Tag Archives: Sponsored

Advanced low-frequency noise measurement system: 9812DX

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/advanced-low-frequency-noise-measurement-system-9812dx

The 9812DX system, consisting of three current amplifiers and one voltage amplifier, fully demonstrates its superior capabilities and versatility measuring low-frequency noise characteristics of onwafer transistors over a wide range of bias voltage 200V, bias current 200mA and operating frequency bandwidth 0.03Hz – 10 MHz down to an extremely low noise resolution of 1e-27 A2/Hz.

Making “Smart” Cells Smarter

Post Syndicated from University of Maryland original https://spectrum.ieee.org/biomedical/devices/making-smart-cells-smarter

For years, scientists have explored ways to alter the cells of microorganisms in efforts to improve how a wide range of products are made – including medicines, fuels, and even beer. By tapping into the world of metabolic engineering, researchers have also developed techniques to create “smart” bacteria capable of carrying out a multitude of functions that impact processes involved in drug delivery, digestion, and even water decontamination.

But, altering the genetic and regulatory processes that take place within cells presents challenges.

To start, cells are already programmed to carry out their normal, everyday processes with maximum efficiency; any alterations that engineers make to increase a cell’s production of a certain substance can, in turn, upset these processes and overburden the cell.

To address this problem, William E. Bentley, an A. James Clark School of Engineering professor and director of the Robert E. Fischell Institute for Biomedical Devices, is working with a team of researchers to focus on engineering microbial consortia, wherein cell subpopulations are engineered to work together to carry out a desired function. This strategy – which others in the field have also explored – allows engineers to design specialized cells and divvy up the target workload among a group of cells.

The tradeoff is that directing a cell consortium to carry out specific tasks requires engineers to somehow regulate how many of each cell subpopulation are present. Until now, there’s been little research focused on developing devices or systems to automatically regulate the compositions of cellular subpopulations within a consortium. Generally, studies of cell consortia have required engineers to use painstaking manual or expensive external controller systems to strike that balance.

Bentley and his team are focused on reengineering cells so that they’re able to coordinate their subpopulation densities autonomously. Their technique was highlighted in a Nature Communications paper published on Sept. 11.

“The key concept is that groups of cells can be engineered to self-regulate their composition, and no outside input is needed,” Bentley said. “For example, there’s no way to ensure that the bacteria engineered for use in the gastrointestinal tract will actually be retained or behave as we expect. And you can’t use convenient means such as magnetic or electrical fields to regulate bacteria in the gut, so why not incorporate the self-regulation property into the bacteria themselves?”

Like others in the field, Bentley and members of his Biomolecular and Metabolic Engineering Lab previously investigated “quorum sensing,” or QS—a bacterial form of cell-to-cell communication—to engineer communication circuits between bacterial strains to coordinate their behaviors.

To create an autonomous system, Bentley and his team rewired the bacterial QS systems in two strains of E. coli so that the growth rate of communicating cell subpopulations within the consortia would be dictated by signaling between the cells. It’s a sort of feedback loop in which cells are able to sense and react to intercellular signaling molecules called autoinducers, which enable bacteria to work together of their own accord.

The breakthrough could be key to a host of new functions for “smart bacteria” developed through genetic engineering, ranging from drug delivery to water decontamination to new fermentation processes for the latest craft beverage.

“Increasingly, consortia of microbes will be tasked with converting raw materials into valuable products,” Bentley said. “The raw materials may be wastes or byproducts of industrial processes. The synthetic capabilities of consortia may far surpass those of pure monocultures, so methodologies that help to align consortia will be needed.”

University of Maryland Fischell Department of Bioengineering (BIOE) and Institute for Bioscience and Biotechnology Research (IBBR) researcher Kristina Stephens served as first author on the Nature Communications paper titled, “Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition.” Maria Pozo (BIOE), Chen-Yu Tsao (BIOE, IBBR), and Pricila Hauk (BIOE, IBBR) also contributed to the paper.

This work is supported in part by funding from the National Science Foundation, the Defense Threat Reduction Agency (U.S. Department of Defense), and the National Institutes of Health (NIH).

Delivering on Quantum Innovation

Post Syndicated from University of Maryland original https://spectrum.ieee.org/computing/hardware/delivering-on-quantum-innovation

The University of Maryland (UMD) has announced the launch of the Quantum Technology Center (QTC), which aims to translate quantum physics research into innovative technologies.

The center will capitalize on the university’s strong research programs and partnerships in quantum science and systems engineering, and pursue collaborations with industry and government labs to help take promising quantum advances from the lab to the marketplace. QTC will also train students in the development and application of quantum technologies to produce a workforce educated in quantum-related engineering.

The launch of QTC comes at a pivotal time when quantum science research is expanding beyond physics into materials science, engineering, computer science, chemistry, and biology. Scientists across these disciplines are looking for ways to exploit quantum physics to build powerful computers, develop secure communication networks, and improve sensing and imaging capabilities. In the future, quantum technology could also impact fields such as artificial intelligence, energy, and medicine.

Fearless vision

The rules of quantum physics cover the shockingly strange behaviors of atoms and smaller particles. Technologies based on the first century of quantum physics research are close at hand in your daily life—in your smartphone’s billions of transistors and GPS navigation, for instance.

Today more radical quantum technologies are moving toward commercial reality.

UMD has long been a powerhouse in quantum research and is now accelerating this trend with the launch of QTC. Founded jointly by UMD’s A. James Clark School of Engineering and College of Computer, Mathematical, and Natural Sciences, QTC will translate quantum science to the marketplace.

“QTC will be a community that brings together different types of people and ideas to create new quantum technologies and train a new generation of quantum workforce,” says QTC founding Director Ronald Walsworth. “UMD will focus on developing these technologies in the early stages, and then translating them out to the wider world with diverse partners.”

Like UMD’s existing quantum research programs, QTC is expected to draw strong sponsorship from federal research agencies. National support for quantum research is on the upswing—most notably evidenced by the National Quantum Initiative, signed into law in December 2018, which authorizes $1.275 billion over five years for research. 

Quantum research on the rise

UMD already hosts more than 200 researchers in quantum science, one of the greatest concentrations in the world. Much of the effort has been led by the Joint Quantum Institute (JQI) and Joint Center for Quantum Information and Computer Science (QuICS), both partnerships between UMD and the National Institute of Standards and Technology. JQI and QuICS support many projects that cross boundaries in research disciplines and organizations; this trend will only increase with QTC on campus.

One prime example of constructively blurred lines comes from the research of Distinguished University Professor Chris Monroe. An international leader in isolating individual atoms for quantum computing and simulation, Monroe is a member of all three centers, and well-positioned to tap into the expertise of researchers in related disciplines. 

Professor Edo Waks and Associate Professor Mohammad Hafezi, both members of QTC and JQI, are also among the UMD researchers helping to form the next revolution of quantum research with groundbreaking work on devices for quantum information processing and quantum networks.

In one effort, Waks demonstrated the first single-photon transistor using a semiconductor chip. The device is compact; roughly one million of these new transistors could fit inside a single grain of salt. It is also fast and able to process 10 billion photonic qubits every second.

“Using our transistor, we should be able to perform quantum gates between photons,” says Waks. “Software running on a quantum computer would use a series of such operations to attain exponential speedup for certain computational problems.”

Hafezi studies the fundamental behaviors of light–matter interactions down to the single-photon level. He created the first silicon chip that can reliably constrain light to its four corners. The effect, which arises from interfering optical pathways, could eventually enable the creation of robust sources of quantum light.

“We have been developing integrated silicon photonic systems to realize ideas derived from topology in a physical system,” Hafezi says. “The fact that we use components compatible with current technology means that, if these systems are robust, they could possibly be translated into immediate applications.”

Grounding a quantum community

 “QTC will be a crucible for quantum science and engineering,” says Walsworth, a leader in quantum sensing who was recruited from Harvard University to lead the new center. “We’ll be building bridges between people, between sectors, between theories and technologies. There’s a kind of hunger for a community that pulls people together to pool information and find ways to overcome challenges in this exciting new area.”

According to Clark School Dean and Farvardin Professor Darryll Pines, UMD’s hiring of Walsworth signals an important next step in bringing engineering solutions to the forefront. “He’s the perfect representative to bridge the gap between physics and engineering, because he’s already been doing that himself,” says Pines.

In addition to his broad range of research accomplishments, Walsworth has acted as an advisor for corporations and co-founded two companies based in part on his lab’s work. Quantum Diamond Technologies is developing applications in medical diagnostics for quantum measurement technologies that can be generated at room temperatures in synthetic diamonds. Hyperfine Research is creating low-cost portable MRI machines. 

“If you really want a new community of technology to flourish, you’ve got to have the applications right,” Walsworth adds. “You’ve got to be solving someone’s problems. Some people are busy building their technologies, but they don’t always know what the technologies are good for. Other people are out there complaining about how they can’t solve their problems, but they don’t know what technology exists that might help.” 

Making the match will require QTC researchers to seek out groups across and outside the university to talk about actual challenges where quantum technology might help.

“From a United States perspective, this is a big deal,” he says. “Quantum is one of those areas that requires enormous investment from the federal government, to advance our knowledge in this space. We hope this leads to opportunities that translate to real products with positive impact for people, society, and the U.S. economy.”

Choosing an Optical Measurement Sensor for Non-contact Displacement, Dimension and Thickness Measurement

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/choosing_an_optical_measurement_sensor_for_non-contact_displacement_dimension_and_thickness_measurement

Learn the operating principles of optical measuring sensors for displacement, position, thickness, gap, profile and 2D/3D dimension with just one sensor