Tag Archives: sensor

This IoT Pet Monitor barks back

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/iot-pet-monitor/

Jennifer Fox, founder of FoxBot Industries, uses a Raspberry Pi pet monitor to check the sound levels of her home while she is out, allowing her to keep track of when her dog Marley gets noisy or agitated, and to interact with the gorgeous furball accordingly.

Bark Back Project Demo

A quick overview and demo of the Bark Back, a project to monitor and interact with Check out the full tutorial here: https://learn.sparkfun.com/tutorials/bark-back-interactive-pet-monitor For any licensing requests please contact [email protected]

Marley, bark!

Using a Raspberry Pi 3, speakers, SparkFun’s MEMS microphone breakout board, and an analogue-to-digital converter (ADC), the IoT Pet Monitor is fairly easy to recreate, all thanks to Jennifer’s full tutorial on the FoxBot website.

Building the pet monitor

In a nutshell, once the Raspberry Pi and the appropriate bits and pieces are set up, you’ll need to sign up at CloudMQTT — it’s free if you select the Cute Cat account. CloudMQTT will create an invisible bridge between your home and wherever you are that isn’t home, so that you can check in on your pet monitor.

Screenshot CloudMQTT account set-up — IoT Pet Monitor Bark Back Raspberry Pi

Image c/o FoxBot Industries

Within the project code, you’ll be able to calculate the peak-to-peak amplitude of sound the microphone picks up. Then you can decide how noisy is too noisy when it comes to the occasional whine and bark of your beloved pup.

MEMS microphone breakout board — IoT Pet Monitor Bark Back Raspberry Pi

The MEMS microphone breakout board collects sound data and relays it back to the Raspberry Pi via the ADC.
Image c/o FoxBot Industries

Next you can import sounds to a preset song list that will be played back when the volume rises above your predefined threshold. As Jennifer states in the tutorial, the sounds can easily be recorded via apps such as Garageband, or even on your mobile phone.

Using the pet monitor

Whenever the Bark Back IoT Pet Monitor is triggered to play back audio, this information is fed to the CloudMQTT service, allowing you to see if anything is going on back home.

A sitting dog with a doll in its mouth — IoT Pet Monitor Bark Back Raspberry Pi

*incoherent coos of affection from Alex*
Image c/o FoxBot Industries

And as Jennifer recommends, a update of the project could include a camera or sensors to feed back more information about your home environment.

If you’ve created something similar, be sure to let us know in the comments. And if you haven’t, but you’re now planning to build your own IoT pet monitor, be sure to let us know in the comments. And if you don’t have a pet but just want to say hi…that’s right, be sure to let us know in the comments.

The post This IoT Pet Monitor barks back appeared first on Raspberry Pi.

Jumping Air Gaps

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/jumping_air_gap_2.html

Nice profile of Mordechai Guri, who researches a variety of clever ways to steal data over air-gapped computers.

Guri and his fellow Ben-Gurion researchers have shown, for instance, that it's possible to trick a fully offline computer into leaking data to another nearby device via the noise its internal fan generates, by changing air temperatures in patterns that the receiving computer can detect with thermal sensors, or even by blinking out a stream of information from a computer hard drive LED to the camera on a quadcopter drone hovering outside a nearby window. In new research published today, the Ben-Gurion team has even shown that they can pull data off a computer protected by not only an air gap, but also a Faraday cage designed to block all radio signals.

Here’s a page with all the research results.

BoingBoing post.

When tiny robot COZMO met our tiny Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/cozmo-raspberry-pi/

Hack your COZMO for ultimate control, using a Raspberry Pi and this tutorial from Instructables user Marcelo ‘mjrovai’ Rovai.

Cozmo – RPi 4

Full integration The complete tutorial can be found here: https://www.instructables.com/id/When-COZMO-the-Robot-Meets-the-Raspberry-Pi/

COZMO

COZMO is a Python-programmable robot from ANKI that boasts a variety of on-board sensors and a camera, and that can be controlled via an app or via code. To get an idea of how COZMO works, check out this rather excitable video from the wonderful Mayim Bialik.

The COZMO SDK

COZMO’s creators, ANKI, provide a Software Development Kit (SDK) so that users can get the most out of their COZMO. This added functionality is a great opportunity for budding coders to dive into hacking their toys, without the risk of warranty voiding/upsetting parents/not being sure how to put a toy back together again.

By the way, I should point out that this is in no way a sponsored blog post. I just think COZMO is ridiculously cute…because tiny robots are adorable, no matter their intentions.

Raspberry Pi Doctor Who Cybermat

Marcelo Rovai + Raspberry Pi + COZMO

For his Instructables tutorial, Marcelo connected an Android device running the COZMO app to his Raspberry Pi 3 via USB. Once USB debugging had been enabled on his device, he installed the Android Debug Bridge (ADB) to the Raspberry Pi. Then his Pi was able to recognise the connected Android device, and from there, Marcelo moved on to installing the SDK, including support for COZMO’s camera.

COZMO Raspberry Pi

The SDK comes with pre-installed examples, allowing users to try out the possibilities of the kit, such as controlling what COZMO says by editing a Python script.

Cozmo and RPi

Hello World The complete tutorial can be found here: https://www.instructables.com/id/When-COZMO-the-Robot-Meets-the-Raspberry-Pi/

Do more with COZMO

Marcelo’s tutorial offers more example code for users of the COZMO SDK, along with the code to run the LED button game featured in the video above, and tips on utilising the SDK to take full advantage of COZMO. Check it out here on Instructables, and visit his website for even more projects.

The post When tiny robot COZMO met our tiny Raspberry Pi appeared first on Raspberry Pi.

After Section 702 Reauthorization

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/after_section_7.html

For over a decade, civil libertarians have been fighting government mass surveillance of innocent Americans over the Internet. We’ve just lost an important battle. On January 18, President Trump signed the renewal of Section 702, domestic mass surveillance became effectively a permanent part of US law.

Section 702 was initially passed in 2008, as an amendment to the Foreign Intelligence Surveillance Act of 1978. As the title of that law says, it was billed as a way for the NSA to spy on non-Americans located outside the United States. It was supposed to be an efficiency and cost-saving measure: the NSA was already permitted to tap communications cables located outside the country, and it was already permitted to tap communications cables from one foreign country to another that passed through the United States. Section 702 allowed it to tap those cables from inside the United States, where it was easier. It also allowed the NSA to request surveillance data directly from Internet companies under a program called PRISM.

The problem is that this authority also gave the NSA the ability to collect foreign communications and data in a way that inherently and intentionally also swept up Americans’ communications as well, without a warrant. Other law enforcement agencies are allowed to ask the NSA to search those communications, give their contents to the FBI and other agencies and then lie about their origins in court.

In 1978, after Watergate had revealed the Nixon administration’s abuses of power, we erected a wall between intelligence and law enforcement that prevented precisely this kind of sharing of surveillance data under any authority less restrictive than the Fourth Amendment. Weakening that wall is incredibly dangerous, and the NSA should never have been given this authority in the first place.

Arguably, it never was. The NSA had been doing this type of surveillance illegally for years, something that was first made public in 2006. Section 702 was secretly used as a way to paper over that illegal collection, but nothing in the text of the later amendment gives the NSA this authority. We didn’t know that the NSA was using this law as the statutory basis for this surveillance until Edward Snowden showed us in 2013.

Civil libertarians have been battling this law in both Congress and the courts ever since it was proposed, and the NSA’s domestic surveillance activities even longer. What this most recent vote tells me is that we’ve lost that fight.

Section 702 was passed under George W. Bush in 2008, reauthorized under Barack Obama in 2012, and now reauthorized again under Trump. In all three cases, congressional support was bipartisan. It has survived multiple lawsuits by the Electronic Frontier Foundation, the ACLU, and others. It has survived the revelations by Snowden that it was being used far more extensively than Congress or the public believed, and numerous public reports of violations of the law. It has even survived Trump’s belief that he was being personally spied on by the intelligence community, as well as any congressional fears that Trump could abuse the authority in the coming years. And though this extension lasts only six years, it’s inconceivable to me that it will ever be repealed at this point.

So what do we do? If we can’t fight this particular statutory authority, where’s the new front on surveillance? There are, it turns out, reasonable modifications that target surveillance more generally, and not in terms of any particular statutory authority. We need to look at US surveillance law more generally.

First, we need to strengthen the minimization procedures to limit incidental collection. Since the Internet was developed, all the world’s communications travel around in a single global network. It’s impossible to collect only foreign communications, because they’re invariably mixed in with domestic communications. This is called “incidental” collection, but that’s a misleading name. It’s collected knowingly, and searched regularly. The intelligence community needs much stronger restrictions on which American communications channels it can access without a court order, and rules that require they delete the data if they inadvertently collect it. More importantly, “collection” is defined as the point the NSA takes a copy of the communications, and not later when they search their databases.

Second, we need to limit how other law enforcement agencies can use incidentally collected information. Today, those agencies can query a database of incidental collection on Americans. The NSA can legally pass information to those other agencies. This has to stop. Data collected by the NSA under its foreign surveillance authority should not be used as a vehicle for domestic surveillance.

The most recent reauthorization modified this lightly, forcing the FBI to obtain a court order when querying the 702 data for a criminal investigation. There are still exceptions and loopholes, though.

Third, we need to end what’s called “parallel construction.” Today, when a law enforcement agency uses evidence found in this NSA database to arrest someone, it doesn’t have to disclose that fact in court. It can reconstruct the evidence in some other manner once it knows about it, and then pretend it learned of it that way. This right to lie to the judge and the defense is corrosive to liberty, and it must end.

Pressure to reform the NSA will probably first come from Europe. Already, European Union courts have pointed to warrantless NSA surveillance as a reason to keep Europeans’ data out of US hands. Right now, there is a fragile agreement between the EU and the United States ­– called “Privacy Shield” — ­that requires Americans to maintain certain safeguards for international data flows. NSA surveillance goes against that, and it’s only a matter of time before EU courts start ruling this way. That’ll have significant effects on both government and corporate surveillance of Europeans and, by extension, the entire world.

Further pressure will come from the increased surveillance coming from the Internet of Things. When your home, car, and body are awash in sensors, privacy from both governments and corporations will become increasingly important. Sooner or later, society will reach a tipping point where it’s all too much. When that happens, we’re going to see significant pushback against surveillance of all kinds. That’s when we’ll get new laws that revise all government authorities in this area: a clean sweep for a new world, one with new norms and new fears.

It’s possible that a federal court will rule on Section 702. Although there have been many lawsuits challenging the legality of what the NSA is doing and the constitutionality of the 702 program, no court has ever ruled on those questions. The Bush and Obama administrations successfully argued that defendants don’t have legal standing to sue. That is, they have no right to sue because they don’t know they’re being targeted. If any of the lawsuits can get past that, things might change dramatically.

Meanwhile, much of this is the responsibility of the tech sector. This problem exists primarily because Internet companies collect and retain so much personal data and allow it to be sent across the network with minimal security. Since the government has abdicated its responsibility to protect our privacy and security, these companies need to step up: Minimize data collection. Don’t save data longer than absolutely necessary. Encrypt what has to be saved. Well-designed Internet services will safeguard users, regardless of government surveillance authority.

For the rest of us concerned about this, it’s important not to give up hope. Everything we do to keep the issue in the public eye ­– and not just when the authority comes up for reauthorization again in 2024 — hastens the day when we will reaffirm our rights to privacy in the digital age.

This essay previously appeared in the Washington Post.

2017 Weather Station round-up

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/2017-weather-station/

As we head into 2018 and start looking forward to longer days in the Northern hemisphere, I thought I’d take a look back at last year’s weather using data from Raspberry Pi Oracle Weather Stations. One of the great things about the kit is that as well as uploading all its readings to the shared online Oracle database, it stores them locally on the Pi in a MySQL or MariaDB database. This means you can use the power of SQL queries coupled with Python code to do automatic data analysis.

Soggy Surrey

My Weather Station has only been installed since May, so I didn’t have a full 52 weeks of my own data to investigate. Still, my station recorded more than 70000 measurements. Living in England, the first thing I wanted to know was: which was the wettest month? Unsurprisingly, both in terms of average daily rainfall and total rainfall, the start of the summer period — exactly when I went on a staycation — was the soggiest:

What about the global Weather Station community?

Even soggier Bavaria

Here things get slightly trickier. Although we have a shiny Oracle database full of all participating schools’ sensor readings, some of the data needs careful interpretation. Many kits are used as part of the school curriculum and do not always record genuine outdoor conditions. Nevertheless, it appears that Adalbert Stifter Gymnasium in Bavaria, Germany, had an even wetter 2017 than my home did:


View larger map

Where the wind blows

The records Robert-Dannemann Schule in Westerstede, Germany, is a good example of data which was most likely collected while testing and investigating the weather station sensors, rather than in genuine external conditions. Unless this school’s Weather Station was transported to a planet which suffers from extreme hurricanes, it wasn’t actually subjected to wind speeds above 1000km/h in November. Dismissing these and all similarly suspect records, I decided to award the ‘Windiest location of the year’ prize to CEIP Noalla-Telleiro, Spain.


View larger map

This school is right on the coast, and is subject to some strong and squally weather systems.

Weather Station at CEIP Noalla - Telleiro

Weather Station at CEIP Noalla-Telleiro

They’ve mounted their wind vane and anemometer nice and high, so I can see how they were able to record such high wind velocities.

A couple of Weather Stations have recently been commissioned in equally exposed places — it will be interesting to see whether they will record even higher speeds during 2018.

Highs and lows

After careful analysis and a few disqualifications (a couple of Weather Stations in contention for this category were housed indoors), the ‘Hottest location’ award went to High School of Chalastra in Thessaloniki, Greece. There were a couple of Weather Stations (the one at The Marwadi Education Foundation in India, for example) that reported higher average temperatures than Chalastra’s 24.54 ºC. However, they had uploaded far fewer readings and their data coverage of 2017 was only partial.


View larger map

At the other end of the thermometer, the location with the coldest average temperature is École de la Rose Sauvage in Calgary, Canada, with a very chilly 9.9 ºC.

Ecole de la Rose sauvage Weather Station

Weather Station at École de la Rose Sauvage

I suspect this school has a good chance of retaining the title: their lowest 2017 temperature of -24 ºC is likely to be beaten in 2018 due to extreme weather currently bringing a freezing start to the year in that part of the world.


View larger map

Analyse your own Weather Station data

If you have an Oracle Raspberry Pi Weather Station and would like to perform an annual review of your local data, you can use this Python script as a starting point. It will display a monthly summary of the temperature and rainfall for 2017, and you should be able to customise the code to focus on other sensor data or on a particular time of year. We’d love to see your results, so please share your findings with [email protected], and we’ll send you some limited-edition Weather Station stickers.

The post 2017 Weather Station round-up appeared first on Raspberry Pi.

Create SLUG! It’s just like Snake, but with a slug

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/slug-snake/

Recreate Snake, the favourite mobile phone game from the late nineties, using a slug*, a Raspberry Pi, a Sense HAT, and our free resource!

Raspberry Pi Sense HAT Slug free resource

*A virtual slug. Not a real slug. Please leave the real slugs out in nature.

Snake SLUG!

Move aside, Angry Birds! On your bike, Pokémon Go! When it comes to the cream of the crop of mobile phone games, Snake holds the top spot.

Snake Nokia Game

I could while away the hours…

You may still have an old Nokia 3310 lost in the depths of a drawer somewhere — the drawer that won’t open all the way because something inside is jammed at an odd angle. So it will be far easier to grab your Pi and Sense HAT, or use the free Sense HAT emulator (online or on Raspbian), and code Snake SLUG yourself. In doing so, you can introduce the smaller residents of your household to the best reptile-focused game ever made…now with added mollusc.

The resource

To try out the game for yourself, head to our resource page, where you’ll find the online Sense HAT emulator embedded and ready to roll.

Raspberry Pi Sense HAT Slug free resource

It’ll look just like this, and you can use your computer’s arrow keys to direct your slug toward her tasty treats.

From there, you’ll be taken on a step-by-step journey from zero to SLUG glory while coding your own versionof the game in Python. On the way, you’ll learn to work with two-dimensional lists and to use the Sense HAT’s pixel display and joystick input. And by completing the resource, you’ll expand your understanding of applying abstraction and decomposition to solve more complex problems, in line with our Digital Making Curriculum.

The Sense HAT

The Raspberry Pi Sense HAT was originally designed and made as part of the Astro Pi mission in December 2015. With an 8×8 RGB LED matrix, a joystick, and a plethora of on-board sensors including an accelerometer, gyroscope, and magnetometer, it’s a great add-on for your digital making toolkit, and excellent for projects involving data collection and evaluation.

You can find more of our free Sense HAT tutorials here, including for making Flappy Bird Astronaut, a marble maze, and Pong.

The post Create SLUG! It’s just like Snake, but with a slug appeared first on Raspberry Pi.

The deep learning Santa/Not Santa detector

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-santa-detector/

Did you see Mommy kissing Santa Claus? Or was it simply an imposter? The Not Santa detector is here to help solve the mystery once and for all.

Building a “Not Santa” detector on the Raspberry Pi using deep learning, Keras, and Python

The video is a demo of my “Not Santa” detector that I deployed to the Raspberry Pi. I trained the detector using deep learning, Keras, and Python. You can find the full source code and tutorial here: https://www.pyimagesearch.com/2017/12/18/keras-deep-learning-raspberry-pi/

Ho-ho-how does it work?

Note: Adrian Rosebrock is not Santa. But he does a good enough impression of the jolly old fellow that his disguise can fool a Raspberry Pi into thinking otherwise.

Raspberry Pi 'Not Santa' detector

We jest, but has anyone seen Adrian and Santa in the same room together?
Image c/o Adrian Rosebrock

But how is the Raspberry Pi able to detect the Santa-ness or Not-Santa-ness of people who walk into the frame?

Two words: deep learning

If you’re not sure what deep learning is, you’re not alone. It’s a hefty topic, and one that Adrian has written a book about, so I grilled him for a bluffers’ guide. In his words, deep learning is:

…a subfield of machine learning, which is, in turn a subfield of artificial intelligence (AI). While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that can learn from data. We have been using ANNs successfully for over 60 years, but something special happened in the past 5 years — (1) we’ve been able to accumulate massive datasets, orders of magnitude larger than previous datasets, and (2) we have access to specialized hardware to train networks faster (i.e., GPUs).

Given these large datasets and specialized hardware, deeper neural networks can be trained, leading to the term “deep learning”.

So now we have a bird’s-eye view of deep learning, how does the detector detect?

Cameras and twinkly lights

Adrian used a model he had trained on two datasets to detect whether or not an image contains Santa. He deployed the Not Santa detector code to a Raspberry Pi, then attached a camera, speakers, and The Pi Hut’s 3D Xmas Tree.

Raspberry Pi 'Not Santa' detector

Components for Santa detection
Image c/o Adrian Rosebrock

The camera captures footage of Santa in the wild, while the Christmas tree add-on provides a twinkly notification, accompanied by a resonant ho, ho, ho from the speakers.

A deeper deep dive into deep learning

A full breakdown of the project and the workings of the Not Santa detector can be found on Adrian’s blog, PyImageSearch, which includes links to other deep learning and image classification tutorials using TensorFlow and Keras. It’s an excellent place to start if you’d like to understand more about deep learning.

Build your own Santa detector

Santa might catch on to Adrian’s clever detector and start avoiding the camera, and for that eventuality, we have our own Santa detector. It uses motion detection to notify you of his presence (and your presents!).

Raspberry Pi Santa detector

Check out our Santa Detector resource here and use a passive infrared sensor, Raspberry Pi, and Scratch to catch the big man in action.

The post The deep learning Santa/Not Santa detector appeared first on Raspberry Pi.

Rosie the Countdown champion

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rosie-the-countdown-champion/

Beating the contestants at Countdown: is it cheating if you happen to know every word in the English dictionary?

Rosie plays Countdown

Allow your robots to join in the fun this Christmas with a round of Channel 4’s Countdown. https://www.rosietheredrobot.com/2017/12/tea-minus-30.html

Rosie the Red Robot

First, a little bit of backstory. Challenged by his eldest daughter to build a robot, technology-loving Alan got to work building Rosie.

I became (unusually) determined. I wanted to show her what can be done… and the how can be learnt later. After all, there is nothing more exciting and encouraging than seeing technology come alive. Move. Groove. Quite literally.

Originally, Rosie had a Raspberry Pi 3 brain controlling ultrasonic sensors and motors via Python. From there, she has evolved into something much grander, and Alan has documented her upgrades on the Rosie the Red Robot blog. Using GPS trackers and a Raspberry Pi camera module, she became Rosie Patrol, a rolling, walking, interactive bot; then, with further upgrades, the Tea Minus 30 project came to be. Which brings us back to Countdown.

T(ea) minus 30

In case it hasn’t been a big part of your life up until now, Countdown is one of the longest running televisions shows in history, and occupies a special place in British culture. Contestants take turns to fill a board with nine randomly selected vowels and consonants, before battling the Countdown clock to find the longest word they can in the space of 30 seconds.

The Countdown Clock

I’ve had quite a few requests to show just the Countdown clock for use in school activities/own games etc., so here it is! Enjoy! It’s a brand new version too, using the 2010 Office package.

There’s a numbers round involving arithmetic, too – but for now, we’re going to focus on letters and words, because that’s where Rosie’s skills shine.

Using an online resource, Alan created a dataset of the ten thousand most common English words.

Rosie the Red Robot Raspberry Pi

Many words, listed in order of common-ness. Alan wrote a Python script to order them alphabetically and by length

Next, Alan wrote a Python script to select nine letters at random, then search the word list to find all the words that could be spelled using only these letters. He used the randint function to select letters from a pre-loaded alphabet, and introduced a requirement to include at least two vowels among the nine letters.

Rosie the Red Robot Raspberry Pi

Words that match the available letters are displayed on the screen.

Rosie the Red Robot Raspberry Pi

Putting it all together

With the basic game-play working, it was time to bring the project to life. For this, Alan used Rosie’s camera module, along with optical character recognition (OCR) and text-to-speech capabilities.

Rosie the Red Robot Raspberry Pi

Alan writes, “Here’s a very amateurish drawing to brainstorm our idea. Let’s call it a design as it makes it sound like we know what we’re doing.”

Alan’s script has Rosie take a photo of the TV screen during the Countdown letters round, then perform OCR using the Google Cloud Vision API to detect the nine letters contestants have to work with. Next, Rosie runs Alan’s code to check the letters against the ten-thousand-word dataset, converts text to speech with Python gTTS, and finally speaks her highest-scoring word via omxplayer.

You can follow the adventures of Rosie the Red Robot on her blog, or follow her on Twitter. And if you’d like to build your own Rosie, Alan has provided code and tutorials for his projects too. Thanks, Alan!

The post Rosie the Countdown champion appeared first on Raspberry Pi.

Tracking People Without GPS

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/tracking_people_5.html

Interesting research:

The trick in accurately tracking a person with this method is finding out what kind of activity they’re performing. Whether they’re walking, driving a car, or riding in a train or airplane, it’s pretty easy to figure out when you know what you’re looking for.

The sensors can determine how fast a person is traveling and what kind of movements they make. Moving at a slow pace in one direction indicates walking. Going a little bit quicker but turning at 90-degree angles means driving. Faster yet, we’re in train or airplane territory. Those are easy to figure out based on speed and air pressure.

After the app determines what you’re doing, it uses the information it collects from the sensors. The accelerometer relays your speed, the magnetometer tells your relation to true north, and the barometer offers up the air pressure around you and compares it to publicly available information. It checks in with The Weather Channel to compare air pressure data from the barometer to determine how far above sea level you are. Google Maps and data offered by the US Geological Survey Maps provide incredibly detailed elevation readings.

Once it has gathered all of this information and determined the mode of transportation you’re currently taking, it can then begin to narrow down where you are. For flights, four algorithms begin to estimate the target’s location and narrows down the possibilities until its error rate hits zero.

If you’re driving, it can be even easier. The app knows the time zone you’re in based on the information your phone has provided to it. It then accesses information from your barometer and magnetometer and compares it to information from publicly available maps and weather reports. After that, it keeps track of the turns you make. With each turn, the possible locations whittle down until it pinpoints exactly where you are.

To demonstrate how accurate it is, researchers did a test run in Philadelphia. It only took 12 turns before the app knew exactly where the car was.

This is a good example of how powerful synthesizing information from disparate data sources can be. We spend too much time worried about individual data collection systems, and not enough about analysis techniques of those systems.

Research paper.

All the lights, all of the twinkly lights

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/all-of-the-lights/

Twinkly lights are to Christmas what pumpkins are to Halloween. And when you add a Raspberry Pi to your light show, the result instantly goes from “Meh, yeah.” to “OMG, wow!”

Here are some cool light-based Christmas projects to inspire you this weekend.

Raspberry Pi Christmas Lights

App-based light control

Christmas Tree Lights Demo

Project Code – https://github.com/eidolonFIRE/Christmas-Lights Raspberry Pi A+ ws2812b – https://smile.amazon.com/gp/product/B01H04YAIQ/ref=od_aui_detailpages00?ie=UTF8&psc=1 200w 5V supply – https://smile.amazon.com/gp/product/B01LZRIWZD/ref=od_aui_detailpages01?ie=UTF8&psc=1

In his Christmas lights project, Caleb Johnson uses an app as a control panel to switch between predefined displays. The full code is available on his GitHub, and it connects a Raspberry Pi A+ to a strip of programmable LEDs that change their pattern at the touch of a phone screen.

What’s great about this project, aside from the simplicity of its design, is the scope for extending it. Why not share the app with friends and family, allowing them to control your lights remotely? Or link the lights to social media so they are triggered by a specific hashtag, like in Alex Ellis’ #cheerlights project below.

Worldwide holiday #cheerlights

Holiday lights hack – 1$ Snowman + Raspberry Pi

Here we have a smart holiday light which will only run when it detects your presence in the room through a passive infrared PIR sensor. I’ve used hot glue for the fixings and an 8-LED NeoPixel strip connected to port 18.

Cheerlights, an online service created by Hans Scharler, allows makers to incorporate hashtag-controlled lighting into the projects. By tweeting the hashtag #cheerlights, followed by a colour, you can control a network of lights so that they are all displaying the same colour.

For his holiday light hack using Cheerlights, Alex incorporated the Pimoroni Blinkt! and a collection of cheap Christmas decorations to create cute light-up ornaments for the festive season.

To make your own, check out Alex’s blog post, and head to your local £1/$1 store for hackable decor. You could even link your Christmas tree and the trees of your family, syncing them all in one glorious, Santa-pleasing spectacular.

Outdoor decorations

DIY musical Xmas lights for beginners with raspberry pi

With just a few bucks of extra material, I walk you through converting your regular Christmas lights into a whole-house light show. The goal here is to go from scratch. Although this guide is intended for people who don’t know how to use linux at all and those who do alike, the focus is for people for whom linux and the raspberry pi are a complete mystery.

Looking to outdo your neighbours with your Christmas light show this year? YouTuber Makin’Things has created a beginners guide to setting up a Raspberry Pi–based musical light show for your facade, complete with information on soldering, wiring, and coding.

Once you’ve wrapped your house in metres and metres of lights and boosted your speakers so they can be heard for miles around, why not incorporate #cheerlights to make your outdoor decor interactive?

Still not enough? How about controlling your lights using a drum kit? Christian Kratky’s MIDI-Based Christmas Lights Animation system (or as I like to call it, House Rock) does exactly that.

Eye Of The Tiger (MIDI based christmas lights animation system prototype)

Project documentation and source code: https://www.hackster.io/cyborg-titanium-14/light-pi-1c88b0 The song is taken from: https://www.youtube.com/watch?v=G6r1dAire0Y

Any more?

We know these projects are just the tip of the iceberg when it comes to the Raspberry Pi–powered Christmas projects out there, and as always, we’d love you to share yours with us. So post a link in the comments below, or tag us on social media when posting your build photos, videos, and/or blog links. ‘Tis the season for sharing after all.

The post All the lights, all of the twinkly lights appeared first on Raspberry Pi.

The Raspberry Pi Christmas shopping list 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/christmas-shopping-list-2017/

Looking for the perfect Christmas gift for a beloved maker in your life? Maybe you’d like to give a relative or friend a taste of the world of coding and Raspberry Pi? Whatever you’re looking for, the Raspberry Pi Christmas shopping list will point you in the right direction.

An ice-skating Raspberry Pi - The Raspberry Pi Christmas Shopping List 2017

For those getting started

Thinking about introducing someone special to the wonders of Raspberry Pi during the holidays? Although you can set up your Pi with peripherals from around your home, such as a mobile phone charger, your PC’s keyboard, and the old mouse dwelling in an office drawer, a starter kit is a nice all-in-one package for the budding coder.



Check out the starter kits from Raspberry Pi Approved Resellers such as Pimoroni, The Pi Hut, ModMyPi, Adafruit, CanaKit…the list is pretty long. Our products page will direct you to your closest reseller, or you can head to element14 to pick up the official Raspberry Pi Starter Kit.



You can also buy the Raspberry Pi Press’s brand-new Raspberry Pi Beginners Book, which includes a Raspberry Pi Zero W, a case, a ready-made SD card, and adapter cables.

Once you’ve presented a lucky person with their first Raspberry Pi, it’s time for them to spread their maker wings and learn some new skills.

MagPi Essentials books - The Raspberry Pi Christmas Shopping List 2017

To help them along, you could pick your favourite from among the Official Projects Book volume 3, The MagPi Essentials guides, and the brand-new third edition of Carrie Anne Philbin’s Adventures in Raspberry Pi. (She is super excited about this new edition!)

And you can always add a link to our free resources on the gift tag.

For the maker in your life

If you’re looking for something for a confident digital maker, you can’t go wrong with adding to their arsenal of electric and electronic bits and bobs that are no doubt cluttering drawers and boxes throughout their house.



Components such as servomotors, displays, and sensors are staples of the maker world. And when it comes to jumper wires, buttons, and LEDs, one can never have enough.



You could also consider getting your person a soldering iron, some helpings hands, or small tools such as a Dremel or screwdriver set.

And to make their life a little less messy, pop it all inside a Really Useful Box…because they’re really useful.



For kit makers

While some people like to dive into making head-first and to build whatever comes to mind, others enjoy working with kits.



The Naturebytes kit allows you to record the animal visitors of your garden with the help of a camera and a motion sensor. Footage of your local badgers, birds, deer, and more will be saved to an SD card, or tweeted or emailed to you if it’s in range of WiFi.

Cortec Tiny 4WD - The Raspberry Pi Christmas Shopping List 2017

Coretec’s Tiny 4WD is a kit for assembling a Pi Zero–powered remote-controlled robot at home. Not only is the robot adorable, building it also a great introduction to motors and wireless control.



Bare Conductive’s Touch Board Pro Kit offers everything you need to create interactive electronics projects using conductive paint.

Pi Hut Arcade Kit - The Raspberry Pi Christmas Shopping List 2017

Finally, why not help your favourite maker create their own gaming arcade using the Arcade Building Kit from The Pi Hut?

For the reader

For those who like to curl up with a good read, or spend too much of their day on public transport, a book or magazine subscription is the perfect treat.

For makers, hackers, and those interested in new technologies, our brand-new HackSpace magazine and the ever popular community magazine The MagPi are ideal. Both are available via a physical or digital subscription, and new subscribers to The MagPi also receive a free Raspberry Pi Zero W plus case.

Cover of CoderDojo Nano Make your own game

Marc Scott Beginner's Guide to Coding Book

You can also check out other publications from the Raspberry Pi family, including CoderDojo’s new CoderDojo Nano: Make Your Own Game, Eben Upton and Gareth Halfacree’s Raspberry Pi User Guide, and Marc Scott’s A Beginner’s Guide to Coding. And have I mentioned Carrie Anne’s Adventures in Raspberry Pi yet?

Stocking fillers for everyone

Looking for something small to keep your loved ones occupied on Christmas morning? Or do you have to buy a Secret Santa gift for the office tech? Here are some wonderful stocking fillers to fill your boots with this season.

Pi Hut 3D Christmas Tree - The Raspberry Pi Christmas Shopping List 2017

The Pi Hut 3D Xmas Tree: available as both a pre-soldered and a DIY version, this gadget will work with any 40-pin Raspberry Pi and allows you to create your own mini light show.



Google AIY Voice kit: build your own home assistant using a Raspberry Pi, the MagPi Essentials guide, and this brand-new kit. “Google, play Mariah Carey again…”



Pimoroni’s Raspberry Pi Zero W Project Kits offer everything you need, including the Pi, to make your own time-lapse cameras, music players, and more.



The official Raspberry Pi Sense HAT, Camera Module, and cases for the Pi 3 and Pi Zero will complete the collection of any Raspberry Pi owner, while also opening up exciting project opportunities.

STEAM gifts that everyone will love

Awesome Astronauts | Building LEGO’s Women of NASA!

LEGO Idea’s bought out this amazing ‘Women of NASA’ set, and I thought it would be fun to build, play and learn from these inspiring women! First up, let’s discover a little more about Sally Ride and Mae Jemison, two AWESOME ASTRONAUTS!

Treat the kids, and big kids, in your life to the newest LEGO Ideas set, the Women of NASA — starring Nancy Grace Roman, Margaret Hamilton, Sally Ride, and Mae Jemison!



Explore the world of wearables with Pimoroni’s sewable, hackable, wearable, adorable Bearables kits.



Add lights and motors to paper creations with the Activating Origami Kit, available from The Pi Hut.




We all loved Hidden Figures, and the STEAM enthusiast you know will do too. The film’s available on DVD, and you can also buy the original book, along with other fascinating non-fiction such as Rebecca Skloot’s The Immortal Life of Henrietta Lacks, Rachel Ignotofsky’s Women in Science, and Sydney Padua’s (mostly true) The Thrilling Adventures of Lovelace and Babbage.

Have we missed anything?

With so many amazing kits, HATs, and books available from members of the Raspberry Pi community, it’s hard to only pick a few. Have you found something splendid for the maker in your life? Maybe you’ve created your own kit that uses the Raspberry Pi? Share your favourites with us in the comments below or via our social media accounts.

The post The Raspberry Pi Christmas shopping list 2017 appeared first on Raspberry Pi.

Glenn’s Take on re:Invent 2017 Part 1

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-1/

GREETINGS FROM LAS VEGAS

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We have a lot of exciting announcements this week. I’m going to post to the AWS Architecture blog each day with my take on what’s interesting about some of the announcements from a cloud architectural perspective.

Why not start at the beginning? At the Midnight Madness launch on Sunday night, we announced Amazon Sumerian, our platform for VR, AR, and mixed reality. The hype around VR/AR has existed for many years, though for me, it is a perfect example of how a working end-to-end solution often requires innovation from multiple sources. For AR/VR to be successful, we need many components to come together in a coherent manner to provide a great experience.

First, we need lightweight, high-definition goggles with motion tracking that are comfortable to wear. Second, we need to track movement of our body and hands in a 3-D space so that we can interact with virtual objects in the virtual world. Third, we need to build the virtual world itself and populate it with assets and define how the interactions will work and connect with various other systems.

There has been rapid development of the physical devices for AR/VR, ranging from iOS devices to Oculus Rift and HTC Vive, which provide excellent capabilities for the first and second components defined above. With the launch of Amazon Sumerian we are solving for the third area, which will help developers easily build their own virtual worlds and start experimenting and innovating with how to apply AR/VR in new ways.

Already, within 48 hours of Amazon Sumerian being announced, I have had multiple discussions with customers and partners around some cool use cases where VR can help in training simulations, remote-operator controls, or with new ideas around interacting with complex visual data sets, which starts bringing concepts straight out of sci-fi movies into the real (virtual) world. I am really excited to see how Sumerian will unlock the creative potential of developers and where this will lead.

Amazon MQ
I am a huge fan of distributed architectures where asynchronous messaging is the backbone of connecting the discrete components together. Amazon Simple Queue Service (Amazon SQS) is one of my favorite services due to its simplicity, scalability, performance, and the incredible flexibility of how you can use Amazon SQS in so many different ways to solve complex queuing scenarios.

While Amazon SQS is easy to use when building cloud-native applications on AWS, many of our customers running existing applications on-premises required support for different messaging protocols such as: Java Message Service (JMS), .Net Messaging Service (NMS), Advanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), and WebSockets. One of the most popular applications for on-premise message brokers is Apache ActiveMQ. With the release of Amazon MQ, you can now run Apache ActiveMQ on AWS as a managed service similar to what we did with Amazon ElastiCache back in 2012. For me, there are two compelling, major benefits that Amazon MQ provides:

  • Integrate existing applications with cloud-native applications without having to change a line of application code if using one of the supported messaging protocols. This removes one of the biggest blockers for integration between the old and the new.
  • Remove the complexity of configuring Multi-AZ resilient message broker services as Amazon MQ provides out-of-the-box redundancy by always storing messages redundantly across Availability Zones. Protection is provided against failure of a broker through to complete failure of an Availability Zone.

I believe that Amazon MQ is a major component in the tools required to help you migrate your existing applications to AWS. Having set up cross-data center Apache ActiveMQ clusters in the past myself and then testing to ensure they work as expected during critical failure scenarios, technical staff working on migrations to AWS benefit from the ease of deploying a fully redundant, managed Apache ActiveMQ cluster within minutes.

Who would have thought I would have been so excited to revisit Apache ActiveMQ in 2017 after using SQS for many, many years? Choice is a wonderful thing.

Amazon GuardDuty
Maintaining application and information security in the modern world is increasingly complex and is constantly evolving and changing as new threats emerge. This is due to the scale, variety, and distribution of services required in a competitive online world.

At Amazon, security is our number one priority. Thus, we are always looking at how we can increase security detection and protection while simplifying the implementation of advanced security practices for our customers. As a result, we released Amazon GuardDuty, which provides intelligent threat detection by using a combination of multiple information sources, transactional telemetry, and the application of machine learning models developed by AWS. One of the biggest benefits of Amazon GuardDuty that I appreciate is that enabling this service requires zero software, agents, sensors, or network choke points. which can all impact performance or reliability of the service you are trying to protect. Amazon GuardDuty works by monitoring your VPC flow logs, AWS CloudTrail events, DNS logs, as well as combing other sources of security threats that AWS is aggregating from our own internal and external sources.

The use of machine learning in Amazon GuardDuty allows it to identify changes in behavior, which could be suspicious and require additional investigation. Amazon GuardDuty works across all of your AWS accounts allowing for an aggregated analysis and ensuring centralized management of detected threats across accounts. This is important for our larger customers who can be running many hundreds of AWS accounts across their organization, as providing a single common threat detection of their organizational use of AWS is critical to ensuring they are protecting themselves.

Detection, though, is only the beginning of what Amazon GuardDuty enables. When a threat is identified in Amazon GuardDuty, you can configure remediation scripts or trigger Lambda functions where you have custom responses that enable you to start building automated responses to a variety of different common threats. Speed of response is required when a security incident may be taking place. For example, Amazon GuardDuty detects that an Amazon Elastic Compute Cloud (Amazon EC2) instance might be compromised due to traffic from a known set of malicious IP addresses. Upon detection of a compromised EC2 instance, we could apply an access control entry restricting outbound traffic for that instance, which stops loss of data until a security engineer can assess what has occurred.

Whether you are a customer running a single service in a single account, or a global customer with hundreds of accounts with thousands of applications, or a startup with hundreds of micro-services with hourly release cycle in a devops world, I recommend enabling Amazon GuardDuty. We have a 30-day free trial available for all new customers of this service. As it is a monitor of events, there is no change required to your architecture within AWS.

Stay tuned for tomorrow’s post on AWS Media Services and Amazon Neptune.

 

Glenn during the Tour du Mont Blanc

Presenting AWS IoT Analytics: Delivering IoT Analytics at Scale and Faster than Ever Before

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-aws-iot-analytics/

One of the technology areas I thoroughly enjoy is the Internet of Things (IoT). Even as a child I used to infuriate my parents by taking apart the toys they would purchase for me to see how they worked and if I could somehow put them back together. It seems somehow I was destined to end up the tough and ever-changing world of technology. Therefore, it’s no wonder that I am really enjoying learning and tinkering with IoT devices and technologies. It combines my love of development and software engineering with my curiosity around circuits, controllers, and other facets of the electrical engineering discipline; even though an electrical engineer I can not claim to be.

Despite all of the information that is collected by the deployment of IoT devices and solutions, I honestly never really thought about the need to analyze, search, and process this data until I came up against a scenario where it became of the utmost importance to be able to search and query through loads of sensory data for an anomaly occurrence. Of course, I understood the importance of analytics for businesses to make accurate decisions and predictions to drive the organization’s direction. But it didn’t occur to me initially, how important it was to make analytics an integral part of my IoT solutions. Well, I learned my lesson just in time because this re:Invent a service is launching to make it easier for anyone to process and analyze IoT messages and device data.

 

Hello, AWS IoT Analytics!  AWS IoT Analytics is a fully managed service of AWS IoT that provides advanced data analysis of data collected from your IoT devices.  With the AWS IoT Analytics service, you can process messages, gather and store large amounts of device data, as well as, query your data. Also, the new AWS IoT Analytics service feature integrates with Amazon Quicksight for visualization of your data and brings the power of machine learning through integration with Jupyter Notebooks.

Benefits of AWS IoT Analytics

  • Helps with predictive analysis of data by providing access to pre-built analytical functions
  • Provides ability to visualize analytical output from service
  • Provides tools to clean up data
  • Can help identify patterns in the gathered data

Be In the Know: IoT Analytics Concepts

  • Channel: archives the raw, unprocessed messages and collects data from MQTT topics.
  • Pipeline: consumes messages from channels and allows message processing.
    • Activities: perform transformations on your messages including filtering attributes and invoking lambda functions advanced processing.
  • Data Store: Used as a queryable repository for processed messages. Provide ability to have multiple datastores for messages coming from different devices or locations or filtered by message attributes.
  • Data Set: Data retrieval view from a data store, can be generated by a recurring schedule. 

Getting Started with AWS IoT Analytics

First, I’ll create a channel to receive incoming messages.  This channel can be used to ingest data sent to the channel via MQTT or messages directed from the Rules Engine. To create a channel, I’ll select the Channels menu option and then click the Create a channel button.

I’ll name my channel, TaraIoTAnalyticsID and give the Channel a MQTT topic filter of Temperature. To complete the creation of my channel, I will click the Create Channel button.

Now that I have my Channel created, I need to create a Data Store to receive and store the messages received on the Channel from my IoT device. Remember you can set up multiple Data Stores for more complex solution needs, but I’ll just create one Data Store for my example. I’ll select Data Stores from menu panel and click Create a data store.

 

I’ll name my Data Store, TaraDataStoreID, and once I click the Create the data store button and I would have successfully set up a Data Store to house messages coming from my Channel.

Now that I have my Channel and my Data Store, I will need to connect the two using a Pipeline. I’ll create a simple pipeline that just connects my Channel and Data Store, but you can create a more robust pipeline to process and filter messages by adding Pipeline activities like a Lambda activity.

To create a pipeline, I’ll select the Pipelines menu option and then click the Create a pipeline button.

I will not add an Attribute for this pipeline. So I will click Next button.

As we discussed there are additional pipeline activities that I can add to my pipeline for the processing and transformation of messages but I will keep my first pipeline simple and hit the Next button.

The final step in creating my pipeline is for me to select my previously created Data Store and click Create Pipeline.

All that is left for me to take advantage of the AWS IoT Analytics service is to create an IoT rule that sends data to an AWS IoT Analytics channel.  Wow, that was a super easy process to set up analytics for IoT devices.

If I wanted to create a Data Set as a result of queries run against my data for visualization with Amazon Quicksight or integrate with Jupyter Notebooks to perform more advanced analytical functions, I can choose the Analyze menu option to bring up the screens to create data sets and access the Juypter Notebook instances.

Summary

As you can see, it was a very simple process to set up the advanced data analysis for AWS IoT. With AWS IoT Analytics, you have the ability to collect, visualize, process, query and store large amounts of data generated from your AWS IoT connected device. Additionally, you can access the AWS IoT Analytics service in a myriad of different ways; the AWS Command Line Interface (AWS CLI), the AWS IoT API, language-specific AWS SDKs, and AWS IoT Device SDKs.

AWS IoT Analytics is available today for you to dig into the analysis of your IoT data. To learn more about AWS IoT and AWS IoT Analytics go to the AWS IoT Analytics product page and/or the AWS IoT documentation.

Tara

In the Works – AWS IoT Device Defender – Secure Your IoT Fleet

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/in-the-works-aws-sepio-secure-your-iot-fleet/

Scale takes on a whole new meaning when it comes to IoT. Last year I was lucky enough to tour a gigantic factory that had, on average, one environment sensor per square meter. The sensors measured temperature, humidity, and air purity several times per second, and served as an early warning system for contaminants. I’ve heard customers express interest in deploying IoT-enabled consumer devices in the millions or tens of millions.

With powerful, long-lived devices deployed in a geographically distributed fashion, managing security challenges is crucial. However, the limited amount of local compute power and memory can sometimes limit the ability to use encryption and other forms of data protection.

To address these challenges and to allow our customers to confidently deploy IoT devices at scale, we are working on IoT Device Defender. While the details might change before release, AWS IoT Device Defender is designed to offer these benefits:

Continuous AuditingAWS IoT Device Defender monitors the policies related to your devices to ensure that the desired security settings are in place. It looks for drifts away from best practices and supports custom audit rules so that you can check for conditions that are specific to your deployment. For example, you could check to see if a compromised device has subscribed to sensor data from another device. You can run audits on a schedule or on an as-needed basis.

Real-Time Detection and AlertingAWS IoT Device Defender looks for and quickly alerts you to unusual behavior that could be coming from a compromised device. It does this by monitoring the behavior of similar devices over time, looking for unauthorized access attempts, changes in connection patterns, and changes in traffic patterns (either inbound or outbound).

Fast Investigation and Mitigation – In the event that you get an alert that something unusual is happening, AWS IoT Device Defender gives you the tools, including contextual information, to help you to investigate and mitigate the problem. Device information, device statistics, diagnostic logs, and previous alerts are all at your fingertips. You have the option to reboot the device, revoke its permissions, reset it to factory defaults, or push a security fix.

Stay Tuned
I’ll have more info (and a hands-on post) as soon as possible, so stay tuned!

Jeff;

Warrant Protections against Police Searches of Our Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/warrant_protect.html

The cell phones we carry with us constantly are the most perfect surveillance device ever invented, and our laws haven’t caught up to that reality. That might change soon.

This week, the Supreme Court will hear a case with profound implications on your security and privacy in the coming years. The Fourth Amendment’s prohibition of unlawful search and seizure is a vital right that protects us all from police overreach, and the way the courts interpret it is increasingly nonsensical in our computerized and networked world. The Supreme Court can either update current law to reflect the world, or it can further solidify an unnecessary and dangerous police power.

The case centers on cell phone location data and whether the police need a warrant to get it, or if they can use a simple subpoena, which is easier to obtain. Current Fourth Amendment doctrine holds that you lose all privacy protections over any data you willingly share with a third party. Your cellular provider, under this interpretation, is a third party with whom you’ve willingly shared your movements, 24 hours a day, going back months — even though you don’t really have any choice about whether to share with them. So police can request records of where you’ve been from cell carriers without any judicial oversight. The case before the court, Carpenter v. United States, could change that.

Traditionally, information that was most precious to us was physically close to us. It was on our bodies, in our homes and offices, in our cars. Because of that, the courts gave that information extra protections. Information that we stored far away from us, or gave to other people, afforded fewer protections. Police searches have been governed by the “third-party doctrine,” which explicitly says that information we share with others is not considered private.

The Internet has turned that thinking upside-down. Our cell phones know who we talk to and, if we’re talking via text or e-mail, what we say. They track our location constantly, so they know where we live and work. Because they’re the first and last thing we check every day, they know when we go to sleep and when we wake up. Because everyone has one, they know whom we sleep with. And because of how those phones work, all that information is naturally shared with third parties.

More generally, all our data is literally stored on computers belonging to other people. It’s our e-mail, text messages, photos, Google docs, and more ­ all in the cloud. We store it there not because it’s unimportant, but precisely because it is important. And as the Internet of Things computerizes the rest our lives, even more data will be collected by other people: data from our health trackers and medical devices, data from our home sensors and appliances, data from Internet-connected “listeners” like Alexa, Siri, and your voice-activated television.

All this data will be collected and saved by third parties, sometimes for years. The result is a detailed dossier of your activities more complete than any private investigator –­ or police officer –­ could possibly collect by following you around.

The issue here is not whether the police should be allowed to use that data to help solve crimes. Of course they should. The issue is whether that information should be protected by the warrant process that requires the police to have probable cause to investigate you and get approval by a court.

Warrants are a security mechanism. They prevent the police from abusing their authority to investigate someone they have no reason to suspect of a crime. They prevent the police from going on “fishing expeditions.” They protect our rights and liberties, even as we willingly give up our privacy to the legitimate needs of law enforcement.

The third-party doctrine never made a lot of sense. Just because I share an intimate secret with my spouse, friend, or doctor doesn’t mean that I no longer consider it private. It makes even less sense in today’s hyper-connected world. It’s long past time the Supreme Court recognized that a months’-long history of my movements is private, and my e-mails and other personal data deserve the same protections, whether they’re on my laptop or on Google’s servers.

This essay previously appeared in the Washington Post.

Details on the case. Two opinion pieces.

I signed on to two amicus briefs on the case.

EDITED TO ADD (12/1): Good commentary on the Supreme Court oral arguments.

Amazon GuardDuty – Continuous Security Monitoring & Threat Detection

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-guardduty-continuous-security-monitoring-threat-detection/

Threats to your IT infrastructure (AWS accounts & credentials, AWS resources, guest operating systems, and applications) come in all shapes and sizes! The online world can be a treacherous place and we want to make sure that you have the tools, knowledge, and perspective to keep your IT infrastructure safe & sound.

Amazon GuardDuty is designed to give you just that. Informed by a multitude of public and AWS-generated data feeds and powered by machine learning, GuardDuty analyzes billions of events in pursuit of trends, patterns, and anomalies that are recognizable signs that something is amiss. You can enable it with a click and see the first findings within minutes.

How it Works
GuardDuty voraciously consumes multiple data streams, including several threat intelligence feeds, staying aware of malicious IP addresses, devious domains, and more importantly, learning to accurately identify malicious or unauthorized behavior in your AWS accounts. In combination with information gleaned from your VPC Flow Logs, AWS CloudTrail Event Logs, and DNS logs, this allows GuardDuty to detect many different types of dangerous and mischievous behavior including probes for known vulnerabilities, port scans and probes, and access from unusual locations. On the AWS side, it looks for suspicious AWS account activity such as unauthorized deployments, unusual CloudTrail activity, patterns of access to AWS API functions, and attempts to exceed multiple service limits. GuardDuty will also look for compromised EC2 instances talking to malicious entities or services, data exfiltration attempts, and instances that are mining cryptocurrency.

GuardDuty operates completely on AWS infrastructure and does not affect the performance or reliability of your workloads. You do not need to install or manage any agents, sensors, or network appliances. This clean, zero-footprint model should appeal to your security team and allow them to green-light the use of GuardDuty across all of your AWS accounts.

Findings are presented to you at one of three levels (low, medium, or high), accompanied by detailed evidence and recommendations for remediation. The findings are also available as Amazon CloudWatch Events; this allows you to use your own AWS Lambda functions to automatically remediate specific types of issues. This mechanism also allows you to easily push GuardDuty findings into event management systems such as Splunk, Sumo Logic, and PagerDuty and to workflow systems like JIRA, ServiceNow, and Slack.

A Quick Tour
Let’s take a quick tour. I open up the GuardDuty Console and click on Get started:

Then I confirm that I want to enable GuardDuty. This gives it permission to set up the appropriate service-linked roles and to analyze my logs by clicking on Enable GuardDuty:

My own AWS environment isn’t all that exciting, so I visit the General Settings and click on Generate sample findings to move ahead. Now I’ve got some intriguing findings:

I can click on a finding to learn more:

The magnifying glass icons allow me to create inclusion or exclusion filters for the associated resource, action, or other value. I can filter for all of the findings related to this instance:

I can customize GuardDuty by adding lists of trusted IP addresses and lists of malicious IP addresses that are peculiar to my environment:

After I enable GuardDuty in my administrator account, I can invite my other accounts to participate:

Once the accounts decide to participate, GuardDuty will arrange for their findings to be shared with the administrator account.

I’ve barely scratched the surface of GuardDuty in the limited space and time that I have. You can try it out at no charge for 30 days; after that you pay based on the number of entries it processes from your VPC Flow, CloudTrail, and DNS logs.

Available Now
Amazon GuardDuty is available in production form in the US East (Northern Virginia), US East (Ohio), US West (Oregon), US West (Northern California), EU (Ireland), EU (Frankfurt), EU (London), South America (São Paulo), Canada (Central), Asia Pacific (Tokyo), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), and Asia Pacific (Mumbai) Regions and you can start using it today!

Jeff;

Visualising Weather Station data with Initial State

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/initial-state/

Since we launched the Oracle Weather Station project, we’ve collected more than six million records from our network of stations at schools and colleges around the world. Each one of these records contains data from ten separate sensors — that’s over 60 million individual weather measurements!

Weather station measurements in Oracle database - Initial State

Weather station measurements in Oracle database

Weather data collection

Having lots of data covering a long period of time is great for spotting trends, but to do so, you need some way of visualising your measurements. We’ve always had great resources like Graphing the weather to help anyone analyse their weather data.

And from now on its going to be even easier for our Oracle Weather Station owners to display and share their measurements. I’m pleased to announce a new partnership with our friends at Initial State: they are generously providing a white-label platform to which all Oracle Weather Station recipients can stream their data.

Using Initial State

Initial State makes it easy to create vibrant dashboards that show off local climate data. The service is perfect for having your Oracle Weather Station data on permanent display, for example in the school reception area or on the school’s website.

But that’s not all: the Initial State toolkit includes a whole range of easy-to-use analysis tools for extracting trends from your data. Distribution plots and statistics are just a few clicks away!

Humidity value distribution (May-Nov 2017) - Raspberry Pi Oracle Weather Station Initial State

Looks like Auntie Beryl is right — it has been a damp old year! (Humidity value distribution May–Nov 2017)

The wind direction data from my Weather Station supports my excuse as to why I’ve not managed a high-altitude balloon launch this year: to use my launch site, I need winds coming from the east, and those have been in short supply.

Chart showing wind direction over time - Raspberry Pi Oracle Weather Station Initial State

Chart showing wind direction over time

Initial State credientials

Every Raspberry Pi Oracle Weather Station school will shortly be receiving the credentials needed to start streaming their data to Initial State. If you’re super keen though, please email [email protected] with a photo of your Oracle Weather Station, and I’ll let you jump the queue!

The Initial State folks are big fans of Raspberry Pi and have a ton of Pi-related projects on their website. They even included shout-outs to us in the music video they made to celebrate the publication of their 50th tutorial. Can you spot their weather station?

Your home-brew weather station

If you’ve built your own Raspberry Pi–powered weather station and would like to dabble with the Initial State dashboards, you’re in luck! The team at Initial State is offering 14-day trials for everyone. For more information on Initial State, and to sign up for the trial, check out their website.

The post Visualising Weather Station data with Initial State appeared first on Raspberry Pi.

Using taxies to monitor air quality in Peru

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/air-quality-peru/

When James Puderer moved to Lima, Peru, his roadside runs left a rather nasty taste in his mouth. Hit by the pollution from old diesel cars in the area, he decided to monitor the air quality in his new city using Raspberry Pis and the abundant taxies as his tech carriers.

Taxi Datalogger – Assembly

How to assemble the enclosure for my Taxi Datalogger project: https://www.hackster.io/james-puderer/distributed-air-quality-monitoring-using-taxis-69647e

Sensing air quality in Lima

Luckily for James, almost all taxies in Lima are equipped with the standard hollow vinyl roof sign seen in the video above, which makes them ideal for hacking.

Using a Raspberry Pi alongside various Adafuit tech including the BME280 Temperature/Humidity/Pressure Sensor and GPS Antenna, James created a battery-powered retrofit setup that fits snugly into the vinyl sign.

The schematic of the air quality monitor tech inside the taxi sign

With the onboard tech, the device collects data on longitude, latitude, humidity, temperature, pressure, and airborne particle count, feeding it back to an Android Things datalogger. This data is then pushed to Google IoT Core, where it can be remotely accessed.

Next, the data is processed by Google Dataflow and turned into a BigQuery table. Users can then visualize the collected measurements. And while James uses Google Maps to analyse his data, there are many tools online that will allow you to organise and study your figures depending on what final result you’re hoping to achieve.

A heat map of James' local area showing air quality

James hopped in a taxi and took his monitor on the road, collecting results throughout the journey

James has provided the complete build process, including all tech ingredients and code, on his Hackster.io project page, and urges makers to create their own air quality monitor for their local area. He also plans on building upon the existing design by adding a 12V power hookup for connecting to the taxi, functioning lights within the sign, and companion apps for drivers.

Sensing the world around you

We’ve seen a wide variety of Raspberry Pi projects using sensors to track the world around us, such as Kasia Molga’s Human Sensor costume series, which reacts to air pollution by lighting up, and Clodagh O’Mahony’s Social Interaction Dress, which she created to judge how conversation and physical human interaction can be scored and studied.

Human Sensor

Kasia Molga’s Human Sensor — a collection of hi-tech costumes that react to air pollution within the wearer’s environment.

Many people also build their own Pi-powered weather stations, or use the Raspberry Pi Oracle Weather Station, to measure and record conditions in their towns and cities from the roofs of schools, offices, and homes.

Have you incorporated sensors into your Raspberry Pi projects? Share your builds in the comments below or via social media by tagging us.

The post Using taxies to monitor air quality in Peru appeared first on Raspberry Pi.

Gladys Project: a Raspberry Pi home assistant

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/gladys-project-home-assistant/

If, like me, you’re a pretty poor time-keeper with the uncanny ability to never get up when your alarm goes off and yet still somehow make it to work just in time — a little dishevelled, brushing your teeth in the office bathroom — then you too need Gladys.

Raspberry Pi home assistant

Over the last year, we’ve seen off-the-shelf home assistants make their way onto the Raspberry Pi. With the likes of Amazon Alexa, Google Home, and Siri, it’s becoming ever easier to tell the air around you to “Turn off the bathroom light” or “Resume my audiobook”, and it happens without you lifting a finger. It’s quite wonderful. And alongside these big names are several home-brew variants, such as Jarvis and Jasper, which were developed to run on a Pi in order to perform home automation tasks.

So do we need another such service? Sure! And here’s why…

A Romantic Mode with your Home Assistant Gladys !

A simple romantic mode in Gladys ! See https://gladysproject.com for more informations about the project 🙂 Devices used : – A 5$ Xiaomi Switch Button – A Raspberry Pi 3 with Gladys on it – Connected lights ( Works with Philips Hue, Milight lamp, etc..

Gladys Project

According to the Gladys creators’ website, Gladys Project is ‘an open-source program which runs on your Raspberry Pi. It communicates with all your devices and checks your calendar to help you in your everyday life’.

Gladys does the basic day-to-day life maintenance tasks that I need handled in order to exist without my mum there to remind me to wake up in time for work. And, as you can see from the video above, it also plays some mean George Michael.

A screenshot of a mobile phone showing the Gladys app - Gladys Project home assistant

Gladys can help run your day from start to finish, taking into consideration road conditions and travel time to ensure you’re never late, regardless of external influences. It takes you 30 minutes to get ready and another 30 minutes to drive to work for 9.00? OK, but today there’s a queue on the motorway, and now your drive time is looking to be closer to an hour. Thankfully, Gladys has woken you up a half hour earlier, so you’re still on time. Isn’t that nice of her? And while you’re showering and mourning those precious stolen minutes of sleep, she’s opening the blinds and brewing coffee for you. Thanks, mum!

A screenshot of the Gladys hub on the Raspberry Pi - Gladys Project home assistant

Set the parameters of your home(s) using the dedicated hub.

Detecting your return home at the end of the day, Gladys runs your pre-set evening routine. Then, once you place your phone on an NFC tag to indicate bedtime, she turns off the lights and, if your nighttime preferences dictate it, starts the whale music playlist, sending you into a deep, stressless slumber.

A screenshot of Etcher showing the install process of the Gladys image - Gladys Project home assistant

Gladys comes as a pre-built Raspbian image, ready to be cloned to an SD card.

Gladys is free to download from the Gladys Project website and is compatible with smart devices such as Philips Hue lightbulbs, WeMo Insight Switches, and the ever tricky to control without the official app Sonos speakers!

Automate and chill

Which tasks and devices in your home do you control with a home assistant? Do you love sensor-controlled lighting which helps you save on electricity? How about working your way through an audiobook as you do your housework, requesting a pause every time you turn on the vacuum cleaner?

Share your experiences with us in the comments below, and if you’ve built a home assistant for Raspberry Pi, or use an existing setup to run your household, share that too.

And, as ever, if you want to keep up to date with Raspberry Pi projects from across the globe, be sure to follow us on social media, sign up to our weekly newsletter, the Raspberry Pi Weekly, and check out The MagPi, the official magazine of the Raspberry Pi community, available in stores or as a free PDF download.

The post Gladys Project: a Raspberry Pi home assistant appeared first on Raspberry Pi.