyed. Then, destroy the pipeline template using the following AWS CLI command:


aws cloudformation delete-stack --stack-name emr-spark-pipeline


You can use the sample template and Spark application shared in this post and adapt them for the specific needs of your own application. The pipeline can have as many stages as needed and it can be used to automatically deploy to AWS Service Catalog or a production environment using CloudFormation.

If you have questions or suggestions, please comment below.

Additional Reading

Learn how to implement authorization and auditing on Amazon EMR using Apache Ranger.


About the Authors

Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.



Samuel Schmidt is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.




A Framework for Cyber Security Insurance

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/a_framework_for.html

New paper: “Policy measures and cyber insurance: a framework,” by Daniel Woods and Andrew Simpson, Journal of Cyber Policy, 2017.

Abstract: The role of the insurance industry in driving improvements in cyber security has been identified as mutually beneficial for both insurers and policy-makers. To date, there has been no consideration of the roles governments and the insurance industry should pursue in support of this public­-private partnership. This paper rectifies this omission and presents a framework to help underpin such a partnership, giving particular consideration to possible government interventions that might affect the cyber insurance market. We have undertaken a qualitative analysis of reports published by policy-making institutions and organisations working in the cyber insurance domain; we have also conducted interviews with cyber insurance professionals. Together, these constitute a stakeholder analysis upon which we build our framework. In addition, we present a research roadmap to demonstrate how the ideas described might be taken forward.

Growing up alongside tech

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/09/growing-up-alongside-tech/

IndustrialRobot asks… or, uh, asked last month:

industrialrobot: How has your views on tech changed as you’ve got older?

This is so open-ended that it’s actually stumped me for a solid month. I’ve had a surprisingly hard time figuring out where to even start.

It’s not that my views of tech have changed too much — it’s that they’ve changed very gradually. Teasing out and explaining any one particular change is tricky when it happened invisibly over the course of 10+ years.

I think a better framework for this is to consider how my relationship to tech has changed. It’s gone through three pretty distinct phases, each of which has strongly colored how I feel and talk about technology.

Act I

In which I start from nothing.

Nothing is an interesting starting point. You only really get to start there once.

Learning something on my own as a kid was something of a magical experience, in a way that I don’t think I could replicate as an adult. I liked computers; I liked toying with computers; so I did that.

I don’t know how universal this is, but when I was a kid, I couldn’t even conceive of how incredible things were made. Buildings? Cars? Paintings? Operating systems? Where does any of that come from? Obviously someone made them, but it’s not the sort of philosophical point I lingered on when I was 10, so in the back of my head they basically just appeared fully-formed from the æther.

That meant that when I started trying out programming, I had no aspirations. I couldn’t imagine how far I would go, because all the examples of how far I would go were completely disconnected from any idea of human achievement. I started out with BASIC on a toy computer; how could I possibly envision a connection between that and something like a mainstream video game? Every new thing felt like a new form of magic, so I couldn’t conceive that I was even in the same ballpark as whatever process produced real software. (Even seeing the source code for GORILLAS.BAS, it didn’t quite click. I didn’t think to try reading any of it until years after I’d first encountered the game.)

This isn’t to say I didn’t have goals. I invented goals constantly, as I’ve always done; as soon as I learned about a new thing, I’d imagine some ways to use it, then try to build them. I produced a lot of little weird goofy toys, some of which entertained my tiny friend group for a couple days, some of which never saw the light of day. But none of it felt like steps along the way to some mountain peak of mastery, because I didn’t realize the mountain peak was even a place that could be gone to. It was pure, unadulterated (!) playing.

I contrast this to my art career, which started only a couple years ago. I was already in my late 20s, so I’d already spend decades seeing a very broad spectrum of art: everything from quick sketches up to painted masterpieces. And I’d seen the people who create that art, sometimes seen them create it in real-time. I’m even in a relationship with one of them! And of course I’d already had the experience of advancing through tech stuff and discovering first-hand that even the most amazing software is still just code someone wrote.

So from the very beginning, from the moment I touched pencil to paper, I knew the possibilities. I knew that the goddamn Sistine Chapel was something I could learn to do, if I were willing to put enough time in — and I knew that I’m not, so I’d have to settle somewhere a ways before that. I knew that I’d have to put an awful lot of work in before I’d be producing anything very impressive.

I did it anyway (though perhaps waited longer than necessary to start), but those aren’t things I can un-know, and so I can never truly explore art from a place of pure ignorance. On the other hand, I’ve probably learned to draw much more quickly and efficiently than if I’d done it as a kid, precisely because I know those things. Now I can decide I want to do something far beyond my current abilities, then go figure out how to do it. When I was just playing, that kind of ambition was impossible.

So, I played.

How did this affect my views on tech? Well, I didn’t… have any. Learning by playing tends to teach you things in an outward sprawl without many abrupt jumps to new areas, so you don’t tend to run up against conflicting information. The whole point of opinions is that they’re your own resolution to a conflict; without conflict, I can’t meaningfully say I had any opinions. I just accepted whatever I encountered at face value, because I didn’t even know enough to suspect there could be alternatives yet.

Act II

That started to seriously change around, I suppose, the end of high school and beginning of college. I was becoming aware of this whole “open source” concept. I took classes that used languages I wouldn’t otherwise have given a second thought. (One of them was Python!) I started to contribute to other people’s projects. Eventually I even got a job, where I had to work with other people. It probably also helped that I’d had to maintain my own old code a few times.

Now I was faced with conflicting subjective ideas, and I had to form opinions about them! And so I did. With gusto. Over time, I developed an idea of what was Right based on experience I’d accrued. And then I set out to always do things Right.

That’s served me decently well with some individual problems, but it also led me to inflict a lot of unnecessary pain on myself. Several endeavors languished for no other reason than my dissatisfaction with the architecture, long before the basic functionality was done. I started a number of “pure” projects around this time, generic tools like imaging libraries that I had no direct need for. I built them for the sake of them, I guess because I felt like I was improving some niche… but of course I never finished any. It was always in areas I didn’t know that well in the first place, which is a fine way to learn if you have a specific concrete goal in mind — but it turns out that building a generic library for editing images means you have to know everything about images. Perhaps that ambition went a little haywire.

I’ve said before that this sort of (self-inflicted!) work was unfulfilling, in part because the best outcome would be that a few distant programmers’ lives are slightly easier. I do still think that, but I think there’s a deeper point here too.

In forgetting how to play, I’d stopped putting any of myself in most of the work I was doing. Yes, building an imaging library is kind of a slog that someone has to do, but… I assume the people who work on software like PIL and ImageMagick are actually interested in it. The few domains I tried to enter and revolutionize weren’t passions of mine; I just happened to walk through the neighborhood one day and decided I could obviously do it better.

Not coincidentally, this was the same era of my life that led me to write stuff like that PHP post, which you may notice I am conspicuously not even linking to. I don’t think I would write anything like it nowadays. I could see myself approaching the same subject, but purely from the point of view of language design, with more contrasts and tradeoffs and less going for volume. I certainly wouldn’t lead off with inflammatory puffery like “PHP is a community of amateurs”.


I think I’ve mellowed out a good bit in the last few years.

It turns out that being Right is much less important than being Not Wrong — i.e., rather than trying to make something perfect that can be adapted to any future case, just avoid as many pitfalls as possible. Code that does something useful has much more practical value than unfinished code with some pristine architecture.

Nowhere is this more apparent than in game development, where all code is doomed to be crap and the best you can hope for is to stem the tide. But there’s also a fixed goal that’s completely unrelated to how the code looks: does the game work, and is it fun to play? Yes? Ship the damn thing and forget about it.

Games are also nice because it’s very easy to pour my own feelings into them and evoke feelings in the people who play them. They’re mine, something with my fingerprints on them — even the games I’ve built with glip have plenty of my own hallmarks, little touches I added on a whim or attention to specific details that I care about.

Maybe a better example is the Doom map parser I started writing. It sounds like a “pure” problem again, except that I actually know an awful lot about the subject already! I also cleverly (accidentally) released some useful results of the work I’ve done thusfar — like statistics about Doom II maps and a few screenshots of flipped stock maps — even though I don’t think the parser itself is far enough along to release yet. The tool has served a purpose, one with my fingerprints on it, even without being released publicly. That keeps it fresh in my mind as something interesting I’d like to keep working on, eventually. (When I run into an architecture question, I step back for a while, or I do other work in the hopes that the solution will reveal itself.)

I also made two simple Pokémon ROM hacks this year, despite knowing nothing about Game Boy internals or assembly when I started. I just decided I wanted to do an open-ended thing beyond my reach, and I went to do it, not worrying about cleanliness and willing to accept a bumpy ride to get there. I played, but in a more experienced way, invoking the stuff I know (and the people I’ve met!) to help me get a running start in completely unfamiliar territory.

This feels like a really fine distinction that I’m not sure I’m doing justice. I don’t know if I could’ve appreciated it three or four years ago. But I missed making toys, and I’m glad I’m doing it again.

In short, I forgot how to have fun with programming for a little while, and I’ve finally started to figure it out again. And that’s far more important than whether you use PHP or not.

Updates to GPIO Zero, the physical computing API

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/gpio-zero-update/

GPIO Zero v1.4 is out now! It comes with a set of new features, including a handy pinout command line tool. To start using this newest version of the API, update your Raspbian OS now:

sudo apt update && sudo apt upgrade

Some of the things we’ve added will make it easier for you try your hand on different programming styles. In doing so you’ll build your coding skills, and will improve as a programmer. As a consequence, you’ll learn to write more complex code, which will enable you to take on advanced electronics builds. And on top of that, you can use the skills you’ll acquire in other computing projects.

GPIO Zero pinout tool

The new pinout tool

Developing GPIO Zero

Nearly two years ago, I started the GPIO Zero project as a simple wrapper around the low-level RPi.GPIO library. I wanted to create a simpler way to control GPIO-connected devices in Python, based on three years’ experience of training teachers, running workshops, and building projects. The idea grew over time, and the more we built for our Python library, the more sophisticated and powerful it became.

One of the great things about Python is that it’s a multi-paradigm programming language. You can write code in a number of different styles, according to your needs. You don’t have to write classes, but you can if you need them. There are functional programming tools available, but beginners get by without them. Importantly, the more advanced features of the language are not a barrier to entry.

Become a more advanced programmer

As a beginner to programming, you usually start by writing procedural programs, in which the flow moves from top to bottom. Then you’ll probably add loops and create your own functions. Your next step might be to start using libraries which introduce new patterns that operate in a different manner to what you’ve written before, for example threaded callbacks (event-driven programming). You might move on to object-oriented programming, extending the functionality of classes provided by other libraries, and starting to write your own classes. Occasionally, you may make use of tools created with functional programming techniques.

Five buttons in different colours

Take control of the buttons in your life

It’s much the same with GPIO Zero: you can start using it very easily, and we’ve made it simple to progress along the learning curve towards more advanced programming techniques. For example, if you want to make a push button control an LED, the easiest way to do this is via procedural programming using a while loop:

from gpiozero import LED, Button

led = LED(17)
button = Button(2)

while True:
    if button.is_pressed:

But another way to achieve the same thing is to use events:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off


You could even use a declarative approach, and set the LED’s behaviour in a single line:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values


You will find that using the procedural approach is a great start, but at some point you’ll hit a limit, and will have to try a different approach. The example above can be approach in several programming styles. However, if you’d like to control a wider range of devices or a more complex system, you need to carefully consider which style works best for what you want to achieve. Being able to choose the right programming style for a task is a skill in itself.

Source/values properties

So how does the led.source = button.values thing actually work?

Every GPIO Zero device has a .value property. For example, you can read a button’s state (True or False), and read or set an LED’s state (so led.value = True is the same as led.on()). Since LEDs and buttons operate with the same value set (True and False), you could say led.value = button.value. However, this only sets the LED to match the button once. If you wanted it to always match the button’s state, you’d have to use a while loop. To make things easier, we came up with a way of telling devices they’re connected: we added a .values property to all devices, and a .source to output devices. Now, a loop is no longer necessary, because this will do the job:

led.source = button.values

This is a simple approach to connecting devices using a declarative style of programming. In one single line, we declare that the LED should get its values from the button, i.e. when the button is pressed, the LED should be on. You can even mix the procedural with the declarative style: at one stage of the program, the LED could be set to match the button, while in the next stage it could just be blinking, and finally it might return back to its original state.

These additions are useful for connecting other devices as well. For example, a PWMLED (LED with variable brightness) has a value between 0 and 1, and so does a potentiometer connected via an ADC (analogue-digital converter) such as the MCP3008. The new GPIO Zero update allows you to say led.source = pot.values, and then twist the potentiometer to control the brightness of the LED.

But what if you want to do something more complex, like connect two devices with different value sets or combine multiple inputs?

We provide a set of device source tools, which allow you to process values as they flow from one device to another. They also let you send in artificial values such as random data, and you can even write your own functions to generate values to pass to a device’s source. For example, to control a motor’s speed with a potentiometer, you could use this code:

from gpiozero import Motor, MCP3008
from signal import pause

motor = Motor(20, 21)
pot = MCP3008()

motor.source = pot.values


This works, but it will only drive the motor forwards. If you wanted the potentiometer to drive it forwards and backwards, you’d use the scaled tool to scale its values to a range of -1 to 1:

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008()

motor.source = scaled(pot.values, -1, 1)


And to separately control a robot’s left and right motor speeds with two potentiometers, you could do this:

from gpiozero import Robot, MCP3008
from signal import pause

robot = Robot(left=(2, 3), right=(4, 5))
left = MCP3008(0)
right = MCP3008(1)

robot.source = zip(left.values, right.values)


GPIO Zero and Blue Dot

Martin O’Hanlon created a Python library called Blue Dot which allows you to use your Android device to remotely control things on their Raspberry Pi. The API is very similar to GPIO Zero, and it even incorporates the value/values properties, which means you can hook it up to GPIO devices easily:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(17)

led.source = bd.values


We even included a couple of Blue Dot examples in our recipes.

Make a series of binary logic gates using source/values

Read more in this source/values tutorial from The MagPi, and on the source/values documentation page.

Remote GPIO control

GPIO Zero supports multiple low-level GPIO libraries. We use RPi.GPIO by default, but you can choose to use RPIO or pigpio instead. The pigpio library supports remote connections, so you can run GPIO Zero on one Raspberry Pi to control the GPIO pins of another, or run code on a PC (running Windows, Mac, or Linux) to remotely control the pins of a Pi on the same network. You can even control two or more Pis at once!

If you’re using Raspbian on a Raspberry Pi (or a PC running our x86 Raspbian OS), you have everything you need to remotely control GPIO. If you’re on a PC running Windows, Mac, or Linux, you just need to install gpiozero and pigpio using pip. See our guide on configuring remote GPIO.

I road-tested the new pin_factory syntax at the Raspberry Jam @ Pi Towers

There are a number of different ways to use remote pins:

  • Set the default pin factory and remote IP address with environment variables:
$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR= python3 blink.py
  • Set the default pin factory in your script:
import gpiozero
from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory

gpiozero.Device.pin_factory = PiGPIOFactory(host='')

led = LED(17)
  • The pin_factory keyword argument allows you to use multiple Pis in the same script:
from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory

factory2 = PiGPIOFactory(host='')
factory3 = PiGPIOFactory(host='')

local_hat = TrafficHat()
remote_hat2 = TrafficHat(pin_factory=factory2)
remote_hat3 = TrafficHat(pin_factory=factory3)

This is a really powerful feature! For more, read this remote GPIO tutorial in The MagPi, and check out the remote GPIO recipes in our documentation.

GPIO Zero on your PC

GPIO Zero doesn’t have any dependencies, so you can install it on your PC using pip. In addition to the API’s remote GPIO control, you can use its ‘mock’ pin factory on your PC. We originally created the mock pin feature for the GPIO Zero test suite, but we found that it’s really useful to be able to test GPIO Zero code works without running it on real hardware:

>>> from gpiozero import LED
>>> led = LED(22)
>>> led.blink()
>>> led.value
>>> led.value

You can even tell pins to change state (e.g. to simulate a button being pressed) by accessing an object’s pin property:

>>> from gpiozero import LED
>>> led = LED(22)
>>> button = Button(23)
>>> led.source = button.values
>>> led.value
>>> button.pin.drive_low()
>>> led.value

You can also use the pinout command line tool if you set your pin factory to ‘mock’. It gives you a Pi 3 diagram by default, but you can supply a revision code to see information about other Pi models. For example, to use the pinout tool for the original 256MB Model B, just type pinout -r 2.

GPIO Zero documentation and resources

On the API’s website, we provide beginner recipes and advanced recipes, and we have added remote GPIO configuration including PC/Mac/Linux and Pi Zero OTG, and a section of GPIO recipes. There are also new sections on source/values, command-line tools, FAQs, Pi information and library development.

You’ll find plenty of cool projects using GPIO Zero in our learning resources. For example, you could check out the one that introduces physical computing with Python and get stuck in! We even provide a GPIO Zero cheat sheet you can download and print.

There are great GPIO Zero tutorials and projects in The MagPi magazine every month. Moreover, they also publish Simple Electronics with GPIO Zero, a book which collects a series of tutorials useful for building your knowledge of physical computing. And the best thing is, you can download it, and all magazine issues, for free!

Check out the API documentation and read more about what’s new in GPIO Zero on my blog. We have lots planned for the next release. Watch this space.

Get building!

The world of physical computing is at your fingertips! Are you feeling inspired?

If you’ve never tried your hand on physical computing, our Build a robot buggy learning resource is the perfect place to start! It’s your step-by-step guide for building a simple robot controlled with the help of GPIO Zero.

If you have a gee-whizz idea for an electronics project, do share it with us below. And if you’re currently working on a cool build and would like to show us how it’s going, pop a link to it in the comments.

The post Updates to GPIO Zero, the physical computing API appeared first on Raspberry Pi.

Pimoroni is 5 now!

Post Syndicated from guru original https://www.raspberrypi.org/blog/pimoroni-is-5-now/

Long read written by Pimoroni’s Paul Beech, best enjoyed over a cup o’ grog.

Every couple of years, I’ve done a “State of the Fleet” update here on the Raspberry Pi blog to tell everyone how the Sheffield Pirates are doing. Half a decade has gone by in a blink, but reading back over the previous posts shows that a lot has happened in that time!

TL;DR We’re an increasingly medium-sized design/manufacturing/e-commerce business with workshops in Sheffield, UK, and Essen, Germany, and we employ almost 40 people. We’re totally lovely. Thanks for supporting us!


We’ve come a long way, baby

I’m sitting looking out the window at Sheffield-on-Sea and feeling pretty lucky about how things are going. In the morning, I’ll be flying east for Maker Faire Tokyo with Niko (more on him later), and to say hi to some amazing people in Shenzhen (and to visit Huaqiangbei, of course). This is after I’ve already visited this year’s Maker Faires in New York, San Francisco, and Berlin.

Pimoroni started out small, but we’ve grown like weeds, and we’re steadily sauntering towards becoming a medium-sized business. That’s thanks to fantastic support from the people who buy our stuff and spread the word. In return, we try to be nice, friendly, and human in everything we do, and to make exciting things, ideally with our own hands here in Sheffield.

Pimoroni soldering

Handmade with love

We’ve made it onto a few ‘fastest-growing’ lists, and we’re in the top 500 of the Inc. 5000 Europe list. Adafruit did it first a few years back, and we’ve never gone wrong when we’ve followed in their footsteps.

The slightly weird nature of Pimoroni means we get listed as either a manufacturing or e-commerce business. In reality, we’re about four or five companies in one shell, which is very much against the conventions of “how business is done”. However, having seen what Adafruit, SparkFun, and Seeed do, we’re more than happy to design, manufacture, and sell our stuff in-house, as well as stocking the best stuff from across the maker community.

Pimoroni stocks

Product and process

The whole process of expansion has not been without its growing pains. We’re just under 40 people strong now, and have an outpost in Germany (also hilariously far from the sea for piratical activities). This means we’ve had to change things quickly to improve and automate processes, so that the wheels won’t fall off as things get bigger. Process optimization is incredibly interesting to a geek, especially the making sure that things are done well, that mistakes are easy to spot and to fix, and that nothing is missed.

At the end of 2015, we had a step change in how busy we were, and our post room and support started to suffer. As a consequence, we implemented measures to become more efficient, including small but important things like checking in parcels with a barcode scanner attached to a Raspberry Pi. That Pi has been happily running on the same SD card for a couple of years now without problems 😀

Pimoroni post room

Going postal?

We also hired a full-time support ninja, Matt, to keep the experience of getting stuff from us light and breezy and to ensure that any problems are sorted. He’s had hugely positive impact already by making the emails and replies you see more friendly. Of course, he’s also started using the laser cutters for tinkering projects. It’d be a shame to work at Pimoroni and not get to use all the wonderful toys, right?

Employing all the people

You can see some of the motley crew we employ here and there on the Pimoroni website. And if you drop by at the Raspberry Pi Birthday Party, Pi Wars, Maker Faires, Deer Shed Festival, or New Scientist Live in September, you’ll be seeing new Pimoroni faces as we start to engage with people more about what we do. On top of that, we’re starting to make proper videos (like Sandy’s soldering guide), as opposed to the 101 episodes of Bilge Tank we recorded in a rather off-the-cuff and haphazard fashion. Although that’s the beauty of Bilge Tank, right?

Pimoroni soldering

Such soldering setup

As Emma, Sandy, Lydia, and Tanya gel as a super creative team, we’re starting to create more formal educational resources, and to make kits that are suitable for a wider audience. Things like our Pi Zero W kits are products of their talents.

Emma is our new Head of Marketing. She’s really ‘The Only Marketing Person Who Would Ever Fit In At Pimoroni’, having been a core part of the Sheffield maker scene since we hung around with one Ben Nuttall, in the dark days before Raspberry Pi was a thing.

Through a series of fortunate coincidences, Niko and his equally talented wife Mena were there when we cut the first Pibow in 2012. They immediately pitched in to help us buy our second laser cutter so we could keep up with demand. They have been supporting Pimoroni with sourcing in East Asia, and now Niko has become a member of the Pirates’ Council and the Head of Engineering as we’re increasing the sophistication and scale of the things we do. The Unicorn HAT HD is one of his masterpieces.

Pimoroni devices

ALL the HATs!

We see ourselves as a wonderful island of misfit toys, and it feels good to have the best toy shop ever, and to support so many lovely people. Business is about more than just profits.

Where do we go to, me hearties?

So what are our plans? At the moment we’re still working absolutely flat-out as demand from wholesalers, retailers, and customers increases. We thought Raspberry Pi was big, but it turns out it’s just getting started. Near the end of 2016, it seemed to reach a whole new level of popularityand still we continue to meet people to whom we have to explain what a Pi is. It’s a good problem to have.

We need a bigger space, but it’s been hard to find somewhere suitable in Sheffield that won’t mean we’re stuck on an industrial estate miles from civilisation. That would be bad for the crewwe like having world-class burritos on our doorstep.

The good news is, it looks like our search is at an end! Just in time for the arrival of our ‘Super-Turbo-Death-Star’ new production line, which will enable to make devices in a bigger, better, faster, more ‘Now now now!’ fashion \o/

Pimoroni warehouse

Spacious, but not spacious enough!

We’ve got lots of treasure in the pipeline, but we want to pick up the pace of development even more and create many new HATs, pHATs, and SHIMs, e.g. for environmental sensing and audio applications. Picade will also be getting some love to make it slicker and more hackable.

We’re also starting to flirt with adding more engineering and production capabilities in-house. The plan is to try our hand at anodising, powder-coating, and maybe even injection-moulding if we get the space and find the right machine. Learning how to do things is amazing, and we love having an idea and being able to bring it to life in almost no time at all.

Pimoroni production

This is where the magic happens


There are so many people involved in supporting our success, and some people we love for just existing and doing wonderful things that make us want to do better. The biggest shout-outs go to Liz, Eben, Gordon, James, all the Raspberry Pi crew, and Limor and pt from Adafruit, for being the most supportive guiding lights a young maker company could ever need.

A note from us

It is amazing for us to witness the growth of businesses within the Raspberry Pi ecosystem. Pimoroni is a wonderful example of an organisation that is creating opportunities for makers within its local community, and the company is helping to reinvigorate Sheffield as the heart of making in the UK.

If you’d like to take advantage of the great products built by the Pirates, Monkeys, Robots, and Ninjas of Sheffield, you should do it soon: Pimoroni are giving everyone 20% off their homemade tech until 6 August.

Pimoroni, from all of us here at Pi Towers (both in the UK and USA), have a wonderful birthday, and many a grog on us!

The post Pimoroni is 5 now! appeared first on Raspberry Pi.

Concerns About The Blockchain Technology

Post Syndicated from Bozho original https://techblog.bozho.net/concerns-blockchain-technology/

The so-called (and marketing-branded) “blockchain technology” is promised to revolutionize every industry. Anything, they say, will become decentralized, free from middle men or government control. Services will thrive on various installments of the blockchain, and smart contracts will automatically enforce any logic that is related to the particular domain.

I don’t mind having another technological leap (after the internet), and given that I’m technically familiar with the blockchain, I may even be part of it. But I’m not convinced it will happen, and I’m not convinced it’s going to be the next internet.

If we strip the hype, the technology behind Bitcoin is indeed a technical masterpiece. It combines existing techniques (likes hash chains and merkle trees) with a very good proof-of-work based consensus algorithm. And it creates a digital currency, which ontop of being worth billions now, is simply cool.

But will this technology be mass-adopted, and will mass adoption allow it to retain the technological benefits it has?

First, I’d like to nitpick a little bit – if anyone is speaking about “decentralized software” when referring to “the blockchain”, be suspicious. Bitcon and other peer-to-peer overlay networks are in fact “distributed” (see the pictures here). “Decentralized” means having multiple providers, but doesn’t mean each user will be full-featured nodes on the network. This nitpicking is actually part of another argument, but we’ll get to that.

If blockchain-based applications want to reach mass adoption, they have to be user-friendly. I know I’m being captain obvious here (and fortunately some of the people in the area have realized that), but with the current state of the technology, it’s impossible for end users to even get it, let alone use it.

My first serious concern is usability. To begin with, you need to download the whole blockchain on your machine. When I got my first bitcoin several years ago (when it was still 10 euro), the blockchain was kind of small and I didn’t notice that problem. Nowadays both the Bitcoin and Ethereum blockchains take ages to download. I still haven’t managed to download the ethereum one – after several bugs and reinstalls of the client, I’m still at 15%. And we are just at the beginning. A user just will not wait for days to download something in order to be able to start using a piece of technology.

I recently proposed downloading snapshots of the blockchain via bittorrent to be included in the Ethereum protocol itself. I know that snapshots of the Bitcoin blockchain have been distributed that way, but it has been a manual process. If a client can quickly download the huge file up to a recent point, and then only donwload the latest ones in the the traditional way, starting up may be easier. Of course, the whole chain would have to be verified, but maybe that can be a background process that doesn’t stop you from using whatever is built ontop of the particular blockchain. (I’m not sure if that will be secure enough, and that, say potential Sybil attacks on the bittorrent part won’t make it undesirable, it’s just an idea).

But even if such an approach works and is adopted, that would still mean that for every service you’d have to download a separate blockchain. Of course, projects like Ethereum may seem like the “one stop shop” for cool blockchain-based applications, but fragmentation is already happening – there are alt-coins bundled with various services like file storage, DNS, etc. That will not be workable for end-users. And it’s certainly not an option for mobile, which is the dominant client now. If instead of downloading the entire chain, something like consistent hashing is used to distribute the content in small portions among clients, it might be workable. But how will trust work in that case, I don’t know. Maybe it’s possible, maybe not.

And yes, I know that you don’t necessarily have to install a wallet/client in order to make use of a given blockchain – you can just have a cloud-based wallet. Which is fairly convenient, but that gets me to my nitpicking from a few paragraphs above and to may second concern – this effectively turns a distributed system into a decentralized one – a limited number of cloud providers hold most of the data (just as a limited number of miners hold most of the processing power). And then, even though the underlying technology allows for a distributed deployment, we’ll end-up again with simply decentralized or even de-facto cenetralized, if mergers and acquisitions lead us there (and they probably will). And in order to be able to access our wallets/accounts from multiple devices, we’d use a convenient cloud service where we’d login with our username and password (because the private key is just too technical and hard for regular users). And that seems to defeat the whole idea.

Not only that, but there is an inevitable centralization of decisions (who decides on the size of the block, who has commit rights to the client repository) as well as a hidden centralization of power – how much GPU power does the Chinese mining “farms” control and can they influence the network significantly? And will the average user ever know that or care (as they don’t care that Google is centralized). I think that overall, distributed technologies will follow the power law, and the majority of data/processing power/decision power will be controller by a minority of actors. And so our distributed utopia will not happen in its purest form we dream of.

My third concern is incentive. Distributed technologies that have been successful so far have a pretty narrow set of incentives. The internet was promoted by large public institutions, including government agencies and big universitives. Bittorrent was successful mainly because it allowed free movies and songs with 2 clicks of the mouse. And Bitcoin was successful because it offered financial benefits. I’m oversimplifying of course, but “government effort”, “free & easy” and “source of more money” seem to have been the successful incentives. On the other side of the fence there are dozens of failed distributed technologies. I’ve tried many of them – alternative search engines, alternative file storage, alternative ride-sharings, alternative social networks, alternative “internets” even. None have gained traction. Because they are not easier to use than their free competitors and you can’t make money out of them (and no government bothers promoting them).

Will blockchain-based services have sufficient incentives to drive customers? Will centralized competitors just easily crush the distributed alternatives by being cheaper, more-user friendly, having sales departments that can target more than hardcore geeks who have no problem syncing their blockchain via the command line? The utopian slogans seem very cool to idealists and futurists, but don’t sell. “Free from centralized control, full control over your data” – we’d have to go through a long process of cultural change before these things make sense to more than a handful of people.

Speaking of services, often examples include “the sharing economy”, where one stranger offers a service to another stranger. Blockchain technology seems like a good fit here indeed – the services are by nature distributed, why should the technology be centralized? Here comes my fourth concern – identity. While for the cryptocurrencies it’s actually beneficial to be anonymous, for most of the real-world services (i.e. the industries that ought to be revolutionized) this is not an option. You can’t just go in the car of publicKey=5389BC989A342…. “But there are already distributed reputation systems”, you may say. Yes, and they are based on technical, not real-world identities. That doesn’t build trust. I don’t trust that publicKey=5389BC989A342… is the same person that got the high reputation. There may be five people behind that private key. The private key may have been stolen (e.g. in a cloud-provider breach).

The values of companies like Uber and AirBNB is that they serve as trust brokers. They verify and vouch for their drivers and hosts (and passengers and guests). They verify their identity through government-issued documents, skype calls, selfies, compare pictures to documents, get access to government databases, credit records, etc. Can a fully distributed service do that? No. You’d need a centralized provider to do it. And how would the blockchain make any difference then? Well, I may not be entirely correct here. I’ve actually been thinking quite a lot about decentralized identity. E.g. a way to predictably generate a private key based on, say biometrics+password+government-issued-documents, and use the corresponding public key as your identifier, which is then fed into reputation schemes and ultimately – real-world services. But we’re not there yet.

And that is part of my fifth concern – the technology itself. We are not there yet. There are bugs, there are thefts and leaks. There are hard-forks. There isn’t sufficient understanding of the technology (I confess I don’t fully grasp all the implementation details, and they are always the key). Often the technology is advertised as “just working”, but it isn’t. The other day I read an article (lost the link) that clarifies a common misconception about smart contracts – they cannot interact with the outside world – they can’t call APIs (e.g. stock market prices, bank APIs), they can’t push or fetch data from anywhere but the blockchain. That mandates the need, again, for a centralized service that pushes the relevant information before smart contracts can pick it up. I’m pretty sure that all cool-sounding applications are not possible without extensive research. And even if/when they are, writing distributed code is hard. Debugging a smart contract is hard. Yes, hard is cool, but that doesn’t drive economic value.

I have mostly been referring to public blockchains so far. Private blockchains may have their practical application, but there’s one catch – they are not exactly the cool distributed technology that the Bitcoin uses. They may be called “blockchains” because they…chain blocks, but they usually centralize trust. For example the Hyperledger project uses PKI, with all its benefits and risks. In these cases, a centralized authority issues the identity “tokens”, and then nodes communicate and form a shared ledger. That’s a bit easier problem to solve, and the nodes would usually be on actual servers in real datacenters, and not on your uncle’s Windows XP.

That said, hash chaining has been around for quite a long time. I did research on the matter because of a side-project of mine and it seems providing a tamper-proof/tamper-evident log/database on semi-trusted machines has been discussed in many computer science papers since the 90s. That alone is not “the magic blockchain” that will solve all of our problems, no matter what gossip protocols you sprinkle ontop. I’m not saying that’s bad, on the contrary – any variation and combinations of the building blocks of the blockchain (the hash chain, the consensus algorithm, the proof-of-work (or stake), possibly smart contracts), has potential for making useful products.

I know I sound like the a naysayer here, but I hope I’ve pointed out particular issues, rather than aimlessly ranting at the hype (though that’s tempting as well). I’m confident that blockchain-like technologies will have their practical applications, and we will see some successful, widely-adopted services and solutions based on that, just as pointed out in this detailed report. But I’m not convinced it will be revolutionizing.

I hope I’m proven wrong, though, because watching a revolutionizing technology closely and even being part of it would be quite cool.

The post Concerns About The Blockchain Technology appeared first on Bozho's tech blog.

Analyze OpenFDA Data in R with Amazon S3 and Amazon Athena

Post Syndicated from Ryan Hood original https://aws.amazon.com/blogs/big-data/analyze-openfda-data-in-r-with-amazon-s3-and-amazon-athena/

One of the great benefits of Amazon S3 is the ability to host, share, or consume public data sets. This provides transparency into data to which an external data scientist or developer might not normally have access. By exposing the data to the public, you can glean many insights that would have been difficult with a data silo.

The openFDA project creates easy access to the high value, high priority, and public access data of the Food and Drug Administration (FDA). The data has been formatted and documented in consumer-friendly standards. Critical data related to drugs, devices, and food has been harmonized and can easily be called by application developers and researchers via API calls. OpenFDA has published two whitepapers that drill into the technical underpinnings of the API infrastructure as well as how to properly analyze the data in R. In addition, FDA makes openFDA data available on S3 in raw format.

In this post, I show how to use S3, Amazon EMR, and Amazon Athena to analyze the drug adverse events dataset. A drug adverse event is an undesirable experience associated with the use of a drug, including serious drug side effects, product use errors, product quality programs, and therapeutic failures.

Data considerations

Keep in mind that this data does have limitations. In addition, in the United States, these adverse events are submitted to the FDA voluntarily from consumers so there may not be reports for all events that occurred. There is no certainty that the reported event was actually due to the product. The FDA does not require that a causal relationship between a product and event be proven, and reports do not always contain the detail necessary to evaluate an event. Because of this, there is no way to identify the true number of events. The important takeaway to all this is that the information contained in this data has not been verified to produce cause and effect relationships. Despite this disclaimer, many interesting insights and value can be derived from the data to accelerate drug safety research.

Data analysis using SQL

For application developers who want to perform targeted searching and lookups, the API endpoints provided by the openFDA project are “ready to go” for software integration using a standard API powered by Elasticsearch, NodeJS, and Docker. However, for data analysis purposes, it is often easier to work with the data using SQL and statistical packages that expect a SQL table structure. For large-scale analysis, APIs often have query limits, such as 5000 records per query. This can cause extra work for data scientists who want to analyze the full dataset instead of small subsets of data.

To address the concern of requiring all the data in a single dataset, the openFDA project released the full 100 GB of harmonized data files that back the openFDA project onto S3. Athena is an interactive query service that makes it easy to analyze data in S3 using standard SQL. It’s a quick and easy way to answer your questions about adverse events and aspirin that does not require you to spin up databases or servers.

While you could point tools directly at the openFDA S3 files, you can find greatly improved performance and use of the data by following some of the preparation steps later in this post.


This post explains how to use the following architecture to take the raw data provided by openFDA, leverage several AWS services, and derive meaning from the underlying data.


  1. Load the openFDA /drug/event dataset into Spark and convert it to gzip to allow for streaming.
  2. Transform the data in Spark and save the results as a Parquet file in S3.
  3. Query the S3 Parquet file with Athena.
  4. Perform visualization and analysis of the data in R and Python on Amazon EC2.

Optimizing public data sets: A primer on data preparation

Those who want to jump right into preparing the files for Athena may want to skip ahead to the next section.

Transforming, or pre-processing, files is a common task for using many public data sets. Before you jump into the specific steps for transforming the openFDA data files into a format optimized for Athena, I thought it would be worthwhile to provide a quick exploration on the problem.

Making a dataset in S3 efficiently accessible with minimal transformation for the end user has two key elements:

  1. Partitioning the data into objects that contain a complete part of the data (such as data created within a specific month).
  2. Using file formats that make it easy for applications to locate subsets of data (for example, gzip, Parquet, ORC, etc.).

With these two key elements in mind, you can now apply transformations to the openFDA adverse event data to prepare it for Athena. You might find the data techniques employed in this post to be applicable to many of the questions you might want to ask of the public data sets stored in Amazon S3.

Before you get started, I encourage those who are interested in doing deeper healthcare analysis on AWS to make sure that you first read the AWS HIPAA Compliance whitepaper. This covers the information necessary for processing and storing patient health information (PHI).

Also, the adverse event analysis shown for aspirin is strictly for demonstration purposes and should not be used for any real decision or taken as anything other than a demonstration of AWS capabilities. However, there have been robust case studies published that have explored a causal relationship between aspirin and adverse reactions using OpenFDA data. If you are seeking research on aspirin or its risks, visit organizations such as the Centers for Disease Control and Prevention (CDC) or the Institute of Medicine (IOM).

Preparing data for Athena

For this walkthrough, you will start with the FDA adverse events dataset, which is stored as JSON files within zip archives on S3. You then convert it to Parquet for analysis. Why do you need to convert it? The original data download is stored in objects that are partitioned by quarter.

Here is a small sample of what you find in the adverse events (/drugs/event) section of the openFDA website.

If you were looking for events that happened in a specific quarter, this is not a bad solution. For most other scenarios, such as looking across the full history of aspirin events, it requires you to access a lot of data that you won’t need. The zip file format is not ideal for using data in place because zip readers must have random access to the file, which means the data can’t be streamed. Additionally, the zip files contain large JSON objects.

To read the data in these JSON files, a streaming JSON decoder must be used or a computer with a significant amount of RAM must decode the JSON. Opening up these files for public consumption is a great start. However, you still prepare the data with a few lines of Spark code so that the JSON can be streamed.

Step 1:  Convert the file types

Using Apache Spark on EMR, you can extract all of the zip files and pull out the events from the JSON files. To do this, use the Scala code below to deflate the zip file and create a text file. In addition, compress the JSON files with gzip to improve Spark’s performance and reduce your overall storage footprint. The Scala code can be run in either the Spark Shell or in an Apache Zeppelin notebook on your EMR cluster.

If you are unfamiliar with either Apache Zeppelin or the Spark Shell, the following posts serve as great references:


import scala.io.Source
import java.util.zip.ZipInputStream
import org.apache.spark.input.PortableDataStream
import org.apache.hadoop.io.compress.GzipCodec

// Input Directory
val inputFile = "s3://download.open.fda.gov/drug/event/2015q4/*.json.zip";

// Output Directory
val outputDir = "s3://{YOUR OUTPUT BUCKET HERE}/output/2015q4/";

// Extract zip files from 
val zipFiles = sc.binaryFiles(inputFile);

// Process zip file to extract the json as text file and save it
// in the output directory 
val rdd = zipFiles.flatMap((file: (String, PortableDataStream)) => {
    val zipStream = new ZipInputStream(file.2.open)
    val entry = zipStream.getNextEntry
    val iter = Source.fromInputStream(zipStream).getLines
}).map(.replaceAll("\s+","")).saveAsTextFile(outputDir, classOf[GzipCodec])

Step 2:  Transform JSON into Parquet

With just a few more lines of Scala code, you can use Spark’s abstractions to convert the JSON into a Spark DataFrame and then export the data back to S3 in Parquet format.

Spark requires the JSON to be in JSON Lines format to be parsed correctly into a DataFrame.

// Output Parquet directory
val outputDir = "s3://{YOUR OUTPUT BUCKET NAME}/output/drugevents"
// Input json file
val inputJson = "s3://{YOUR OUTPUT BUCKET NAME}/output/2015q4/*”
// Load dataframe from json file multiline 
val df = spark.read.json(sc.wholeTextFiles(inputJson).values)
// Extract results from dataframe
val results = df.select("results")
// Save it to Parquet

Step 3:  Create an Athena table

With the data cleanly prepared and stored in S3 using the Parquet format, you can now place an Athena table on top of it to get a better understanding of the underlying data.

Because the openFDA data structure incorporates several layers of nesting, it can be a complex process to try to manually derive the underlying schema in a Hive-compatible format. To shorten this process, you can load the top row of the DataFrame from the previous step into a Hive table within Zeppelin and then extract the “create  table” statement from SparkSQL.


val top1 = spark.sql("select * from data tablesample(1 rows)")


val show_cmd = spark.sql("show create table drugevents”).show(1, false)

This returns a “create table” statement that you can almost paste directly into the Athena console. Make some small modifications (adding the word “external” and replacing “using with “stored as”), and then execute the code in the Athena query editor. The table is created.

For the openFDA data, the DDL returns all string fields, as the date format used in your dataset does not conform to the yyy-mm-dd hh:mm:ss[.f…] format required by Hive. For your analysis, the string format works appropriately but it would be possible to extend this code to use a Presto function to convert the strings into time stamps.

   companynumb  string, 
   safetyreportid  string, 
   safetyreportversion  string, 
   receiptdate  string, 
   patientagegroup  string, 
   patientdeathdate  string, 
   patientsex  string, 
   patientweight  string, 
   serious  string, 
   seriousnesscongenitalanomali  string, 
   seriousnessdeath  string, 
   seriousnessdisabling  string, 
   seriousnesshospitalization  string, 
   seriousnesslifethreatening  string, 
   seriousnessother  string, 
   actiondrug  string, 
   activesubstancename  string, 
   drugadditional  string, 
   drugadministrationroute  string, 
   drugcharacterization  string, 
   drugindication  string, 
   drugauthorizationnumb  string, 
   medicinalproduct  string, 
   drugdosageform  string, 
   drugdosagetext  string, 
   reactionoutcome  string, 
   reactionmeddrapt  string, 
   reactionmeddraversionpt  string)
STORED AS parquet
  's3://{YOUR TARGET BUCKET}/output/drugevents'

With the Athena table in place, you can start to explore the data by running ad hoc queries within Athena or doing more advanced statistical analysis in R.

Using SQL and R to analyze adverse events

Using the openFDA data with Athena makes it very easy to translate your questions into SQL code and perform quick analysis on the data. After you have prepared the data for Athena, you can begin to explore the relationship between aspirin and adverse drug events, as an example. One of the most common metrics to measure adverse drug events is the Proportional Reporting Ratio (PRR). It is defined as:

PRR = (m/n)/( (M-m)/(N-n) )
m = #reports with drug and event
n = #reports with drug
M = #reports with event in database
N = #reports in database

Gastrointestinal haemorrhage has the highest PRR of any reaction to aspirin when viewed in aggregate. One question you may want to ask is how the PRR has trended on a yearly basis for gastrointestinal haemorrhage since 2005.

Using the following query in Athena, you can see the PRR trend of “GASTROINTESTINAL HAEMORRHAGE” reactions with “ASPIRIN” since 2005:

with drug_and_event as 
(select rpad(receiptdate, 4, 'NA') as receipt_year
    , reactionmeddrapt
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug_and_event 
from fda.drugevents
where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
group by reactionmeddrapt, rpad(receiptdate, 4, 'NA') 
), reports_with_drug as 
select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_drug 
 from fda.drugevents 
 where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and medicinalproduct = 'ASPIRIN'
group by rpad(receiptdate, 4, 'NA') 
), reports_with_event as 
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as reports_with_event 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
     and reactionmeddrapt= 'GASTROINTESTINAL HAEMORRHAGE'
   group by rpad(receiptdate, 4, 'NA')
), total_reports as 
   select rpad(receiptdate, 4, 'NA') as receipt_year
    , count(distinct (concat(safetyreportid,receiptdate,reactionmeddrapt))) as total_reports 
   from fda.drugevents
   where rpad(receiptdate,4,'NA') 
     between '2005' and '2015' 
   group by rpad(receiptdate, 4, 'NA')
select  drug_and_event.receipt_year, 
(1.0 * drug_and_event.reports_with_drug_and_event/reports_with_drug.reports_with_drug)/ (1.0 * (reports_with_event.reports_with_event- drug_and_event.reports_with_drug_and_event)/(total_reports.total_reports-reports_with_drug.reports_with_drug)) as prr
, drug_and_event.reports_with_drug_and_event
, reports_with_drug.reports_with_drug
, reports_with_event.reports_with_event
, total_reports.total_reports
from drug_and_event
    inner join reports_with_drug on  drug_and_event.receipt_year = reports_with_drug.receipt_year   
    inner join reports_with_event on  drug_and_event.receipt_year = reports_with_event.receipt_year
    inner join total_reports on  drug_and_event.receipt_year = total_reports.receipt_year
order by  drug_and_event.receipt_year

One nice feature of Athena is that you can quickly connect to it via R or any other tool that can use a JDBC driver to visualize the data and understand it more clearly.

With this quick R script that can be run in R Studio either locally or on an EC2 instance, you can create a visualization of the PRR and Reporting Odds Ratio (RoR) for “GASTROINTESTINAL HAEMORRHAGE” reactions from “ASPIRIN” since 2005 to better understand these trends.

# connect to ATHENA
conn <- dbConnect(drv, '<Your JDBC URL>',s3_staging_dir="<Your S3 Location>",user=Sys.getenv(c("USER_NAME"),password=Sys.getenv(c("USER_PASSWORD"))

# Declare Adverse Event

# Build SQL Blocks
sqlFirst <- "SELECT rpad(receiptdate, 4, 'NA') as receipt_year, count(DISTINCT safetyreportid) as event_count FROM fda.drugsflat WHERE rpad(receiptdate,4,'NA') between '2005' and '2015'"
sqlEnd <- "GROUP BY rpad(receiptdate, 4, 'NA') ORDER BY receipt_year"

# Extract Aspirin with adverse event counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN' AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
aspirinAdverseCount = dbGetQuery(conn,sql)

# Extract Aspirin counts
sql <- paste(sqlFirst,"AND medicinalproduct ='ASPIRIN'", sqlEnd,sep=" ")
aspirinCount = dbGetQuery(conn,sql)

# Extract adverse event counts
sql <- paste(sqlFirst,"AND reactionmeddrapt=",adverseEvent, sqlEnd,sep=" ")
adverseCount = dbGetQuery(conn,sql)

# All Drug Adverse event Counts
sql <- paste(sqlFirst, sqlEnd,sep=" ")
allDrugCount = dbGetQuery(conn,sql)

# Select correct rows
selAll =  allDrugCount$receipt_year == aspirinAdverseCount$receipt_year
selAspirin = aspirinCount$receipt_year == aspirinAdverseCount$receipt_year
selAdverse = adverseCount$receipt_year == aspirinAdverseCount$receipt_year

# Calculate Numbers
m <- c(aspirinAdverseCount$event_count)
n <- c(aspirinCount[selAspirin,2])
M <- c(adverseCount[selAdverse,2])
N <- c(allDrugCount[selAll,2])

# Calculate proptional reporting ratio
PRR = (m/n)/((M-m)/(N-n))

# Calculate reporting Odds Ratio
d = n-m
D = N-M
ROR = (m/d)/(M/D)

# Plot the PRR and ROR
g_range <- range(0, PRR,ROR)
g_range[2] <- g_range[2] + 3
yearLen = length(aspirinAdverseCount$receipt_year)
plot(PRR, type="o", col="blue", ylim=g_range,axes=FALSE, ann=FALSE)
axis(2, las=1, at=1*0:g_range[2])
lines(ROR, type="o", pch=22, lty=2, col="red")

As you can see, the PRR and RoR have both remained fairly steady over this time range. With the R Script above, all you need to do is change the adverseEvent variable from GASTROINTESTINAL HAEMORRHAGE to another type of reaction to analyze and compare those trends.


In this walkthrough:

  • You used a Scala script on EMR to convert the openFDA zip files to gzip.
  • You then transformed the JSON blobs into flattened Parquet files using Spark on EMR.
  • You created an Athena DDL so that you could query these Parquet files residing in S3.
  • Finally, you pointed the R package at the Athena table to analyze the data without pulling it into a database or creating your own servers.

If you have questions or suggestions, please comment below.

Next Steps

Take your skills to the next level. Learn how to optimize Amazon S3 for an architecture commonly used to enable genomic data analysis. Also, be sure to read more about running R on Amazon Athena.






About the Authors

Ryan Hood is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys watching the Cubs win the World Series and attempting to Sous-vide anything he can find in his refrigerator.



Vikram Anand is a Data Engineer for AWS. He works on big data projects leveraging the newest AWS offerings. In his spare time, he enjoys playing soccer and watching the NFL & European Soccer leagues.



Dave Rocamora is a Solutions Architect at Amazon Web Services on the Open Data team. Dave is based in Seattle and when he is not opening data, he enjoys biking and drinking coffee outside.





Tomato-Plant Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/07/tomato-plant_se.html

I have a soft spot for interesting biological security measures, especially by plants. I’ve used them as examples in several of my books. Here’s a new one: when tomato plants are attacked by caterpillars, they release a chemical that turns the caterpillars on each other:

It’s common for caterpillars to eat each other when they’re stressed out by the lack of food. (We’ve all been there.) But why would they start eating each other when the plant food is right in front of them? Answer: because of devious behavior control by plants.

When plants are attacked (read: eaten) they make themselves more toxic by activating a chemical called methyl jasmonate. Scientists sprayed tomato plants with methyl jasmonate to kick off these responses, then unleashed caterpillars on them.

Compared to an untreated plant, a high-dose plant had five times as much plant left behind because the caterpillars were turning on each other instead. The caterpillars on a treated tomato plant ate twice as many other caterpillars than the ones on a control plant.

A homebrew Pi kit for home brewing

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/homebrew-beer-brewing-pi/

While the rest of us are forced to leave the house to obtain a tasty brew, beer master Christoper Aedo has incorporated a Raspberry Pi into his home brewing system for ultimate ‘sit-back-and-relax’ homebrew home brew.

homebrew home brew Raspberry Pi


I drink and I know things

Having brewed his own beer for several years, Christopher was no novice in the pursuit of creating the perfect pint*. He was already brewing 10 gallons at a time when he decided to go all electric with a Raspberry Pi. Inspiration struck when he stumbled upon the StrangeBrew Elsinore Java server, and he went to work planning the best setup for the job:

Before I could talk myself out of the project, I decided to start buying parts. My basic design was a Hot Liquor Tank (HLT) and boil kettle with 5500W heating elements in them, plus a mash tun with a false bottom. I would use a pump to recirculate the mash through a 50 foot stainless coil in the HLT (a “heat exchanger recirculating mash system”, known as HERMS). I would need a second pump to circulate the water in the HLT, and to help with transferring water to the mash tun. All of the electrical components would be controlled with a Raspberry Pi.

Homebrew hardware setup

First, he set up the electrical side of his homebrew system using The Electric Brewing Company‘s walkthrough, swapping out the 12V solid-state relays for ones that manage the 3V needed by the Pi. Aedo then implemented the temperature sensors and controls of these relays. He used Hilitchi DS18B20 Waterproof Temperature Sensors connected to a 1-Wire bus and learned how to manage the relays in this tutorial.

Christopher wanted to be able to move his system around his property. Therefore, he squeezed all the electrical components of the build into a waterproof project box. For cooling purposes, he integrated copper shims and heat sinks.

homebrew home brew raspberry pi

Among the wires, wires, and more wires sits a Raspberry Pi, bottom left.

A brew-tiful build

With the hardware sorted, he took on the project’s software next. Although he had been inspired by it, Christopher decided to move away from the StrangeBrew Elsinore project in favour of the Python-based CraftBeerPi by active repo maintainer Manuel Fritsch.

homebrew home brew raspberry pi

The CraftBeerPi dashboard

This package allowed him to configure his chosen GPIO pins and set up the appropriate sensors. In fact, the setup process was so easy that Christoper also implemented a secondhand fridge as a fermentation chamber.

Duff Beer for me, Duff Beer for you…

In his recently released article on opensource.com, Aedo goes into far more detail. So if you want to create your own brewing kit, it offers all the info you need to get going.

Christoper attributes a lot of his build to the Hosehead, Electric Brewery, and CraftBeerPi projects. Using their resources and those of StrangeBrew Elsinore, any home brewer can control at least part of their system via a Raspberry Pi. Moreover, they can also keep track of their brewery stock levels via the wonderfully named Kegerface display.

We love seeing projects like this that take inspiration from others and build on them. We also love beer.

How about you? Have you created any sort of beer brewing system, from scratch or with the help of an existing project? Then make sure to share it with us in the comments below.

Duff man homebrew


*Did you know the British pint is larger than the American pint?

The post A homebrew Pi kit for home brewing appeared first on Raspberry Pi.

PiCorder, the miniature camcorder

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/picorder/

The modest dimensions of our Raspberry Pi Zero and its wirelessly connectable sibling, the Pi Zero W, enable makers in our community to build devices that are very small indeed. The PiCorder built by Wayne Keenan is probably the slimmest Pi-powered video-recording device we’ve ever seen.

PiCorder – Pimoroni HyperPixel

A simple Pi-camcorder using @pimoroni #HyperPixel, ZeroLipo, lipo bat, camera and #PiZeroW. All parts from the Pirates, total of ~£85. Project build instructions: https://www.hackster.io/TheBubbleworks/picorder-0eb94d

PiCorder hardware

Wayne’s PiCorder is a very straightforward make. On the hardware side, it features a Pimoroni HyperPixel screen, Pi Zero camera module, and Zero LiPo plus LiPo battery pack. To put it together, he simply soldered header pins onto a Zero W, and connected all the components to it – easy as Pi! (Yes, I went there.)


So sleek as to be almost aerodynamic

Recording with the PiCorder (rePiCording?)

Then it was just a matter of installing the HyperPixel driver on the Pi, and the PiCorder was good to go. In this basic setup, recording is controlled via SSH. However, there’s a discussion about better ways to control the device in the comments on Wayne’s write-up. As the HyperPixel is a touchscreen, adding a GUI would make full use of its capabilities.

Picorder screen

Think about how many screens you’re looking at right now

The PiCorder is a great project to recreate if you’re looking to build a small portable camera. If you’re new to soldering, this build is perfect for you: just follow our ‘How to solder’ video and tutorial, and you’re on your way. This could be the start of your journey into the magical world of physical computing!

You could also check our blog on Alex Ellis‘s implementation of YouTube live-streaming for the Pi, and learn how to share your videos in real time.

Cool camera projects

Our educational resources include plenty of cool projects that could use the PiCorder, or for which the device could be adapted.

Get your head around using the official Raspberry Pi Camera Module with this picamera tutorial. Learn how to set up a stationary or wearable time-lapse camera, and turn your images into animated GIFs. You could also kickstart your career as a director by making an amazing stop-motion film!

No matter which camera project you choose to work on, we’d love to see the results. So be sure to share a link in the comments.

The post PiCorder, the miniature camcorder appeared first on Raspberry Pi.

AWS Greengrass – Run AWS Lambda Functions on Connected Devices

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-greengrass-run-aws-lambda-functions-on-connected-devices/

I first told you about AWS Greengrass in the post that I published during re:Invent (AWS Greengrass – Ubiquitous Real-World Computing). We launched a limited preview of Greengrass at that time and invited you to sign up if you were interested.

As I noted at the time, many AWS customers want to collect and process data out in the field, where connectivity is often slow and sometimes either intermittent or unreliable. Greengrass allows them to extend the AWS programming model to small, simple, field-based devices. It builds on AWS IoT and AWS Lambda, and supports access to the ever-increasing variety of services that are available in the AWS Cloud.

Greengrass gives you access to compute, messaging, data caching, and syncing services that run in the field, and that do not depend on constant, high-bandwidth connectivity to an AWS Region. You can write Lambda functions in Python 2.7 and deploy them to your Greengrass devices from the cloud while using device shadows to maintain state. Your devices and peripherals can talk to each other using local messaging that does not pass through the cloud.

Now Generally Available
Today we are making Greengrass generally available in the US East (Northern Virginia) and US West (Oregon) Regions. During the preview, AWS customers were able to get hands-on experience with Greengrass and to start building applications and businesses around it. I’ll share a few of these early successes later in this post.

The Greengrass Core code runs on each device. It allows you to deploy and run Lambda applications on the device, supports local MQTT messaging across a secure network, and also ensures that conversations between devices and the cloud are made across secure connections. The Greengrass Core also supports secure, over-the-air software updates, including Lambda functions. It includes a message broker, a Lambda runtime, a Thing Shadows implementation, and a deployment agent. Greengrass Core and (optionally) other devices make up a Greengrass Group. The group includes configuration data, the list of devices and the identity of the Greengrass Core, a list of Lambda functions, and a set of subscriptions that define where the messages should go. All of this information is copied to the Greengrass core devices during the deployment process.

Your Lambda functions can use APIs in three distinct SDKs:

AWS SDK for Python – This SDK allows your code to interact with Amazon Simple Storage Service (S3), Amazon DynamoDB, Amazon Simple Queue Service (SQS), and other AWS services.

AWS IoT Device SDK – This SDK (available for Node.js, Python, Java, and C++) helps you to connect your hardware devices to AWS IoT. The C++ SDK has a few extra features including access to the Greengrass Discovery Service and support for root CA downloads.

AWS Greengrass Core SDK – This SDK provides APIs that allow local invocation of other Lambda functions, publish messages, and work with thing shadows.

You can run the Greengrass Core on x86 and ARM devices that have version 4.4.11 (or newer) of the Linux kernel, with the OverlayFS and user namespace features enabled. While most deployments of Greengrass will be targeted at specialized, industrial-grade hardware, you can also run the Greengrass Core on a Raspberry Pi or an EC2 instance for development and test purposes.

For this post, I used a Raspberry Pi attached to a BrickPi, connected to my home network via WiFi:

The Raspberry Pi, the BrickPi, the case, and all of the other parts are available in the BrickPi 3 Starter Kit. You will need some Linux command-line expertise and a decent amount of manual dexterity to put all of this together, but if I did it then you surely can.

Greengrass in Action
I can access Greengrass from the Console, API, or CLI. I’ll use the Console. The intro page of the Greengrass Console lets me define groups, add Greengrass Cores, and add devices to my groups:

I click on Get Started and then on Use easy creation:

Then I name my group:

And name my first Greengrass Core:

I’m ready to go, so I click on Create Group and Core:

This runs for a few seconds and then offers up my security resources (two keys and a certificate) for downloading, along with the Greengrass Core:

I download the security resources and put them in a safe place, and select and download the desired version of the Greengrass Core software (ARMv7l for my Raspberry Pi), and click on Finish.

Now I power up my Pi, and copy the security resources and the software to it (I put them in an S3 bucket and pulled them down with wget). Here’s my shell history at that point:

Following the directions in the user guide, I create a new user and group, run the rpi-update script, and install several packages including sqlite3 and openssl. After a couple of reboots, I am ready to proceed!

Next, still following the directions, I untar the Greengrass Core software and move the security resources to their final destination (/greengrass/configuration/certs), giving them generic names along the way. Here’s what the directory looks like:

The next step is to associate the core with an AWS IoT thing. I return to the Console, click through the group and the Greengrass Core, and find the Thing ARN:

I insert the names of the certificates and the Thing ARN into the config.json file, and also fill in the missing sections of the iotHost and ggHost:

I start the Greengrass demon (this was my second attempt; I had a typo in one of my path names the first time around):

After all of this pleasant time at the command line (taking me back to my Unix v7 and BSD 4.2 days), it is time to go visual once again! I visit my AWS IoT dashboard and see that my Greengrass Core is making connections to IoT:

I go to the Lambda Console and create a Lambda function using the Python 2.7 runtime (the IAM role does not matter here):

I publish the function in the usual way and, hop over to the Greengrass Console, click on my group, and choose to add a Lambda function:

Then I choose the version to deploy:

I also configure the function to be long-lived instead of on-demand:

My code will publish messages to AWS IoT, so I create a subscription by specifying the source and destination:

I set up a topic filter (hello/world) on the subscription as well:

I confirm my settings and save my subscription and I am just about ready to deploy my code. I revisit my group, click on Deployments, and choose Deploy from the Actions menu:

I choose Automatic detection to move forward:

Since this is my first deployment, I need to create a service-level role that gives Greengrass permission to access other AWS services. I simply click on Grant permission:

I can see the status of each deployment:

The code is now running on my Pi! It publishes messages to topic hello/world; I can see them by going to the IoT Console, clicking on Test, and subscribing to the topic:

And here are the messages:

With all of the setup work taken care of, I can do iterative development by uploading, publishing, and deploying new versions of my code. I plan to use the BrickPi to control some LEGO Technic motors and to publish data collected from some sensors. Stay tuned for that post!

Greengrass Pricing
You can run the Greengrass Core on three devices free for one year as part of the AWS Free Tier. At the next level (3 to 10,000 devices) two options are available:

  • Pay as You Go – $0.16 per month per device.
  • Annual Commitment – $1.49 per year per device, a 17.5% savings.

If you want to run the Greengrass Core on more than 10,000 devices or make a longer commitment, please get in touch with us; details on all pricing models are on the Greengrass Pricing page.


Processing: making art with code

Post Syndicated from Matt Richardson original https://www.raspberrypi.org/blog/processing-making-art-code/

This column is from The MagPi issue 56. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

One way we achieve our mission at the Raspberry Pi Foundation is to find an intersection between someone’s passion and computing. For example, if you’re a young person interested in space, our Astro Pi programme is all about getting your code running on the International Space Station. If you like music, you can use Sonic Pi to compose songs with code. This month, I’d like to introduce you to some interesting work happening at the intersection between computing and the visual arts.

Image of Dead Presidents by Mike Brondbjerg art made with Processing

Mike Brondbjerg’s Dead Presidents uses Processing to generate portraits.

Processing is a programming language and development environment that sits perfectly at that intersection. It enables you to use code to generate still graphics, animations, or interactive applications such as games. It’s based on the Java programming language, and it runs on multiple platforms and operating systems. Thanks to the work of the Processing Foundation, and in particular the efforts of contributor Gottfried Haider, Processing runs like a champ on the Raspberry Pi.

Screenshot of Processing environment

When I want to communicate how cool Processing is while speaking to members of the Raspberry Pi community, I usually make this analogy: with Sonic Pi, you can use one line of code to make one note; with Processing, you can use one line of code to draw one stroke. Once you’ve figured that out, you can use computational tools such as loops, conditions, and variables to make some beautiful art.

And even though Processing is intended for use in the realm of visual arts, its capabilities can go beyond that. You can make applications that interact with the user through keyboard or mouse input. Processing also has libraries for working with network connections, files, and cameras. This means that you don’t just have to create artwork with Processing. You can also use it for almost anything you need to code.

Physical process

Processing is especially cool on the Raspberry Pi because there’s a library for working with the Pi’s GPIO pins. You can therefore have on-screen graphics interacting with buttons, switches, LEDs, relays, and sensors wired up to your Pi. With Processing, you could build a game that uses a custom controller that you’ve built yourself. Or you could create a piece of artwork that interacts with the user by sensing their proximity to it.

Processing screenshot

Best of all, Processing was created with learning to code in mind. It comes with lots of built-in examples, and you can use these to learn about many different programming and drawing concepts. The documentation on Processing’s website is very thorough and – as with Raspberry Pi – there’s a very supportive community around it if you run into any trouble. Additionally, the Processing development environment is powerful but also very simplified. For these reasons, it’s perfect for someone who is just getting started.

To get going with Processing on Raspberry Pi, there’s a one-line install command. You can also go to Processing.org and download pre-built Raspbian images with Processing already installed. To help you on your journey, there’s a resource for getting started with Processing. It includes a walkthrough on how to access the GPIO pins to combine physical computing and visual arts.

When you launch Processing, you will see a blank file where you can start keying in your code. Don’t let that intimidate you! All of the world’s greatest pieces of art started off as a raw slab of marble, a blob of clay, or a blank canvas. It just takes one line of code at a time to generate your own masterpiece.

Become a supporter

After this article appeared in The MagPi, the Processing Foundation put out a call for support:

We want you to be a part of this. Our work is almost entirely supported by individual one-time donations from the community. Right now we are outspending what we earn, and we have bigger plans! We want to continue all the work we’re doing and make it more accessible, more inclusive, and more responsive to the community needs.

To create lasting support for these new directions we’re starting a Membership Program. A membership is an annual donation that supports all this work and signifies your belief in it. You can do this as an individual, a studio, an educational institution, or a corporate partner. We will list your name on our members page along with all the others that help make this mission possible.

The post Processing: making art with code appeared first on Raspberry Pi.