Tag Archives: Slack

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/750207/rss

Security updates have been issued by Debian (firefox-esr, irssi, and librelp), Gentoo (busybox and plib), Mageia (exempi and jupyter-notebook), openSUSE (clamav, dhcp, nginx, python-Django, python3-Django, and thunderbird), Oracle (slf4j), Red Hat (slf4j), Scientific Linux (slf4j), Slackware (firefox), SUSE (librelp), and Ubuntu (screen-resolution-extra).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/750150/rss

Security updates have been issued by Arch Linux (bchunk, thunderbird, and xerces-c), Debian (freeplane, icu, libvirt, and net-snmp), Fedora (monitorix, php-simplesamlphp-saml2, php-simplesamlphp-saml2_1, php-simplesamlphp-saml2_3, puppet, and qt5-qtwebengine), openSUSE (curl, libmodplug, libvorbis, mailman, nginx, opera, python-paramiko, and samba, talloc, tevent), Red Hat (python-paramiko, rh-maven35-slf4j, rh-mysql56-mysql, rh-mysql57-mysql, rh-ruby22-ruby, rh-ruby23-ruby, and rh-ruby24-ruby), Slackware (thunderbird), SUSE (clamav, kernel, memcached, and php53), and Ubuntu (samba and tiff).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/749662/rss

Security updates have been issued by Arch Linux (firefox, libvorbis, and ntp), Debian (curl, firefox-esr, gitlab, libvorbis, libvorbisidec, openjdk-8, and uwsgi), Fedora (firefox, ImageMagick, kernel, and mailman), Gentoo (adobe-flash, jabberd2, oracle-jdk-bin, and plasma-workspace), Mageia (bugzilla, kernel, leptonica, libtiff, libvorbis, microcode, python-pycrypto, SDL_image, shadow-utils, sharutils, and xerces-c), openSUSE (exempi, firefox, GraphicsMagick, libid3tag, libraw, mariadb, php5, postgresql95, SDL2, SDL2_image, ucode-intel, and xmltooling), Red Hat (firefox), Slackware (firefox and libvorbis), SUSE (microcode_ctl and ucode-intel), and Ubuntu (firefox and php5, php7.0, php7.1).

Getting Ready for the AWS Quest Finale on Twitch

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/getting-ready-for-the-aws-quest-finale-on-twitch/

Whew! March has been one crazy month for me and it is only half over. After a week with my wife in the Caribbean, we hopped on a non-stop Seattle to Tokyo flight so that I could speak at JAWS Days, Startup Day, and some internal events. We arrived home last Wednesday and I am now sufficiently clear-headed and recovered from jet lag to do anything more intellectually demanding than respond to emails. The AWS Blogging Team and the great folks at Lone Shark Games have been working on AWS Quest for quite some time and it has been great to see all of the progress made toward solving the puzzles in order to find the orangeprints that I will use to rebuild Ozz.

The community effort has been impressive! There’s a shared spreadsheet with tabs for puzzles and clues, a busy Slack channel, and a leaderboard, all organized and built by a team that spans the globe.

I’ve been checking out the orangeprints as they are uncovered and have been doing a bit of planning and preparation to make sure that I am ready for the live-streamed rebuild on Twitch later this month. Yesterday I labeled a bunch of containers, one per puzzle, and stocked each one with the parts that I will use to rebuild the corresponding component of Ozz. Fortunately, I have at least (my last count may have skipped a few) 119,807 bricks and other parts at hand so this was easy. Here’s what I have set up so far:

The Twitch session will take place on Tuesday, March 27 at Noon PT. In the meantime, you should check out the #awsquest tweets and see what you can do to help me to rebuild Ozz.

Jeff;

Our Newest AWS Community Heroes (Spring 2018 Edition)

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/our-newest-aws-community-heroes-spring-2018-edition/

The AWS Community Heroes program helps shine a spotlight on some of the innovative work being done by rockstar AWS developers around the globe. Marrying cloud expertise with a passion for community building and education, these Heroes share their time and knowledge across social media and in-person events. Heroes also actively help drive content at Meetups, workshops, and conferences.

This March, we have five Heroes that we’re happy to welcome to our network of cloud innovators:

Peter Sbarski

Peter Sbarski is VP of Engineering at A Cloud Guru and the organizer of Serverlessconf, the world’s first conference dedicated entirely to serverless architectures and technologies. His work at A Cloud Guru allows him to work with, talk and write about serverless architectures, cloud computing, and AWS. He has written a book called Serverless Architectures on AWS and is currently collaborating on another book called Serverless Design Patterns with Tim Wagner and Yochay Kiriaty.

Peter is always happy to talk about cloud computing and AWS, and can be found at conferences and meetups throughout the year. He helps to organize Serverless Meetups in Melbourne and Sydney in Australia, and is always keen to share his experience working on interesting and innovative cloud projects.

Peter’s passions include serverless technologies, event-driven programming, back end architecture, microservices, and orchestration of systems. Peter holds a PhD in Computer Science from Monash University, Australia and can be followed on Twitter, LinkedIn, Medium, and GitHub.

 

 

 

Michael Wittig

Michael Wittig is co-founder of widdix, a consulting company focused on cloud architecture, DevOps, and software development on AWS. widdix maintains several AWS related open source projects, most notably a collection of production-ready CloudFormation templates. In 2016, widdix released marbot: a Slack bot supporting your DevOps team to detect and solve incidents on AWS.

In close collaboration with his brother Andreas Wittig, the Wittig brothers are actively creating AWS related content. Their book Amazon Web Services in Action (Manning) introduces AWS with a strong focus on automation. Andreas and Michael run the blog cloudonaut.io where they share their knowledge about AWS with the community. The Wittig brothers also published a bunch of video courses with O’Reilly, Manning, Pluralsight, and A Cloud Guru. You can also find them speaking at conferences and user groups in Europe. Both brothers are co-organizing the AWS user group in Stuttgart.

 

 

 

 

Fernando Hönig

Fernando is an experienced Infrastructure Solutions Leader, holding 5 AWS Certifications, with extensive IT Architecture and Management experience in a variety of market sectors. Working as a Cloud Architect Consultant in United Kingdom since 2014, Fernando built an online community for Hispanic speakers worldwide.

Fernando founded a LinkedIn Group, a Slack Community and a YouTube channel all of them named “AWS en Español”, and started to run a monthly webinar via YouTube streaming where different leaders discuss aspects and challenges around AWS Cloud.

During the last 18 months he’s been helping to run and coach AWS User Group leaders across LATAM and Spain, and 10 new User Groups were founded during this time.

Feel free to follow Fernando on Twitter, connect with him on LinkedIn, or join the ever-growing Hispanic Community via Slack, LinkedIn or YouTube.

 

 

 

Anders Bjørnestad

Anders is a consultant and cloud evangelist at Webstep AS in Norway. He finished his degree in Computer Science at the Norwegian Institute of Technology at about the same time the Internet emerged as a public service. Since then he has been an IT consultant and a passionate advocate of knowledge-sharing.

He architected and implemented his first customer solution on AWS back in 2010, and is essential in building Webstep’s core cloud team. Anders applies his broad expert knowledge across all layers of the organizational stack. He engages with developers on technology and architectures and with top management where he advises about cloud strategies and new business models.

Anders enjoys helping people increase their understanding of AWS and cloud in general, and holds several AWS certifications. He co-founded and co-organizes the AWS User Groups in the largest cities in Norway (Oslo, Bergen, Trondheim and Stavanger), and also uses any opportunity to engage in events related to AWS and cloud wherever he is.

You can follow him on Twitter or connect with him on LinkedIn.

To learn more about the AWS Community Heroes Program and how to get involved with your local AWS community, click here.

 

 

 

 

 

 

 

 

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/749288/rss

Security updates have been issued by Arch Linux (calibre, dovecot, and postgresql), CentOS (dhcp and mailman), Fedora (freetype, kernel, leptonica, mariadb, mingw-leptonica, net-snmp, nx-libs, util-linux, wavpack, x2goserver, and zsh), Gentoo (chromium), Oracle (389-ds-base, mailman, and qemu-kvm), Red Hat (389-ds-base, kernel, kernel-alt, libreoffice, mailman, and qemu-kvm), Scientific Linux (mailman), Slackware (firefox and samba), and Ubuntu (samba).

Tech wishes for 2018

Post Syndicated from Eevee original https://eev.ee/blog/2018/02/18/tech-wishes-for-2018/

Anonymous asks, via money:

What would you like to see happen in tech in 2018?

(answer can be technical, social, political, combination, whatever)

Hmm.

Less of this

I’m not really qualified to speak in depth about either of these things, but let me put my foot in my mouth anyway:

The Blockchain™

Bitcoin was a neat idea. No, really! Decentralization is cool. Overhauling our terrible financial infrastructure is cool. Hash functions are cool.

Unfortunately, it seems to have devolved into mostly a get-rich-quick scheme for nerds, and by nearly any measure it’s turning into a spectacular catastrophe. Its “success” is measured in how much a bitcoin is worth in US dollars, which is pretty close to an admission from its own investors that its only value is in converting back to “real” money — all while that same “success” is making it less useful as a distinct currency.

Blah, blah, everyone already knows this.

What concerns me slightly more is the gold rush hype cycle, which is putting cryptocurrency and “blockchain” in the news and lending it all legitimacy. People have raked in millions of dollars on ICOs of novel coins I’ve never heard mentioned again. (Note: again, that value is measured in dollars.) Most likely, none of the investors will see any return whatsoever on that money. They can’t, really, unless a coin actually takes off as a currency, and that seems at odds with speculative investing since everyone either wants to hoard or ditch their coins. When the coins have no value themselves, the money can only come from other investors, and eventually the hype winds down and you run out of other investors.

I fear this will hurt a lot of people before it’s over, so I’d like for it to be over as soon as possible.


That said, the hype itself has gotten way out of hand too. First it was the obsession with “blockchain” like it’s a revolutionary technology, but hey, Git is a fucking blockchain. The novel part is the way it handles distributed consensus (which in Git is basically left for you to figure out), and that’s uniquely important to currency because you want to be pretty sure that money doesn’t get duplicated or lost when moved around.

But now we have startups trying to use blockchains for website backends and file storage and who knows what else? Why? What advantage does this have? When you say “blockchain”, I hear “single Git repository” — so when you say “email on the blockchain”, I have an aneurysm.

Bitcoin seems to have sparked imagination in large part because it’s decentralized, but I’d argue it’s actually a pretty bad example of a decentralized network, since people keep forking it. The ability to fork is a feature, sure, but the trouble here is that the Bitcoin family has no notion of federation — there is one canonical Bitcoin ledger and it has no notion of communication with any other. That’s what you want for currency, not necessarily other applications. (Bitcoin also incentivizes frivolous forking by giving the creator an initial pile of coins to keep and sell.)

And federation is much more interesting than decentralization! Federation gives us email and the web. Federation means I can set up my own instance with my own rules and still be able to meaningfully communicate with the rest of the network. Federation has some amount of tolerance for changes to the protocol, so such changes are more flexible and rely more heavily on consensus.

Federation is fantastic, and it feels like a massive tragedy that this rekindled interest in decentralization is mostly focused on peer-to-peer networks, which do little to address our current problems with centralized platforms.

And hey, you know what else is federated? Banks.

AI

Again, the tech is cool and all, but the marketing hype is getting way out of hand.

Maybe what I really want from 2018 is less marketing?

For one, I’ve seen a huge uptick in uncritically referring to any software that creates or classifies creative work as “AI”. Can we… can we not. It’s not AI. Yes, yes, nerds, I don’t care about the hair-splitting about the nature of intelligence — you know that when we hear “AI” we think of a human-like self-aware intelligence. But we’re applying it to stuff like a weird dog generator. Or to whatever neural network a website threw into production this week.

And this is dangerously misleading — we already had massive tech companies scapegoating The Algorithm™ for the poor behavior of their software, and now we’re talking about those algorithms as though they were self-aware, untouchable, untameable, unknowable entities of pure chaos whose decisions we are arbitrarily bound to. Ancient, powerful gods who exist just outside human comprehension or law.

It’s weird to see this stuff appear in consumer products so quickly, too. It feels quick, anyway. The latest iPhone can unlock via facial recognition, right? I’m sure a lot of effort was put into ensuring that the same person’s face would always be recognized… but how confident are we that other faces won’t be recognized? I admit I don’t follow all this super closely, so I may be imagining a non-problem, but I do know that humans are remarkably bad at checking for negative cases.

Hell, take the recurring problem of major platforms like Twitter and YouTube classifying anything mentioning “bisexual” as pornographic — because the word is also used as a porn genre, and someone threw a list of porn terms into a filter without thinking too hard about it. That’s just a word list, a fairly simple thing that any human can review; but suddenly we’re confident in opaque networks of inferred details?

I don’t know. “Traditional” classification and generation are much more comforting, since they’re a set of fairly abstract rules that can be examined and followed. Machine learning, as I understand it, is less about rules and much more about pattern-matching; it’s built out of the fingerprints of the stuff it’s trained on. Surely that’s just begging for tons of edge cases. They’re practically made of edge cases.


I’m reminded of a point I saw made a few days ago on Twitter, something I’d never thought about but should have. TurnItIn is a service for universities that checks whether students’ papers match any others, in order to detect cheating. But this is a paid service, one that fundamentally hinges on its corpus: a large collection of existing student papers. So students pay money to attend school, where they’re required to let their work be given to a third-party company, which then profits off of it? What kind of a goofy business model is this?

And my thoughts turn to machine learning, which is fundamentally different from an algorithm you can simply copy from a paper, because it’s all about the training data. And to get good results, you need a lot of training data. Where is that all coming from? How many for-profit companies are setting a neural network loose on the web — on millions of people’s work — and then turning around and selling the result as a product?

This is really a question of how intellectual property works in the internet era, and it continues our proud decades-long tradition of just kinda doing whatever we want without thinking about it too much. Nothing if not consistent.

More of this

A bit tougher, since computers are pretty alright now and everything continues to chug along. Maybe we should just quit while we’re ahead. There’s some real pie-in-the-sky stuff that would be nice, but it certainly won’t happen within a year, and may never happen except in some horrific Algorithmic™ form designed by people that don’t know anything about the problem space and only works 60% of the time but is treated as though it were bulletproof.

Federation

The giants are getting more giant. Maybe too giant? Granted, it could be much worse than Google and Amazon — it could be Apple!

Amazon has its own delivery service and brick-and-mortar stores now, as well as providing the plumbing for vast amounts of the web. They’re not doing anything particularly outrageous, but they kind of loom.

Ad company Google just put ad blocking in its majority-share browser — albeit for the ambiguously-noble goal of only blocking obnoxious ads so that people will be less inclined to install a blanket ad blocker.

Twitter is kind of a nightmare but no one wants to leave. I keep trying to use Mastodon as well, but I always forget about it after a day, whoops.

Facebook sounds like a total nightmare but no one wants to leave that either, because normies don’t use anything else, which is itself direly concerning.

IRC is rapidly bleeding mindshare to Slack and Discord, both of which are far better at the things IRC sadly never tried to do and absolutely terrible at the exact things IRC excels at.

The problem is the same as ever: there’s no incentive to interoperate. There’s no fundamental technical reason why Twitter and Tumblr and MySpace and Facebook can’t intermingle their posts; they just don’t, because why would they bother? It’s extra work that makes it easier for people to not use your ecosystem.

I don’t know what can be done about that, except that hope for a really big player to decide to play nice out of the kindness of their heart. The really big federated success stories — say, the web — mostly won out because they came along first. At this point, how does a federated social network take over? I don’t know.

Social progress

I… don’t really have a solid grasp on what’s happening in tech socially at the moment. I’ve drifted a bit away from the industry part, which is where that all tends to come up. I have the vague sense that things are improving, but that might just be because the Rust community is the one I hear the most about, and it puts a lot of effort into being inclusive and welcoming.

So… more projects should be like Rust? Do whatever Rust is doing? And not so much what Linus is doing.

Open source funding

I haven’t heard this brought up much lately, but it would still be nice to see. The Bay Area runs on open source and is raking in zillions of dollars on its back; pump some of that cash back into the ecosystem, somehow.

I’ve seen a couple open source projects on Patreon, which is fantastic, but feels like a very small solution given how much money is flowing through the commercial tech industry.

Ad blocking

Nice. Fuck ads.

One might wonder where the money to host a website comes from, then? I don’t know. Maybe we should loop this in with the above thing and find a more informal way to pay people for the stuff they make when we find it useful, without the financial and cognitive overhead of A Transaction or Giving Someone My Damn Credit Card Number. You know, something like Bitco— ah, fuck.

Year of the Linux Desktop

I don’t know. What are we working on at the moment? Wayland? Do Wayland, I guess. Oh, and hi-DPI, which I hear sucks. And please fix my sound drivers so PulseAudio stops blaming them when it fucks up.

Hacker House’s Zero W–powered automated gardener

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/hacker-house-automated-gardener/

Are the plants in your home or office looking somewhat neglected? Then build an automated gardener using a Raspberry Pi Zero W, with help from the team at Hacker House.

Make a Raspberry Pi Automated Gardener

See how we built it, including our materials, code, and supplemental instructions, on Hackster.io: https://www.hackster.io/hackerhouse/automated-indoor-gardener-a90907 With how busy our lives are, it’s sometimes easy to forget to pay a little attention to your thirsty indoor plants until it’s too late and you are left with a crusty pile of yellow carcasses.

Building an automated gardener

Tired of their plants looking a little too ‘crispy’, Hacker House have created an automated gardener using a Raspberry Pi Zero W alongside some 3D-printed parts, a 5v USB grow light, and a peristaltic pump.

Hacker House Automated Gardener Raspberry Pi

They designed and 3D printed a PLA casing for the project, allowing enough space within for the Raspberry Pi Zero W, the pump, and the added electronics including soldered wiring and two N-channel power MOSFETs. The MOSFETs serve to switch the light and the pump on and off.

Hacker House Automated Gardener Raspberry Pi

Due to the amount of power the light and pump need, the team replaced the Pi’s standard micro USB power supply with a 12v switching supply.

Coding an automated gardener

All the code for the project — a fairly basic Python script —is on the Hacker House GitHub repository. To fit it to your requirements, you may need to edit a few lines of the code, and Hacker House provides information on how to do this. You can also find more details of the build on the hackster.io project page.

Hacker House Automated Gardener Raspberry Pi

While the project runs with preset timings, there’s no reason why you couldn’t upgrade it to be app-based, for example to set a watering schedule when you’re away on holiday.

To see more for the Hacker House team, be sure to follow them on YouTube. You can also check out some of their previous Raspberry Pi projects featured on our blog, such as the smartphone-connected door lock and gesture-controlled holographic visualiser.

Raspberry Pi and your home garden

Raspberry Pis make great babysitters for your favourite plants, both inside and outside your home. Here at Pi Towers, we have Bert, our Slack- and Twitter-connected potted plant who reminds us when he’s thirsty and in need of water.

Bert Plant on Twitter

I’m good. There’s plenty to drink!

And outside of the office, we’ve seen plenty of your vegetation-focused projects using Raspberry Pi for planting, monitoring or, well, commenting on social and political events within the media.

If you use a Raspberry Pi within your home gardening projects, we’d love to see how you’ve done it. So be sure to share a link with us either in the comments below, or via our social media channels.

 

The post Hacker House’s Zero W–powered automated gardener appeared first on Raspberry Pi.

Integration With Zapier

Post Syndicated from Bozho original https://techblog.bozho.net/integration-with-zapier/

Integration is boring. And also inevitable. But I won’t be writing about enterprise integration patterns. Instead, I’ll explain how to create an app for integration with Zapier.

What is Zapier? It is a service that allows you tо connect two (or more) otherwise unconnected services via their APIs (or protocols). You can do stuff like “Create a Trello task from an Evernote note”, “publish new RSS items to Facebook”, “append new emails to a spreadsheet”, “post approaching calendar meeting to Slack”, “Save big email attachments to Dropbox”, “tweet all instagrams above a certain likes threshold”, and so on. In fact, it looks to cover mostly the same usecases as another famous service that I really like – IFTTT (if this then that), with my favourite use-case “Get a notification when the international space station passes over your house”. And all of those interactions can be configured via a UI.

Now that’s good for end users but what does it have to do with software development and integration? Zapier (unlike IFTTT, unfortunately), allows custom 3rd party services to be included. So if you have a service of your own, you can create an “app” and allow users to integrate your service with all the other 3rd party services. IFTTT offers a way to invoke web endpoints (including RESTful services), but it doesn’t allow setting headers, so that makes it quite limited for actual APIs.

In this post I’ll briefly explain how to write a custom Zapier app and then will discuss where services like Zapier stand from an architecture perspective.

The thing that I needed it for – to be able to integrate LogSentinel with any of the third parties available through Zapier, i.e. to store audit logs for events that happen in all those 3rd party systems. So how do I do that? There’s a tutorial that makes it look simple. And it is, with a few catches.

First, there are two tutorials – one in GitHub and one on Zapier’s website. And they differ slightly, which becomes tricky in some cases.

I initially followed the GitHub tutorial and had my build fail. It claimed the zapier platform dependency is missing. After I compared it with the example apps, I found out there’s a caret in front of the zapier platform dependency. Removing it just yielded another error – that my node version should be exactly 6.10.2. Why?

The Zapier CLI requires you have exactly version 6.10.2 installed. You’ll see errors and will be unable to proceed otherwise.

It appears that they are using AWS Lambda which is stuck on Node 6.10.2 (actually – it’s 6.10.3 when you check). The current major release is 8, so minus points for choosing … javascript for a command-line tool and for building sandboxed apps. Maybe other decisions had their downsides as well, I won’t be speculating. Maybe it’s just my dislike for dynamic languages.

So, after you make sure you have the correct old version on node, you call zapier init and make sure there are no carets, npm install and then zapier test. So far so good, you have a dummy app. Now how do you make a RESTful call to your service?

Zapier splits the programmable entities in two – “triggers” and “creates”. A trigger is the event that triggers the whole app, an a “create” is what happens as a result. In my case, my app doesn’t publish any triggers, it only accepts input, so I won’t be mentioning triggers (though they seem easy). You configure all of the elements in index.js (e.g. this one):

const log = require('./creates/log');
....
creates: {
    [log.key]: log,
}

The log.js file itself is the interesting bit – there you specify all the parameters that should be passed to your API call, as well as making the API call itself:

const log = (z, bundle) => {
  const responsePromise = z.request({
    method: 'POST',
    url: `https://api.logsentinel.com/api/log/${bundle.inputData.actorId}/${bundle.inputData.action}`,
    body: bundle.inputData.details,
	headers: {
		'Accept': 'application/json'
	}
  });
  return responsePromise
    .then(response => JSON.parse(response.content));
};

module.exports = {
  key: 'log-entry',
  noun: 'Log entry',

  display: {
    label: 'Log',
    description: 'Log an audit trail entry'
  },

  operation: {
    inputFields: [
      {key: 'actorId', label:'ActorID', required: true},
      {key: 'action', label:'Action', required: true},
      {key: 'details', label:'Details', required: false}
    ],
    perform: log
  }
};

You can pass the input parameters to your API call, and it’s as simple as that. The user can then specify which parameters from the source (“trigger”) should be mapped to each of your parameters. In an example zap, I used an email trigger and passed the sender as actorId, the sibject as “action” and the body of the email as details.

There’s one more thing – authentication. Authentication can be done in many ways. Some services offer OAuth, others – HTTP Basic or other custom forms of authentication. There is a section in the documentation about all the options. In my case it was (almost) an HTTP Basic auth. My initial thought was to just supply the credentials as parameters (which you just hardcode rather than map to trigger parameters). That may work, but it’s not the canonical way. You should configure “authentication”, as it triggers a friendly UI for the user.

You include authentication.js (which has the fields your authentication requires) and then pre-process requests by adding a header (in index.js):

const authentication = require('./authentication');

const includeAuthHeaders = (request, z, bundle) => {
  if (bundle.authData.organizationId) {
	request.headers = request.headers || {};
	request.headers['Application-Id'] = bundle.authData.applicationId
	const basicHash = Buffer(`${bundle.authData.organizationId}:${bundle.authData.apiSecret}`).toString('base64');
	request.headers['Authorization'] = `Basic ${basicHash}`;
  }
  return request;
};

const App = {
  // This is just shorthand to reference the installed dependencies you have. Zapier will
  // need to know these before we can upload
  version: require('./package.json').version,
  platformVersion: require('zapier-platform-core').version,
  authentication: authentication,
  
  // beforeRequest & afterResponse are optional hooks into the provided HTTP client
  beforeRequest: [
	includeAuthHeaders
  ]
...
}

And then you zapier push your app and you can test it. It doesn’t automatically go live, as you have to invite people to try it and use it first, but in many cases that’s sufficient (i.e. using Zapier when doing integration with a particular client)

Can Zapier can be used for any integration problem? Unlikely – it’s pretty limited and simple, but that’s also a strength. You can, in half a day, make your service integrate with thousands of others for the most typical use-cases. And not that although it’s meant for integrating public services rather than for enterprise integration (where you make multiple internal systems talk to each other), as an increasing number of systems rely on 3rd party services, it could find home in an enterprise system, replacing some functions of an ESB.

Effectively, such services (Zapier, IFTTT) are “Simple ESB-as-a-service”. You go to a UI, fill a bunch of fields, and you get systems talking to each other without touching the systems themselves. I’m not a big fan of ESBs, mostly because they become harder to support with time. But minimalist, external ones might be applicable in certain situations. And while such services are primarily aimed at end users, they could be a useful bit in an enterprise architecture that relies on 3rd party services.

Whether it could process the required load, whether an organization is willing to let its data flow through a 3rd party provider (which may store the intermediate parameters), is a question that should be answered in a case by cases basis. I wouldn’t recommend it as a general solution, but it’s certainly an option to consider.

The post Integration With Zapier appeared first on Bozho's tech blog.

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/745493/rss

Security updates have been issued by CentOS (389-ds-base, dhcp, kernel, and nautilus), Debian (curl, openssh, and wireshark), Fedora (clamav, firefox, java-9-openjdk, and poco), Gentoo (clamav), openSUSE (curl, libevent, mupdf, mysql-community-server, newsbeuter, php5, redis, and tre), Oracle (389-ds-base, dhcp, kernel, and nautilus), Slackware (mozilla), and Ubuntu (kernel and linux-hwe, linux-azure, linux-gcp, linux-oem).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/745373/rss

Security updates have been issued by CentOS (firefox), Debian (firefox-esr, gcab, and poppler), Fedora (clamav and firefox), Mageia (bind, firefox, glibc, graphicsmagick, squid, systemd, and virtualbox), openSUSE (firefox, GraphicsMagick, libexif, and libvpx), Red Hat (389-ds-base, dhcp, kernel, kernel-alt, kernel-rt, and nautilus), Scientific Linux (389-ds-base, dhcp, kernel, and nautilus), Slackware (curl), SUSE (kernel and webkit2gtk3), and Ubuntu (firefox, libtasn1-6, and mysql-5.5).

Building Blocks of Amazon ECS

Post Syndicated from Tiffany Jernigan original https://aws.amazon.com/blogs/compute/building-blocks-of-amazon-ecs/

So, what’s Amazon Elastic Container Service (ECS)? ECS is a managed service for running containers on AWS, designed to make it easy to run applications in the cloud without worrying about configuring the environment for your code to run in. Using ECS, you can easily deploy containers to host a simple website or run complex distributed microservices using thousands of containers.

Getting started with ECS isn’t too difficult. To fully understand how it works and how you can use it, it helps to understand the basic building blocks of ECS and how they fit together!

Let’s begin with an analogy

Imagine you’re in a virtual reality game with blocks and portals, in which your task is to build kingdoms.

In your spaceship, you pull up a holographic map of your upcoming destination: Nozama, a golden-orange planet. Looking at its various regions, you see that the nearest one is za-southwest-1 (SW Nozama). You set your destination, and use your jump drive to jump to the outer atmosphere of za-southwest-1.

As you approach SW Nozama, you see three portals, 1a, 1b, and 1c. Each portal lets you transport directly to an isolated zone (Availability Zone), where you can start construction on your new kingdom (cluster), Royaume.

With your supply of blocks, you take the portal to 1b, and erect the surrounding walls of your first territory (instance)*.

Before you get ahead of yourself, there are some rules to keep in mind. For your territory to be a part of Royaume, the land ordinance requires construction of a building (container), specifically a castle, from which your territory’s lord (agent)* rules.

You can then create architectural plans (task definitions) to build your developments (tasks), consisting of up to 10 buildings per plan. A development can be built now within this or any territory, or multiple territories.

If you do decide to create more territories, you can either stay here in 1b or take a portal to another location in SW Nozama and start building there.

Amazon EC2 building blocks

We currently provide two launch types: EC2 and Fargate. With Fargate, the Amazon EC2 instances are abstracted away and managed for you. Instead of worrying about ECS container instances, you can just worry about tasks. In this post, the infrastructure components used by ECS that are handled by Fargate are marked with a *.

Instance*

EC2 instances are good ol’ virtual machines (VMs). And yes, don’t worry, you can connect to them (via SSH). Because customers have varying needs in memory, storage, and computing power, many different instance types are offered. Just want to run a small application or try a free trial? Try t2.micro. Want to run memory-optimized workloads? R3 and X1 instances are a couple options. There are many more instance types as well, which cater to various use cases.

AMI*

Sorry if you wanted to immediately march forward, but before you create your instance, you need to choose an AMI. An AMI stands for Amazon Machine Image. What does that mean? Basically, an AMI provides the information required to launch an instance: root volume, launch permissions, and volume-attachment specifications. You can find and choose a Linux or Windows AMI provided by AWS, the user community, the AWS Marketplace (for example, the Amazon ECS-Optimized AMI), or you can create your own.

Region

AWS is divided into regions that are geographic areas around the world (for now it’s just Earth, but maybe someday…). These regions have semi-evocative names such as us-east-1 (N. Virginia), us-west-2 (Oregon), eu-central-1 (Frankfurt), ap-northeast-1 (Tokyo), etc.

Each region is designed to be completely isolated from the others, and consists of multiple, distinct data centers. This creates a “blast radius” for failure so that even if an entire region goes down, the others aren’t affected. Like many AWS services, to start using ECS, you first need to decide the region in which to operate. Typically, this is the region nearest to you or your users.

Availability Zone

AWS regions are subdivided into Availability Zones. A region has at minimum two zones, and up to a handful. Zones are physically isolated from each other, spanning one or more different data centers, but are connected through low-latency, fiber-optic networking, and share some common facilities. EC2 is designed so that the most common failures only affect a single zone to prevent region-wide outages. This means you can achieve high availability in a region by spanning your services across multiple zones and distributing across hosts.

Amazon ECS building blocks

Container

Well, without containers, ECS wouldn’t exist!

Are containers virtual machines?
Nope! Virtual machines virtualize the hardware (benefits), while containers virtualize the operating system (even more benefits!). If you look inside a container, you would see that it is made by processes running on the host, and tied together by kernel constructs like namespaces, cgroups, etc. But you don’t need to bother about that level of detail, at least not in this post!

Why containers?
Containers give you the ability to build, ship, and run your code anywhere!

Before the cloud, you needed to self-host and therefore had to buy machines in addition to setting up and configuring the operating system (OS), and running your code. In the cloud, with virtualization, you can just skip to setting up the OS and running your code. Containers make the process even easier—you can just run your code.

Additionally, all of the dependencies travel in a package with the code, which is called an image. This allows containers to be deployed on any host machine. From the outside, it looks like a host is just holding a bunch of containers. They all look the same, in the sense that they are generic enough to be deployed on any host.

With ECS, you can easily run your containerized code and applications across a managed cluster of EC2 instances.

Are containers a fairly new technology?
The concept of containerization is not new. Its origins date back to 1979 with the creation of chroot. However, it wasn’t until the early 2000s that containers became a major technology. The most significant milestone to date was the release of Docker in 2013, which led to the popularization and widespread adoption of containers.

What does ECS use?
While other container technologies exist (LXC, rkt, etc.), because of its massive adoption and use by our customers, ECS was designed first to work natively with Docker containers.

Container instance*

Yep, you are back to instances. An instance is just slightly more complex in the ECS realm though. Here, it is an ECS container instance that is an EC2 instance running the agent, has a specifically defined IAM policy and role, and has been registered into your cluster.

And as you probably guessed, in these instances, you are running containers. 

AMI*

These container instances can use any AMI as long as it has the following specifications: a modern Linux distribution with the agent and the Docker Daemon with any Docker runtime dependencies running on it.

Want it more simplified? Well, AWS created the Amazon ECS-Optimized AMI for just that. Not only does that AMI come preconfigured with all of the previously mentioned specifications, it’s tested and includes the recommended ecs-init upstart process to run and monitor the agent.

Cluster

An ECS cluster is a grouping of (container) instances* (or tasks in Fargate) that lie within a single region, but can span multiple Availability Zones – it’s even a good idea for redundancy. When launching an instance (or tasks in Fargate), unless specified, it registers with the cluster named “default”. If “default” doesn’t exist, it is created. You can also scale and delete your clusters.

Agent*

The Amazon ECS container agent is a Go program that runs in its own container within each EC2 instance that you use with ECS. (It’s also available open source on GitHub!) The agent is the intermediary component that takes care of the communication between the scheduler and your instances. Want to register your instance into a cluster? (Why wouldn’t you? A cluster is both a logical boundary and provider of pool of resources!) Then you need to run the agent on it.

Task

When you want to start a container, it has to be part of a task. Therefore, you have to create a task first. Succinctly, tasks are a logical grouping of 1 to N containers that run together on the same instance, with N defined by you, up to 10. Let’s say you want to run a custom blog engine. You could put together a web server, an application server, and an in-memory cache, each in their own container. Together, they form a basic frontend unit.

Task definition

Ah, but you cannot create a task directly. You have to create a task definition that tells ECS that “task definition X is composed of this container (and maybe that other container and that other container too!).” It’s kind of like an architectural plan for a city. Some other details it can include are how the containers interact, container CPU and memory constraints, and task permissions using IAM roles.

Then you can tell ECS, “start one task using task definition X.” It might sound like unnecessary planning at first. As soon as you start to deal with multiple tasks, scaling, upgrades, and other “real life” scenarios, you’ll be glad that you have task definitions to keep track of things!

Scheduler*

So, the scheduler schedules… sorry, this should be more helpful, huh? The scheduler is part of the “hosted orchestration layer” provided by ECS. Wait a minute, what do I mean by “hosted orchestration”? Simply put, hosted means that it’s operated by ECS on your behalf, without you having to care about it. Your applications are deployed in containers running on your instances, but the managing of tasks is taken care of by ECS. One less thing to worry about!

Also, the scheduler is the component that decides what (which containers) gets to run where (on which instances), according to a number of constraints. Say that you have a custom blog engine to scale for high availability. You could create a service, which by default, spreads tasks across all zones in the chosen region. And if you want each task to be on a different instance, you can use the distinctInstance task placement constraint. ECS makes sure that not only this happens, but if a task fails, it starts again.

Service

To ensure that you always have your task running without managing it yourself, you can create a service based on the task that you defined and ECS ensures that it stays running. A service is a special construct that says, “at any given time, I want to make sure that N tasks using task definition X1 are running.” If N=1, it just means “make sure that this task is running, and restart it if needed!” And with N>1, you’re basically scaling your application until you hit N, while also ensuring each task is running.

So, what now?

Hopefully you, at the very least, learned a tiny something. All comments are very welcome!

Want to discuss ECS with others? Join the amazon-ecs slack group, which members of the community created and manage.

Also, if you’re interested in learning more about the core concepts of ECS and its relation to EC2, here are some resources:

Pages
Amazon ECS landing page
AWS Fargate landing page
Amazon ECS Getting Started
Nathan Peck’s AWSome ECS

Docs
Amazon EC2
Amazon ECS

Blogs
AWS Compute Blog
AWS Blog

GitHub code
Amazon ECS container agent
Amazon ECS CLI

AWS videos
Learn Amazon ECS
AWS videos
AWS webinars

 

— tiffany

 @tiffanyfayj

 

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/744713/rss

Security updates have been issued by CentOS (linux-firmware and microcode_ctl), Fedora (icecat and transmission), Oracle (java-1.8.0-openjdk and microcode_ctl), Red Hat (java-1.8.0-openjdk), Scientific Linux (java-1.8.0-openjdk), Slackware (bind), SUSE (kernel), and Ubuntu (eglibc).

facepunch: the facial recognition punch clock

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/facepunch-facial-recognition/

Get on board with facial recognition and clock your screen time with facepunch, the facial recognition punch clock from dekuNukem.

dekuNukem facepunch raspberry pi facial recognition

image c/o dekuNukem

How it works

dekuNukem uses a Raspberry Pi 3, the Raspberry Pi camera module, and an OLED screen for the build. You don’t strictly need to include the OLED board, but it definitely adds to the overall effect, letting you view your daily and weekly screen time at a glance without having to access your Raspberry Pi for data.

As dekuNukem explains in the GitHub repo for the build, they used a perf board to mount the screen and attached it to the Raspberry Pi. This is a nice, simple means of pulling the whole project together without loose wires or the need for a modified case.

dekuNukem facepunch raspberry pi facial recognition

image c/o dekuNukem

This face_recognition library lets the Pi + camera register your face. You’ll also need a well lit 400×400 photograph of yourself to act as a reference for the library. From there, a few commands should get you started.

Uses for facial recognition

You could simply use facepunch for its intended purpose, but here at Pi Towers we’ve been discussing further uses for the build. We’re all guilty of sitting for too long at our desks, so why not incorporate a “get up and walk around” notification? How about a flashing LED that tells you to “drink some water”? You could even go a little deeper (though possibly a little Big Brother) and set up an “I’m back at my desk” notification on Slack, to let your colleagues know you’re available.

You could also take this foray into facial recognition and incorporate it into home automation projects: a user-identifying Magic Mirror, perhaps, or a doorbell that recognises friends and family.

What would you do with facial recognition on a Raspberry Pi?

The post facepunch: the facial recognition punch clock appeared first on Raspberry Pi.