Tag Archives: servers

RDS for Oracle: Extending Outbound Network Access to use SSL/TLS

Post Syndicated from Surya Nallu original https://aws.amazon.com/blogs/architecture/rds-for-oracle-extending-outbound-network-access-to-use-ssltls/

In December 2016, we launched the Outbound Network Access functionality for Amazon RDS for Oracle, enabling customers to use their RDS for Oracle database instances to communicate with external web endpoints using the utl_http and utl tcp packages, and sending emails through utl_smtp. We extended the functionality by adding the option of using custom DNS servers, allowing such outbound network accesses to make use of any DNS server a customer chooses to use. These releases enabled HTTP, TCP and SMTP communication originating out of RDS for Oracle instances – limited to non-secure (non-SSL) mediums.

To overcome the limitation over SSL connections, we recently published a whitepaper, that guides through the process of creating customized Oracle wallet bundles on your RDS for Oracle instances. By making use of such wallets, you can now extend the Outbound Network Access capability to have external communications happen over secure (SSL/TLS) connections. This opens up new use cases for your RDS for Oracle instances.

With the right set of certificates imported into your RDS for Oracle instances (through Oracle wallets), your database instances can now:

  • Communicate with a HTTPS endpoint: Using utl_http, access a resource such as https://status.aws.amazon.com/robots.txt
  • Download files from Amazon S3 securely: Using a presigned URL from Amazon S3, you can now download any file over SSL
  • Extending Oracle Database links to use SSL: Database links between RDS for Oracle instances can now use SSL as long as the instances have the SSL option installed
  • Sending email over SMTPS:
    • You can now integrate with Amazon SES to send emails from your database instances and any other generic SMTPS with which the provider can be integrated

These are just a few high-level examples of new use cases that have opened up with the whitepaper. As a reminder, always ensure to have best security practices in place when making use of Outbound Network Access (detailed in the whitepaper).

About the Author

Surya Nallu is a Software Development Engineer on the Amazon RDS for Oracle team.

Confused About the Hybrid Cloud? You’re Not Alone

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/confused-about-the-hybrid-cloud-youre-not-alone/

Hybrid Cloud. What is it?

Do you have a clear understanding of the hybrid cloud? If you don’t, it’s not surprising.

Hybrid cloud has been applied to a greater and more varied number of IT solutions than almost any other recent data management term. About the only thing that’s clear about the hybrid cloud is that the term hybrid cloud wasn’t invented by customers, but by vendors who wanted to hawk whatever solution du jour they happened to be pushing.

Let’s be honest. We’re in an industry that loves hype. We can’t resist grafting hyper, multi, ultra, and super and other prefixes onto the beginnings of words to entice customers with something new and shiny. The alphabet soup of cloud-related terms can include various options for where the cloud is located (on-premises, off-premises), whether the resources are private or shared in some degree (private, community, public), what type of services are offered (storage, computing), and what type of orchestrating software is used to manage the workflow and the resources. With so many moving parts, it’s no wonder potential users are confused.

Let’s take a step back, try to clear up the misconceptions, and come up with a basic understanding of what the hybrid cloud is. To be clear, this is our viewpoint. Others are free to do what they like, so bear that in mind.

So, What is the Hybrid Cloud?

The hybrid cloud refers to a cloud environment made up of a mixture of on-premises private cloud resources combined with third-party public cloud resources that use some kind of orchestration between them.

To get beyond the hype, let’s start with Forrester Research‘s idea of the hybrid cloud: “One or more public clouds connected to something in my data center. That thing could be a private cloud; that thing could just be traditional data center infrastructure.”

To put it simply, a hybrid cloud is a mash-up of on-premises and off-premises IT resources.

To expand on that a bit, we can say that the hybrid cloud refers to a cloud environment made up of a mixture of on-premises private cloud[1] resources combined with third-party public cloud resources that use some kind of orchestration[2] between them. The advantage of the hybrid cloud model is that it allows workloads and data to move between private and public clouds in a flexible way as demands, needs, and costs change, giving businesses greater flexibility and more options for data deployment and use.

In other words, if you have some IT resources in-house that you are replicating or augmenting with an external vendor, congrats, you have a hybrid cloud!

Private Cloud vs. Public Cloud

The cloud is really just a collection of purpose built servers. In a private cloud, the servers are dedicated to a single tenant or a group of related tenants. In a public cloud, the servers are shared between multiple unrelated tenants (customers). A public cloud is off-site, while a private cloud can be on-site or off-site — or on-prem or off-prem.

As an example, let’s look at a hybrid cloud meant for data storage, a hybrid data cloud. A company might set up a rule that says all accounting files that have not been touched in the last year are automatically moved off-prem to cloud storage to save cost and reduce the amount of storage needed on-site. The files are still available; they are just no longer stored on your local systems. The rules can be defined to fit an organization’s workflow and data retention policies.

The hybrid cloud concept also contains cloud computing. For example, at the end of the quarter, order processing application instances can be spun up off-premises in a hybrid computing cloud as needed to add to on-premises capacity.

Hybrid Cloud Benefits

If we accept that the hybrid cloud combines the best elements of private and public clouds, then the benefits of hybrid cloud solutions are clear, and we can identify the primary two benefits that result from the blending of private and public clouds.

Diagram of the Components of the Hybrid Cloud

Benefit 1: Flexibility and Scalability

Undoubtedly, the primary advantage of the hybrid cloud is its flexibility. It takes time and money to manage in-house IT infrastructure and adding capacity requires advance planning.

The cloud is ready and able to provide IT resources whenever needed on short notice. The term cloud bursting refers to the on-demand and temporary use of the public cloud when demand exceeds resources available in the private cloud. For example, some businesses experience seasonal spikes that can put an extra burden on private clouds. These spikes can be taken up by a public cloud. Demand also can vary with geographic location, events, or other variables. The public cloud provides the elasticity to deal with these and other anticipated and unanticipated IT loads. The alternative would be fixed cost investments in on-premises IT resources that might not be efficiently utilized.

For a data storage user, the on-premises private cloud storage provides, among other benefits, the highest speed access. For data that is not frequently accessed, or needed with the absolute lowest levels of latency, it makes sense for the organization to move it to a location that is secure, but less expensive. The data is still readily available, and the public cloud provides a better platform for sharing the data with specific clients, users, or with the general public.

Benefit 2: Cost Savings

The public cloud component of the hybrid cloud provides cost-effective IT resources without incurring capital expenses and labor costs. IT professionals can determine the best configuration, service provider, and location for each service, thereby cutting costs by matching the resource with the task best suited to it. Services can be easily scaled, redeployed, or reduced when necessary, saving costs through increased efficiency and avoiding unnecessary expenses.

Comparing Private vs Hybrid Cloud Storage Costs

To get an idea of the difference in storage costs between a purely on-premises solutions and one that uses a hybrid of private and public storage, we’ll present two scenarios. For each scenario we’ll use data storage amounts of 100 terabytes, 1 petabyte, and 2 petabytes. Each table is the same format, all we’ve done is change how the data is distributed: private (on-premises) cloud or public (off-premises) cloud. We are using the costs for our own B2 Cloud Storage in this example. The math can be adapted for any set of numbers you wish to use.

Scenario 1    100% of data on-premises storage

Data Stored
Data stored On-Premises: 100%100 TB1,000 TB2,000 TB
On-premises cost rangeMonthly Cost
Low — $12/TB/Month$1,200$12,000$24,000
High — $20/TB/Month$2,000$20,000$40,000

Scenario 2    20% of data on-premises with 80% public cloud storage (B2)

Data Stored
Data stored On-Premises: 20%20 TB200 TB400 TB
Data stored in Cloud: 80%80 TB800 TB1,600 TB
On-premises cost rangeMonthly Cost
Low — $12/TB/Month$240$2,400$4,800
High — $20/TB/Month$400$4,000$8,000
Public cloud cost rangeMonthly Cost
Low — $5/TB/Month (B2)$400$4,000$8,000
High — $20/TB/Month$1,600$16,000$32,000
On-premises + public cloud cost rangeMonthly Cost
Low$640$6,400$12,800
High$2,000$20,000$40,000

As can be seen in the numbers above, using a hybrid cloud solution and storing 80% of the data in the cloud with a provider such as Backblaze B2 can result in significant savings over storing only on-premises. For other cost scenarios, see the B2 Cost Calculator.

When Hybrid Might Not Always Be the Right Fit

There are circumstances where the hybrid cloud might not be the best solution. Smaller organizations operating on a tight IT budget might best be served by a purely public cloud solution. The cost of setting up and running private servers is substantial.

An application that requires the highest possible speed might not be suitable for hybrid, depending on the specific cloud implementation. While latency does play a factor in data storage for some users, it is less of a factor for uploading and downloading data than it is for organizations using the hybrid cloud for computing. Because Backblaze recognized the importance of speed and low-latency for customers wishing to use computing on data stored in B2, we directly connected our data centers with those of our computing partners, ensuring that latency would not be an issue even for a hybrid cloud computing solution.

It is essential to have a good understanding of workloads and their essential characteristics in order to make the hybrid cloud work well for you. Each application needs to be examined for the right mix of private cloud, public cloud, and traditional IT resources that fit the particular workload in order to benefit most from a hybrid cloud architecture.

The Hybrid Cloud Can Be a Win-Win Solution

From the high altitude perspective, any solution that enables an organization to respond in a flexible manner to IT demands is a win. Avoiding big upfront capital expenses for in-house IT infrastructure will appeal to the CFO. Being able to quickly spin up IT resources as they’re needed will appeal to the CTO and VP of Operations.

Should You Go Hybrid?

We’ve arrived at the bottom line and the question is, should you or your organization embrace hybrid cloud infrastructures?

According to 451 Research, by 2019, 69% of companies will operate in hybrid cloud environments, and 60% of workloads will be running in some form of hosted cloud service (up from 45% in 2017). That indicates that the benefits of the hybrid cloud appeal to a broad range of companies.

In Two Years, More Than Half of Workloads Will Run in Cloud

Clearly, depending on an organization’s needs, there are advantages to a hybrid solution. While it might have been possible to dismiss the hybrid cloud in the early days of the cloud as nothing more than a buzzword, that’s no longer true. The hybrid cloud has evolved beyond the marketing hype to offer real solutions for an increasingly complex and challenging IT environment.

If an organization approaches the hybrid cloud with sufficient planning and a structured approach, a hybrid cloud can deliver on-demand flexibility, empower legacy systems and applications with new capabilities, and become a catalyst for digital transformation. The result can be an elastic and responsive infrastructure that has the ability to quickly respond to changing demands of the business.

As data management professionals increasingly recognize the advantages of the hybrid cloud, we can expect more and more of them to embrace it as an essential part of their IT strategy.

Tell Us What You’re Doing with the Hybrid Cloud

Are you currently embracing the hybrid cloud, or are you still uncertain or hanging back because you’re satisfied with how things are currently? Maybe you’ve gone totally hybrid. We’d love to hear your comments below on how you’re dealing with the hybrid cloud.


[1] Private cloud can be on-premises or a dedicated off-premises facility.

[2] Hybrid cloud orchestration solutions are often proprietary, vertical, and task dependent.

The post Confused About the Hybrid Cloud? You’re Not Alone appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Oblivious DNS

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/oblivious_dns.html

Interesting idea:

…we present Oblivious DNS (ODNS), which is a new design of the DNS ecosystem that allows current DNS servers to remain unchanged and increases privacy for data in motion and at rest. In the ODNS system, both the client is modified with a local resolver, and there is a new authoritative name server for .odns. To prevent an eavesdropper from learning information, the DNS query must be encrypted; the client generates a request for www.foo.com, generates a session key k, encrypts the requested domain, and appends the TLD domain .odns, resulting in {www.foo.com}k.odns. The client forwards this, with the session key encrypted under the .odns authoritative server’s public key ({k}PK) in the “Additional Information” record of the DNS query to the recursive resolver, which then forwards it to the authoritative name server for .odns. The authoritative server decrypts the session key with his private key, and then subsequently decrypts the requested domain with the session key. The authoritative server then forwards the DNS request to the appropriate name server, acting as a recursive resolver. While the name servers see incoming DNS requests, they do not know which clients they are coming from; additionally, an eavesdropper cannot connect a client with her corresponding DNS queries.

News article.

snallygaster – Scan For Secret Files On HTTP Servers

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/04/snallygaster-scan-for-secret-files-on-http-servers/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

snallygaster – Scan For Secret Files On HTTP Servers

snallygaster is a Python-based tool that can help you to scan for secret files on HTTP servers, files that are accessible that shouldn’t be public and can pose a security risk.

Typical examples include publicly accessible git repositories, backup files potentially containing passwords or database dumps. In addition it contains a few checks for other security vulnerabilities.

snallygaster HTTP Secret File Scanner Features

This is an overview of the tests provided by snallygaster.

Read the rest of snallygaster – Scan For Secret Files On HTTP Servers now! Only available at Darknet.

AWS Online Tech Talks – April & Early May 2018

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-april-early-may-2018/

We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

April & early May — 2018 Schedule

Compute

April 30, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.

May 1, 2018 | 01:00 PM – 01:45 PM PTHow to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.

May 2, 2018 | 01:00 PM – 01:45 PM PTDeep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.

Containers

April 23, 2018 | 11:00 AM – 11:45 AM PTNew Features for Building Powerful Containerized Microservices on AWS (300) – Learn about how this new feature works and how you can start using it to build and run modern, containerized applications on AWS.

Databases

April 23, 2018 | 01:00 PM – 01:45 PM PTElastiCache: Deep Dive Best Practices and Usage Patterns (200) – Learn about Redis-compatible in-memory data store and cache with Amazon ElastiCache.

April 25, 2018 | 01:00 PM – 01:45 PM PTIntro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.

DevOps

April 25, 2018 | 09:00 AM – 09:45 AM PTDebug your Container and Serverless Applications with AWS X-Ray in 5 Minutes (300) – Learn how AWS X-Ray makes debugging your Container and Serverless applications fun.

Enterprise & Hybrid

April 23, 2018 | 09:00 AM – 09:45 AM PTAn Overview of Best Practices of Large-Scale Migrations (300) – Learn about the tools and best practices on how to migrate to AWS at scale.

April 24, 2018 | 11:00 AM – 11:45 AM PTDeploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0

IoT

May 2, 2018 | 11:00 AM – 11:45 AM PTHow to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.

Machine Learning

April 24, 2018 | 09:00 AM – 09:45 AM PT Automate for Efficiency with Amazon Transcribe and Amazon Translate (200) – Learn how you can increase the efficiency and reach your operations with Amazon Translate and Amazon Transcribe.

April 26, 2018 | 09:00 AM – 09:45 AM PT Perform Machine Learning at the IoT Edge using AWS Greengrass and Amazon Sagemaker (200) – Learn more about developing machine learning applications for the IoT edge.

Mobile

April 30, 2018 | 11:00 AM – 11:45 AM PTOffline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.

Networking

May 2, 2018 | 09:00 AM – 09:45 AM PT Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.

Security, Identity & Compliance

April 30, 2018 | 09:00 AM – 09:45 AM PTAmazon GuardDuty – Let’s Attack My Account! (300) – Amazon GuardDuty Test Drive – Practical steps on generating test findings.

May 3, 2018 | 09:00 AM – 09:45 AM PTProtect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.

Serverless

April 24, 2018 | 01:00 PM – 01:45 PM PTTips and Tricks for Building and Deploying Serverless Apps In Minutes (200) – Learn how to build and deploy apps in minutes.

Storage

May 1, 2018 | 11:00 AM – 11:45 AM PTBuilding Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.

May 3, 2018 | 11:00 AM – 11:45 AM PTIntegrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.

American Public Television Embraces the Cloud — And the Future

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/american-public-television-embraces-the-cloud-and-the-future/

American Public Television website

American Public Television was like many organizations that have been around for a while. They were entrenched using an older technology — in their case, tape storage and distribution — that once met their needs but was limiting their productivity and preventing them from effectively collaborating with their many media partners. APT’s VP of Technology knew that he needed to move into the future and embrace cloud storage to keep APT ahead of the game.
Since 1961, American Public Television (APT) has been a leading distributor of groundbreaking, high-quality, top-rated programming to the nation’s public television stations. Gerry Field is the Vice President of Technology at APT and is responsible for delivering their extensive program catalog to 350+ public television stations nationwide.

In the time since Gerry  joined APT in 2007, the industry has been in digital overdrive. During that time APT has continued to acquire and distribute the best in public television programming to their technically diverse subscribers.

This created two challenges for Gerry. First, new technology and format proliferation were driving dramatic increases in digital storage. Second, many of APT’s subscribers struggled to keep up with the rapidly changing industry. While some subscribers had state-of-the-art satellite systems to receive programming, others had to wait for the post office to drop off programs recorded on tape weeks earlier. With no slowdown on the horizon of innovation in the industry, Gerry knew that his storage and distribution systems would reach a crossroads in no time at all.

American Public Television logo

Living the tape paradigm

The digital media industry is only a few years removed from its film, and later videotape, roots. Tape was the input and the output of the industry for many years. As a consequence, the tools and workflows used by the industry were built and designed to work with tape. Over time, the “file” slowly replaced the tape as the object to be captured, edited, stored and distributed. Trouble was, many of the systems and more importantly workflows were based on processing tape, and these have proven to be hard to change.

At APT, Gerry realized the limits of the tape paradigm and began looking for technologies and solutions that enabled workflows based on file and object based storage and distribution.

Thinking file based storage and distribution

For data (digital media) storage, APT, like everyone else, started by installing onsite storage servers. As the amount of digital data grew, more storage was added. In addition, APT was expanding its distribution footprint by creating or partnering with distribution channels such as CreateTV and APT Worldwide. This dramatically increased the number of programming formats and the amount of data that had to be stored. As a consequence, updating, maintaining, and managing the APT storage systems was becoming a major challenge and a major resource hog.

APT Online

Knowing that his in-house storage system was only going to cost more time and money, Gerry decided it was time to look at cloud storage. But that wasn’t the only reason he looked at the cloud. While most people consider cloud storage as just a place to back up and archive files, Gerry was envisioning how the ubiquity of the cloud could help solve his distribution challenges. The trouble was the price of cloud storage from vendors like Amazon S3 and Microsoft Azure was a non-starter, especially for a non-profit. Then Gerry came across Backblaze. B2 Cloud Storage service met all of his performance requirements, and at $0.005/GB/month for storage and $0.01/GB for downloads it was nearly 75% less than S3 or Azure.

Gerry did the math and found that he could economically incorporate B2 Cloud Storage into his IT portfolio, using it for both program submission and for active storage and archiving of the APT programs. In addition, B2 now gives him the foundation necessary to receive and distribute programming content over the Internet. This is especially useful for organizations that can’t conveniently access satellite distribution systems. Not to mention downloading from the cloud is much faster than sending a tape through the mail.

Adding B2 Cloud Storage to their infrastructure has helped American Public Television address two key challenges. First, they now have “unlimited” storage in the cloud without having to add any hardware. In addition, with B2, they only pay for the storage they use. That means they don’t have to buy storage upfront trying to match the maximum amount of storage they’ll ever need. Second, by using B2 as a distribution source for their programming APT subscribers, especially the smaller and remote ones, can get content faster and more reliably without having to perform costly upgrades to their infrastructure.

The road ahead

As APT gets used to their file based infrastructure and workflow, there are a number of cost saving and income generating ideas they are pondering which are now worth considering. Here are a few:

Program Submissions — New content can be uploaded from anywhere using a web browser, an Internet connection, and a login. For example, a producer in Cambodia can upload their film to B2. From there the film is downloaded to an in-house system where it is processed and transcoded using compute. The finished film is added to the APT catalog and added to B2. Once there, the program is instantly available for subscribers to order and download.

“The affordability and performance of Backblaze B2 is what allowed us to make the B2 cloud part of the APT data storage and distribution strategy into the future.” — Gerry Field

Easier Previews — At any time, work in process or finished programs can be made available for download from the B2 cloud. One place this could be useful is where a subscriber needs to review a program to comply with local policies and practices before airing. In the old system, each “one-off” was a time consuming manual process.

Instant Subscriptions — There are many organizations such as schools and businesses that want to use just one episode of a desired show. With an e-commerce based website, current or even archived programming kept in B2 could be available to download or stream for a minimal charge.

At APT there were multiple technologies needed to make their file-based infrastructure work, but as Gerry notes, having an affordable, trustworthy, cloud storage service like B2 is one of the critical building blocks needed to make everything work together.

The post American Public Television Embraces the Cloud — And the Future appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Backblaze Announces B2 Compute Partnerships

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/introducing-cloud-compute-services/

Backblaze Announces B2 Compute Partnerships

In 2015, we announced Backblaze B2 Cloud Storage — the most affordable, high performance storage cloud on the planet. The decision to release B2 as a service was in direct response to customers asking us if they could use the same cloud storage infrastructure we use for our Computer Backup service. With B2, we entered a market in direct competition with Amazon S3, Google Cloud Services, and Microsoft Azure Storage. Today, we have over 500 petabytes of data from customers in over 150 countries. At $0.005 / GB / month for storage (1/4th of S3) and $0.01 / GB for downloads (1/5th of S3), it turns out there’s a healthy market for cloud storage that’s easy and affordable.

As B2 has grown, customers wanted to use our cloud storage for a variety of use cases that required not only storage but compute. We’re happy to say that through partnerships with Packet & ServerCentral, today we’re announcing that compute is now available for B2 customers.

Cloud Compute and Storage

Backblaze has directly connected B2 with the compute servers of Packet and ServerCentral, thereby allowing near-instant (< 10 ms) data transfers between services. Also, transferring data between B2 and both our compute partners is free.

  • Storing data in B2 and want to run an AI analysis on it? — There are no fees to move the data to our compute partners.
  • Generating data in an application? — Run the application with one of our partners and store it in B2.
  • Transfers are free and you’ll save more than 50% off of the equivalent set of services from AWS.

These partnerships enable B2 customers to use compute, give our compute partners’ customers access to cloud storage, and introduce new customers to industry-leading storage and compute — all with high-performance, low-latency, and low-cost.

Is This a Big Deal? We Think So

Compute is one of the most requested services from our customers Why? Because it unlocks a number of use cases for them. Let’s look at three popular examples:

Transcoding Media Files

B2 has earned wide adoption in the Media & Entertainment (“M&E”) industry. Our affordable storage and download pricing make B2 great for a wide variety of M&E use cases. But many M&E workflows require compute. Content syndicators, like American Public Television, need the ability to transcode files to meet localization and distribution management requirements.

There are a multitude of reasons that transcode is needed — thumbnail and proxy generation enable M&E professionals to work efficiently. Without compute, the act of transcoding files remains cumbersome. Either the files need to be brought down from the cloud, transcoded, and then pushed back up or they must be kept locally until the project is complete. Both scenarios are inefficient.

Starting today, any content producer can spin up compute with one of our partners, pay by the hour for their transcode processing, and return the new media files to B2 for storage and distribution. The company saves money, moves faster, and ensures their files are safe and secure.

Disaster Recovery

Backblaze’s heritage is based on providing outstanding backup services. When you have incredibly affordable cloud storage, it ends up being a great destination for your backup data.

Most enterprises have virtual machines (“VMs”) running in their infrastructure and those VMs need to be backed up. In a disaster scenario, a business wants to know they can get back up and running quickly.

With all data stored in B2, a business can get up and running quickly. Simply restore your backed up VM to one of our compute providers, and your business will be able to get back online.

Since B2 does not place restrictions, delays, or penalties on getting data out, customers can get back up and running quickly and affordably.

Saving $74 Million (aka “The Dropbox Effect”)

Ten years ago, Backblaze decided that S3 was too costly a platform to build its cloud storage business. Instead, we created the Backblaze Storage Pod and our own cloud storage infrastructure. That decision enabled us to offer our customers storage at a previously unavailable price point and maintain those prices for over a decade. It also laid the foundation for Netflix Open Connect and Facebook Open Compute.

Dropbox recently migrated the majority of their cloud services off of AWS and onto Dropbox’s own infrastructure. By leaving AWS, Dropbox was able to build out their own data centers and still save over $74 Million. They achieved those savings by avoiding the fees AWS charges for storing and downloading data, which, incidentally, are five times higher than Backblaze B2.

For Dropbox, being able to realize savings was possible because they have access to enough capital and expertise that they can build out their own infrastructure. For companies that have such resources and scale, that’s a great answer.

“Before this offering, the economics of the cloud would have made our business simply unviable.” — Gabriel Menegatti, SlicingDice

The questions Backblaze and our compute partners pondered was “how can we democratize the Dropbox effect for our storage and compute customers? How can we help customers do more and pay less?” The answer we came up with was to connect Backblaze’s B2 storage with strategic compute partners and remove any transfer fees between them. You may not save $74 million as Dropbox did, but you can choose the optimal providers for your use case and realize significant savings in the process.

This Sounds Good — Tell Me More About Your Partners

We’re very fortunate to be launching our compute program with two fantastic partners in Packet and ServerCentral. These partners allow us to offer a range of computing services.

Packet

We recommend Packet for customers that need on-demand, high performance, bare metal servers available by the hour. They also have robust offerings for private / customized deployments. Their offerings end up costing 50-75% of the equivalent offerings from EC2.

To get started with Packet and B2, visit our partner page on Packet.net.

ServerCentral

ServerCentral is the right partner for customers that have business and IT challenges that require more than “just” hardware. They specialize in fully managed, custom cloud solutions that solve complex business and IT challenges. ServerCentral also has expertise in managed network solutions to address global connectivity and content delivery.

To get started with ServerCentral and B2, visit our partner page on ServerCentral.com.

What’s Next?

We’re excited to find out. The combination of B2 and compute unlocks use cases that were previously impossible or at least unaffordable.

“The combination of performance and price offered by this partnership enables me to create an entirely new business line. Before this offering, the economics of the cloud would have made our business simply unviable,” noted Gabriel Menegatti, co-founder at SlicingDice, a serverless data warehousing service. “Knowing that transfers between compute and B2 are free means I don’t have to worry about my business being successful. And, with download pricing from B2 at just $0.01 GB, I know I’m avoiding a 400% tax from AWS on data I retrieve.”

What can you do with B2 & compute? Please share your ideas with us in the comments. And, for those attending NAB 2018 in Las Vegas next week, please come by and say hello!

The post Backblaze Announces B2 Compute Partnerships appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Innovation Flywheels and the AWS Serverless Application Repository

Post Syndicated from Tim Wagner original https://aws.amazon.com/blogs/compute/innovation-flywheels-and-the-aws-serverless-application-repository/

At AWS, our customers have always been the motivation for our innovation. In turn, we’re committed to helping them accelerate the pace of their own innovation. It was in the spirit of helping our customers achieve their objectives faster that we launched AWS Lambda in 2014, eliminating the burden of server management and enabling AWS developers to focus on business logic instead of the challenges of provisioning and managing infrastructure.

 

In the years since, our customers have built amazing things using Lambda and other serverless offerings, such as Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. Together, these services make it easy to build entire applications without the need to provision, manage, monitor, or patch servers. By removing much of the operational drudgery of infrastructure management, we’ve helped our customers become more agile and achieve faster time-to-market for their applications and services. By eliminating cold servers and cold containers with request-based pricing, we’ve also eliminated the high cost of idle capacity and helped our customers achieve dramatically higher utilization and better economics.

After we launched Lambda, though, we quickly learned an important lesson: A single Lambda function rarely exists in isolation. Rather, many functions are part of serverless applications that collectively deliver customer value. Whether it’s the combination of event sources and event handlers, as serverless web apps that combine APIs with functions for dynamic content with static content repositories, or collections of functions that together provide a microservice architecture, our customers were building and delivering serverless architectures for every conceivable problem. Despite the economic and agility benefits that hundreds of thousands of AWS customers were enjoying with Lambda, we realized there was still more we could do.

How Customer Feedback Inspired Us to Innovate

We heard from our customers that getting started—either from scratch or when augmenting their implementation with new techniques or technologies—remained a challenge. When we looked for serverless assets to share, we found stellar examples built by serverless pioneers that represented a multitude of solutions across industries.

There were apps to facilitate monitoring and logging, to process image and audio files, to create Alexa skills, and to integrate with notification and location services. These apps ranged from “getting started” examples to complete, ready-to-run assets. What was missing, however, was a unified place for customers to discover this diversity of serverless applications and a step-by-step interface to help them configure and deploy them.

We also heard from customers and partners that building their own ecosystems—ecosystems increasingly composed of functions, APIs, and serverless applications—remained a challenge. They wanted a simple way to share samples, create extensibility, and grow consumer relationships on top of serverless approaches.

 

We built the AWS Serverless Application Repository to help solve both of these challenges by offering publishers and consumers of serverless apps a simple, fast, and effective way to share applications and grow user communities around them. Now, developers can easily learn how to apply serverless approaches to their implementation and business challenges by discovering, customizing, and deploying serverless applications directly from the Serverless Application Repository. They can also find libraries, components, patterns, and best practices that augment their existing knowledge, helping them bring services and applications to market faster than ever before.

How the AWS Serverless Application Repository Inspires Innovation for All Customers

Companies that want to create ecosystems, share samples, deliver extensibility and customization options, and complement their existing SaaS services use the Serverless Application Repository as a distribution channel, producing apps that can be easily discovered and consumed by their customers. AWS partners like HERE have introduced their location and transit services to thousands of companies and developers. Partners like Datadog, Splunk, and TensorIoT have showcased monitoring, logging, and IoT applications to the serverless community.

Individual developers are also publishing serverless applications that push the boundaries of innovation—some have published applications that leverage machine learning to predict the quality of wine while others have published applications that monitor crypto-currencies, instantly build beautiful image galleries, or create fast and simple surveys. All of these publishers are using serverless apps, and the Serverless Application Repository, as the easiest way to share what they’ve built. Best of all, their customers and fellow community members can find and deploy these applications with just a few clicks in the Lambda console. Apps in the Serverless Application Repository are free of charge, making it easy to explore new solutions or learn new technologies.

Finally, we at AWS continue to publish apps for the community to use. From apps that leverage Amazon Cognito to sync user data across applications to our latest collection of serverless apps that enable users to quickly execute common financial calculations, we’re constantly looking for opportunities to contribute to community growth and innovation.

At AWS, we’re more excited than ever by the growing adoption of serverless architectures and the innovation that services like AWS Lambda make possible. Helping our customers create and deliver new ideas drives us to keep inventing ways to make building and sharing serverless apps even easier. As the number of applications in the Serverless Application Repository grows, so too will the innovation that it fuels for both the owners and the consumers of those apps. With the general availability of the Serverless Application Repository, our customers become more than the engine of our innovation—they become the engine of innovation for one another.

To browse, discover, deploy, and publish serverless apps in minutes, visit the Serverless Application Repository. Go serverless—and go innovate!

Dr. Tim Wagner is the General Manager of AWS Lambda and Amazon API Gateway.

WannaCry after one year

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/03/wannacry-after-one-year.html

In the news, Boeing (an aircraft maker) has been “targeted by a WannaCry virus attack”. Phrased this way, it’s implausible. There are no new attacks targeting people with WannaCry. There is either no WannaCry, or it’s simply a continuation of the attack from a year ago.


It’s possible what happened is that an anti-virus product called a new virus “WannaCry”. Virus families are often related, and sometimes a distant relative gets called the same thing. I know this watching the way various anti-virus products label my own software, which isn’t a virus, but which virus writers often include with their own stuff. The Lazarus group, which is believed to be responsible for WannaCry, have whole virus families like this. Thus, just because an AV product claims you are infected with WannaCry doesn’t mean it’s the same thing that everyone else is calling WannaCry.

Famously, WannaCry was the first virus/ransomware/worm that used the NSA ETERNALBLUE exploit. Other viruses have since added the exploit, and of course, hackers use it when attacking systems. It may be that a network intrusion detection system detected ETERNALBLUE, which people then assumed was due to WannaCry. It may actually have been an nPetya infection instead (nPetya was the second major virus/worm/ransomware to use the exploit).

Or it could be the real WannaCry, but it’s probably not a new “attack” that “targets” Boeing. Instead, it’s likely a continuation from WannaCry’s first appearance. WannaCry is a worm, which means it spreads automatically after it was launched, for years, without anybody in control. Infected machines still exist, unnoticed by their owners, attacking random machines on the Internet. If you plug in an unpatched computer onto the raw Internet, without the benefit of a firewall, it’ll get infected within an hour.

However, the Boeing manufacturing systems that were infected were not on the Internet, so what happened? The narrative from the news stories imply some nefarious hacker activity that “targeted” Boeing, but that’s unlikely.

We have now have over 15 years of experience with network worms getting into strange places disconnected and even “air gapped” from the Internet. The most common reason is laptops. Somebody takes their laptop to some place like an airport WiFi network, and gets infected. They put their laptop to sleep, then wake it again when they reach their destination, and plug it into the manufacturing network. At this point, the virus spreads and infects everything. This is especially the case with maintenance/support engineers, who often have specialized software they use to control manufacturing machines, for which they have a reason to connect to the local network even if it doesn’t have useful access to the Internet. A single engineer may act as a sort of Typhoid Mary, going from customer to customer, infecting each in turn whenever they open their laptop.

Another cause for infection is virtual machines. A common practice is to take “snapshots” of live machines and save them to backups. Should the virtual machine crash, instead of rebooting it, it’s simply restored from the backed up running image. If that backup image is infected, then bringing it out of sleep will allow the worm to start spreading.

Jake Williams claims he’s seen three other manufacturing networks infected with WannaCry. Why does manufacturing seem more susceptible? The reason appears to be the “killswitch” that stops WannaCry from running elsewhere. The killswitch uses a DNS lookup, stopping itself if it can resolve a certain domain. Manufacturing networks are largely disconnected from the Internet enough that such DNS lookups don’t work, so the domain can’t be found, so the killswitch doesn’t work. Thus, manufacturing systems are no more likely to get infected, but the lack of killswitch means the virus will continue to run, attacking more systems instead of immediately killing itself.

One solution to this would be to setup sinkhole DNS servers on the network that resolve all unknown DNS queries to a single server that logs all requests. This is trivially setup with most DNS servers. The logs will quickly identify problems on the network, as well as any hacker or virus activity. The side effect is that it would make this killswitch kill WannaCry. WannaCry isn’t sufficient reason to setup sinkhole servers, of course, but it’s something I’ve found generally useful in the past.

Conclusion

Something obviously happened to the Boeing plant, but the narrative is all wrong. Words like “targeted attack” imply things that likely didn’t happen. Facts are so loose in cybersecurity that it may not have even been WannaCry.

The real story is that the original WannaCry is still out there, still trying to spread. Simply put a computer on the raw Internet (without a firewall) and you’ll get attacked. That, somehow, isn’t news. Instead, what’s news is whenever that continued infection hits somewhere famous, like Boeing, even though (as Boeing claims) it had no important effect.

Tracking Cookies and GDPR

Post Syndicated from Bozho original https://techblog.bozho.net/tracking-cookies-gdpr/

GDPR is the new data protection regulation, as you probably already know. I’ve given a detailed practical advice for what it means for developers (and product owners). However, there’s one thing missing there – cookies. The elephant in the room.

Previously I’ve stated that cookies are subject to another piece of legislation – the ePrivacy directive, which is getting updated and its new version will be in force a few years from now. And while that’s technically correct, cookies seem to be affected by GDPR as well. In a way I’ve underestimated that effect.

When you do a Google search on “GDPR cookies”, you’ll pretty quickly realize that a) there’s not too much information and b) there’s not much technical understanding of the issue.

What appears to be the consensus is that GDPR does change the way cookies are handled. More specifically – tracking cookies. Here’s recital 30:

(30) Natural persons may be associated with online identifiers provided by their devices, applications, tools and protocols, such as internet protocol addresses, cookie identifiers or other identifiers such as radio frequency identification tags. This may leave traces which, in particular when combined with unique identifiers and other information received by the servers, may be used to create profiles of the natural persons and identify them.

How tracking cookies work – a 3rd party (usually an ad network) gives you a code snippet that you place on your website, for example to display ads. That code snippet, however, calls “home” (makes a request to the 3rd party domain). If the 3rd party has previously been used on your computer, it has created a cookie. In the example of Facebook, they have the cookie with your Facebook identifier because you’ve logged in to Facebook. So this cookie (with your identifier) is sent with the request. The request also contains all the details from the page. In effect, you are uniquely identified by an identifier (in the case of Facebook and Google – fully identified, rather than some random anonymous identifier as with other ad networks).

Your behaviour on the website is personal data. It gets associated with your identifier, which in turn is associated with your profile. And all of that is personal data. Who is responsible for collecting the website behaviour data, i.e. who is the “controller”? Is it Facebook (or any other 3rd party) that technically does the collection? No, it’s the website owner, as the behaviour data is obtained on their website, and they have put the tracking piece of code there. So they bear responsibility.

What’s the responsibility? So far it boiled down to displaying the useless “we use cookies” warning that nobody cares about. And the current (old) ePrivacy directive and its interpretations says that this is enough – if the users actions can unambiguously mean that they are fine with cookies – i.e. if they continue to use the website after seeing the warning – then you’re fine. This is no longer true from a GDPR perspective – you are collecting user data and you have to have a lawful ground for processing.

For the data collected by tracking cookies you have two options – “consent” and “legitimate interest”. Legitimate interest will be hard to prove – it is not something that a user reasonably expects, it is not necessary for you to provide the service. If your lawyers can get that option to fly, good for them, but I’m not convinced regulators will be happy with that.

The other option is “consent”. You have to ask your users explicitly – that means “with a checkbox” – to let you use tracking cookies. That has two serious implications – from technical and usability point of view.

  • The technical issue is that the data is sent via 3rd party code as soon as the page loads and before the user can give their consent. And that’s already a violation. You can, of course, have the 3rd party code be dynamically inserted only after the user gives consent, but that will require some fiddling with javascript and might not always work depending on the provider. And you’d have to support opt-out at any time (which would in turn disable the 3rd party snippet). It would require actual coding, rather than just copy-pasting a snippet.
  • The usability aspect is the bigger issue – while you could neatly tuck a cookie warning at the bottom, you’d now have to have a serious, “stop the world” popup that asks for consent if you want anyone to click it. You can, of course, just add a checkbox to the existing cookie warning, but don’t expect anyone to click it.

These aspects pose a significant questions: is it worth it to have tracking cookies? Is developing new functionality worth it, is interrupting the user worth it, and is implementing new functionality just so that users never clicks a hidden checkbox worth it? Especially given that Firefox now blocks all tracking cookies and possibly other browsers will follow?

That by itself is an interesting topic – Firefox has basically implemented the most strict form of requirements of the upcoming ePrivacy directive update (that would turn it into an ePrivacy regulation). Other browsers will have to follow, even though Google may not be happy to block their own tracking cookies. I hope other browsers follow Firefox in tracking protection and the issue will be gone automatically.

To me it seems that it will be increasingly not worthy to have tracking cookies on your website. They add regulatory obligations for you and give you very little benefit (yes, you could track engagement from ads, but you can do that in other ways, arguably by less additional code than supporting the cookie consents). And yes, the cookie consent will be “outsourced” to browsers after the ePrivacy regulation is passed, but we can’t be sure at the moment whether there won’t be technical whack-a-mole between browsers and advertisers and whether you wouldn’t still need additional effort to have dynamic consent for tracking cookies. (For example there are reported issues that Firefox used to make Facebook login fail if tracking protection is enabled. Which could be a simple bug, or could become a strategy by big vendors in the future to force browsers into a less strict tracking protection).

Okay, we’ve decided it’s not worth it managing tracking cookies. But do you have a choice as a website owner? Can you stop your ad network from using them? (Remember – you are liable if users’ data is collected by visiting your website). And currently the answer is no – you can’t disable that. You can’t have “just the ads”. This is part of the “deal” – you get money for the ads you place, but you participate in a big “surveillance” network. Users have a way to opt out (e.g. Google AdWords gives them that option). You, as a website owner, don’t.

Facebook has a recommendations page that says “you take care of getting the consent”. But for example the “like button” plugin doesn’t have an option to not send any data to Facebook.

And sometimes you don’t want to serve ads, just track user behaviour and measure conversion. But even if you ask for consent for that and conditionally insert the plugin/snippet, do you actually know what data it sends? And what it’s used for? Because you have to know in order to inform your users. “Do you agree to use tracking cookies that Facebook has inserted in order to collect data about your behaviour on our website” doesn’t sound compelling.

So, what to do? The easiest thing is just not to use any 3rd party ad-related plugins. But that’s obviously not an option, as ad revenue is important, especially in the publishing industry. I don’t have a good answer, apart from “Regulators should pressure ad networks to provide opt-outs and clearly document their data usage”. They have to do that under GDPR, and while website owners are responsible for their users’ data, the ad networks that are in the role of processors in this case (as you delegate the data collection for your visitors to them) also have obligation to assist you in fulfilling your obligations. So ask Facebook – what should I do with your tracking cookies? And when the regulator comes after a privacy-aware customer files a complaint, you could prove that you’ve tried.

The ethical debate whether it’s wrong to collect data about peoples’ behaviour without their informed consent is an easy one. And that’s why I don’t put blame on the regulators – they are putting the ethical consensus in law. It gets more complicated if not allowing tracking means some internet services are no longer profitable and therefore can’t exist. Can we have the cake and eat it too?

The post Tracking Cookies and GDPR appeared first on Bozho's tech blog.

Real-Time Hotspot Detection in Amazon Kinesis Analytics

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/real-time-hotspot-detection-in-amazon-kinesis-analytics/

Today we’re releasing a new machine learning feature in Amazon Kinesis Data Analytics for detecting “hotspots” in your streaming data. We launched Kinesis Data Analytics in August of 2016 and we’ve continued to add features since. As you may already know, Kinesis Data Analytics is a fully managed real-time processing engine for streaming data that lets you write SQL queries to derive meaning from your data and output the results to Kinesis Data Firehose, Kinesis Data Streams, or even an AWS Lambda function. The new HOTSPOT function adds to the existing machine learning capabilities in Kinesis that allow customers to leverage unsupervised streaming based machine learning algorithms. Customers don’t need to be experts in data science or machine learning to take advantage of these capabilities.

Hotspots

The HOTSPOTS function is a new Kinesis Data Analytics SQL function you can use to idenitfy relatively dense regions in your data without having to explicity build and train complicated machine learning models. You can identify subsections of your data that need immediate attention and take action programatically by streaming the hotspots out to a Kinesis Data stream, to a Firehose delivery stream, or by invoking a AWS Lambda function.

There are a ton of really cool scenarios where this could make your operations easier. Imagine a ride-share program or autonomous vehicle fleet communicating spatiotemporal data about traffic jams and congestion, or a datacenter where a number of servers start to overheat indicating an HVAC issue. HOTSPOTS is not limited to spatiotemporal data and you could apply it across many problem domains.

The function follows some simple syntax and accepts the DOUBLE, INTEGER, FLOAT, TINYINT, SMALLINT, REAL, and BIGINT data types.

The HOTSPOT function takes a cursor as input and returns a JSON string describing the hotspot. This will be easier to understand with an example.

Using Kinesis Data Analytics to Detect Hotspots

Let’s take a simple data set from NY Taxi and Limousine Commission that tracks yellow cab pickup and dropoff locations. Most of this data is already on S3 and publicly accessible at s3://nyc-tlc/. We will create a small python script to load our Kinesis Data Stream with Taxi records which will feed our Kinesis Data Analytics. Finally we’ll output all of this to a Kinesis Data Firehose connected to an Amazon Elasticsearch Service cluster for visualization with Kibana. I know from living in New York for 5 years that we’ll probably find a hotspot or two in this data.

First, we’ll create an input Kinesis stream and start sending our NYC Taxi Ride data into it. I just wrote a quick python script to read from one of the CSV files and used boto3 to push the records into Kinesis. You can put the record in whatever way works for you.

 

import csv
import json
import boto3
def chunkit(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

kinesis = boto3.client("kinesis")
with open("taxidata2.csv") as f:
    reader = csv.DictReader(f)
    records = chunkit([{"PartitionKey": "taxis", "Data": json.dumps(row)} for row in reader], 500)
    for chunk in records:
        kinesis.put_records(StreamName="TaxiData", Records=chunk)

Next, we’ll create the Kinesis Data Analytics application and add our input stream with our taxi data as the source.

Next we’ll automatically detect the schema.

Now we’ll create a quick SQL Script to detect our hotspots and add that to the Real Time Analytics section of our application.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
    "pickup_longitude" DOUBLE,
    "pickup_latitude" DOUBLE,
    HOTSPOTS_RESULT VARCHAR(10000)
); 
CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT INTO "DESTINATION_SQL_STREAM" 
    SELECT "pickup_longitude", "pickup_latitude", "HOTSPOTS_RESULT" FROM
        TABLE(HOTSPOTS(
            CURSOR(SELECT STREAM * FROM "SOURCE_SQL_STREAM_001"),
            1000,
            0.013,
            20
        )
    );


Our HOTSPOTS function takes an input stream, a window size, scan radius, and a minimum number of points to count as a hotspot. The values for these are application dependent but you can tinker with them in the console easily until you get the results you want. There are more details about the parameters themselves in the documentation. The HOTSPOTS_RESULT returns some useful JSON that would let us plot bounding boxes around our hotspots:

{
  "hotspots": [
    {
      "density": "elided",
      "minValues": [40.7915039, -74.0077401],
      "maxValues": [40.7915041, -74.0078001]
    }
  ]
}

 

When we have our desired results we can save the script and connect our application to our Amazon Elastic Search Service Firehose Delivery Stream. We can run an intermediate lambda function in the firehose to transform our record into a format more suitable for geographic work. Then we can update our mapping in Elasticsearch to index the hotspot objects as Geo-Shapes.

Finally, we can connect to Kibana and visualize the results.

Looks like Manhattan is pretty busy!

Available Now
This feature is available now in all existing regions with Kinesis Data Analytics. I think this is a really interesting new feature of Kinesis Data Analytics that can bring immediate value to many applications. Let us know what you build with it on Twitter or in the comments!

Randall

Secure Images

Post Syndicated from marcelatoath original https://yahooeng.tumblr.com/post/172068649246

oath-postmaster:

By Marcel Becker

The mail team at OATH is busy  integrating  Yahoo and AOL technology to deliver an even better experience across all our consumer mail products. While privacy and security are top priority for us, we also want to improve the experience and remove unnecessary clutter across all of our products.

Starting this week we will be serving images in mails via our own secure proxy servers. This will not only increase speed and security in our own mail products and reduce the risk of phishing and other scams,  but it will also mean that our users don’t have to fiddle around with those “enable images” settings. Messages and inline images will now just show up as originally intended.

We are aware that commercial mail senders are relying on images (so-called pixels) to track delivery and open rates. Our proxy solution will continue to support most of these cases and ensure that true mail opens are recorded.

For senders serving dynamic content based on the recipient’s location (leveraging standard IP-based browser and app capabilities) we recommend falling back on other tools and technologies which do not rely on IP-based targeting.

All of our consumer mail applications (Yahoo and AOL) will benefit from this change. This includes our desktop products as well as our mobile applications across iOS and Android.

If you have any feedback or want to discuss those changes with us personally, just send us a note to [email protected].

Secure Images

Post Syndicated from marcelatoath original https://yahooeng.tumblr.com/post/172037447286

By Marcel Becker

The mail team at OATH is busy  integrating  Yahoo and AOL technology to deliver an even better experience across all our consumer mail products. While privacy and security are top priority for us, we also want to improve the experience and remove unnecessary clutter across all of our products.

Starting this week we will be serving images in mails via our own secure proxy servers. This will not only increase speed and security in our own mail products and reduce the risk of phishing and other scams,  but it will also mean that our users don’t have to fiddle around with those “enable images” settings. Messages and inline images will now just show up as originally intended.

We are aware that commercial mail senders are relying on images (so-called pixels) to track delivery and open rates. Our proxy solution will continue to support most of these cases and ensure that true mail opens are recorded.

For senders serving dynamic content based on the recipient’s location (leveraging standard IP-based browser and app capabilities) we recommend falling back on other tools and technologies which do not rely on IP-based targeting.

All of our consumer mail applications (Yahoo and AOL) will benefit from this change. This includes our desktop products as well as our mobile applications across iOS and Android.

If you have any feedback or want to discuss those changes with us personally, just send us a note to [email protected].

GetAltName – Discover Sub-Domains From SSL Certificates

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/03/getaltname-discover-sub-domains-from-ssl-certificates/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

GetAltName – Discover Sub-Domains From SSL Certificates

GetAltName it’s a little script to discover sub-domains that can extract Subject Alt Names for SSL Certificates directly from HTTPS websites which can provide you with DNS names or virtual servers.

It’s useful in a discovery phase of a pen-testing assessment, this tool can provide you with more information about your target and scope.

Features of GetAltName to Discover Sub-Domains

  • Strips wildcards and www’s
  • Returns a unique list (no duplicates)
  • Works on verified and self-signed certs
  • Domain matching system
  • Filtering for main domains and TLDs
  • Gets additional sub-domains from crt.sh
  • Outputs to clipboard

GetAltName Subdomain Exctraction Tool Usage

You can output to a text file and also copy the output to your clipboard as a List or a Single line string, which is useful if you’re trying to make a quick scan with Nmap or other tools.

Read the rest of GetAltName – Discover Sub-Domains From SSL Certificates now! Only available at Darknet.

An important Samba 4 security release

Post Syndicated from corbet original https://lwn.net/Articles/749192/rss

Anybody running Samba 4 servers probably wants to take a look at this
alert
and upgrade their systems. “CVE-2018-1057:
On a Samba 4 AD DC the LDAP server in all versions of Samba from
4.0.0 onwards incorrectly validates permissions to modify passwords
over LDAP allowing authenticated users to change any other users’
passwords, including administrative users.

Memcrashed – Memcached DDoS Exploit Tool

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/03/memcrashed-memcached-ddos-exploit-tool/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Memcrashed – Memcached DDoS Exploit Tool

Memcrashed is a Memcached DDoS exploit tool written in Python that allows you to send forged UDP packets to a list of Memcached servers obtained from Shodan.

This is related to the recent record-breaking Memcached DDoS attacks that are likely to plague 2018 with over 100,000 vulnerable Memcached servers showing up in Shodan.

What is Memcached?

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

Read the rest of Memcrashed – Memcached DDoS Exploit Tool now! Only available at Darknet.