Tag Archives: running

New AWS Auto Scaling – Unified Scaling For Your Cloud Applications

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-auto-scaling-unified-scaling-for-your-cloud-applications/

I’ve been talking about scalability for servers and other cloud resources for a very long time! Back in 2006, I wrote “This is the new world of scalable, on-demand web services. Pay for what you need and use, and not a byte more.” Shortly after we launched Amazon Elastic Compute Cloud (EC2), we made it easy for you to do this with the simultaneous launch of Elastic Load Balancing, EC2 Auto Scaling, and Amazon CloudWatch. Since then we have added Auto Scaling to other AWS services including ECS, Spot Fleets, DynamoDB, Aurora, AppStream 2.0, and EMR. We have also added features such as target tracking to make it easier for you to scale based on the metric that is most appropriate for your application.

Introducing AWS Auto Scaling
Today we are making it easier for you to use the Auto Scaling features of multiple AWS services from a single user interface with the introduction of AWS Auto Scaling. This new service unifies and builds on our existing, service-specific, scaling features. It operates on any desired EC2 Auto Scaling groups, EC2 Spot Fleets, ECS tasks, DynamoDB tables, DynamoDB Global Secondary Indexes, and Aurora Replicas that are part of your application, as described by an AWS CloudFormation stack or in AWS Elastic Beanstalk (we’re also exploring some other ways to flag a set of resources as an application for use with AWS Auto Scaling).

You no longer need to set up alarms and scaling actions for each resource and each service. Instead, you simply point AWS Auto Scaling at your application and select the services and resources of interest. Then you select the desired scaling option for each one, and AWS Auto Scaling will do the rest, helping you to discover the scalable resources and then creating a scaling plan that addresses the resources of interest.

If you have tried to use any of our Auto Scaling options in the past, you undoubtedly understand the trade-offs involved in choosing scaling thresholds. AWS Auto Scaling gives you a variety of scaling options: You can optimize for availability, keeping plenty of resources in reserve in order to meet sudden spikes in demand. You can optimize for costs, running close to the line and accepting the possibility that you will tax your resources if that spike arrives. Alternatively, you can aim for the middle, with a generous but not excessive level of spare capacity. In addition to optimizing for availability, cost, or a blend of both, you can also set a custom scaling threshold. In each case, AWS Auto Scaling will create scaling policies on your behalf, including appropriate upper and lower bounds for each resource.

AWS Auto Scaling in Action
I will use AWS Auto Scaling on a simple CloudFormation stack consisting of an Auto Scaling group of EC2 instances and a pair of DynamoDB tables. I start by removing the existing Scaling Policies from my Auto Scaling group:

Then I open up the new Auto Scaling Console and selecting the stack:

Behind the scenes, Elastic Beanstalk applications are always launched via a CloudFormation stack. In the screen shot above, awseb-e-sdwttqizbp-stack is an Elastic Beanstalk application that I launched.

I can click on any stack to learn more about it before proceeding:

I select the desired stack and click on Next to proceed. Then I enter a name for my scaling plan and choose the resources that I’d like it to include:

I choose the scaling strategy for each type of resource:

After I have selected the desired strategies, I click Next to proceed. Then I review the proposed scaling plan, and click Create scaling plan to move ahead:

The scaling plan is created and in effect within a few minutes:

I can click on the plan to learn more:

I can also inspect each scaling policy:

I tested my new policy by applying a load to the initial EC2 instance, and watched the scale out activity take place:

I also took a look at the CloudWatch metrics for the EC2 Auto Scaling group:

Available Now
We are launching AWS Auto Scaling today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), and Asia Pacific (Singapore) Regions today, with more to follow. There’s no charge for AWS Auto Scaling; you pay only for the CloudWatch Alarms that it creates and any AWS resources that you consume.

As is often the case with our new services, this is just the first step on what we hope to be a long and interesting journey! We have a long roadmap, and we’ll be adding new features and options throughout 2018 in response to your feedback.

Jeff;

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

Early Challenges: Managing Cash Flow

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/managing-cash-flow/

Cash flow projection charts

This post by Backblaze’s CEO and co-founder Gleb Budman is the eighth in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants
  7. The Decision on Transparency
  8. Early Challenges: Managing Cash Flow

Use the Join button above to receive notification of new posts in this series.

Running out of cash is one of the quickest ways for a startup to go out of business. When you are starting a company the question of where to get cash is usually the top priority, but managing cash flow is critical for every stage in the lifecycle of a company. As a primarily bootstrapped but capital-intensive business, managing cash flow at Backblaze was and still is a key element of our success and requires continued focus. Let’s look at what we learned over the years.

Raising Your Initial Funding

When starting a tech business in Silicon Valley, the default assumption is that you will immediately try to raise venture funding. There are certainly many advantages to raising funding — not the least of which is that you don’t need to be cash-flow positive since you have cash in the bank and the expectation is that you will have a “burn rate,” i.e. you’ll be spending more than you make.

Note: While you’re not expected to be cash-flow positive, that doesn’t mean you don’t have to worry about cash. Cash-flow management will determine your burn rate. Whether you can get to cash-flow breakeven or need to raise another round of funding is a direct byproduct of your cash flow management.

Also, raising funding takes time (most successful fundraising cycles take 3-6 months start-to-finish), and time at a startup is in short supply. Constantly trying to raise funding can take away from product development and pursuing growth opportunities. If you’re not successful in raising funding, you then have to either shut down or find an alternate method of funding the business.

Sources of Funding

Depending on the stage of the company, type of company, and other factors, you may have access to different sources of funding. Let’s list a number of them:

Customers

Sales — the best kind of funding. It is non-dilutive, doesn’t have to be paid back, and is a direct metric of the success of your company.

Pre-Sales — some customers may be willing to pay you for a product in beta, a test, or pre-pay for a product they’ll receive when finished. Pre-Sales income also is great because it shares the characteristics of cash from sales, but you get the cash early. It also can be a good sign that the product you’re building fills a market need. We started charging for Backblaze computer backup while it was still in private beta, which allowed us to not only collect cash from customers, but also test the billing experience and users’ real desire for the service.

Services — if you’re a service company and customers are paying you for that, great. You can effectively scale for the number of hours available in a day. As demand grows, you can add more employees to increase the total number of billable hours.

Note: If you’re a product company and customers are paying you to consult, that can provide much needed cash, and could provide feedback toward the right product. However, it can also distract from your core business, send you down a path where you’re building a product for a single customer, and addict you to a path that prevents you from building a scalable business.

Investors

Yourself — you likely are putting your time into the business, and deferring salary in the process. You may also put your own cash into the business either as an investment or a loan.

Angels — angels are ideal as early investors since they are used to investing in businesses with little to no traction. AngelList is a good place to find them, though finding people you’re connected with through someone that knows you well is best.

Crowdfunding — a component of the JOBS Act permitted entrepreneurs to raise money from nearly anyone since May 2016. The SEC imposes limits on both investors and the companies. This article goes into some depth on the options and sites available.

VCs — VCs are ideal for companies that need to raise at least a few million dollars and intend to build a business that will be worth over $1 billion.

Debt

Friends & Family — F&F are often the first people to give you money because they are investing in you. It’s great to have some early supporters, but it also can be risky to take money from people who aren’t used to the risks. The key advice here is to only take money from people who won’t mind losing it. If someone is talking about using their children’s college funds or borrowing from their 401k, say ‘no thank you’ — even if they’re sure they want to loan you money.

Bank Loans — a variety of loan types exist, but most either require the company to have been operational for a couple years, be able to borrow against money the company has or is making, or be able to get a personal guarantee from the founders whereby their own credit is on the line. Fundera provides a good overview of loan options and can help secure some, but most will not be an option for a brand new startup.

Grants

Government — in some areas there is the potential for government grants to facilitate research. The SBIR program facilitates some such grants.

At Backblaze, we used a number of these options:

• Investors/Yourself
We loaned a cumulative total of a couple hundred thousand dollars to the company and invested our time by going without a salary for a year and a half.
• Customers/Pre-Sales
We started selling the Backblaze service while it was still in beta.
• Customers/Sales
We launched v1.0 and kept selling.
• Investors/Angels
After a year and a half, we raised $370k from 11 angels. All of them were either people whom we knew personally or were a strong recommendation from a mutual friend.
• Debt/Loans
After a couple years we were able to get equipment leases whereby the Storage Pods and hard drives were used as collateral to secure the lease on them.
• Investors/VCs
Ater five years we raised $5m from TMT Investments to add to the balance sheet and invest in growth.

The variety and quantity of sources we used is by no means uncommon.

GAAP vs. Cash

Most companies start tracking financials based on cash, and as they scale they switch to GAAP (Generally Accepted Accounting Principles). Cash is easier to track — we got paid $XXXX and spent $YYY — and as often mentioned, is required for the business to stay alive. GAAP has more subtlety and complexity, but provides a clearer picture of how the business is really doing. Backblaze was on a ‘cash’ system for the first few years, then switched to GAAP. For this post, I’m going to focus on things that help cash flow, not GAAP profitability.

Stages of Cash Flow Management

All-spend

In a pure service business (e.g. solo proprietor law firm), you may have no expenses other than your time, so this stage doesn’t exist. However, in a product business there is a period of time where you are building the product and have nothing to sell. You have zero cash coming in, but have cash going out. Your cash-flow is completely negative and you need funds to cover that.

Sales-generating

Starting to see cash come in from customers is thrilling. I initially had our system set up to email me with every $5 payment we received. You’re making sales, but not covering expenses.

Ramen-profitable

But it takes a lot of $5 payments to pay for servers and salaries, so for a while expenses are likely to outstrip sales. Getting to ramen-profitable is a critical stage where sales cover the business expenses and are “paying enough for the founders to eat ramen.” This extends the runway for a business, but is not completely sustainable, since presumably the founders can’t (or won’t) live forever on a subsistence salary.

Business-profitable

This is the ultimate stage whereby the business is truly profitable, including paying everyone market-rate salaries. A business at this stage is self-sustaining. (Of course, market shifts and plenty of other challenges can kill the business, but cash-flow issues alone will not.)

Note, I’m using the word ‘profitable’ here to mean this is still on a cash-basis.

Backblaze was in the all-spend stage for just over a year, during which time we built the service and hadn’t yet made the service available to customers. Backblaze was in the sales-generating stage for nearly another year before the company was barely ramen-profitable where sales were covering the company expenses and paying the founders minimum wage. (I say ‘barely’ since minimum wage in the SF Bay Area is arguably never subsistence.) It took almost three more years before the company was business-profitable, paying everyone including the founders market-rate.

Cash Flow Forecasting

When raising funding it’s helpful to think of milestones reached. You don’t necessarily need enough cash on day one to last for the next 100 years of the company. Some good milestones to consider are how much cash you need to prove there is a market need, prove you can build a product to meet that need, or get to ramen-profitable.

Two things to consider:

1) Unit Economics (COGS)

If your product is 100% software, this may not be relevant. Once software is built it costs effectively nothing to deliver the product to one customer or one million customers. However, in most businesses there is some incremental cost to provide the product. If you’re selling a hardware device, perhaps you sell it for $100 but it costs you $50 to make it. This is called “COGS” (Cost of Goods Sold).

Many products rely on cloud services where the costs scale with growth. That model works great, but it’s still important to understand what the costs are for the cloud service you use per unit of product you sell.

Support is often done by the founders early-on in a business, but that is another real cost to factor in and estimate on a per-user basis. Taking all of the per unit costs combined, you may charge $10/month/user for your service, but if it costs you $7/month/user in cloud services, you’re only netting $3/month/user.

2) Operating Expenses (OpEx)

These are expenses that don’t scale with the number of product units you sell. Typically this includes research & development, sales & marketing, and general & administrative expenses. Presumably there is a certain level of these functions required to build the product, market it, sell it, and run the organization. You can choose to invest or cut back on these, but you’ll still make the same amount per product unit.

Incremental Net Profit Per Unit

If you’ve calculated your COGS and your unit economics are “upside down,” where the amount you charge is less than that it costs you to provide your service, it’s worth thinking hard about how that’s going to change over time. If it will not change, there is no scale that will make the business work. Presuming you do make money on each unit of product you sell — what is sometimes referred to as “Contribution Margin” — consider how many of those product units you need to sell to cover your operating expenses as described above.

Calculating Your Profit

The math on getting to ramen-profitable is simple:

(Number of Product Units Sold x Contribution Margin) - Operating Expenses = Profit

If your operating expenses include subsistence salaries for the founders and profit > $0, you’re ramen-profitable.

Improving Cash Flow

Having access to sources of cash, whether from selling to customers or other methods, is excellent. But needing less cash gives you more choices and allows you to either dilute less, owe less, or invest more.

There are two ways to improve cash flow:

1) Collect More Cash

The best way to collect more cash is to provide more value to your customers and as a result have them pay you more. Additional features/products/services can allow this. However, you can also collect more cash by changing how you charge for your product. If you have a subscription, changing from charging monthly to yearly dramatically improves your cash flow. If you have a product that customers use up, selling a year’s supply instead of selling them one-by-one can help.

2) Spend Less Cash

Reducing COGS is a fantastic way to spend less cash in a scalable way. If you can do this without harming the product or customer experience, you win. There are a myriad of ways to also reduce operating expenses, including taking sub-market salaries, using your home instead of renting office space, staying focused on your core product, etc.

Ultimately, collecting more and spending less cash dramatically simplifies the process of getting to ramen-profitable and later to business-profitable.

Be Careful (Why GAAP Matters)

A word of caution: while running out of cash will put you out of business immediately, overextending yourself will likely put you out of business not much later. GAAP shows how a business is really doing; cash doesn’t. If you only focus on cash, it is possible to commit yourself to both delivering products and repaying loans in the future in an unsustainable fashion. If you’re taking out loans, watch the total balance and monthly payments you’re committing to. If you’re asking customers for pre-payment, make sure you believe you can deliver on what they’ve paid for.

Summary

There are numerous challenges to building a business, and ensuring you have enough cash is amongst the most important. Having the cash to keep going lets you keep working on all of the other challenges. The frameworks above were critical for maintaining Backblaze’s cash flow and cash balance. Hopefully you can take some of the lessons we learned and apply them to your business. Let us know what works for you in the comments below.

The post Early Challenges: Managing Cash Flow appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

US Govt Brands Torrent, Streaming & Cyberlocker Sites As Notorious Markets

Post Syndicated from Andy original https://torrentfreak.com/us-govt-brands-torrent-streaming-cyberlocker-sites-as-notorious-markets-180115/

In its annual “Out-of-Cycle Review of Notorious Markets” the office of the United States Trade Representative (USTR) has listed a long list of websites said to be involved in online piracy.

The list is compiled with high-level input from various trade groups, including the MPAA and RIAA who both submitted their recommendations (1,2) during early October last year.

With the word “allegedly” used more than two dozen times in the report, the US government notes that its report does not constitute cast-iron proof of illegal activity. However, it urges the countries from where the so-called “notorious markets” operate to take action where they can, while putting owners and facilitators on notice that their activities are under the spotlight.

“A goal of the List is to motivate appropriate action by owners, operators, and service providers in the private sector of these and similar markets, as well as governments, to reduce piracy and counterfeiting,” the report reads.

“USTR highlights the following marketplaces because they exemplify global counterfeiting and piracy concerns and because the scale of infringing activity in these marketplaces can cause significant harm to U.S. intellectual property (IP) owners, consumers, legitimate online platforms, and the economy.”

The report begins with a page titled “Issue Focus: Illicit Streaming Devices”. Unsurprisingly, particularly given their place in dozens of headlines last year, the segment focus on the set-top box phenomenon. The piece doesn’t list any apps or software tools as such but highlights the general position, claiming a cost to the US entertainment industry of $4-5 billion a year.

Torrent Sites

In common with previous years, the USTR goes on to list several of the world’s top torrent sites but due to changes in circumstances, others have been delisted. ExtraTorrent, which shut down May 2017, is one such example.

As the world’s most famous torrent site, The Pirate Bay gets a prominent mention, with the USTR noting that the site is of “symbolic importance as one of the longest-running and most vocal torrent sites. The USTR underlines the site’s resilience by noting its hydra-like form while revealing an apparent secret concerning its hosting arrangements.

“The Pirate Bay has allegedly had more than a dozen domains hosted in various countries around the world, applies a reverse proxy service, and uses a hosting provider in Vietnam to evade further enforcement action,” the USTR notes.

Other torrent sites singled out for criticism include RARBG, which was nominated for the listing by the movie industry. According to the USTR, the site is hosted in Bosnia and Herzegovina and has changed hosting services to prevent shutdowns in recent years.

1337x.to and the meta-search engine Torrentz2 are also given a prime mention, with the USTR noting that they are “two of the most popular torrent sites that allegedly infringe U.S. content industry’s copyrights.” Russia’s RuTracker is also targeted for criticism, with the government noting that it’s now one of the most popular torrent sites in the world.

Streaming & Cyberlockers

While torrent sites are still important, the USTR reserves considerable space in its report for streaming portals and cyberlocker-type services.

4Shared.com, a file-hosting site that has been targeted by dozens of millions of copyright notices, is reportedly no longer able to use major US payment providers. Nevertheless, the British Virgin Islands company still collects significant sums from premium accounts, advertising, and offshore payment processors, USTR notes.

Cyberlocker Rapidgator gets another prominent mention in 2017, with the USTR noting that the Russian-hosted platform generates millions of dollars every year through premium memberships while employing rewards and affiliate schemes.

Due to its increasing popularity as a hosting and streaming operation, Openload.co (Romania) is now a big target for the USTR. “The site is used frequently in combination with add-ons in illicit streaming devices. In November 2017, users visited Openload.co a staggering 270 million times,” the USTR writes.

Owned by a Swiss company and hosted in the Netherlands, the popular site Uploaded is also criticized by the US alongside France’s 1Fichier.com, which allegedly hosts pirate games while being largely unresponsive to takedown notices. Dopefile.pk, a Pakistan-based storage outfit, is also highlighted.

On the video streaming front, it’s perhaps no surprise that the USTR focuses on sites like FMovies (Sweden), GoStream (Vietnam), Movie4K.tv (Russia) and PrimeWire. An organization collectively known as the MovShare group which encompasses Nowvideo.sx, WholeCloud.net, NowDownload.cd, MeWatchSeries.to and WatchSeries.ac, among others, is also listed.

Unauthorized music / research papers

While most of the above are either focused on video or feature it as part of their repertoire, other sites are listed for their attention to music. Convert2MP3.net is named as one of the most popular stream-ripping sites in the world and is highlighted due to the prevalence of YouTube-downloader sites and the 2017 demise of YouTube-MP3.

“Convert2MP3.net does not appear to have permission from YouTube or other sites and does not have permission from right holders for a wide variety of music represented by major U.S. labels,” the USTR notes.

Given the amount of attention the site has received in 2017 as ‘The Pirate Bay of Research’, Libgen.io and Sci-Hub.io (not to mention the endless proxy and mirror sites that facilitate access) are given a detailed mention in this year’s report.

“Together these sites make it possible to download — all without permission and without remunerating authors, publishers or researchers — millions of copyrighted books by commercial publishers and university presses; scientific, technical and medical journal articles; and publications of technological standards,” the USTR writes.

Service providers

But it’s not only sites that are being put under pressure. Following a growing list of nominations in previous years, Swiss service provider Private Layer is again singled out as a rogue player in the market for hosting 1337x.to and Torrentz2.eu, among others.

“While the exact configuration of websites changes from year to year, this is the fourth consecutive year that the List has stressed the significant international trade impact of Private Layer’s hosting services and the allegedly infringing sites it hosts,” the USTR notes.

“Other listed and nominated sites may also be hosted by Private Layer but are using
reverse proxy services to obfuscate the true host from the public and from law enforcement.”

The USTR notes Switzerland’s efforts to close a legal loophole that restricts enforcement and looks forward to a positive outcome when the draft amendment is considered by parliament.

Perhaps a little surprisingly given its recent anti-piracy efforts and overtures to the US, Russia’s leading social network VK.com again gets a place on the new list. The USTR recognizes VK’s efforts but insists that more needs to be done.

Social networking and e-commerce

“In 2016, VK reached licensing agreements with major record companies, took steps to limit third-party applications dedicated to downloading infringing content from the site, and experimented with content recognition technologies,” the USTR writes.

“Despite these positive signals, VK reportedly continues to be a hub of infringing activity and the U.S. motion picture industry reports that they find thousands of infringing files on the site each month.”

Finally, in addition to traditional pirate sites, the US also lists online marketplaces that allegedly fail to meet appropriate standards. Re-added to the list in 2016 after a brief hiatus in 2015, China’s Alibaba is listed again in 2017. The development provoked an angry response from the company.

Describing his company as a “scapegoat”, Alibaba Group President Michael Evans said that his platform had achieved a 25% drop in takedown requests and has even been removing infringing listings before they make it online.

“In light of all this, it’s clear that no matter how much action we take and progress we make, the USTR is not actually interested in seeing tangible results,” Evans said in a statement.

The full list of sites in the Notorious Markets Report 2017 (pdf) can be found below.

– 1fichier.com – (cyberlocker)
– 4shared.com – (cyberlocker)
– convert2mp3.net – (stream-ripper)
– Dhgate.com (e-commerce)
– Dopefile.pl – (cyberlocker)
– Firestorm-servers.com (pirate gaming service)
– Fmovies.is, Fmovies.se, Fmovies.to – (streaming)
– Gostream.is, Gomovies.to, 123movieshd.to (streaming)
– Indiamart.com (e-commerce)
– Kinogo.club, kinogo.co (streaming host, platform)
– Libgen.io, sci-hub.io, libgen.pw, sci-hub.cc, sci-hub.bz, libgen.info, lib.rus.ec, bookfi.org, bookzz.org, booker.org, booksc.org, book4you.org, bookos-z1.org, booksee.org, b-ok.org (research downloads)
– Movshare Group – Nowvideo.sx, wholecloud.net, auroravid.to, bitvid.sx, nowdownload.ch, cloudtime.to, mewatchseries.to, watchseries.ac (streaming)
– Movie4k.tv (streaming)
– MP3VA.com (music)
– Openload.co (cyberlocker / streaming)
– 1337x.to (torrent site)
– Primewire.ag (streaming)
– Torrentz2, Torrentz2.me, Torrentz2.is (torrent site)
– Rarbg.to (torrent site)
– Rebel (domain company)
– Repelis.tv (movie and TV linking)
– RuTracker.org (torrent site)
– Rapidgator.net (cyberlocker)
– Taobao.com (e-commerce)
– The Pirate Bay (torrent site)
– TVPlus, TVBrowser, Kuaikan (streaming apps and addons, China)
– Uploaded.net (cyberlocker)
– VK.com (social networking)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

AWS Glue Now Supports Scala Scripts

Post Syndicated from Mehul Shah original https://aws.amazon.com/blogs/big-data/aws-glue-now-supports-scala-scripts/

We are excited to announce AWS Glue support for running ETL (extract, transform, and load) scripts in Scala. Scala lovers can rejoice because they now have one more powerful tool in their arsenal. Scala is the native language for Apache Spark, the underlying engine that AWS Glue offers for performing data transformations.

Beyond its elegant language features, writing Scala scripts for AWS Glue has two main advantages over writing scripts in Python. First, Scala is faster for custom transformations that do a lot of heavy lifting because there is no need to shovel data between Python and Apache Spark’s Scala runtime (that is, the Java virtual machine, or JVM). You can build your own transformations or invoke functions in third-party libraries. Second, it’s simpler to call functions in external Java class libraries from Scala because Scala is designed to be Java-compatible. It compiles to the same bytecode, and its data structures don’t need to be converted.

To illustrate these benefits, we walk through an example that analyzes a recent sample of the GitHub public timeline available from the GitHub archive. This site is an archive of public requests to the GitHub service, recording more than 35 event types ranging from commits and forks to issues and comments.

This post shows how to build an example Scala script that identifies highly negative issues in the timeline. It pulls out issue events in the timeline sample, analyzes their titles using the sentiment prediction functions from the Stanford CoreNLP libraries, and surfaces the most negative issues.

Getting started

Before we start writing scripts, we use AWS Glue crawlers to get a sense of the data—its structure and characteristics. We also set up a development endpoint and attach an Apache Zeppelin notebook, so we can interactively explore the data and author the script.

Crawl the data

The dataset used in this example was downloaded from the GitHub archive website into our sample dataset bucket in Amazon S3, and copied to the following locations:

s3://aws-glue-datasets-<region>/examples/scala-blog/githubarchive/data/

Choose the best folder by replacing <region> with the region that you’re working in, for example, us-east-1. Crawl this folder, and put the results into a database named githubarchive in the AWS Glue Data Catalog, as described in the AWS Glue Developer Guide. This folder contains 12 hours of the timeline from January 22, 2017, and is organized hierarchically (that is, partitioned) by year, month, and day.

When finished, use the AWS Glue console to navigate to the table named data in the githubarchive database. Notice that this data has eight top-level columns, which are common to each event type, and three partition columns that correspond to year, month, and day.

Choose the payload column, and you will notice that it has a complex schema—one that reflects the union of the payloads of event types that appear in the crawled data. Also note that the schema that crawlers generate is a subset of the true schema because they sample only a subset of the data.

Set up the library, development endpoint, and notebook

Next, you need to download and set up the libraries that estimate the sentiment in a snippet of text. The Stanford CoreNLP libraries contain a number of human language processing tools, including sentiment prediction.

Download the Stanford CoreNLP libraries. Unzip the .zip file, and you’ll see a directory full of jar files. For this example, the following jars are required:

  • stanford-corenlp-3.8.0.jar
  • stanford-corenlp-3.8.0-models.jar
  • ejml-0.23.jar

Upload these files to an Amazon S3 path that is accessible to AWS Glue so that it can load these libraries when needed. For this example, they are in s3://glue-sample-other/corenlp/.

Development endpoints are static Spark-based environments that can serve as the backend for data exploration. You can attach notebooks to these endpoints to interactively send commands and explore and analyze your data. These endpoints have the same configuration as that of AWS Glue’s job execution system. So, commands and scripts that work there also work the same when registered and run as jobs in AWS Glue.

To set up an endpoint and a Zeppelin notebook to work with that endpoint, follow the instructions in the AWS Glue Developer Guide. When you are creating an endpoint, be sure to specify the locations of the previously mentioned jars in the Dependent jars path as a comma-separated list. Otherwise, the libraries will not be loaded.

After you set up the notebook server, go to the Zeppelin notebook by choosing Dev Endpoints in the left navigation pane on the AWS Glue console. Choose the endpoint that you created. Next, choose the Notebook Server URL, which takes you to the Zeppelin server. Log in using the notebook user name and password that you specified when creating the notebook. Finally, create a new note to try out this example.

Each notebook is a collection of paragraphs, and each paragraph contains a sequence of commands and the output for that command. Moreover, each notebook includes a number of interpreters. If you set up the Zeppelin server using the console, the (Python-based) pyspark and (Scala-based) spark interpreters are already connected to your new development endpoint, with pyspark as the default. Therefore, throughout this example, you need to prepend %spark at the top of your paragraphs. In this example, we omit these for brevity.

Working with the data

In this section, we use AWS Glue extensions to Spark to work with the dataset. We look at the actual schema of the data and filter out the interesting event types for our analysis.

Start with some boilerplate code to import libraries that you need:

%spark

import com.amazonaws.services.glue.DynamicRecord
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.types._
import org.apache.spark.SparkContext

Then, create the Spark and AWS Glue contexts needed for working with the data:

@transient val spark: SparkContext = SparkContext.getOrCreate()
val glueContext: GlueContext = new GlueContext(spark)

You need the transient decorator on the SparkContext when working in Zeppelin; otherwise, you will run into a serialization error when executing commands.

Dynamic frames

This section shows how to create a dynamic frame that contains the GitHub records in the table that you crawled earlier. A dynamic frame is the basic data structure in AWS Glue scripts. It is like an Apache Spark data frame, except that it is designed and optimized for data cleaning and transformation workloads. A dynamic frame is well-suited for representing semi-structured datasets like the GitHub timeline.

A dynamic frame is a collection of dynamic records. In Spark lingo, it is an RDD (resilient distributed dataset) of DynamicRecords. A dynamic record is a self-describing record. Each record encodes its columns and types, so every record can have a schema that is unique from all others in the dynamic frame. This is convenient and often more efficient for datasets like the GitHub timeline, where payloads can vary drastically from one event type to another.

The following creates a dynamic frame, github_events, from your table:

val github_events = glueContext
                    .getCatalogSource(database = "githubarchive", tableName = "data")
                    .getDynamicFrame()

The getCatalogSource() method returns a DataSource, which represents a particular table in the Data Catalog. The getDynamicFrame() method returns a dynamic frame from the source.

Recall that the crawler created a schema from only a sample of the data. You can scan the entire dataset, count the rows, and print the complete schema as follows:

github_events.count
github_events.printSchema()

The result looks like the following:

The data has 414,826 records. As before, notice that there are eight top-level columns, and three partition columns. If you scroll down, you’ll also notice that the payload is the most complex column.

Run functions and filter records

This section describes how you can create your own functions and invoke them seamlessly to filter records. Unlike filtering with Python lambdas, Scala scripts do not need to convert records from one language representation to another, thereby reducing overhead and running much faster.

Let’s create a function that picks only the IssuesEvents from the GitHub timeline. These events are generated whenever someone posts an issue for a particular repository. Each GitHub event record has a field, “type”, that indicates the kind of event it is. The issueFilter() function returns true for records that are IssuesEvents.

def issueFilter(rec: DynamicRecord): Boolean = { 
    rec.getField("type").exists(_ == "IssuesEvent") 
}

Note that the getField() method returns an Option[Any] type, so you first need to check that it exists before checking the type.

You pass this function to the filter transformation, which applies the function on each record and returns a dynamic frame of those records that pass.

val issue_events =  github_events.filter(issueFilter)

Now, let’s look at the size and schema of issue_events.

issue_events.count
issue_events.printSchema()

It’s much smaller (14,063 records), and the payload schema is less complex, reflecting only the schema for issues. Keep a few essential columns for your analysis, and drop the rest using the ApplyMapping() transform:

val issue_titles = issue_events.applyMapping(Seq(("id", "string", "id", "string"),
                                                 ("actor.login", "string", "actor", "string"), 
                                                 ("repo.name", "string", "repo", "string"),
                                                 ("payload.action", "string", "action", "string"),
                                                 ("payload.issue.title", "string", "title", "string")))
issue_titles.show()

The ApplyMapping() transform is quite handy for renaming columns, casting types, and restructuring records. The preceding code snippet tells the transform to select the fields (or columns) that are enumerated in the left half of the tuples and map them to the fields and types in the right half.

Estimating sentiment using Stanford CoreNLP

To focus on the most pressing issues, you might want to isolate the records with the most negative sentiments. The Stanford CoreNLP libraries are Java-based and offer sentiment-prediction functions. Accessing these functions through Python is possible, but quite cumbersome. It requires creating Python surrogate classes and objects for those found on the Java side. Instead, with Scala support, you can use those classes and objects directly and invoke their methods. Let’s see how.

First, import the libraries needed for the analysis:

import java.util.Properties
import edu.stanford.nlp.ling.CoreAnnotations
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations
import edu.stanford.nlp.pipeline.{Annotation, StanfordCoreNLP}
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations
import scala.collection.convert.wrapAll._

The Stanford CoreNLP libraries have a main driver that orchestrates all of their analysis. The driver setup is heavyweight, setting up threads and data structures that are shared across analyses. Apache Spark runs on a cluster with a main driver process and a collection of backend executor processes that do most of the heavy sifting of the data.

The Stanford CoreNLP shared objects are not serializable, so they cannot be distributed easily across a cluster. Instead, you need to initialize them once for every backend executor process that might need them. Here is how to accomplish that:

val props = new Properties()
props.setProperty("annotators", "tokenize, ssplit, parse, sentiment")
props.setProperty("parse.maxlen", "70")

object myNLP {
    lazy val coreNLP = new StanfordCoreNLP(props)
}

The properties tell the libraries which annotators to execute and how many words to process. The preceding code creates an object, myNLP, with a field coreNLP that is lazily evaluated. This field is initialized only when it is needed, and only once. So, when the backend executors start processing the records, each executor initializes the driver for the Stanford CoreNLP libraries only one time.

Next is a function that estimates the sentiment of a text string. It first calls Stanford CoreNLP to annotate the text. Then, it pulls out the sentences and takes the average sentiment across all the sentences. The sentiment is a double, from 0.0 as the most negative to 4.0 as the most positive.

def estimatedSentiment(text: String): Double = {
    if ((text == null) || (!text.nonEmpty)) { return Double.NaN }
    val annotations = myNLP.coreNLP.process(text)
    val sentences = annotations.get(classOf[CoreAnnotations.SentencesAnnotation])
    sentences.foldLeft(0.0)( (csum, x) => { 
        csum + RNNCoreAnnotations.getPredictedClass(x.get(classOf[SentimentCoreAnnotations.SentimentAnnotatedTree])) 
    }) / sentences.length
}

Now, let’s estimate the sentiment of the issue titles and add that computed field as part of the records. You can accomplish this with the map() method on dynamic frames:

val issue_sentiments = issue_titles.map((rec: DynamicRecord) => { 
    val mbody = rec.getField("title")
    mbody match {
        case Some(mval: String) => { 
            rec.addField("sentiment", ScalarNode(estimatedSentiment(mval)))
            rec }
        case _ => rec
    }
})

The map() method applies the user-provided function on every record. The function takes a DynamicRecord as an argument and returns a DynamicRecord. The code above computes the sentiment, adds it in a top-level field, sentiment, to the record, and returns the record.

Count the records with sentiment and show the schema. This takes a few minutes because Spark must initialize the library and run the sentiment analysis, which can be involved.

issue_sentiments.count
issue_sentiments.printSchema()

Notice that all records were processed (14,063), and the sentiment value was added to the schema.

Finally, let’s pick out the titles that have the lowest sentiment (less than 1.5). Count them and print out a sample to see what some of the titles look like.

val pressing_issues = issue_sentiments.filter(_.getField("sentiment").exists(_.asInstanceOf[Double] < 1.5))
pressing_issues.count
pressing_issues.show(10)

Next, write them all to a file so that you can handle them later. (You’ll need to replace the output path with your own.)

glueContext.getSinkWithFormat(connectionType = "s3", 
                              options = JsonOptions("""{"path": "s3://<bucket>/out/path/"}"""), 
                              format = "json")
            .writeDynamicFrame(pressing_issues)

Take a look in the output path, and you can see the output files.

Putting it all together

Now, let’s create a job from the preceding interactive session. The following script combines all the commands from earlier. It processes the GitHub archive files and writes out the highly negative issues:

import com.amazonaws.services.glue.DynamicRecord
import com.amazonaws.services.glue.GlueContext
import com.amazonaws.services.glue.util.GlueArgParser
import com.amazonaws.services.glue.util.Job
import com.amazonaws.services.glue.util.JsonOptions
import com.amazonaws.services.glue.types._
import org.apache.spark.SparkContext
import java.util.Properties
import edu.stanford.nlp.ling.CoreAnnotations
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations
import edu.stanford.nlp.pipeline.{Annotation, StanfordCoreNLP}
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations
import scala.collection.convert.wrapAll._

object GlueApp {

    object myNLP {
        val props = new Properties()
        props.setProperty("annotators", "tokenize, ssplit, parse, sentiment")
        props.setProperty("parse.maxlen", "70")

        lazy val coreNLP = new StanfordCoreNLP(props)
    }

    def estimatedSentiment(text: String): Double = {
        if ((text == null) || (!text.nonEmpty)) { return Double.NaN }
        val annotations = myNLP.coreNLP.process(text)
        val sentences = annotations.get(classOf[CoreAnnotations.SentencesAnnotation])
        sentences.foldLeft(0.0)( (csum, x) => { 
            csum + RNNCoreAnnotations.getPredictedClass(x.get(classOf[SentimentCoreAnnotations.SentimentAnnotatedTree])) 
        }) / sentences.length
    }

    def main(sysArgs: Array[String]) {
        val spark: SparkContext = SparkContext.getOrCreate()
        val glueContext: GlueContext = new GlueContext(spark)

        val dbname = "githubarchive"
        val tblname = "data"
        val outpath = "s3://<bucket>/out/path/"

        val github_events = glueContext
                            .getCatalogSource(database = dbname, tableName = tblname)
                            .getDynamicFrame()

        val issue_events =  github_events.filter((rec: DynamicRecord) => {
            rec.getField("type").exists(_ == "IssuesEvent")
        })

        val issue_titles = issue_events.applyMapping(Seq(("id", "string", "id", "string"),
                                                         ("actor.login", "string", "actor", "string"), 
                                                         ("repo.name", "string", "repo", "string"),
                                                         ("payload.action", "string", "action", "string"),
                                                         ("payload.issue.title", "string", "title", "string")))

        val issue_sentiments = issue_titles.map((rec: DynamicRecord) => { 
            val mbody = rec.getField("title")
            mbody match {
                case Some(mval: String) => { 
                    rec.addField("sentiment", ScalarNode(estimatedSentiment(mval)))
                    rec }
                case _ => rec
            }
        })

        val pressing_issues = issue_sentiments.filter(_.getField("sentiment").exists(_.asInstanceOf[Double] < 1.5))

        glueContext.getSinkWithFormat(connectionType = "s3", 
                              options = JsonOptions(s"""{"path": "$outpath"}"""), 
                              format = "json")
                    .writeDynamicFrame(pressing_issues)
    }
}

Notice that the script is enclosed in a top-level object called GlueApp, which serves as the script’s entry point for the job. (You’ll need to replace the output path with your own.) Upload the script to an Amazon S3 location so that AWS Glue can load it when needed.

To create the job, open the AWS Glue console. Choose Jobs in the left navigation pane, and then choose Add job. Create a name for the job, and specify a role with permissions to access the data. Choose An existing script that you provide, and choose Scala as the language.

For the Scala class name, type GlueApp to indicate the script’s entry point. Specify the Amazon S3 location of the script.

Choose Script libraries and job parameters. In the Dependent jars path field, enter the Amazon S3 locations of the Stanford CoreNLP libraries from earlier as a comma-separated list (without spaces). Then choose Next.

No connections are needed for this job, so choose Next again. Review the job properties, and choose Finish. Finally, choose Run job to execute the job.

You can simply edit the script’s input table and output path to run this job on whatever GitHub timeline datasets that you might have.

Conclusion

In this post, we showed how to write AWS Glue ETL scripts in Scala via notebooks and how to run them as jobs. Scala has the advantage that it is the native language for the Spark runtime. With Scala, it is easier to call Scala or Java functions and third-party libraries for analyses. Moreover, data processing is faster in Scala because there’s no need to convert records from one language runtime to another.

You can find more example of Scala scripts in our GitHub examples repository: https://github.com/awslabs/aws-glue-samples. We encourage you to experiment with Scala scripts and let us know about any interesting ETL flows that you want to share.

Happy Glue-ing!

 


Additional Reading

If you found this post useful, be sure to check out Simplify Querying Nested JSON with the AWS Glue Relationalize Transform and Genomic Analysis with Hail on Amazon EMR and Amazon Athena.

 


About the Authors

Mehul Shah is a senior software manager for AWS Glue. His passion is leveraging the cloud to build smarter, more efficient, and easier to use data systems. He has three girls, and, therefore, he has no spare time.

 

 

 

Ben Sowell is a software development engineer at AWS Glue.

 

 

 

 
Vinay Vivili is a software development engineer for AWS Glue.

 

 

 

Fix Your Crawler

Post Syndicated from Bozho original https://techblog.bozho.net/fix-your-crawler/

Every now and then I open the admin panel of my blog hosting and ban a few IPs (after I’ve tried messaging their abuse email, if I find one). It is always IPs that are generating tons of requests (and traffic) – most likely running some home-made crawler. In some cases the IPs belong to an actual service that captures and provides content, in other cases it’s just a scraper for unknown reasons.

I don’t want to ban IPs, especially because that same IP may be reassigned to a legitimate user (or network) in the future. But they are increasing my hosting usage, which in turn leads to the hosting provider suggesting an upgrade in the plan. And this is not about me, I’m just an example – tons of requests to millions of sites are … useless.

My advice (and plea) is this – please fix your crawlers. Or scrapers. Or whatever you prefer to call that thing that programmatically goes on websites and gets their content.

How? First, reuse an existing crawler. No need to make something new (unless there’s a very specific use-case). A good intro and comparison can be seen here.

Second, make your crawler “polite” (the “politeness” property in the article above). Here’s a good overview on how to be polite, including respect for robots.txt. Existing implementations most likely have politeness options, but you may have to configure them.

Here I’d suggest another option – set a dynamic crawl rate per website that depends on how often the content is updated. My blog updates 3 times a month – no need to crawl it more than once or twice a day. TechCrunch updates many times a day; it’s probably a good idea to crawl it way more often. I don’t have a formula, but you can come up with one that ends up crawling different sites with periods between 2 minutes and 1 day.

Third, don’t “scrape” the content if a better protocol is supported. Many content websites have RSS – use that instead of the HTML of the page. If not, make use of sitemaps. If the WebSub protocol gains traction, you can avoid the crawling/scraping entirely and get notified on new content.

Finally, make sure your crawler/scraper is identifiable by the UserAgent. You can supply your service name or web address in it to make it easier for website owners to find you and complain in case you’ve misconfigured something.

I guess it makes sense to see if using a service like import.io, ScrapingHub, WrapAPI or GetData makes sense for your usecase, instead of reinventing the wheel.

No matter what your use case or approach is, please make sure you don’t put unnecessary pressure on others’ websites.

The post Fix Your Crawler appeared first on Bozho's tech blog.

Continuous Deployment to Kubernetes using AWS CodePipeline, AWS CodeCommit, AWS CodeBuild, Amazon ECR and AWS Lambda

Post Syndicated from Chris Barclay original https://aws.amazon.com/blogs/devops/continuous-deployment-to-kubernetes-using-aws-codepipeline-aws-codecommit-aws-codebuild-amazon-ecr-and-aws-lambda/

Thank you to my colleague Omar Lari for this blog on how to create a continuous deployment pipeline for Kubernetes!


You can use Kubernetes and AWS together to create a fully managed, continuous deployment pipeline for container based applications. This approach takes advantage of Kubernetes’ open-source system to manage your containerized applications, and the AWS developer tools to manage your source code, builds, and pipelines.

This post describes how to create a continuous deployment architecture for containerized applications. It uses AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, and AWS Lambda to deploy containerized applications into a Kubernetes cluster. In this environment, developers can remain focused on developing code without worrying about how it will be deployed, and development managers can be satisfied that the latest changes are always deployed.

What is Continuous Deployment?

There are many articles, posts and even conferences dedicated to the practice of continuous deployment. For the purposes of this post, I will summarize continuous delivery into the following points:

  • Code is more frequently released into production environments
  • More frequent releases allow for smaller, incremental changes reducing risk and enabling simplified roll backs if needed
  • Deployment is automated and requires minimal user intervention

For a more information, see “Practicing Continuous Integration and Continuous Delivery on AWS”.

How can you use continuous deployment with AWS and Kubernetes?

You can leverage AWS services that support continuous deployment to automatically take your code from a source code repository to production in a Kubernetes cluster with minimal user intervention. To do this, you can create a pipeline that will build and deploy committed code changes as long as they meet the requirements of each stage of the pipeline.

To create the pipeline, you will use the following services:

  • AWS CodePipeline. AWS CodePipeline is a continuous delivery service that models, visualizes, and automates the steps required to release software. You define stages in a pipeline to retrieve code from a source code repository, build that source code into a releasable artifact, test the artifact, and deploy it to production. Only code that successfully passes through all these stages will be deployed. In addition, you can optionally add other requirements to your pipeline, such as manual approvals, to help ensure that only approved changes are deployed to production.
  • AWS CodeCommit. AWS CodeCommit is a secure, scalable, and managed source control service that hosts private Git repositories. You can privately store and manage assets such as your source code in the cloud and configure your pipeline to automatically retrieve and process changes committed to your repository.
  • AWS CodeBuild. AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces artifacts that are ready to deploy. You can use AWS CodeBuild to both build your artifacts, and to test those artifacts before they are deployed.
  • AWS Lambda. AWS Lambda is a compute service that lets you run code without provisioning or managing servers. You can invoke a Lambda function in your pipeline to prepare the built and tested artifact for deployment by Kubernetes to the Kubernetes cluster.
  • Kubernetes. Kubernetes is an open-source system for automating deployment, scaling, and management of containerized applications. It provides a platform for running, deploying, and managing containers at scale.

An Example of Continuous Deployment to Kubernetes:

The following example illustrates leveraging AWS developer tools to continuously deploy to a Kubernetes cluster:

  1. Developers commit code to an AWS CodeCommit repository and create pull requests to review proposed changes to the production code. When the pull request is merged into the master branch in the AWS CodeCommit repository, AWS CodePipeline automatically detects the changes to the branch and starts processing the code changes through the pipeline.
  2. AWS CodeBuild packages the code changes as well as any dependencies and builds a Docker image. Optionally, another pipeline stage tests the code and the package, also using AWS CodeBuild.
  3. The Docker image is pushed to Amazon ECR after a successful build and/or test stage.
  4. AWS CodePipeline invokes an AWS Lambda function that includes the Kubernetes Python client as part of the function’s resources. The Lambda function performs a string replacement on the tag used for the Docker image in the Kubernetes deployment file to match the Docker image tag applied in the build, one that matches the image in Amazon ECR.
  5. After the deployment manifest update is completed, AWS Lambda invokes the Kubernetes API to update the image in the Kubernetes application deployment.
  6. Kubernetes performs a rolling update of the pods in the application deployment to match the docker image specified in Amazon ECR.
    The pipeline is now live and responds to changes to the master branch of the CodeCommit repository. This pipeline is also fully extensible, you can add steps for performing testing or adding a step to deploy into a staging environment before the code ships into the production cluster.

An example pipeline in AWS CodePipeline that supports this architecture can be seen below:

Conclusion

We are excited to see how you leverage this pipeline to help ease your developer experience as you develop applications in Kubernetes.

You’ll find an AWS CloudFormation template with everything necessary to spin up your own continuous deployment pipeline at the CodeSuite – Continuous Deployment Reference Architecture for Kubernetes repo on GitHub. The repository details exactly how the pipeline is provisioned and how you can use it to deploy your own applications. If you have any questions, feedback, or suggestions, please let us know!

AWS IoT, Greengrass, and Machine Learning for Connected Vehicles at CES

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-greengrass-and-machine-learning-for-connected-vehicles-at-ces/

Last week I attended a talk given by Bryan Mistele, president of Seattle-based INRIX. Bryan’s talk provided a glimpse into the future of transportation, centering around four principle attributes, often abbreviated as ACES:

Autonomous – Cars and trucks are gaining the ability to scan and to make sense of their environments and to navigate without human input.

Connected – Vehicles of all types have the ability to take advantage of bidirectional connections (either full-time or intermittent) to other cars and to cloud-based resources. They can upload road and performance data, communicate with each other to run in packs, and take advantage of traffic and weather data.

Electric – Continued development of battery and motor technology, will make electrics vehicles more convenient, cost-effective, and environmentally friendly.

Shared – Ride-sharing services will change usage from an ownership model to an as-a-service model (sound familiar?).

Individually and in combination, these emerging attributes mean that the cars and trucks we will see and use in the decade to come will be markedly different than those of the past.

On the Road with AWS
AWS customers are already using our AWS IoT, edge computing, Amazon Machine Learning, and Alexa products to bring this future to life – vehicle manufacturers, their tier 1 suppliers, and AutoTech startups all use AWS for their ACES initiatives. AWS Greengrass is playing an important role here, attracting design wins and helping our customers to add processing power and machine learning inferencing at the edge.

AWS customer Aptiv (formerly Delphi) talked about their Automated Mobility on Demand (AMoD) smart vehicle architecture in a AWS re:Invent session. Aptiv’s AMoD platform will use Greengrass and microservices to drive the onboard user experience, along with edge processing, monitoring, and control. Here’s an overview:

Another customer, Denso of Japan (one of the world’s largest suppliers of auto components and software) is using Greengrass and AWS IoT to support their vision of Mobility as a Service (MaaS). Here’s a video:

AWS at CES
The AWS team will be out in force at CES in Las Vegas and would love to talk to you. They’ll be running demos that show how AWS can help to bring innovation and personalization to connected and autonomous vehicles.

Personalized In-Vehicle Experience – This demo shows how AWS AI and Machine Learning can be used to create a highly personalized and branded in-vehicle experience. It makes use of Amazon Lex, Polly, and Amazon Rekognition, but the design is flexible and can be used with other services as well. The demo encompasses driver registration, login and startup (including facial recognition), voice assistance for contextual guidance, personalized e-commerce, and vehicle control. Here’s the architecture for the voice assistance:

Connected Vehicle Solution – This demo shows how a connected vehicle can combine local and cloud intelligence, using edge computing and machine learning at the edge. It handles intermittent connections and uses AWS DeepLens to train a model that responds to distracted drivers. Here’s the overall architecture, as described in our Connected Vehicle Solution:

Digital Content Delivery – This demo will show how a customer uses a web-based 3D configurator to build and personalize their vehicle. It will also show high resolution (4K) 3D image and an optional immersive AR/VR experience, both designed for use within a dealership.

Autonomous Driving – This demo will showcase the AWS services that can be used to build autonomous vehicles. There’s a 1/16th scale model vehicle powered and driven by Greengrass and an overview of a new AWS Autonomous Toolkit. As part of the demo, attendees drive the car, training a model via Amazon SageMaker for subsequent on-board inferencing, powered by Greengrass ML Inferencing.

To speak to one of my colleagues or to set up a time to see the demos, check out the Visit AWS at CES 2018 page.

Some Resources
If you are interested in this topic and want to learn more, the AWS for Automotive page is a great starting point, with discussions on connected vehicles & mobility, autonomous vehicle development, and digital customer engagement.

When you are ready to start building a connected vehicle, the AWS Connected Vehicle Solution contains a reference architecture that combines local computing, sophisticated event rules, and cloud-based data processing and storage. You can use this solution to accelerate your own connected vehicle projects.

Jeff;

Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/01/spectre-meltdown-checker-vulnerability-mitigation-tool-linux/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux

Spectre & Meltdown Checker is a simple shell script to tell if your Linux installation is vulnerable against the 3 “speculative execution” CVEs that were made public early 2018.

Without options, it’ll inspect you currently running kernel. You can also specify a kernel image on the command line, if you’d like to inspect a kernel you’re not running.

The script will do its best to detect mitigations, including backported non-vanilla patches, regardless of the advertised kernel version number.

Read the rest of Spectre & Meltdown Checker – Vulnerability Mitigation Tool For Linux now! Only available at Darknet.

Tech Companies Meet EC to Discuss Removal of Pirate & Illegal Content

Post Syndicated from Andy original https://torrentfreak.com/tech-companies-meet-ec-to-discuss-removal-of-pirate-illegal-content-180109/

Thousands perhaps millions of pieces of illegal content flood onto the Internet every single day, a problem that’s only increasing with each passing year.

In the early days of the Internet very little was done to combat the problem but with the rise of social media and millions of citizens using it to publish whatever they like – not least terrorist propaganda and racist speech – governments around the world are beginning to take notice.

Of course, running parallel is the multi-billion dollar issue of intellectual property infringement. Eighteen years on from the first wave of mass online piracy and the majority of popular movies, TV shows, games, software and books are still available to download.

Over the past couple of years and increasingly in recent months, there have been clear signs that the EU in particular wishes to collectively mitigate the spread of all illegal content – from ISIS videos to pirated Hollywood movies – with assistance from major tech companies.

Google, YouTube, Facebook and Twitter are all expected to do their part, with the looming stick of legislation behind the collaborative carrots, should they fail to come up with a solution.

To that end, five EU Commissioners – Dimitris Avramopoulos, Elżbieta Bieńkowska, Věra Jourová, Julian King and Mariya Gabriel – will meet today in Brussels with representatives of several online platforms to discuss progress made in dealing with the spread of the aforementioned material.

In a joint statement together with EC Vice-President Andrus Ansip, the Commissioners describe all illegal content as a threat to security, safety, and fundamental rights, demanding a “collective response – from all actors, including the internet industry.”

They note that online platforms have committed significant resources towards removing violent and extremist content, including via automated removal, but more needs to be done to tackle the issue.

“This is starting to achieve results. However, even if tens of thousands of pieces of illegal content have been taken down, there are still hundreds of thousands more out there,” the Commissioners writes.

“And removal needs to be speedy: the longer illegal material stays online, the greater its reach, the more it can spread and grow. Building on the current voluntary approach, more efforts and progress have to be made.”

The Commission says it is relying on online platforms such as Google and Facebook to “step up and speed up their efforts to tackle these threats quickly and comprehensively.” This should include closer cooperation with law enforcement, sharing of information with other online players, plus action to ensure that once taken down, illegal content does not simply reappear.

While it’s clear that that the EC would prefer to work collaboratively with the platforms to find a solution to the illegal content problem, as expected there’s the veiled threat of them being compelled by law to do so, should they fall short of their responsibilities.

“We will continue to promote cooperation with social media companies to detect and remove terrorist and other illegal content online, and if necessary, propose legislation to complement the existing regulatory framework,” the EC warns.

Today’s discussions run both in parallel and in tandem with others specifically targeted at intellectual property abuses. Late November the EC presented a set of new measures to ensure that copyright holders are well protected both online and in the physical realm.

A key aim is to focus on large-scale facilitators, such as pirate site operators, while cutting their revenue streams.

“The Commission seeks to deprive commercial-scale IP infringers of the revenue flows that make their criminal activity lucrative – this is the so-called ‘follow the money’ approach which focuses on the ‘big fish’ rather than individuals,” the Commission explained.

This presentation followed on the heels of a proposal last September which had the EC advocating the take-down-stay-down principle, with pirate content being taken down, automated filters ensuring infringement can be tackled proactively, with measures being taken against repeat infringers.

Again, the EC warned that should cooperation with Internet platforms fail to come up with results, future legislation cannot be ruled out.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Physics cheats

Post Syndicated from Eevee original https://eev.ee/blog/2018/01/06/physics-cheats/

Anonymous asks:

something about how we tweak physics to “work” better in games?

Ho ho! Work. Get it? Like in physics…?

Hitboxes

Hitbox” is perhaps not the most accurate term, since the shape used for colliding with the environment and the shape used for detecting damage might be totally different. They’re usually the same in simple platformers, though, and that’s what most of my games have been.

The hitbox is the biggest physics fudge by far, and it exists because of a single massive approximation that (most) games make: you’re controlling a single entity in the abstract, not a physical body in great detail.

That is: when you walk with your real-world meat shell, you perform a complex dance of putting one foot in front of the other, a motion you spent years perfecting. When you walk in a video game, you press a single “walk” button. Your avatar may play an animation that moves its legs back and forth, but since you’re not actually controlling the legs independently (and since simulating them is way harder), the game just treats you like a simple shape. Fairly often, this is a box, or something very box-like.

An Eevee sprite standing on faux ground; the size of the underlying image and the hitbox are outlined

Since the player has no direct control over the exact placement of their limbs, it would be slightly frustrating to have them collide with the world. This is especially true in cases like the above, where the tail and left ear protrude significantly out from the main body. If that Eevee wanted to stand against a real-world wall, she would simply tilt her ear or tail out of the way, so there’s no reason for the ear to block her from standing against a game wall. To compensate for this, the ear and tail are left out of the collision box entirely and will simply jut into a wall if necessary — a goofy affordance that’s so common it doesn’t even register as unusual. As a bonus (assuming this same box is used for combat), she won’t take damage from projectiles that merely graze past an ear.

(One extra consideration for sprite games in particular: the hitbox ought to be horizontally symmetric around the sprite’s pivot — i.e. the point where the entity is truly considered to be standing — so that the hitbox doesn’t abruptly move when the entity turns around!)

Corners

Treating the player (and indeed most objects) as a box has one annoying side effect: boxes have corners. Corners can catch on other corners, even by a single pixel. Real-world bodies tend to be a bit rounder and squishier and this can tolerate grazing a corner; even real-world boxes will simply rotate a bit.

Ah, but in our faux physics world, we generally don’t want conscious actors (such as the player) to rotate, even with a realistic physics simulator! Real-world bodies are made of parts that will generally try to keep you upright, after all; you don’t tilt back and forth much.

One way to handle corners is to simply remove them from conscious actors. A hitbox doesn’t have to be a literal box, after all. A popular alternative — especially in Unity where it’s a standard asset — is the pill-shaped capsule, which has semicircles/hemispheres on the top and bottom and a cylindrical body in 3D. No corners, no problem.

Of course, that introduces a new problem: now the player can’t balance precariously on edges without their rounded bottom sliding them off. Alas.

If you’re stuck with corners, then, you may want to use a corner bump, a term I just made up. If the player would collide with a corner, but the collision is only by a few pixels, just nudge them to the side a bit and carry on.

An Eevee sprite trying to move sideways into a shallow ledge; the game bumps her upwards slightly, so she steps onto it instead

When the corner is horizontal, this creates stairs! This is, more or less kinda, how steps work in Doom: when the player tries to cross from one sector into another, if the height difference is 24 units or less, the game simply bumps them upwards to the height of the new floor and lets them continue on.

Implementing this in a game without Doom’s notion of sectors is a little trickier. In fact, I still haven’t done it. Collision detection based on rejection gets it for free, kinda, but it’s not very deterministic and it breaks other things. But that’s a whole other post.

Gravity

Gravity is pretty easy. Everything accelerates downwards all the time. What’s interesting are the exceptions.

Jumping

Jumping is a giant hack.

Think about how actual jumping works: you tense your legs, which generally involves bending your knees first, and then spring upwards. In a platformer, you can just leap whenever you feel like it, which is nonsense. Also you go like twenty feet into the air?

Worse, most platformers allow variable-height jumping, where your jump is lower if you let go of the jump button while you’re in the air. Normally, one would expect to have to decide how much force to put into the jump beforehand.

But of course this is about convenience of controls: when jumping is your primary action, you want to be able to do it immediately, without any windup for how high you want to jump.

(And then there’s double jumping? Come on.)

Air control is a similar phenomenon: usually you’d jump in a particular direction by controlling how you push off the ground with your feet, but in a video game, you don’t have feet! You only have the box. The compromise is to let you control your horizontal movement to a limit degree in midair, even though that doesn’t make any sense. (It’s way more fun, though, and overall gives you more movement options, which are good to have in an interactive medium.)

Air control also exposes an obvious place that game physics collide with the realistic model of serious physics engines. I’ve mentioned this before, but: if you use Real Physics™ and air control yourself into a wall, you might find that you’ll simply stick to the wall until you let go of the movement buttons. Why? Remember, player movement acts as though an external force were pushing you around (and from the perspective of a Real™ physics engine, this is exactly how you’d implement it) — so air-controlling into a wall is equivalent to pushing a book against a wall with your hand, and the friction with the wall holds you in place. Oops.

Ground sticking

Another place game physics conflict with physics engines is with running to the top of a slope. On a real hill, of course, you land on top of the slope and are probably glad of it; slopes are hard to climb!

An Eevee moves to the top of a slope, and rather than step onto the flat top, she goes flying off into the air

In a video game, you go flying. Because you’re a box. With momentum. So you hit the peak and keep going in the same direction. Which is diagonally upwards.

Projectiles

To make them more predictable, projectiles generally aren’t subject to gravity, at least as far as I’ve seen. The real world does not have such an exemption. The real world imposes gravity even on sniper rifles, which in a video game are often implemented as an instant trace unaffected by anything in the world because the bullet never actually exists in the world.

Resistance

Ah. Welcome to hell.

Water

Water is an interesting case, and offhand I don’t know the gritty details of how games implement it. In the real world, water applies a resistant drag force to movement — and that force is proportional to the square of velocity, which I’d completely forgotten until right now. I am almost positive that no game handles that correctly. But then, in real-world water, you can push against the water itself for movement, and games don’t simulate that either. What’s the rough equivalent?

The Sonic Physics Guide suggests that Sonic handles it by basically halving everything: acceleration, max speed, friction, etc. When Sonic enters water, his speed is cut; when Sonic exits water, his speed is increased.

That last bit feels validating — I could swear Metroid Prime did the same thing, and built my own solution around it, but couldn’t remember for sure. It makes no sense, of course, for a jump to become faster just because you happened to break the surface of the water, but it feels fantastic.

The thing I did was similar, except that I didn’t want to add a multiplier in a dozen places when you happen to be underwater (and remember which ones need it to be squared, etc.). So instead, I calculate everything completely as normal, so velocity is exactly the same as it would be on dry land — but the distance you would move gets halved. The effect seems to be pretty similar to most platformers with water, at least as far as I can tell. It hasn’t shown up in a published game and I only added this fairly recently, so I might be overlooking some reason this is a bad idea.

(One reason that comes to mind is that velocity is now a little white lie while underwater, so anything relying on velocity for interesting effects might be thrown off. Or maybe that’s correct, because velocity thresholds should be halved underwater too? Hm!)

Notably, air is also a fluid, so it should behave the same way (just with different constants). I definitely don’t think any games apply air drag that’s proportional to the square of velocity.

Friction

Friction is, in my experience, a little handwaved. Probably because real-world friction is so darn complicated.

Consider that in the real world, we want very high friction on the surfaces we walk on — shoes and tires are explicitly designed to increase it, even. We move by bracing a back foot against the ground and using that to push ourselves forward, so we want the ground to resist our push as much as possible.

In a game world, we are a box. We move by being pushed by some invisible outside force, so if the friction between ourselves and the ground is too high, we won’t be able to move at all! That’s complete nonsense physically, but it turns out to be handy in some cases — for example, highish friction can simulate walking through deep mud, which should be difficult due to fluid drag and low friction.

But the best-known example of the fakeness of game friction is video game ice. Walking on real-world ice is difficult because the low friction means low grip; your feet are likely to slip out from under you, and you’ll simply fall down and have trouble moving at all. In a video game, you can’t fall down, so you have the opposite experience: you spend most of your time sliding around uncontrollably. Yet ice is so common in video games (and perhaps so uncommon in places I’ve lived) that I, at least, had never really thought about this disparity until an hour or so ago.

Game friction vs real-world friction

Real-world friction is a force. It’s the normal force (which is the force exerted by the object on the surface) times some constant that depends on how the two materials interact.

Force is mass times acceleration, and platformers often ignore mass, so friction ought to be an acceleration — applied against the object’s movement, but never enough to push it backwards.

I haven’t made any games where variable friction plays a significant role, but my gut instinct is that low friction should mean the player accelerates more slowly but has a higher max speed, and high friction should mean the opposite. I see from my own source code that I didn’t even do what I just said, so let’s defer to some better-made and well-documented games: Sonic and Doom.

In Sonic, friction is a fixed value subtracted from the player’s velocity (regardless of direction) each tic. Sonic has a fixed framerate, so the units are really pixels per tic squared (i.e. acceleration), multiplied by an implicit 1 tic per tic. So far, so good.

But Sonic’s friction only applies if the player isn’t pressing or . Hang on, that isn’t friction at all; that’s just deceleration! That’s equivalent to jogging to a stop. If friction were lower, Sonic would take longer to stop, but otherwise this is only tangentially related to friction.

(In fairness, this approach would decently emulate friction for non-conscious sliding objects, which are never going to be pressing movement buttons. Also, we don’t have the Sonic source code, and the name “friction” is a fan invention; the Sonic Physics Guide already uses “deceleration” to describe the player’s acceleration when turning around.)

Okay, let’s try Doom. In Doom, the default friction is 90.625%.

Hang on, what?

Yes, in Doom, friction is a multiplier applied every tic. Doom runs at 35 tics per second, so this is a multiplier of 0.032 per second. Yikes!

This isn’t anything remotely like real friction, but it’s much easier to implement. With friction as acceleration, the game has to know both the direction of movement (so it can apply friction in the opposite direction) and the magnitude (so it doesn’t overshoot and launch the object in the other direction). That means taking a semi-costly square root and also writing extra code to cap the amount of friction. With a multiplier, neither is necessary; just multiply the whole velocity vector and you’re done.

There are some downsides. One is that objects will never actually stop, since multiplying by 3% repeatedly will never produce a result of zero — though eventually the speed will become small enough to either slip below a “minimum speed” threshold or simply no longer fit in a float representation. Another is that the units are fairly meaningless: with Doom’s default friction of 90.625%, about how long does it take for the player to stop? I have no idea, partly because “stop” is ambiguous here! If friction were an acceleration, I could divide it into the player’s max speed to get a time.

All that aside, what are the actual effects of changing Doom’s friction? What an excellent question that’s surprisingly tricky to answer. (Note that friction can’t be changed in original Doom, only in the Boom port and its derivatives.) Here’s what I’ve pieced together.

Doom’s “friction” is really two values. “Friction” itself is a multiplier applied to moving objects on every tic, but there’s also a move factor which defaults to \(\frac{1}{32} = 0.03125\) and is derived from friction for custom values.

Every tic, the player’s velocity is multiplied by friction, and then increased by their speed times the move factor.

$$
v(n) = v(n – 1) \times friction + speed \times move factor
$$

Eventually, the reduction from friction will balance out the speed boost. That happens when \(v(n) = v(n – 1)\), so we can rearrange it to find the player’s effective max speed:

$$
v = v \times friction + speed \times move factor \\
v – v \times friction = speed \times move factor \\
v = speed \times \frac{move factor}{1 – friction}
$$

For vanilla Doom’s move factor of 0.03125 and friction of 0.90625, that becomes:

$$
v = speed \times \frac{\frac{1}{32}}{1 – \frac{29}{32}} = speed \times \frac{\frac{1}{32}}{\frac{3}{32}} = \frac{1}{3} \times speed
$$

Curiously, “speed” is three times the maximum speed an actor can actually move. Doomguy’s run speed is 50, so in practice he moves a third of that, or 16⅔ units per tic. (Of course, this isn’t counting SR40, a bug that lets Doomguy run ~40% faster than intended diagonally.)

So now, what if you change friction? Even more curiously, the move factor is calculated completely differently depending on whether friction is higher or lower than the default Doom amount:

$$
move factor = \begin{cases}
\frac{133 – 128 \times friction}{544} &≈ 0.244 – 0.235 \times friction & \text{ if } friction \ge \frac{29}{32} \\
\frac{81920 \times friction – 70145}{1048576} &≈ 0.078 \times friction – 0.067 & \text{ otherwise }
\end{cases}
$$

That’s pretty weird? Complicating things further is that low friction (which means muddy terrain, remember) has an extra multiplier on its move factor, depending on how fast you’re already going — the idea is apparently that you have a hard time getting going, but it gets easier as you find your footing. The extra multiplier maxes out at 8, which makes the two halves of that function meet at the vanilla Doom value.

A graph of the relationship between friction and move factor

That very top point corresponds to the move factor from the original game. So no matter what you do to friction, the move factor becomes lower. At 0.85 and change, you can no longer move at all; below that, you move backwards.

From the formula above, it’s easy to see what changes to friction and move factor will do to Doomguy’s stable velocity. Move factor is in the numerator, so increasing it will increase stable velocity — but it can’t increase, so stable velocity can only ever decrease. Friction is in the denominator, but it’s subtracted from 1, so increasing friction will make the denominator a smaller value less than 1, i.e. increase stable velocity. Combined, we get this relationship between friction and stable velocity.

A graph showing stable velocity shooting up dramatically as friction increases

As friction approaches 1, stable velocity grows without bound. This makes sense, given the definition of \(v(n)\) — if friction is 1, the velocity from the previous tic isn’t reduced at all, so we just keep accelerating freely.

All of this is why I’m wary of using multipliers.

Anyway, this leaves me with one last question about the effects of Doom’s friction: how long does it take to reach stable velocity? Barring precision errors, we’ll never truly reach stable velocity, but let’s say within 5%. First we need a closed formula for the velocity after some number of tics. This is a simple recurrence relation, and you can write a few terms out yourself if you want to be sure this is right.

$$
v(n) = v_0 \times friction^n + speed \times move factor \times \frac{friction^n – 1}{friction – 1}
$$

Our initial velocity is zero, so the first term disappears. Set this equal to the stable formula and solve for n:

$$
speed \times move factor \times \frac{friction^n – 1}{friction – 1} = (1 – 5\%) \times speed \times \frac{move factor}{1 – friction} \\
friction^n – 1 = -(1 – 5\%) \\
n = \frac{\ln 5\%}{\ln friction}
$$

Speed” and move factor disappear entirely, which makes sense, and this is purely a function of friction (and how close we want to get). For vanilla Doom, that comes out to 30.4, which is a little less than a second. For other values of friction:

A graph of time to stability which leaps upwards dramatically towards the right

As friction increases (which in Doom terms means the surface is more slippery), it takes longer and longer to reach stable speed, which is in turn greater and greater. For lesser friction (i.e. mud), stable speed is lower, but reached fairly quickly. (Of course, the extra “getting going” multiplier while in mud adds some extra time here, but including that in the graph is a bit more complicated.)

I think this matches with my instincts above. How fascinating!

What’s that? This is way too much math and you hate it? Then don’t use multipliers in game physics.

Uh

That was a hell of a diversion!

I guess the goofiest stuff in basic game physics is really just about mapping player controls to in-game actions like jumping and deceleration; the rest consists of hacks to compensate for representing everything as a box.

Combine Transactional and Analytical Data Using Amazon Aurora and Amazon Redshift

Post Syndicated from Re Alvarez-Parmar original https://aws.amazon.com/blogs/big-data/combine-transactional-and-analytical-data-using-amazon-aurora-and-amazon-redshift/

A few months ago, we published a blog post about capturing data changes in an Amazon Aurora database and sending it to Amazon Athena and Amazon QuickSight for fast analysis and visualization. In this post, I want to demonstrate how easy it can be to take the data in Aurora and combine it with data in Amazon Redshift using Amazon Redshift Spectrum.

With Amazon Redshift, you can build petabyte-scale data warehouses that unify data from a variety of internal and external sources. Because Amazon Redshift is optimized for complex queries (often involving multiple joins) across large tables, it can handle large volumes of retail, inventory, and financial data without breaking a sweat.

In this post, we describe how to combine data in Aurora in Amazon Redshift. Here’s an overview of the solution:

  • Use AWS Lambda functions with Amazon Aurora to capture data changes in a table.
  • Save data in an Amazon S3
  • Query data using Amazon Redshift Spectrum.

We use the following services:

Serverless architecture for capturing and analyzing Aurora data changes

Consider a scenario in which an e-commerce web application uses Amazon Aurora for a transactional database layer. The company has a sales table that captures every single sale, along with a few corresponding data items. This information is stored as immutable data in a table. Business users want to monitor the sales data and then analyze and visualize it.

In this example, you take the changes in data in an Aurora database table and save it in Amazon S3. After the data is captured in Amazon S3, you combine it with data in your existing Amazon Redshift cluster for analysis.

By the end of this post, you will understand how to capture data events in an Aurora table and push them out to other AWS services using AWS Lambda.

The following diagram shows the flow of data as it occurs in this tutorial:

The starting point in this architecture is a database insert operation in Amazon Aurora. When the insert statement is executed, a custom trigger calls a Lambda function and forwards the inserted data. Lambda writes the data that it received from Amazon Aurora to a Kinesis data delivery stream. Kinesis Data Firehose writes the data to an Amazon S3 bucket. Once the data is in an Amazon S3 bucket, it is queried in place using Amazon Redshift Spectrum.

Creating an Aurora database

First, create a database by following these steps in the Amazon RDS console:

  1. Sign in to the AWS Management Console, and open the Amazon RDS console.
  2. Choose Launch a DB instance, and choose Next.
  3. For Engine, choose Amazon Aurora.
  4. Choose a DB instance class. This example uses a small, since this is not a production database.
  5. In Multi-AZ deployment, choose No.
  6. Configure DB instance identifier, Master username, and Master password.
  7. Launch the DB instance.

After you create the database, use MySQL Workbench to connect to the database using the CNAME from the console. For information about connecting to an Aurora database, see Connecting to an Amazon Aurora DB Cluster.

The following screenshot shows the MySQL Workbench configuration:

Next, create a table in the database by running the following SQL statement:

Create Table
CREATE TABLE Sales (
InvoiceID int NOT NULL AUTO_INCREMENT,
ItemID int NOT NULL,
Category varchar(255),
Price double(10,2), 
Quantity int not NULL,
OrderDate timestamp,
DestinationState varchar(2),
ShippingType varchar(255),
Referral varchar(255),
PRIMARY KEY (InvoiceID)
)

You can now populate the table with some sample data. To generate sample data in your table, copy and run the following script. Ensure that the highlighted (bold) variables are replaced with appropriate values.

#!/usr/bin/python
import MySQLdb
import random
import datetime

db = MySQLdb.connect(host="AURORA_CNAME",
                     user="DBUSER",
                     passwd="DBPASSWORD",
                     db="DB")

states = ("AL","AK","AZ","AR","CA","CO","CT","DE","FL","GA","HI","ID","IL","IN",
"IA","KS","KY","LA","ME","MD","MA","MI","MN","MS","MO","MT","NE","NV","NH","NJ",
"NM","NY","NC","ND","OH","OK","OR","PA","RI","SC","SD","TN","TX","UT","VT","VA",
"WA","WV","WI","WY")

shipping_types = ("Free", "3-Day", "2-Day")

product_categories = ("Garden", "Kitchen", "Office", "Household")
referrals = ("Other", "Friend/Colleague", "Repeat Customer", "Online Ad")

for i in range(0,10):
    item_id = random.randint(1,100)
    state = states[random.randint(0,len(states)-1)]
    shipping_type = shipping_types[random.randint(0,len(shipping_types)-1)]
    product_category = product_categories[random.randint(0,len(product_categories)-1)]
    quantity = random.randint(1,4)
    referral = referrals[random.randint(0,len(referrals)-1)]
    price = random.randint(1,100)
    order_date = datetime.date(2016,random.randint(1,12),random.randint(1,30)).isoformat()

    data_order = (item_id, product_category, price, quantity, order_date, state,
    shipping_type, referral)

    add_order = ("INSERT INTO Sales "
                   "(ItemID, Category, Price, Quantity, OrderDate, DestinationState, \
                   ShippingType, Referral) "
                   "VALUES (%s, %s, %s, %s, %s, %s, %s, %s)")

    cursor = db.cursor()
    cursor.execute(add_order, data_order)

    db.commit()

cursor.close()
db.close() 

The following screenshot shows how the table appears with the sample data:

Sending data from Amazon Aurora to Amazon S3

There are two methods available to send data from Amazon Aurora to Amazon S3:

  • Using a Lambda function
  • Using SELECT INTO OUTFILE S3

To demonstrate the ease of setting up integration between multiple AWS services, we use a Lambda function to send data to Amazon S3 using Amazon Kinesis Data Firehose.

Alternatively, you can use a SELECT INTO OUTFILE S3 statement to query data from an Amazon Aurora DB cluster and save it directly in text files that are stored in an Amazon S3 bucket. However, with this method, there is a delay between the time that the database transaction occurs and the time that the data is exported to Amazon S3 because the default file size threshold is 6 GB.

Creating a Kinesis data delivery stream

The next step is to create a Kinesis data delivery stream, since it’s a dependency of the Lambda function.

To create a delivery stream:

  1. Open the Kinesis Data Firehose console
  2. Choose Create delivery stream.
  3. For Delivery stream name, type AuroraChangesToS3.
  4. For Source, choose Direct PUT.
  5. For Record transformation, choose Disabled.
  6. For Destination, choose Amazon S3.
  7. In the S3 bucket drop-down list, choose an existing bucket, or create a new one.
  8. Enter a prefix if needed, and choose Next.
  9. For Data compression, choose GZIP.
  10. In IAM role, choose either an existing role that has access to write to Amazon S3, or choose to generate one automatically. Choose Next.
  11. Review all the details on the screen, and choose Create delivery stream when you’re finished.

 

Creating a Lambda function

Now you can create a Lambda function that is called every time there is a change that needs to be tracked in the database table. This Lambda function passes the data to the Kinesis data delivery stream that you created earlier.

To create the Lambda function:

  1. Open the AWS Lambda console.
  2. Ensure that you are in the AWS Region where your Amazon Aurora database is located.
  3. If you have no Lambda functions yet, choose Get started now. Otherwise, choose Create function.
  4. Choose Author from scratch.
  5. Give your function a name and select Python 3.6 for Runtime
  6. Choose and existing or create a new Role, the role would need to have access to call firehose:PutRecord
  7. Choose Next on the trigger selection screen.
  8. Paste the following code in the code window. Change the stream_name variable to the Kinesis data delivery stream that you created in the previous step.
  9. Choose File -> Save in the code editor and then choose Save.
import boto3
import json

firehose = boto3.client('firehose')
stream_name = ‘AuroraChangesToS3’


def Kinesis_publish_message(event, context):
    
    firehose_data = (("%s,%s,%s,%s,%s,%s,%s,%s\n") %(event['ItemID'], 
    event['Category'], event['Price'], event['Quantity'],
    event['OrderDate'], event['DestinationState'], event['ShippingType'], 
    event['Referral']))
    
    firehose_data = {'Data': str(firehose_data)}
    print(firehose_data)
    
    firehose.put_record(DeliveryStreamName=stream_name,
    Record=firehose_data)

Note the Amazon Resource Name (ARN) of this Lambda function.

Giving Aurora permissions to invoke a Lambda function

To give Amazon Aurora permissions to invoke a Lambda function, you must attach an IAM role with appropriate permissions to the cluster. For more information, see Invoking a Lambda Function from an Amazon Aurora DB Cluster.

Once you are finished, the Amazon Aurora database has access to invoke a Lambda function.

Creating a stored procedure and a trigger in Amazon Aurora

Now, go back to MySQL Workbench, and run the following command to create a new stored procedure. When this stored procedure is called, it invokes the Lambda function you created. Change the ARN in the following code to your Lambda function’s ARN.

DROP PROCEDURE IF EXISTS CDC_TO_FIREHOSE;
DELIMITER ;;
CREATE PROCEDURE CDC_TO_FIREHOSE (IN ItemID VARCHAR(255), 
									IN Category varchar(255), 
									IN Price double(10,2),
                                    IN Quantity int(11),
                                    IN OrderDate timestamp,
                                    IN DestinationState varchar(2),
                                    IN ShippingType varchar(255),
                                    IN Referral  varchar(255)) LANGUAGE SQL 
BEGIN
  CALL mysql.lambda_async('arn:aws:lambda:us-east-1:XXXXXXXXXXXXX:function:CDCFromAuroraToKinesis', 
     CONCAT('{ "ItemID" : "', ItemID, 
            '", "Category" : "', Category,
            '", "Price" : "', Price,
            '", "Quantity" : "', Quantity, 
            '", "OrderDate" : "', OrderDate, 
            '", "DestinationState" : "', DestinationState, 
            '", "ShippingType" : "', ShippingType, 
            '", "Referral" : "', Referral, '"}')
     );
END
;;
DELIMITER ;

Create a trigger TR_Sales_CDC on the Sales table. When a new record is inserted, this trigger calls the CDC_TO_FIREHOSE stored procedure.

DROP TRIGGER IF EXISTS TR_Sales_CDC;
 
DELIMITER ;;
CREATE TRIGGER TR_Sales_CDC
  AFTER INSERT ON Sales
  FOR EACH ROW
BEGIN
  SELECT  NEW.ItemID , NEW.Category, New.Price, New.Quantity, New.OrderDate
  , New.DestinationState, New.ShippingType, New.Referral
  INTO @ItemID , @Category, @Price, @Quantity, @OrderDate
  , @DestinationState, @ShippingType, @Referral;
  CALL  CDC_TO_FIREHOSE(@ItemID , @Category, @Price, @Quantity, @OrderDate
  , @DestinationState, @ShippingType, @Referral);
END
;;
DELIMITER ;

If a new row is inserted in the Sales table, the Lambda function that is mentioned in the stored procedure is invoked.

Verify that data is being sent from the Lambda function to Kinesis Data Firehose to Amazon S3 successfully. You might have to insert a few records, depending on the size of your data, before new records appear in Amazon S3. This is due to Kinesis Data Firehose buffering. To learn more about Kinesis Data Firehose buffering, see the “Amazon S3” section in Amazon Kinesis Data Firehose Data Delivery.

Every time a new record is inserted in the sales table, a stored procedure is called, and it updates data in Amazon S3.

Querying data in Amazon Redshift

In this section, you use the data you produced from Amazon Aurora and consume it as-is in Amazon Redshift. In order to allow you to process your data as-is, where it is, while taking advantage of the power and flexibility of Amazon Redshift, you use Amazon Redshift Spectrum. You can use Redshift Spectrum to run complex queries on data stored in Amazon S3, with no need for loading or other data prep.

Just create a data source and issue your queries to your Amazon Redshift cluster as usual. Behind the scenes, Redshift Spectrum scales to thousands of instances on a per-query basis, ensuring that you get fast, consistent performance even as your dataset grows to beyond an exabyte! Being able to query data that is stored in Amazon S3 means that you can scale your compute and your storage independently. You have the full power of the Amazon Redshift query model and all the reporting and business intelligence tools at your disposal. Your queries can reference any combination of data stored in Amazon Redshift tables and in Amazon S3.

Redshift Spectrum supports open, common data types, including CSV/TSV, Apache Parquet, SequenceFile, and RCFile. Files can be compressed using gzip or Snappy, with other data types and compression methods in the works.

First, create an Amazon Redshift cluster. Follow the steps in Launch a Sample Amazon Redshift Cluster.

Next, create an IAM role that has access to Amazon S3 and Athena. By default, Amazon Redshift Spectrum uses the Amazon Athena data catalog. Your cluster needs authorization to access your external data catalog in AWS Glue or Athena and your data files in Amazon S3.

In the demo setup, I attached AmazonS3FullAccess and AmazonAthenaFullAccess. In a production environment, the IAM roles should follow the standard security of granting least privilege. For more information, see IAM Policies for Amazon Redshift Spectrum.

Attach the newly created role to the Amazon Redshift cluster. For more information, see Associate the IAM Role with Your Cluster.

Next, connect to the Amazon Redshift cluster, and create an external schema and database:

create external schema if not exists spectrum_schema
from data catalog 
database 'spectrum_db' 
region 'us-east-1'
IAM_ROLE 'arn:aws:iam::XXXXXXXXXXXX:role/RedshiftSpectrumRole'
create external database if not exists;

Don’t forget to replace the IAM role in the statement.

Then create an external table within the database:

 CREATE EXTERNAL TABLE IF NOT EXISTS spectrum_schema.ecommerce_sales(
  ItemID int,
  Category varchar,
  Price DOUBLE PRECISION,
  Quantity int,
  OrderDate TIMESTAMP,
  DestinationState varchar,
  ShippingType varchar,
  Referral varchar)
ROW FORMAT DELIMITED
      FIELDS TERMINATED BY ','
LINES TERMINATED BY '\n'
LOCATION 's3://{BUCKET_NAME}/CDC/'

Query the table, and it should contain data. This is a fact table.

select top 10 * from spectrum_schema.ecommerce_sales

 

Next, create a dimension table. For this example, we create a date/time dimension table. Create the table:

CREATE TABLE date_dimension (
  d_datekey           integer       not null sortkey,
  d_dayofmonth        integer       not null,
  d_monthnum          integer       not null,
  d_dayofweek                varchar(10)   not null,
  d_prettydate        date       not null,
  d_quarter           integer       not null,
  d_half              integer       not null,
  d_year              integer       not null,
  d_season            varchar(10)   not null,
  d_fiscalyear        integer       not null)
diststyle all;

Populate the table with data:

copy date_dimension from 's3://reparmar-lab/2016dates' 
iam_role 'arn:aws:iam::XXXXXXXXXXXX:role/redshiftspectrum'
DELIMITER ','
dateformat 'auto';

The date dimension table should look like the following:

Querying data in local and external tables using Amazon Redshift

Now that you have the fact and dimension table populated with data, you can combine the two and run analysis. For example, if you want to query the total sales amount by weekday, you can run the following:

select sum(quantity*price) as total_sales, date_dimension.d_season
from spectrum_schema.ecommerce_sales 
join date_dimension on spectrum_schema.ecommerce_sales.orderdate = date_dimension.d_prettydate 
group by date_dimension.d_season

You get the following results:

Similarly, you can replace d_season with d_dayofweek to get sales figures by weekday:

With Amazon Redshift Spectrum, you pay only for the queries you run against the data that you actually scan. We encourage you to use file partitioning, columnar data formats, and data compression to significantly minimize the amount of data scanned in Amazon S3. This is important for data warehousing because it dramatically improves query performance and reduces cost.

Partitioning your data in Amazon S3 by date, time, or any other custom keys enables Amazon Redshift Spectrum to dynamically prune nonrelevant partitions to minimize the amount of data processed. If you store data in a columnar format, such as Parquet, Amazon Redshift Spectrum scans only the columns needed by your query, rather than processing entire rows. Similarly, if you compress your data using one of the supported compression algorithms in Amazon Redshift Spectrum, less data is scanned.

Analyzing and visualizing Amazon Redshift data in Amazon QuickSight

Modify the Amazon Redshift security group to allow an Amazon QuickSight connection. For more information, see Authorizing Connections from Amazon QuickSight to Amazon Redshift Clusters.

After modifying the Amazon Redshift security group, go to Amazon QuickSight. Create a new analysis, and choose Amazon Redshift as the data source.

Enter the database connection details, validate the connection, and create the data source.

Choose the schema to be analyzed. In this case, choose spectrum_schema, and then choose the ecommerce_sales table.

Next, we add a custom field for Total Sales = Price*Quantity. In the drop-down list for the ecommerce_sales table, choose Edit analysis data sets.

On the next screen, choose Edit.

In the data prep screen, choose New Field. Add a new calculated field Total Sales $, which is the product of the Price*Quantity fields. Then choose Create. Save and visualize it.

Next, to visualize total sales figures by month, create a graph with Total Sales on the x-axis and Order Data formatted as month on the y-axis.

After you’ve finished, you can use Amazon QuickSight to add different columns from your Amazon Redshift tables and perform different types of visualizations. You can build operational dashboards that continuously monitor your transactional and analytical data. You can publish these dashboards and share them with others.

Final notes

Amazon QuickSight can also read data in Amazon S3 directly. However, with the method demonstrated in this post, you have the option to manipulate, filter, and combine data from multiple sources or Amazon Redshift tables before visualizing it in Amazon QuickSight.

In this example, we dealt with data being inserted, but triggers can be activated in response to an INSERT, UPDATE, or DELETE trigger.

Keep the following in mind:

  • Be careful when invoking a Lambda function from triggers on tables that experience high write traffic. This would result in a large number of calls to your Lambda function. Although calls to the lambda_async procedure are asynchronous, triggers are synchronous.
  • A statement that results in a large number of trigger activations does not wait for the call to the AWS Lambda function to complete. But it does wait for the triggers to complete before returning control to the client.
  • Similarly, you must account for Amazon Kinesis Data Firehose limits. By default, Kinesis Data Firehose is limited to a maximum of 5,000 records/second. For more information, see Monitoring Amazon Kinesis Data Firehose.

In certain cases, it may be optimal to use AWS Database Migration Service (AWS DMS) to capture data changes in Aurora and use Amazon S3 as a target. For example, AWS DMS might be a good option if you don’t need to transform data from Amazon Aurora. The method used in this post gives you the flexibility to transform data from Aurora using Lambda before sending it to Amazon S3. Additionally, the architecture has the benefits of being serverless, whereas AWS DMS requires an Amazon EC2 instance for replication.

For design considerations while using Redshift Spectrum, see Using Amazon Redshift Spectrum to Query External Data.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Capturing Data Changes in Amazon Aurora Using AWS Lambda and 10 Best Practices for Amazon Redshift Spectrum


About the Authors

Re Alvarez-Parmar is a solutions architect for Amazon Web Services. He helps enterprises achieve success through technical guidance and thought leadership. In his spare time, he enjoys spending time with his two kids and exploring outdoors.

 

 

 

Corel Patents System to Monetize Software Piracy

Post Syndicated from Ernesto original https://torrentfreak.com/corel-patents-system-to-monetize-software-piracy-180105/

In recent years we have covered a wide range of newly-assigned patents with a clear anti-piracy angle.

From IBM’s printer that doesn’t copy infringing content, through NBC Universal’s piracy detection system, to Philips’ ambient lighting solution to camcording pirates in theaters.

Today we add another newly-awarded patent from software vendor Corel to the list. Known for its signature CorelDRAW and WinZIP software, the company has quite a bit of experience with sketchy pirates. This has cost a lot of money over the years, Corel claims.

“Software piracy has become a financial burden to the software industry as well. Popular software programs, sold in the tens or hundreds of millions, may have pirated versions numbering in the millions,” the company writes.

The software company notes that current anti-piracy tools are often easy to break or bypass, which makes them inadequate. In their patent, titled: “Software product piracy monetization process,” they, therefore, take a different approach.

Instead of blocking pirates outright, Corel proposes to engage with these people more directly. By sending a message in the form of a pop-up, for example.

“The message may include instructions to change the state of a feature property of the software product to alert a user that the software product is not legitimate,” the patent reads.

If pirate, then…

If someone is running a product with an invalid serial, he or she can be informed by the software. This can be a friendly note, but also one that threatens criminal charges unless the pirate agrees to an amnesty deal.

This creates a win-win situation where the pirate escapes prison and the publisher is paid, so to speak.

“The amnesty offer may, for example, agree not to bring criminal charges in exchange for the user purchasing a legitimate copy of the product,” Corel writes.

“In this manner, the user of the pirated version is given the opportunity to purchase a legitimate copy which, if acted on, increases revenue for the manufacturer.”

While the patent was recently awarded, the idea to monetize piracy in this way isn’t new. In fact, Malwarebytes has sent messages to pirating users for years, and also offered them amnesty and a free upgrade in the past.

Whether Corel has any intentions of implementing their own idea is yet unknown.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Spectre and Meltdown Attacks Against Microprocessors

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/spectre_and_mel_1.html

The security of pretty much every computer on the planet has just gotten a lot worse, and the only real solution — which of course is not a solution — is to throw them all away and buy new ones.

On Wednesday, researchers just announced a series of major security vulnerabilities in the microprocessors at the heart of the world’s computers for the past 15-20 years. They’ve been named Spectre and Meltdown, and they have to do with manipulating different ways processors optimize performance by rearranging the order of instructions or performing different instructions in parallel. An attacker who controls one process on a system can use the vulnerabilities to steal secrets elsewhere on the computer. (The research papers are here and here.)

This means that a malicious app on your phone could steal data from your other apps. Or a malicious program on your computer — maybe one running in a browser window from that sketchy site you’re visiting, or as a result of a phishing attack — can steal data elsewhere on your machine. Cloud services, which often share machines amongst several customers, are especially vulnerable. This affects corporate applications running on cloud infrastructure, and end-user cloud applications like Google Drive. Someone can run a process in the cloud and steal data from every other users on the same hardware.

Information about these flaws has been secretly circulating amongst the major IT companies for months as they researched the ramifications and coordinated updates. The details were supposed to be released next week, but the story broke early and everyone is scrambling. By now all the major cloud vendors have patched their systems against the vulnerabilities that can be patched against.

“Throw it away and buy a new one” is ridiculous security advice, but it’s what US-CERT recommends. It is also unworkable. The problem is that there isn’t anything to buy that isn’t vulnerable. Pretty much every major processor made in the past 20 years is vulnerable to some flavor of these vulnerabilities. Patching against Meltdown can degrade performance by almost a third. And there’s no patch for Spectre; the microprocessors have to be redesigned to prevent the attack, and that will take years. (Here’s a running list of who’s patched what.)

This is bad, but expect it more and more. Several trends are converging in a way that makes our current system of patching security vulnerabilities harder to implement.

The first is that these vulnerabilities affect embedded computers in consumer devices. Unlike our computer and phones, these systems are designed and produced at a lower profit margin with less engineering expertise. There aren’t security teams on call to write patches, and there often aren’t mechanisms to push patches onto the devices. We’re already seeing this with home routers, digital video recorders, and webcams. The vulnerability that allowed them to be taken over by the Mirai botnet last August simply can’t be fixed.

The second is that some of the patches require updating the computer’s firmware. This is much harder to walk consumers through, and is more likely to permanently brick the device if something goes wrong. It also requires more coordination. In November, Intel released a firmware update to fix a vulnerability in its Management Engine (ME): another flaw in its microprocessors. But it couldn’t get that update directly to users; it had to work with the individual hardware companies, and some of them just weren’t capable of getting the update to their customers.

We’re already seeing this. Some patches require users to disable the computer’s password, which means organizations can’t automate the patch. Some antivirus software blocks the patch, or — worse — crashes the computer. This results in a three-step process: patch your antivirus software, patch your operating system, and then patch the computer’s firmware.

The final reason is the nature of these vulnerabilities themselves. These aren’t normal software vulnerabilities, where a patch fixes the problem and everyone can move on. These vulnerabilities are in the fundamentals of how the microprocessor operates.

It shouldn’t be surprising that microprocessor designers have been building insecure hardware for 20 years. What’s surprising is that it took 20 years to discover it. In their rush to make computers faster, they weren’t thinking about security. They didn’t have the expertise to find these vulnerabilities. And those who did were too busy finding normal software vulnerabilities to examine microprocessors. Security researchers are starting to look more closely at these systems, so expect to hear about more vulnerabilities along these lines.

Spectre and Meltdown are pretty catastrophic vulnerabilities, but they only affect the confidentiality of data. Now that they — and the research into the Intel ME vulnerability — have shown researchers where to look, more is coming — and what they’ll find will be worse than either Spectre or Meltdown. There will be vulnerabilities that will allow attackers to manipulate or delete data across processes, potentially fatal in the computers controlling our cars or implanted medical devices. These will be similarly impossible to fix, and the only strategy will be to throw our devices away and buy new ones.

This isn’t to say you should immediately turn your computers and phones off and not use them for a few years. For the average user, this is just another attack method amongst many. All the major vendors are working on patches and workarounds for the attacks they can mitigate. All the normal security advice still applies: watch for phishing attacks, don’t click on strange e-mail attachments, don’t visit sketchy websites that might run malware on your browser, patch your systems regularly, and generally be careful on the Internet.

You probably won’t notice that performance hit once Meltdown is patched, except maybe in backup programs and networking applications. Embedded systems that do only one task, like your programmable thermostat or the computer in your refrigerator, are unaffected. Small microprocessors that don’t do all of the vulnerable fancy performance tricks are unaffected. Browsers will figure out how to mitigate this in software. Overall, the security of the average Internet-of-Things device is so bad that this attack is in the noise compared to the previously known risks.

It’s a much bigger problem for cloud vendors; the performance hit will be expensive, but I expect that they’ll figure out some clever way of detecting and blocking the attacks. All in all, as bad as Spectre and Meltdown are, I think we got lucky.

But more are coming, and they’ll be worse. 2018 will be the year of microprocessor vulnerabilities, and it’s going to be a wild ride.

Note: A shorter version of this essay previously appeared on CNN.com. My previous blog post on this topic contains additional links.

More details about mitigations for the CPU Speculative Execution issue (Google Security Blog)

Post Syndicated from jake original https://lwn.net/Articles/743269/rss

One of the main concerns about the mitigations for the Meltdown/Spectre speculative execution bugs has been performance. The Google Security Blog is reporting negligible performance impact on Google systems for two of the mitigations (kernel page-table isolation and Retpoline): “In response to the vulnerabilities that were discovered we developed a novel mitigation called “Retpoline” — a binary modification technique that protects against “branch target injection” attacks. We shared Retpoline with our industry partners and have deployed it on Google’s systems, where we have observed negligible impact on performance.
In addition, we have deployed Kernel Page Table Isolation (KPTI) — a general purpose technique for better protecting sensitive information in memory from other software running on a machine — to the entire fleet of Google Linux production servers that support all of our products, including Search, Gmail, YouTube, and Google Cloud Platform.
There has been speculation that the deployment of KPTI causes significant performance slowdowns. Performance can vary, as the impact of the KPTI mitigations depends on the rate of system calls made by an application. On most of our workloads, including our cloud infrastructure, we see negligible impact on performance.