Tag Archives: Sponsored

Gate Drive Measurement Considerations

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/gate-drive-measurement-considerations

One of the primary purposes of a gate driver is to enable power switches to turn on and off faster, improving rise and fall times. Faster switching enables higher efficiency and higher power density, reducing losses in the power stage associated with high slew rates. However, as slew rates increase, so do measurement and characterization uncertainty. 

Effective measurement and characterization considerations must account for: ► Proper gate driver design – Accurate timing (propagation delay in regard to skew, PWD, jitter) – Controllable gate rise and fall times  – Robustness against noise sources (input glitches and CMTI) ► Minimized noise coupling ► Minimized parasitic inductance

The trend for silicon based power designs over wide bandgap power designs makes measurement and characterization a greater challenge. High slew rates in SiC and GaN devices present  designers with hazards such as large overshoots and ringing, and potentially large  unwanted voltage transients that can cause spurious switching of the MOSFETs.

Your Guide to Sprinting Across the 5G Finish Line First.

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/your-guide-to-sprinting-across-the-5g-finish-line-first

5G introduces test challenges related to massive MIMO, mmWave frequencies, and over-the-air (OTA) test. Successfully overcoming these challenges is the only way to reach 5G commercialization before the competition.

In Keysight’s latest eBook, Making 5G Work, you will learn:

  • 5 strategies to accelerate 5G designs
  • 4 insights to ace conformance testing
  • 3 ways to speed up carrier acceptance test for your device
  • 4 techniques that reduce 5G manufacturing test times and costs

Test of Complex Autonomous Vehicle Designs

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/test-of-complex-autonomous-vehicle-designs

Autonomous vehicles (AV) combine multiple sensors, computers and communication technology to make driving safer and improve the driver’s experience. Learn about design and test of complex sensor and communication technologies being built into AVs from our white paper and posters.

Key points covered in our AV resources:

  • Comparison of dedicated short-range communications and C-V2X technologies
  • Definition of AV Levels 0 to 5
  • Snapshot of radar technology from 24 to 77 GHz

Breaking Down Barriers in FPGA Engineering Speeds up Development

Post Syndicated from Digilent original https://spectrum.ieee.org/computing/networks/breaking-down-barriers-in-fpga-engineering-speeds-up-development

It’s hard to reinvent the wheel—they’re round and they spin. But you can make them more efficient, faster, and easier for anyone to use. This is essentially what Digilent Inc. has done with its new Eclypse Z7 Field-Programmable Gate Array (FPGA) board. The Eclypse Z7 represents the first host board of Digilent’s new Eclyspe platform that aims at increasing productivity and accelerating FPGA system design.

To accomplish this, Digilent has taken the design and development of FPGAs out of the silo restricted to highly specialized digital design engineers or embedded systems engineers and opened it up to a much broader group of people that have knowledge of common programming languages, like C and C++. Additional languages like Python and LabVIEW are expected to be supported in future updates.

FPGAs have been a key tool for engineers to tailor a circuit board exactly the way it is needed to be for a particular application. To program these FPGAs specialized development tools are needed. Typically, the tool chain used for Xilinx FPGAs is a programming environment known as Vivado, provided by Xilinx, one of the original developers of FPGAs.

“FPGA development environments like Vivado really require a very niche understanding and knowledge,” said Steve Johnson, president of Digilent. “As a result, they are relegated to a pretty small cadre of engineers.”

Johnson added, “Our intent with the Eclypse Z7 is to empower a much larger number of engineers and even scientists so that they can harness the power of these FPGAs and Systems on a Chip (SoCs), which typically would be out of their reach. We want to broaden the customer base and empower a much larger group of people.”

Digilent didn’t just target relatively easy SoC chip devices. Instead, the company jumped into the deep end of the FPGA pool and focused on the development of a Zynq 7020 FPGA SoC from Xilinx, which has a fairly complex combination of a dual-core ARM processor with an FPGA fabric. This complex part presents even more of challenge for most engineers.

To overcome this complexity, Johnson explains that they essentially abstracted the complexity out of the system level development of Input/Output (I/O) modules by incorporating a software layer and FPGA “blocks” that serve as a kind of driver.

“You can almost think of it as when you plug a printer into a computer, you don’t need to know all of the details of how that printer works,” explained Johnson. “We’re essentially providing a low-level driver for each of these I/O modules so that someone can just plug it in.”

With this capability, a user can configure an I/O device that they just plugged in and start acquiring data from it, according to Johnson. Typically, this would require weeks of work involving the pouring over of data sheets and understanding the registers of the devices that you’ve plugged in. You would need to learn how to communicate with that device at a very low-level so that it was properly configured to move data back and forth. With the new Eclypse Z7 all of that trouble has been taken off the table.


Beyond the software element of the new platform, there’s a focus on high-speed analog and digital I/O. This focus is partly due to Digilent’s alignment with its parent company—National Instruments—and its focus around automated measurements. This high-speed analog and digital I/O is expected to be a key feature for applications where FPGAs and SoCs are really powerful: Edge Computing. 

In these Edge Computing environments, such as in predictive maintenance, you need analog inputs to be able to do vibration or signal monitoring applications. In these types of applications you need high-speed analog inputs and outputs and a lot of processing power near the sensor.

The capabilities of these FPGA and SoC devices in Edge Computing could lead to applying machine learning or artificial intelligence to these devices, ushering in a convergence between two important trends – Artificial Intelligence (AI) and the Internet of Things (IoT) that’s coming to be known as the Artificial Intelligence of Things (AIoT), according to Johnson.

Currently, the FPGA and SoC platforms used in these devices can take advantage of 4G networks to enable Edge devices like those envisioned in AIoT scenarios. But this capability will be greatly enhanced when 5G networks are mature. At that time, Johnson envisions you’ll just have a 5G module that you can plug into a USB or miniPCIe port on an Edge device.

“These SoCs—these ARM processors with the FPGAs attached to them—are exactly the right kind of architecture to do this low-power, small form factor, Edge Computing,” said Johnson. “The analog input that we’re focusing on is intended to both sense the real world and then process and deliver that information. So they’re meant exactly for that kind of application.”

This move by Digilent to empower a greater spectrum of engineers and scientists is in line with their overall aim of helping customers create, prototype and develop small, embedded systems—whether they are medical devices or edge computing devices.

Improving Codec Execution With ARM Cortex-M Processors

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/improving-codec-execution-with-arm-cortexm-processors

Digital Signal Processing (DSP) has traditionally required the use of an expensive dedicated DSP processor. While solutions have been implemented in microcontrollers using fixed-point math libraries for decades, this does require software libraries that can use more processing cycles than a processor capable of executing DSP instructions.

In this paper, we will explore how we can speed up DSP codecs using the DSP extensions built-in to the Arm Cortex-M processors.

You will learn:

  • The technology trends moving data processing to the edge of the network to enable more compute performance
  • What are the DSP extensions on the Arm Cortex-M processors and the benefits they bring, including cost savings and decreased system-level complexity
  • How to convert analog circuits to software using modeling software such as MathWorks MATLAB or Advanced Solutions Nederlands (ASN) filter designer
  • How to utilize the floating-point unit (FPU) with Cortex-M to improve performance
  • How to use the open-source CMSIS-DSP software library to create IIR and FIR filters in addition to calculating a Fast Fourier Transform (FFT)
  • How to implement the IIR filter that utilizes CMSIS-DSP using the Advanced Solutions Nederlands (ASN) designer

Monitoring Your Network with Time Series

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/monitoring-your-network-with-time-series

Networks play a fundamental role in the adoption and growth of Internet applications. Penetrating enterprises, homes, factories, and even cities, networks sustain modern society. In this webinar, Daniella Pontes of InfluxData will explore the flexibility and potential use cases of open source and time series databases.

In this webinar you will:

-Learn how to use a time series database platform to monitor your network

-Understand the value of using open source tools

-Gain insight into what key aspects of network monitoring you should focus on

How to Leverage a CASB for Your AWS Environment

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/how-to-leverage-a-casb-for-your-aws-environment

With the rapid rate of enterprises moving toward cloud providers, security organizations are seeking out methods to implement security controls. Attendees of this webinar will discover how to take advantage of the convenience of cloud access security brokers (CASBs) to integrate modern technologies and secure their AWS footprint with a suite of capabilities.

Attendees will learn to:

  • How a CASB can help make sense of auditing data
  • How a CASB can provide data protection and storage security
  • What common features of CASBs can be leveraged to secure AWS deployments

This Gift Will Help Your Aspiring Engineer Learn Technology

Post Syndicated from Creation Crate original https://spectrum.ieee.org/geek-life/tools-toys/this-gift-will-help-your-aspiring-engineer-learn-technology


Think back to when you were a young and an eager beginner in technology. Remember the first time you took apart your first PC, wrote your first line of code, learned how to hack Doom. The easiest way to learn technology was (and is) by being hands-on.


“Hands-on learning is 15X more effective than passive learning (ie. lectures).”


Learning Technology Today

Getting started in technology can be intimidating. If you want to learn technology these days, there aren’t many great options.


Online Courses

Since these are purely digital, you don’t get the hands-on experience of building electronics. These often end up being just coding lessons.



Most schools don’t even offer electronics and programming in their curriculum. Even fewer engage students in hands-on learning. If you’re lucky, you might find a school that has an afterschool program led by a passionate STEM educator.


“There are nearly 500,000 open Computing jobs in the U.S. alone.”


Educational Hands-on Products

You can find some hands-on projects that use block code and snap-on parts, but these are often oversimplified to the point that you don’t even learn the fundamentals. When you remove the potential of making mistakes, you lose the connection to how things work in the real world.


What happened to the good ole days of getting your hands dirty with real hardware and programming?


The truth is, people learn best by doing.


That’s why we created Creation Crate, a tech subscription box that prepares learners for the jobs of the future by teaching them how to build awesome DIY electronic projects!



Here are 5 reasons why Creation Crate is the perfect gift for your aspiring engineer!


  1. An Educational Hands-on learning curriculum

Would you rather build your own bluetooth speaker, or read a textbook on electronics? Hands-on learning is not only more engaging, but fun too. Learning shouldn’t be a chore, and Creation Crate makes sure of that.


Creation Crate combines hands-on learning with educational electronics courses to teach electronics, circuits, coding, critical thinking, problem solving, and more!


“I am majoring in STEM (physics and computer science double-major), and I ordered this mainly for the purpose of tinkering and expanding my computer engineering knowledge through independent projects, and even for me, this bundle ended up being incredibly handy and interesting. Thank you guys, and good luck in the future!” – Roman F.

  1. Introduces real-world hardware

If there was ever a time to be an aspiring engineer, it’s now! The cost of components is a fraction of what it was ten years ago. Anyone can get access to the hardware and software used in everyday tech careers.


So why settle for anything but the real thing? 


With Creation Crate, everything necessary is delivered in a kit to your door. Kits include all the components needed to build your project. You will also find access to an online classroom with detailed step-by-step video tutorials. 


Each project uses an Uno R3 (Arduino-compatible) Microcontroller, a small programmable computer that acts as the brain of the project. 


They’ll also learn how to use components like a Breadboard, Ultrasonic Sensor, LED Matrix, 7-Segment Display, Accelerometer, Distance, Pressure, Temperature, & Humidity  Sensors, LCD Screen, Keypad, Microphone Module, Resistors, Servo Motors, Motor Driver Board, and more!


  1. Teaches popular programming languages

Learning how to program is a tedious but rewarding process. Most engineering careers in technology require an understanding of programming languages like Java, C++, Python, Ruby, and others. 


With Creation Crate, students will learn how to write their own computer programs in the Arduino language (C/C++) to make their projects come to life!


Each project will introduce different lessons in programming C++. Here are a few examples of what they’ll learn:


  • What are Comments and Variables?

  • Randomizing Outputs

  • Arrays and Functions

  • Detecting variable input values

  • If/Else statements


  1. Challenging projects

As your aspiring engineer progresses through the curriculum, they’ll learn how to build and program electronic projects that become more challenging as they learn new lessons. They’ll learn how to build things like…


  • A color-changing mood lamp that activates when the lights are off

  • An optical theremin that let you create music simply by waving your hands

  • A Bluetooth speaker that plays music from your phone

  • A rover bot that avoids obstacles and follows lines

By the end of the curriculum, they’ll have more hands-on learning experience in hardware and programming than many students receive in a four year degree!


“Creation Crate fills a void that has existed in the Tech Subscription box world. Most kits are aimed at the very young or adults with extra income. Creation Crate is affordable and challenges tweens and teens (and at least one adult!). I especially appreciate the manner in which the project challenges build from month to month.” – Justin D.

  1. Great family activity

Family activities create everlasting memories. The key to a great family activity is to do something that everyone enjoys and is interested in.


Unlike every other “learn electronics kit” out there, this isn’t just for kids and teens. Even adults will find the projects fun and challenging! That’s why Creation Crate makes the perfect family activity for parents looking to spend more quality time with their child.


“By high school, a child will have used up 90% of in-person parent time” – Tim Urban (Author Wait But Why)


Unpack Their Potential

Americans spend almost $13 billion on unwanted presents each year. Why not gift something that’s not only fun, but will help develop a lifelong skill?


Gift a  Creation Crate  subscription today and help someone realize their potential!

Simulating Radar Signals for Meaningful Radar Warning Receiver Tests

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/simulating-radar-signals-for-meaningful-radar-warning-receiver-tests

Testing state-of-the-art radar warning equipment with adequate RF and microwave signals is a challenging task for radar engineers. Generating test signals in a lab that are similar to a real-life RF environment is considered a supreme discipline when evaluating advanced radars. A scenario for testing radar-warning receivers (RWR) can easily contain many highly mobile emitters that are capable of mode changes, many interfering signals, and a moving multi-channel receiver. Today, there are intuitive and easy-to-use software tools available that take a lot of work off the hands of radar engineers.

In this seminar, you will learn how to:

  • Create radar scenarios ranging from simple pulses to the most demanding emitter scenarios using PC software
  • Generate complex radar signals with off-the-shelf vector signal generators
  • Increase flexibility during radar simulation by streaming pulse descriptor words (PDW)

Instrument Innovations for mmWave Test

Post Syndicated from National Instruments original https://spectrum.ieee.org/telecom/wireless/instrument-innovations-for-mmwave-test

Implementing a validation or production test strategy for new wireless standards is difficult. It is made even harder by the constant increase in complexity in new wireless standards and technologies like 5G New Radio (NR). This includes wider and more complex waveforms, an exponential increase in test points, and restrictive link budgets that require technologies like beamforming and phased-array antennas. To help you address these challenges, NI introduced the PXIe-5831 millimeter wave (mmWave) vector signal transceiver (VST), which delivers high-speed, high-quality measurements in an architecture that can adapt to the needs of the device under test (DUT) even as those needs are changing. This PXI Vector Signal Transceiver (VST) shortens the time you need to bring up new test assets by simplifying complex measurement requirements and the instrumentation you need to test them.

An Extension of the VST Architecture

At its core, the VST combines a high-bandwidth vector signal generator, vector signal analyzer, high-speed digital interface, and a user-programmable FPGA onto a single PXI instrument. The mmWave VST (PXIe-5831) extends the VST architecture with innovations focused on addressing the increasing complexity—and uncertainty—of wireless standards, protocols, and technologies.

mmWave Radio Heads with Integrated Switching

Frequency conversion to and from mmWave is performed in a radio head that is cabled to the PXI-based IF subsystem, extending frequency coverage up to 44 GHz for the PXIe-5831 mmWave VST. Each mmWave VST IF subsystem can support up to two radio heads, which come in three configurations—2-, 9-, and 16-port—to adapt to the needs of the DUT. The additional ports are created with a switch network that is integrated in the calibration routines of the instrument, so performance specifications are accurate all the way to the test ports. The following is an example test configuration that shows how the mmWave radio heads can map to potentially high-port requirements for a multiband TX/TX RF front-end module:

Performing the final conversion stage in a remote head provides additional flexibility in the physical configuration of a tester or test cell as well. You can position the radio heads nearer to the DUTs and alleviate long high-frequency cable runs and the associated losses in power and signal quality. Losses at intermediate frequencies (IFs) can be significantly less than those at mmWave, so shifting power delivery requirements to the lower frequencies means more power where it matters: at the mmWave test ports. Consider the following example comparing a three-meter cable run for a +23 dBm instrument versus a one-meter IF and two-meter mmWave cable .run for a +17 dBm instrument like the mmWave VST:

Multiband Coverage with IF and mmWave Test Ports

mmWave RFICs extend the RF signal chains of today’s designs with additional steps for frequency conversion, beamforming, and phased-array radiation. An ideal test approach needs to be able to map to these test points with enough flexibility to adapt as designs and requirements evolve while being able to scale in speed and cost to meet volume demands.

To provide the flexibility to adapt to the varying requirements of each step in the signal chain, the mmWave VST features bidirectional test ports for both intermediate and mmWave frequencies. Bidirectional test ports eliminate the need for additional signal conditioning and switching outside the instrument and further improve measurement quality while reducing overall system complexity.

The mmWave VST includes two IF test ports that can be used independently or in conjunction with the mmWave radio heads. These ports provide frequency coverage up to 21 GHz and offer a direct interface for multifrequency devices like frequency up/downconverters or beamformer ICs with built-in frequency conversion. These ports mean the mmWave VST can directly interface with multiband devices without additional instrumentation or external signal conditioning.

High Performance for Design Characterization

1 GHz of Instantaneous Bandwidth

From next-generation wireless technologies like 5G and 802.11ax to advanced aerospace and defense applications like radar test and spectrum monitoring, the demand for wider signal bandwidth to achieve higher peak data rates is growing. Leveraging fast sampling, high-linearity digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), and wideband internal calibration mechanisms, the mmWave VST offers 1 GHz of instantaneous RF bandwidth with excellent measurement accuracy.

With the high instantaneous bandwidth and calibrated front ends of NI VSTs, you can effectively deploy them for demanding applications such as radar target simulation, multicarrier aggregation, digital predistortion (DPD) algorithm implementations, 5G prototyping, and real-time spectrum analysis. Additionally, mmWave VSTs incorporate patented algorithms for amplitude and phase correction for high absolute amplitude accuracy and low deviation from linear phase across the span of their wide instantaneous bandwidth. 

Error Vector Magnitude Measurement Performance

The VST uses advanced, patented IQ calibration techniques to deliver best-in-class error vector magnitude (EVM) performance for wideband signals. A critical component of next-generation wireless devices is even more stringent EVM performance requirements over increasing bandwidths. With higher order modulation schemes and wideband multicarrier signal configurations, the RF front ends of today’s wireless devices require better linearity and phase noise to deliver the required modulation performance. Consequently, test instrumentation for wireless device test must deliver even more accurate RF performance.

If you have demanding EVM performance requirements, the modular design of PXI instruments provides you with the ability to improve on the VST’s native performance even further. Using the PXI external local oscillator (LO), you can achieve EVM performance better than -40 dB with your systems based on the mmWave VST.

Phase-Coherent Synchronization

The modular mmWave VST architecture and the PXI platform together provide synchronization and scaling capabilities for multichannel measurements that require phase coherence. You can achieve nanosecond synchronization between two mmWave VSTs out of the box for applications like dual polarization antenna over-the-air test:

You can extend the same level of synchronization to multiple input, multiple output (MIMO) test systems. The modern communications standards, such as 802.11ax, LTE Advanced Pro, and 5G, are using MIMO schemes for many antennas on a single device to provide a combination of either higher data rates through more spatial streams or more robust communications through beamforming. Not surprisingly, MIMO technology adds significant design and test complexity. It not only increases the number of ports on a device but also introduces multichannel synchronization requirements. With the compact footprint of the PXI mmWave VST, you can synchronize up to three PXIe-5831 VSTs in a single 18-slot PXI chassis. You can further expand your systems using MXI to integrate additional chassis as one PXI system.

Like a single instrument, you can synchronize each VST in a completely phase-coherent manner. In hardware, a VST can import or export the LO so that all modules can share a common LO. In software, you can use NI’s patented T-Clock (T-Clk) technology to easily synchronize multiple instruments using the NI T-Clk API.

Speed and Scalability for Production Test

In production test environments especially, device throughput and test time directly impact business success. The mmWave VST’s architecture of hardware and software is optimized for measurement speed without sacrificing measurement performance.

Multi-Instrument Integration with the PXI Platform

Most RF test applications require additional I/O beyond RF or baseband waveform generation and analysis. This may include a power supply or source measure unit (SMU), a pattern-based digital device for control, or a digital multimeter (DMM). As part of the PXI platform, the mmWave VST shares the same foundational resources with any PXI instrument from NI to streamline test program creation, simplify triggering and synchronization, and maximize measurement speed. You can use the same T-Clock technology that you use to synchronize multiple VSTs to synchronize other instruments and create a unified automated test and automated measurement solution.

Native, Speed-Optimized Driver for Common Test Development Languages

The mmWave VST is configured and controlled by RFmx application software. RFmx provides an intuitive programming API that offers both ease of use and advanced measurement configuration for generic RF and standard-specific measurements. It features a highly optimized API to perform tasks ranging from RF spectral measurements, including channel power, adjacent channel power, and power spectrum, to measurements on digital and analog modulated signals. You can also use it to automate your programs with standard-based measurements for 5G NR, LTE Advanced Pro, Wi-Fi 6, Bluetooth, and more.

The image above illustrates a 5G NR compliant channel power measurement using an RFmx LabVIEW and .NET example with just a few function calls. You can get started with one of more than 100 example programs in C, .NET, and LabVIEW that are designed to make instrument automation straightforward. The NI-RFmx API includes high-level parameters that intelligently optimize instrument settings to help you achieve the highest quality measurements with the fewest software calls. Additionally, NI-RFmx has features that vastly simplify the software complexity of multimeasurement parallelism and multi-DUT measurements. You can achieve industry-leading measurement speeds using the latest processor technologies and easy-to-program multithreaded measurements for test time reduction.

Additional Resources

3D Electromagnetic Simulation of Antennas Installed on an Aircraft

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/3d-electromagnetic-simulation-of-antennas-installed-on-an-aircraft

Learn about the importance of using a range of methods in the 3D electromagnetic (EM) simulation of installed antenna performance.

3D EM fullwave simulation is a common practice for antenna designers and Analyst. The variety in antenna topologies and design specifications necessitate a range of simulation algorithms to ensure an efficient or even feasible solution is available.

This range of technology becomes even more important as antennas’ operation in the installed environment is considered. The application of different EM methods as well as hybridization is discussed via an example workflow of antennas installed on an aircraft. Techniques for specific installed antenna scenarios including radome analysis, co-site interference and initial field of view analysis are presented using the SIMULIA CST Studio Suite toolset.

Why Use Time-Of-Flight for Distance Measurement?

Post Syndicated from Terabee original https://spectrum.ieee.org/computing/hardware/why-use-timeofflight-for-distance-measurement

The most sophisticated of sensor module technologies are our innovative 3D ToF cameras which can capture depth data across three spatial dimensions. Depth sensing with Time-of-Flight sensors is discreet, completely eye-safe, and it is designed to work indoors even in low light or complete darkness.

This technology is a powerful enabler for applications such as people counting, digital stock monitoring, and room occupancy monitoring. With fast refresh rates, our 3D TOF sensor modules are also able to distinguish between simple gestures to assist with innovative human-machine interfaces and next-generation contactless controls.

 Shifting to ever smarter and versatile sensor modules

Terabee has just released a new type of indirect Time-of-Flight smart sensor for industrial and logistics applications. The sensor offers 12.5 meter detection capabilities using Time-of-Flight technology. It features a robust IP65 enclosure to ensure dust-proof and water-resistant capabilities in a compact and lightweight form factor (99 grams).

The sensor provides proximity notification with a classic NO/NC switching output (0-24V), while also communicating calibrated distance data via RS485 interface.

The sensor module features 6 embedded operating modes allowing for programmable distance thresholds. This makes it easy to set on-the-field in a matter of minutes thanks to teach-in buttons.

Operating modes allow the same sensor module to trigger alarms, detect movements, count objects and check for object alignment.

This versatility means that a single sensor can be purchased in bulk and programmed to automate many different control and monitoring processes. This is especially useful in reconfigurable warehouses and factories to save precious setup time.


Next steps

Terabee plans to build on its deep technology expertise in sensing hardware and to develop cutting-edge applications. In the coming 12 months, we will offer further solutions for many markets such as mobile robotics, smart farming, smart city, smart buildings and industrial automation in the form of devices, software and OEM services.

Learn more about Terabee

What is Time-of-Flight (ToF) distance sensing?

Several methods of detection are available for determining the proximity of an object or objects in real-time, each of which is differentiated by a diverse range of underlying hardware. As a result, distance sensors incorporate an extremely broad field of technologies: infrared (IR) triangulation, laser, light-emitting diode Time-of-Flight, ultrasonic, etc.

Various types of signals, or carriers, can be used to apply the Time-of-Flight principle, the most common being sound and light. Sound is mostly used in ultrasound sensors or radars.

Active optical Time-of-Flight, is a remote-sensing method to estimate range between a sensor and a targeted object by illuminating an object with a light source and by measuring the travel time from the emitter to the object and back to the receiver.

For light carriers, two technologies are available today: direct ToF ,based on pulsed-light, and indirect ToF based on continuous wave modulation.

 Terabee’s unique Time-of-Flight sensing technology

Established in 2012, Terabee has since grown into a diverse organization made up of leading experts in the sensing sector. As a certified CERN Technology partner, we offer an expansive range of sensor modules and solutions for some of the most cutting-edge fields on the market, from robotics to industry 4.0 and IoT applications.

At Terabee, we use light as carriers for our sensors to combine higher update rates, longer range, lower weight, and eye-safety. By carefully tuning emitted infrared light to specific wavelengths, we can ensure less signal disturbance and easier distinction from natural ambient light, resulting in the highest performing distance sensors for their given size and weight.

Terabee ToF sensor modules utilize infrared LEDs which are eye-safe and energy-efficient, while providing broader fields of view than lasers, offering a larger detection area per pixel. Our single 2D infrared sensors have a 2 to 3° field of view (FoV), which provides a more stable data stream for improved consistency of results in many applications.

Over the years we have mastered the product of sensor modules using indirect ToF technology. Thanks to our in-house R&D, Product Development, Production and Logistics departments, we have managed to push the boundaries of this technology for increased precision, longer range and smaller size, offering great value to customers at competitive prices.

We also offer multidirectional sensor module arrays, combining the functionalities of multiple ToF sensors for simultaneous monitoring of multiple directions in real-time, which is especially useful for short-range anti-collision applications. Our unique Hub comes with different operating modes to avoid crosstalk issues and transmit data from up to 8 sensors to a machine.

Get Keysight’s Basic Instruments Flyer Featuring PathWave BenchVue Software

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/get-keysights-basic-instruments-flyer-featuring-pathwave-benchvue-software

As the complexity of today’s bench setups increase, so does the difficulty of collecting and correlating data from multiple pieces of test equipment. This latest Basic Instruments flyer showcases Keysight’s PathWave BenchVue software. See how to quickly move through your test development phase and get more from your instruments!


Stevens engineers design fetal heart monitor that could detect early signs of pregnancy complications

Post Syndicated from Stevens Institute of Technology original https://spectrum.ieee.org/biomedical/devices/stevens-engineers-design-fetal-heart-monitor-that-could-detect-early-signs-of-pregnancy-complications

A baby’s heartbeat can be detected as early as six weeks into pregnancy. From around 12 weeks until birth, doctors will listen to the fetus’ heartbeat at every prenatal appointment to closely monitor the baby’s health. But what if fetal heart activity changes in between these appointments, while the doctor isn’t there to listen? Engineers at Stevens Institute of Technology have designed a wearable device that continuously monitors fetal activity—even from home—in order to detect early signs of complications and allow for prompt, potentially life-saving interventions.

“If we can monitor fetal heart rate continuously, when the mother is sleeping and so forth, there may be signs that show complications,” said Negar Tavassolian, assistant professor of electrical and computer engineering who is leading this research at the Schaefer School of Engineering and Science. “We can recognize these signs ahead of time and warn the mother to go see the doctor, whereas if she just relies on the doctor’s visits alone, then a lot of things can go wrong in between.”

The device is comprised of a few small patches that are applied to the belly along the abdominal wall. The main patch measures fetal heart rate and movement through

-cardiogram and gyro-cardiogram recordings, while the two adjacent patches are sensors used to negate external interference to the signal from sources other than the targeted fetal heartbeats. This might come from maternal activities such as motion, speech, organ activities, and even the mother’s heartbeat, and external environmental sounds.

“There have been several modalities [to monitor fetal activity] that have been proposed, but the missing part is that these modalities suffer from noise—that is, external interference,” said graduate student Chenxi Yang, who is working with Tavassolian on this research. “We believe that our technology can help with that, both in terms of sensing and algorithm development. We’re not inventing a new technology to substitute an old one; rather, we are combining old and new technologies and developing them to a new level.”

In earlier phases of the study, Tavassolian’s team used their technology for cardiovascular monitoring of adults. They have now expanded their work to detect the vibration of a fetal heart. While there are some other sensing technologies proposed using electrodes, there is nothing of this nature being widely used right now.

“What we want to monitor is the heartbeat of the fetus, the contractions of the mother, and the movement of the fetus. The heartbeat develops early, and we detect movement during later stages of pregnancy. So far, we have done tests later in pregnancy, but we want to see how early we can go,” said Yang.

Currently, trials are being conducted at a clinic at New York University–Langone Medical Center in healthy women with low-risk pregnancies in order to validate the accuracy of the metrics being measured—but the monitor would be especially helpful for use in high-risk pregnancies. Women who have had multiple

pregnancies have
a higher risk of miscarriages and stillbirths with each subsequent pregnancy. This is partially due to the older age of the mother and is also dependent upon the conditions of previous births.

The period after 32 weeks of gestation is a time when it is especially important to prevent pregnancy complications.

“Currently, the available interventions when a preterm birth is detected is relatively effective after 32 weeks of gestation,” said Tavassolian. “The survival rate of babies is high after 32 weeks, while it is not before 32 weeks. However, there is not sufficient early detection at this term. So it makes more sense to target

birth detection to this population as the first step because there are effective interventions after the detection. In this way, our proposed technology could be beneficial to the current point-of-care system. In the long run, we will then target earlier gestational weeks, which might give clinical and research values to the doctors in the long-term.”

If complications arise, a fetus may compensate for a loss of heart function with an increased heart rate. If this happens, the monitoring device could alert a mother to see her doctor before her next scheduled appointment.

Depending upon the nature of the potential complication, a number of interventions may be applied. Sometimes bed rest may be advised. If there is reduced activity

later stages of pregnancy, then a combination of medication and surgery may be needed. The key is to identify the onset of a compromise as early as possible, whether it be in the fetus’ heartbeat or movements, or in the mother’s contractions.

At this stage of research, Tavassolian’s team can accurately monitor fetal heart rate and movement while a mother is lying on her back. “We have validated the technologies separately,” said Tavassolian, “and now we need to utilize machine learning to diminish

. The next step is to analyze patterns to identify the onset of a compromise.”

“We are trying to objectively provide information for the doctors to help them determine the best way to prevent severe outcomes,” said Yang. “We are engineers, so we discuss [prenatal needs] with doctors, and they tell us their

needs from the medical aspect. They help us with the big picture of the design.”

Meet the VoloCity

Post Syndicated from LEMO original https://spectrum.ieee.org/transportation/alternative-transportation/meet-the-volocity

Presented in last August, the VoloCity is the latest solution proposed by Volocopter, the first designed for actual commercial use. All of its features (number of seats, range, speed…) are related to its mission: to be an inner-city flying taxi and nothing else. The choice of simplicity, for instance (such as direct-drive motors and fixed pitch rotors) makes the solution less costly to manufacture, more reliable (less expensive maintenance and easier to certify), lighter, so more economical and less noisy. Everything is closely linked.

1.    Drive

The wide span and a large number of battery-powered engines and rotors (18 of each) reduce the noise level and generate a frequency that is softer and more pleasant on the ear. It also improves safety: the VoloCity is capable of flying even if several engines are inoperative. The aircraft will fly at “only” 110kmph, which is safer (better collision avoidance) and less noisy than rapid eVTOLs.

 2.   Cabin

 The passenger  and the pilot ​have access and are seated comfortably (Volocopter’s analyses show that the large majority of intra-urban passengers travel alone). There is space for hand luggages, air conditioning, silence and a stunning view. Once the regulations will authorise it, the VoloCity will also be able to fly autonomously.

3.    Batteries

 The VoloCity embarks 9 Lithium-ion exchangeable battery packs. These are recharged on the vertiports. Whenever the aircraft lands in between two flights, batteries can be changed in five minutes to fresh batteries and can take off. Its 35km range makes it possible to connect the most popular destinations (city centres, airports, business centres …).

4.   Skids

 Vertical take-off and landingso no need for wheels nor retractable landing gear. The skids are part of the rationalisation process to reduce weight, breakdowns, production and maintenance costs. Ground operations are ensured by conveyor belts or platforms.


Save Time with Ready-To-Use Measurements

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/save-time-with-readytouse-measurements

The right measurement applications can increase the functionality of your signal analyzer and reduce your time to insight with ready-to-use measurements, built-in results displays, and standards conformance tests. They can also help ensure consistent measurement results across different teams and your design cycle. This efficiency means you can spend less time setting up measurements and more time evaluating and improving your designs. Learn about general-purpose or application-specific measurements that can help save you time and maintain measurement consistency in this eBook.