Tag Archives: stage

Build your own weather station with our new guide!

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/build-your-own-weather-station/

One of the most common enquiries I receive at Pi Towers is “How can I get my hands on a Raspberry Pi Oracle Weather Station?” Now the answer is: “Why not build your own version using our guide?”

Build Your Own weather station kit assembled

Tadaaaa! The BYO weather station fully assembled.

Our Oracle Weather Station

In 2016 we sent out nearly 1000 Raspberry Pi Oracle Weather Station kits to schools from around the world who had applied to be part of our weather station programme. In the original kit was a special HAT that allows the Pi to collect weather data with a set of sensors.

The original Raspberry Pi Oracle Weather Station HAT – Build Your Own Raspberry Pi weather station

The original Raspberry Pi Oracle Weather Station HAT

We designed the HAT to enable students to create their own weather stations and mount them at their schools. As part of the programme, we also provide an ever-growing range of supporting resources. We’ve seen Oracle Weather Stations in great locations with a huge differences in climate, and they’ve even recorded the effects of a solar eclipse.

Our new BYO weather station guide

We only had a single batch of HATs made, and unfortunately we’ve given nearly* all the Weather Station kits away. Not only are the kits really popular, we also receive lots of questions about how to add extra sensors or how to take more precise measurements of a particular weather phenomenon. So today, to satisfy your demand for a hackable weather station, we’re launching our Build your own weather station guide!

Build Your Own Raspberry Pi weather station

Fun with meteorological experiments!

Our guide suggests the use of many of the sensors from the Oracle Weather Station kit, so can build a station that’s as close as possible to the original. As you know, the Raspberry Pi is incredibly versatile, and we’ve made it easy to hack the design in case you want to use different sensors.

Many other tutorials for Pi-powered weather stations don’t explain how the various sensors work or how to store your data. Ours goes into more detail. It shows you how to put together a breadboard prototype, it describes how to write Python code to take readings in different ways, and it guides you through recording these readings in a database.

Build Your Own Raspberry Pi weather station on a breadboard

There’s also a section on how to make your station weatherproof. And in case you want to move past the breadboard stage, we also help you with that. The guide shows you how to solder together all the components, similar to the original Oracle Weather Station HAT.

Who should try this build

We think this is a great project to tackle at home, at a STEM club, Scout group, or CoderDojo, and we’re sure that many of you will be chomping at the bit to get started. Before you do, please note that we’ve designed the build to be as straight-forward as possible, but it’s still fairly advanced both in terms of electronics and programming. You should read through the whole guide before purchasing any components.

Build Your Own Raspberry Pi weather station – components

The sensors and components we’re suggesting balance cost, accuracy, and easy of use. Depending on what you want to use your station for, you may wish to use different components. Similarly, the final soldered design in the guide may not be the most elegant, but we think it is achievable for someone with modest soldering experience and basic equipment.

You can build a functioning weather station without soldering with our guide, but the build will be more durable if you do solder it. If you’ve never tried soldering before, that’s OK: we have a Getting started with soldering resource plus video tutorial that will walk you through how it works step by step.

Prototyping HAT for Raspberry Pi weather station sensors

For those of you who are more experienced makers, there are plenty of different ways to put the final build together. We always like to hear about alternative builds, so please post your designs in the Weather Station forum.

Our plans for the guide

Our next step is publishing supplementary guides for adding extra functionality to your weather station. We’d love to hear which enhancements you would most like to see! Our current ideas under development include adding a webcam, making a tweeting weather station, adding a light/UV meter, and incorporating a lightning sensor. Let us know which of these is your favourite, or suggest your own amazing ideas in the comments!

*We do have a very small number of kits reserved for interesting projects or locations: a particularly cool experiment, a novel idea for how the Oracle Weather Station could be used, or places with specific weather phenomena. If have such a project in mind, please send a brief outline to [email protected], and we’ll consider how we might be able to help you.

The post Build your own weather station with our new guide! appeared first on Raspberry Pi.

Protecting your API using Amazon API Gateway and AWS WAF — Part I

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-i/

This post courtesy of Thiago Morais, AWS Solutions Architect

When you build web applications or expose any data externally, you probably look for a platform where you can build highly scalable, secure, and robust REST APIs. As APIs are publicly exposed, there are a number of best practices for providing a secure mechanism to consumers using your API.

Amazon API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, authorization and access control, monitoring, and API version management.

In this post, I show you how to take advantage of the regional API endpoint feature in API Gateway, so that you can create your own Amazon CloudFront distribution and secure your API using AWS WAF.

AWS WAF is a web application firewall that helps protect your web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources.

As you make your APIs publicly available, you are exposed to attackers trying to exploit your services in several ways. The AWS security team published a whitepaper solution using AWS WAF, How to Mitigate OWASP’s Top 10 Web Application Vulnerabilities.

Regional API endpoints

Edge-optimized APIs are endpoints that are accessed through a CloudFront distribution created and managed by API Gateway. Before the launch of regional API endpoints, this was the default option when creating APIs using API Gateway. It primarily helped to reduce latency for API consumers that were located in different geographical locations than your API.

When API requests predominantly originate from an Amazon EC2 instance or other services within the same AWS Region as the API is deployed, a regional API endpoint typically lowers the latency of connections. It is recommended for such scenarios.

For better control around caching strategies, customers can use their own CloudFront distribution for regional APIs. They also have the ability to use AWS WAF protection, as I describe in this post.

Edge-optimized API endpoint

The following diagram is an illustrated example of the edge-optimized API endpoint where your API clients access your API through a CloudFront distribution created and managed by API Gateway.

Regional API endpoint

For the regional API endpoint, your customers access your API from the same Region in which your REST API is deployed. This helps you to reduce request latency and particularly allows you to add your own content delivery network, as needed.

Walkthrough

In this section, you implement the following steps:

  • Create a regional API using the PetStore sample API.
  • Create a CloudFront distribution for the API.
  • Test the CloudFront distribution.
  • Set up AWS WAF and create a web ACL.
  • Attach the web ACL to the CloudFront distribution.
  • Test AWS WAF protection.

Create the regional API

For this walkthrough, use an existing PetStore API. All new APIs launch by default as the regional endpoint type. To change the endpoint type for your existing API, choose the cog icon on the top right corner:

After you have created the PetStore API on your account, deploy a stage called “prod” for the PetStore API.

On the API Gateway console, select the PetStore API and choose Actions, Deploy API.

For Stage name, type prod and add a stage description.

Choose Deploy and the new API stage is created.

Use the following AWS CLI command to update your API from edge-optimized to regional:

aws apigateway update-rest-api \
--rest-api-id {rest-api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

A successful response looks like the following:

{
    "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with your demo Pet Store endpoints", 
    "createdDate": 1511525626, 
    "endpointConfiguration": {
        "types": [
            "REGIONAL"
        ]
    }, 
    "id": "{api-id}", 
    "name": "PetStore"
}

After you change your API endpoint to regional, you can now assign your own CloudFront distribution to this API.

Create a CloudFront distribution

To make things easier, I have provided an AWS CloudFormation template to deploy a CloudFront distribution pointing to the API that you just created. Click the button to deploy the template in the us-east-1 Region.

For Stack name, enter RegionalAPI. For APIGWEndpoint, enter your API FQDN in the following format:

{api-id}.execute-api.us-east-1.amazonaws.com

After you fill out the parameters, choose Next to continue the stack deployment. It takes a couple of minutes to finish the deployment. After it finishes, the Output tab lists the following items:

  • A CloudFront domain URL
  • An S3 bucket for CloudFront access logs
Output from CloudFormation

Output from CloudFormation

Test the CloudFront distribution

To see if the CloudFront distribution was configured correctly, use a web browser and enter the URL from your distribution, with the following parameters:

https://{your-distribution-url}.cloudfront.net/{api-stage}/pets

You should get the following output:

[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Set up AWS WAF and create a web ACL

With the new CloudFront distribution in place, you can now start setting up AWS WAF to protect your API.

For this demo, you deploy the AWS WAF Security Automations solution, which provides fine-grained control over the requests attempting to access your API.

For more information about deployment, see Automated Deployment. If you prefer, you can launch the solution directly into your account using the following button.

For CloudFront Access Log Bucket Name, add the name of the bucket created during the deployment of the CloudFormation stack for your CloudFront distribution.

The solution allows you to adjust thresholds and also choose which automations to enable to protect your API. After you finish configuring these settings, choose Next.

To start the deployment process in your account, follow the creation wizard and choose Create. It takes a few minutes do finish the deployment. You can follow the creation process through the CloudFormation console.

After the deployment finishes, you can see the new web ACL deployed on the AWS WAF console, AWSWAFSecurityAutomations.

Attach the AWS WAF web ACL to the CloudFront distribution

With the solution deployed, you can now attach the AWS WAF web ACL to the CloudFront distribution that you created earlier.

To assign the newly created AWS WAF web ACL, go back to your CloudFront distribution. After you open your distribution for editing, choose General, Edit.

Select the new AWS WAF web ACL that you created earlier, AWSWAFSecurityAutomations.

Save the changes to your CloudFront distribution and wait for the deployment to finish.

Test AWS WAF protection

To validate the AWS WAF Web ACL setup, use Artillery to load test your API and see AWS WAF in action.

To install Artillery on your machine, run the following command:

$ npm install -g artillery

After the installation completes, you can check if Artillery installed successfully by running the following command:

$ artillery -V
$ 1.6.0-12

As the time of publication, Artillery is on version 1.6.0-12.

One of the WAF web ACL rules that you have set up is a rate-based rule. By default, it is set up to block any requesters that exceed 2000 requests under 5 minutes. Try this out.

First, use cURL to query your distribution and see the API output:

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets
[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Based on the test above, the result looks good. But what if you max out the 2000 requests in under 5 minutes?

Run the following Artillery command:

artillery quick -n 2000 --count 10  https://{distribution-name}.cloudfront.net/prod/pets

What you are doing is firing 2000 requests to your API from 10 concurrent users. For brevity, I am not posting the Artillery output here.

After Artillery finishes its execution, try to run the cURL request again and see what happens:

 

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: [removed]
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

As you can see from the output above, the request was blocked by AWS WAF. Your IP address is removed from the blocked list after it falls below the request limit rate.

Conclusion

In this first part, you saw how to use the new API Gateway regional API endpoint together with Amazon CloudFront and AWS WAF to secure your API from a series of attacks.

In the second part, I will demonstrate some other techniques to protect your API using API keys and Amazon CloudFront custom headers.

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

Join us at the Education Summit at PyCon UK 2018

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/pycon-uk-2018/

PyCon UK 2018 will take place on Saturday 15 September to Wednesday 19 September in the splendid Cardiff City Hall, just a few miles from the Sony Technology Centre where the vast majority of Raspberry Pis is made. We’re pleased to announce that we’re curating this year’s Education Summit at the conference, where we’ll offer opportunities for young people to learn programming skills, and for educators to undertake professional development!

PyCon UK Education Summit logo

PyCon UK 2018 is your chance to be welcomed into the wonderful Python community. At the Education Summit, we’ll put on a young coders’ day on the Saturday, and an educators’ day on the Sunday.

Saturday — young coders’ day

On Saturday we’ll be running a CoderDojo full of workshops on Raspberry Pi and micro:bits for young people aged 7 to 17. If they wish, participants will get to make a project and present it to the conference on the main stage, and everyone will be given a free micro:bit to take home!

Kids’ tickets at just £6 will be available here soon.

Kids on a stage at PyCon UK

Kids presenting their projects to the conference

Sunday — educators’ day

PyCon UK has been bringing developers and educators together ever since it first started its education track in 2011. This year’s Sunday will be a day of professional development: we’ll give teachers, educators, parents, and coding club leaders the chance to learn from us and from each other to build their programming, computing, and digital making skills.

Educator workshop at PyCon UK

Professional development for educators

Educators get a special entrance rate for the conference, starting at £48 — get your tickets now. Financial assistance is also available.

Call for proposals

We invite you to send in your proposal for a talk and workshop at the Education Summit! We’re looking for:

  • 25-minute talks for the educators’ day
  • 50-minute workshops for either the young coders’ or the educators’ day

If you have something you’d like to share, such as a professional development session for educators, advice on best practice for teaching programming, a workshop for up-skilling in Python, or a fun physical computing activity for the CoderDojo, then we’d love to hear about it! Please submit your proposal by 15 June.




After the Education Summit, the conference will continue for two days of talks and a final day of development sprints. Feel free to submit your education-related talk to the main conference too if you want to share it with a wider audience! Check out the PyCon UK 2018 website for more information.

We’re looking forward to seeing you in September!

The post Join us at the Education Summit at PyCon UK 2018 appeared first on Raspberry Pi.

Working with the Scout Association on digital skills for life

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/working-with-scout-association-digital-skills-for-life/

Today we’re launching a new partnership between the Scouts and the Raspberry Pi Foundation that will help tens of thousands of young people learn crucial digital skills for life. In this blog post, I want to explain what we’ve got planned, why it matters, and how you can get involved.

This is personal

First, let me tell you why this partnership matters to me. As a child growing up in North Wales in the 1980s, Scouting changed my life. My time with 2nd Rhyl provided me with countless opportunities to grow and develop new skills. It taught me about teamwork and community in ways that continue to shape my decisions today.

As my own kids (now seven and ten) have joined Scouting, I’ve seen the same opportunities opening up for them, and like so many parents, I’ve come back to the movement as a volunteer to support their local section. So this is deeply personal for me, and the same is true for many of my colleagues at the Raspberry Pi Foundation who in different ways have been part of the Scouting movement.

That shouldn’t come as a surprise. Scouting and Raspberry Pi share many of the same values. We are both community-led movements that aim to help young people develop the skills they need for life. We are both powered by an amazing army of volunteers who give their time to support that mission. We both care about inclusiveness, and pride ourselves on combining fun with learning by doing.

Raspberry Pi

Raspberry Pi started life in 2008 as a response to the problem that too many young people were growing up without the skills to create with technology. Our goal is that everyone should be able to harness the power of computing and digital technologies, for work, to solve problems that matter to them, and to express themselves creatively.

In 2012 we launched our first product, the world’s first $35 computer. Just six years on, we have sold over 20 million Raspberry Pi computers and helped kickstart a global movement for digital skills.

The Raspberry Pi Foundation now runs the world’s largest network of volunteer-led computing clubs (Code Clubs and CoderDojos), and creates free educational resources that are used by millions of young people all over the world to learn how to create with digital technologies. And lots of what we are able to achieve is because of partnerships with fantastic organisations that share our goals. For example, through our partnership with the European Space Agency, thousands of young people have written code that has run on two Raspberry Pi computers that Tim Peake took to the International Space Station as part of his Mission Principia.

Digital makers

Today we’re launching the new Digital Maker Staged Activity Badge to help tens of thousands of young people learn how to create with technology through Scouting. Over the past few months, we’ve been working with the Scouts all over the UK to develop and test the new badge requirements, along with guidance, project ideas, and resources that really make them work for Scouting. We know that we need to get two things right: relevance and accessibility.

Relevance is all about making sure that the activities and resources we provide are a really good fit for Scouting and Scouting’s mission to equip young people with skills for life. From the digital compass to nature cameras and the reinvented wide game, we’ve had a lot of fun thinking about ways we can bring to life the crucial role that digital technologies can play in the outdoors and adventure.

Compass Coding with Raspberry Pi

We are beyond excited to be launching a new partnership with the Raspberry Pi Foundation, which will help tens of thousands of young people learn digital skills for life.

We also know that there are great opportunities for Scouts to use digital technologies to solve social problems in their communities, reflecting the movement’s commitment to social action. Today we’re launching the first set of project ideas and resources, with many more to follow over the coming weeks and months.

Accessibility is about providing every Scout leader with the confidence, support, and kit to enable them to offer the Digital Maker Staged Activity Badge to their young people. A lot of work and care has gone into designing activities that require very little equipment: for example, activities at Stages 1 and 2 can be completed with a laptop without access to the internet. For the activities that do require kit, we will be working with Scout Stores and districts to make low-cost kit available to buy or loan.

We’re producing accessible instructions, worksheets, and videos to help leaders run sessions with confidence, and we’ll also be planning training for leaders. We will work with our network of Code Clubs and CoderDojos to connect them with local sections to organise joint activities, bringing both kit and expertise along with them.




Get involved

Today’s launch is just the start. We’ll be developing our partnership over the next few years, and we can’t wait for you to join us in getting more young people making things with technology.

Take a look at the brand-new Raspberry Pi resources designed especially for Scouts, to get young people making and creating right away.

The post Working with the Scout Association on digital skills for life appeared first on Raspberry Pi.

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Implementing safe AWS Lambda deployments with AWS CodeDeploy

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-safe-aws-lambda-deployments-with-aws-codedeploy/

This post courtesy of George Mao, AWS Senior Serverless Specialist – Solutions Architect

AWS Lambda and AWS CodeDeploy recently made it possible to automatically shift incoming traffic between two function versions based on a preconfigured rollout strategy. This new feature allows you to gradually shift traffic to the new function. If there are any issues with the new code, you can quickly rollback and control the impact to your application.

Previously, you had to manually move 100% of traffic from the old version to the new version. Now, you can have CodeDeploy automatically execute pre- or post-deployment tests and automate a gradual rollout strategy. Traffic shifting is built right into the AWS Serverless Application Model (SAM), making it easy to define and deploy your traffic shifting capabilities. SAM is an extension of AWS CloudFormation that provides a simplified way of defining serverless applications.

In this post, I show you how to use SAM, CloudFormation, and CodeDeploy to accomplish an automated rollout strategy for safe Lambda deployments.

Scenario

For this walkthrough, you write a Lambda application that returns a count of the S3 buckets that you own. You deploy it and use it in production. Later on, you receive requirements that tell you that you need to change your Lambda application to count only buckets that begin with the letter “a”.

Before you make the change, you need to be sure that your new Lambda application works as expected. If it does have issues, you want to minimize the number of impacted users and roll back easily. To accomplish this, you create a deployment process that publishes the new Lambda function, but does not send any traffic to it. You use CodeDeploy to execute a PreTraffic test to ensure that your new function works as expected. After the test succeeds, CodeDeploy automatically shifts traffic gradually to the new version of the Lambda function.

Your Lambda function is exposed as a REST service via an Amazon API Gateway deployment. This makes it easy to test and integrate.

Prerequisites

To execute the SAM and CloudFormation deployment, you must have the following IAM permissions:

  • cloudformation:*
  • lambda:*
  • codedeploy:*
  • iam:create*

You may use the AWS SAM Local CLI or the AWS CLI to package and deploy your Lambda application. If you choose to use SAM Local, be sure to install it onto your system. For more information, see AWS SAM Local Installation.

All of the code used in this post can be found in this GitHub repository: https://github.com/aws-samples/aws-safe-lambda-deployments.

Walkthrough

For this post, use SAM to define your resources because it comes with built-in CodeDeploy support for safe Lambda deployments.  The deployment is handled and automated by CloudFormation.

SAM allows you to define your Serverless applications in a simple and concise fashion, because it automatically creates all necessary resources behind the scenes. For example, if you do not define an execution role for a Lambda function, SAM automatically creates one. SAM also creates the CodeDeploy application necessary to drive the traffic shifting, as well as the IAM service role that CodeDeploy uses to execute all actions.

Create a SAM template

To get started, write your SAM template and call it template.yaml.

AWSTemplateFormatVersion : '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: An example SAM template for Lambda Safe Deployments.

Resources:

  returnS3Buckets:
    Type: AWS::Serverless::Function
    Properties:
      Handler: returnS3Buckets.handler
      Runtime: nodejs6.10
      AutoPublishAlias: live
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "s3:ListAllMyBuckets"
            Resource: '*'
      DeploymentPreference:
          Type: Linear10PercentEvery1Minute
          Hooks:
            PreTraffic: !Ref preTrafficHook
      Events:
        Api:
          Type: Api
          Properties:
            Path: /test
            Method: get

  preTrafficHook:
    Type: AWS::Serverless::Function
    Properties:
      Handler: preTrafficHook.handler
      Policies:
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "codedeploy:PutLifecycleEventHookExecutionStatus"
            Resource:
              !Sub 'arn:aws:codedeploy:${AWS::Region}:${AWS::AccountId}:deploymentgroup:${ServerlessDeploymentApplication}/*'
        - Version: "2012-10-17"
          Statement: 
          - Effect: "Allow"
            Action: 
              - "lambda:InvokeFunction"
            Resource: !Ref returnS3Buckets.Version
      Runtime: nodejs6.10
      FunctionName: 'CodeDeployHook_preTrafficHook'
      DeploymentPreference:
        Enabled: false
      Timeout: 5
      Environment:
        Variables:
          NewVersion: !Ref returnS3Buckets.Version

This template creates two functions:

  • returnS3Buckets
  • preTrafficHook

The returnS3Buckets function is where your application logic lives. It’s a simple piece of code that uses the AWS SDK for JavaScript in Node.JS to call the Amazon S3 listBuckets API action and return the number of buckets.

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			callback(null, {
				statusCode: 200,
				body: allBuckets.length
			});
		}
	});	
}

Review the key parts of the SAM template that defines returnS3Buckets:

  • The AutoPublishAlias attribute instructs SAM to automatically publish a new version of the Lambda function for each new deployment and link it to the live alias.
  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides the function with permission to call listBuckets.
  • The DeploymentPreference attribute configures the type of rollout pattern to use. In this case, you are shifting traffic in a linear fashion, moving 10% of traffic every minute to the new version. For more information about supported patterns, see Serverless Application Model: Traffic Shifting Configurations.
  • The Hooks attribute specifies that you want to execute the preTrafficHook Lambda function before CodeDeploy automatically begins shifting traffic. This function should perform validation testing on the newly deployed Lambda version. This function invokes the new Lambda function and checks the results. If you’re satisfied with the tests, instruct CodeDeploy to proceed with the rollout via an API call to: codedeploy.putLifecycleEventHookExecutionStatus.
  • The Events attribute defines an API-based event source that can trigger this function. It accepts requests on the /test path using an HTTP GET method.
'use strict';

const AWS = require('aws-sdk');
const codedeploy = new AWS.CodeDeploy({apiVersion: '2014-10-06'});
var lambda = new AWS.Lambda();

exports.handler = (event, context, callback) => {

	console.log("Entering PreTraffic Hook!");
	
	// Read the DeploymentId & LifecycleEventHookExecutionId from the event payload
    var deploymentId = event.DeploymentId;
	var lifecycleEventHookExecutionId = event.LifecycleEventHookExecutionId;

	var functionToTest = process.env.NewVersion;
	console.log("Testing new function version: " + functionToTest);

	// Perform validation of the newly deployed Lambda version
	var lambdaParams = {
		FunctionName: functionToTest,
		InvocationType: "RequestResponse"
	};

	var lambdaResult = "Failed";
	lambda.invoke(lambdaParams, function(err, data) {
		if (err){	// an error occurred
			console.log(err, err.stack);
			lambdaResult = "Failed";
		}
		else{	// successful response
			var result = JSON.parse(data.Payload);
			console.log("Result: " +  JSON.stringify(result));

			// Check the response for valid results
			// The response will be a JSON payload with statusCode and body properties. ie:
			// {
			//		"statusCode": 200,
			//		"body": 51
			// }
			if(result.body == 9){	
				lambdaResult = "Succeeded";
				console.log ("Validation testing succeeded!");
			}
			else{
				lambdaResult = "Failed";
				console.log ("Validation testing failed!");
			}

			// Complete the PreTraffic Hook by sending CodeDeploy the validation status
			var params = {
				deploymentId: deploymentId,
				lifecycleEventHookExecutionId: lifecycleEventHookExecutionId,
				status: lambdaResult // status can be 'Succeeded' or 'Failed'
			};
			
			// Pass AWS CodeDeploy the prepared validation test results.
			codedeploy.putLifecycleEventHookExecutionStatus(params, function(err, data) {
				if (err) {
					// Validation failed.
					console.log('CodeDeploy Status update failed');
					console.log(err, err.stack);
					callback("CodeDeploy Status update failed");
				} else {
					// Validation succeeded.
					console.log('Codedeploy status updated successfully');
					callback(null, 'Codedeploy status updated successfully');
				}
			});
		}  
	});
}

The hook is hardcoded to check that the number of S3 buckets returned is 9.

Review the key parts of the SAM template that defines preTrafficHook:

  • The Policies attribute specifies additional policy statements that SAM adds onto the automatically generated IAM role for this function. The first statement provides permissions to call the CodeDeploy PutLifecycleEventHookExecutionStatus API action. The second statement provides permissions to invoke the specific version of the returnS3Buckets function to test
  • This function has traffic shifting features disabled by setting the DeploymentPreference option to false.
  • The FunctionName attribute explicitly tells CloudFormation what to name the function. Otherwise, CloudFormation creates the function with the default naming convention: [stackName]-[FunctionName]-[uniqueID].  Name the function with the “CodeDeployHook_” prefix because the CodeDeployServiceRole role only allows InvokeFunction on functions named with that prefix.
  • Set the Timeout attribute to allow enough time to complete your validation tests.
  • Use an environment variable to inject the ARN of the newest deployed version of the returnS3Buckets function. The ARN allows the function to know the specific version to invoke and perform validation testing on.

Deploy the function

Your SAM template is all set and the code is written—you’re ready to deploy the function for the first time. Here’s how to do it via the SAM CLI. Replace “sam” with “cloudformation” to use CloudFormation instead.

First, package the function. This command returns a CloudFormation importable file, packaged.yaml.

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml

Now deploy everything:

sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

At this point, both Lambda functions have been deployed within the CloudFormation stack mySafeDeployStack. The returnS3Buckets has been deployed as Version 1:

SAM automatically created a few things, including the CodeDeploy application, with the deployment pattern that you specified (Linear10PercentEvery1Minute). There is currently one deployment group, with no action, because no deployments have occurred. SAM also created the IAM service role that this CodeDeploy application uses:

There is a single managed policy attached to this role, which allows CodeDeploy to invoke any Lambda function that begins with “CodeDeployHook_”.

An API has been set up called safeDeployStack. It targets your Lambda function with the /test resource using the GET method. When you test the endpoint, API Gateway executes the returnS3Buckets function and it returns the number of S3 buckets that you own. In this case, it’s 51.

Publish a new Lambda function version

Now implement the requirements change, which is to make returnS3Buckets count only buckets that begin with the letter “a”. The code now looks like the following (see returnS3BucketsNew.js in GitHub):

'use strict';

var AWS = require('aws-sdk');
var s3 = new AWS.S3();

exports.handler = (event, context, callback) => {
	console.log("I am here! " + context.functionName  +  ":"  +  context.functionVersion);

	s3.listBuckets(function (err, data){
		if(err){
			console.log(err, err.stack);
			callback(null, {
				statusCode: 500,
				body: "Failed!"
			});
		}
		else{
			var allBuckets = data.Buckets;

			console.log("Total buckets: " + allBuckets.length);
			//callback(null, allBuckets.length);

			//  New Code begins here
			var counter=0;
			for(var i  in allBuckets){
				if(allBuckets[i].Name[0] === "a")
					counter++;
			}
			console.log("Total buckets starting with a: " + counter);

			callback(null, {
				statusCode: 200,
				body: counter
			});
			
		}
	});	
}

Repackage and redeploy with the same two commands as earlier:

sam package –template-file template.yaml –s3-bucket mybucket –output-template-file packaged.yaml
	
sam deploy –template-file packaged.yaml –stack-name mySafeDeployStack –capabilities CAPABILITY_IAM

CloudFormation understands that this is a stack update instead of an entirely new stack. You can see that reflected in the CloudFormation console:

During the update, CloudFormation deploys the new Lambda function as version 2 and adds it to the “live” alias. There is no traffic routing there yet. CodeDeploy now takes over to begin the safe deployment process.

The first thing CodeDeploy does is invoke the preTrafficHook function. Verify that this happened by reviewing the Lambda logs and metrics:

The function should progress successfully, invoke Version 2 of returnS3Buckets, and finally invoke the CodeDeploy API with a success code. After this occurs, CodeDeploy begins the predefined rollout strategy. Open the CodeDeploy console to review the deployment progress (Linear10PercentEvery1Minute):

Verify the traffic shift

During the deployment, verify that the traffic shift has started to occur by running the test periodically. As the deployment shifts towards the new version, a larger percentage of the responses return 9 instead of 51. These numbers match the S3 buckets.

A minute later, you see 10% more traffic shifting to the new version. The whole process takes 10 minutes to complete. After completion, open the Lambda console and verify that the “live” alias now points to version 2:

After 10 minutes, the deployment is complete and CodeDeploy signals success to CloudFormation and completes the stack update.

Check the results

If you invoke the function alias manually, you see the results of the new implementation.

aws lambda invoke –function [lambda arn to live alias] out.txt

You can also execute the prod stage of your API and verify the results by issuing an HTTP GET to the invoke URL:

Summary

This post has shown you how you can safely automate your Lambda deployments using the Lambda traffic shifting feature. You used the Serverless Application Model (SAM) to define your Lambda functions and configured CodeDeploy to manage your deployment patterns. Finally, you used CloudFormation to automate the deployment and updates to your function and PreTraffic hook.

Now that you know all about this new feature, you’re ready to begin automating Lambda deployments with confidence that things will work as designed. I look forward to hearing about what you’ve built with the AWS Serverless Platform.

How to retain system tables’ data spanning multiple Amazon Redshift clusters and run cross-cluster diagnostic queries

Post Syndicated from Karthik Sonti original https://aws.amazon.com/blogs/big-data/how-to-retain-system-tables-data-spanning-multiple-amazon-redshift-clusters-and-run-cross-cluster-diagnostic-queries/

Amazon Redshift is a data warehouse service that logs the history of the system in STL log tables. The STL log tables manage disk space by retaining only two to five days of log history, depending on log usage and available disk space.

To retain STL tables’ data for an extended period, you usually have to create a replica table for every system table. Then, for each you load the data from the system table into the replica at regular intervals. By maintaining replica tables for STL tables, you can run diagnostic queries on historical data from the STL tables. You then can derive insights from query execution times, query plans, and disk-spill patterns, and make better cluster-sizing decisions. However, refreshing replica tables with live data from STL tables at regular intervals requires schedulers such as Cron or AWS Data Pipeline. Also, these tables are specific to one cluster and they are not accessible after the cluster is terminated. This is especially true for transient Amazon Redshift clusters that last for only a finite period of ad hoc query execution.

In this blog post, I present a solution that exports system tables from multiple Amazon Redshift clusters into an Amazon S3 bucket. This solution is serverless, and you can schedule it as frequently as every five minutes. The AWS CloudFormation deployment template that I provide automates the solution setup in your environment. The system tables’ data in the Amazon S3 bucket is partitioned by cluster name and query execution date to enable efficient joins in cross-cluster diagnostic queries.

I also provide another CloudFormation template later in this post. This second template helps to automate the creation of tables in the AWS Glue Data Catalog for the system tables’ data stored in Amazon S3. After the system tables are exported to Amazon S3, you can run cross-cluster diagnostic queries on the system tables’ data and derive insights about query executions in each Amazon Redshift cluster. You can do this using Amazon QuickSight, Amazon Athena, Amazon EMR, or Amazon Redshift Spectrum.

You can find all the code examples in this post, including the CloudFormation templates, AWS Glue extract, transform, and load (ETL) scripts, and the resolution steps for common errors you might encounter in this GitHub repository.

Solution overview

The solution in this post uses AWS Glue to export system tables’ log data from Amazon Redshift clusters into Amazon S3. The AWS Glue ETL jobs are invoked at a scheduled interval by AWS Lambda. AWS Systems Manager, which provides secure, hierarchical storage for configuration data management and secrets management, maintains the details of Amazon Redshift clusters for which the solution is enabled. The last-fetched time stamp values for the respective cluster-table combination are maintained in an Amazon DynamoDB table.

The following diagram covers the key steps involved in this solution.

The solution as illustrated in the preceding diagram flows like this:

  1. The Lambda function, invoke_rs_stl_export_etl, is triggered at regular intervals, as controlled by Amazon CloudWatch. It’s triggered to look up the AWS Systems Manager parameter store to get the details of the Amazon Redshift clusters for which the system table export is enabled.
  2. The same Lambda function, based on the Amazon Redshift cluster details obtained in step 1, invokes the AWS Glue ETL job designated for the Amazon Redshift cluster. If an ETL job for the cluster is not found, the Lambda function creates one.
  3. The ETL job invoked for the Amazon Redshift cluster gets the cluster credentials from the parameter store. It gets from the DynamoDB table the last exported time stamp of when each of the system tables was exported from the respective Amazon Redshift cluster.
  4. The ETL job unloads the system tables’ data from the Amazon Redshift cluster into an Amazon S3 bucket.
  5. The ETL job updates the DynamoDB table with the last exported time stamp value for each system table exported from the Amazon Redshift cluster.
  6. The Amazon Redshift cluster system tables’ data is available in Amazon S3 and is partitioned by cluster name and date for running cross-cluster diagnostic queries.

Understanding the configuration data

This solution uses AWS Systems Manager parameter store to store the Amazon Redshift cluster credentials securely. The parameter store also securely stores other configuration information that the AWS Glue ETL job needs for extracting and storing system tables’ data in Amazon S3. Systems Manager comes with a default AWS Key Management Service (AWS KMS) key that it uses to encrypt the password component of the Amazon Redshift cluster credentials.

The following table explains the global parameters and cluster-specific parameters required in this solution. The global parameters are defined once and applicable at the overall solution level. The cluster-specific parameters are specific to an Amazon Redshift cluster and repeat for each cluster for which you enable this post’s solution. The CloudFormation template explained later in this post creates these parameters as part of the deployment process.

Parameter nameTypeDescription
Global parametersdefined once and applied to all jobs
redshift_query_logs.global.s3_prefixStringThe Amazon S3 path where the query logs are exported. Under this path, each exported table is partitioned by cluster name and date.
redshift_query_logs.global.tempdirStringThe Amazon S3 path that AWS Glue ETL jobs use for temporarily staging the data.
redshift_query_logs.global.role>StringThe name of the role that the AWS Glue ETL jobs assume. Just the role name is sufficient. The complete Amazon Resource Name (ARN) is not required.
redshift_query_logs.global.enabled_cluster_listStringListA comma-separated list of cluster names for which system tables’ data export is enabled. This gives flexibility for a user to exclude certain clusters.
Cluster-specific parametersfor each cluster specified in the enabled_cluster_list parameter
redshift_query_logs.<<cluster_name>>.connectionStringThe name of the AWS Glue Data Catalog connection to the Amazon Redshift cluster. For example, if the cluster name is product_warehouse, the entry is redshift_query_logs.product_warehouse.connection.
redshift_query_logs.<<cluster_name>>.userStringThe user name that AWS Glue uses to connect to the Amazon Redshift cluster.
redshift_query_logs.<<cluster_name>>.passwordSecure StringThe password that AWS Glue uses to connect the Amazon Redshift cluster’s encrypted-by key that is managed in AWS KMS.

For example, suppose that you have two Amazon Redshift clusters, product-warehouse and category-management, for which the solution described in this post is enabled. In this case, the parameters shown in the following screenshot are created by the solution deployment CloudFormation template in the AWS Systems Manager parameter store.

Solution deployment

To make it easier for you to get started, I created a CloudFormation template that automatically configures and deploys the solution—only one step is required after deployment.

Prerequisites

To deploy the solution, you must have one or more Amazon Redshift clusters in a private subnet. This subnet must have a network address translation (NAT) gateway or a NAT instance configured, and also a security group with a self-referencing inbound rule for all TCP ports. For more information about why AWS Glue ETL needs the configuration it does, described previously, see Connecting to a JDBC Data Store in a VPC in the AWS Glue documentation.

To start the deployment, launch the CloudFormation template:

CloudFormation stack parameters

The following table lists and describes the parameters for deploying the solution to export query logs from multiple Amazon Redshift clusters.

PropertyDefaultDescription
S3BucketmybucketThe bucket this solution uses to store the exported query logs, stage code artifacts, and perform unloads from Amazon Redshift. For example, the mybucket/extract_rs_logs/data bucket is used for storing all the exported query logs for each system table partitioned by the cluster. The mybucket/extract_rs_logs/temp/ bucket is used for temporarily staging the unloaded data from Amazon Redshift. The mybucket/extract_rs_logs/code bucket is used for storing all the code artifacts required for Lambda and the AWS Glue ETL jobs.
ExportEnabledRedshiftClustersRequires InputA comma-separated list of cluster names from which the system table logs need to be exported.
DataStoreSecurityGroupsRequires InputA list of security groups with an inbound rule to the Amazon Redshift clusters provided in the parameter, ExportEnabledClusters. These security groups should also have a self-referencing inbound rule on all TCP ports, as explained on Connecting to a JDBC Data Store in a VPC.

After you launch the template and create the stack, you see that the following resources have been created:

  1. AWS Glue connections for each Amazon Redshift cluster you provided in the CloudFormation stack parameter, ExportEnabledRedshiftClusters.
  2. All parameters required for this solution created in the parameter store.
  3. The Lambda function that invokes the AWS Glue ETL jobs for each configured Amazon Redshift cluster at a regular interval of five minutes.
  4. The DynamoDB table that captures the last exported time stamps for each exported cluster-table combination.
  5. The AWS Glue ETL jobs to export query logs from each Amazon Redshift cluster provided in the CloudFormation stack parameter, ExportEnabledRedshiftClusters.
  6. The IAM roles and policies required for the Lambda function and AWS Glue ETL jobs.

After the deployment

For each Amazon Redshift cluster for which you enabled the solution through the CloudFormation stack parameter, ExportEnabledRedshiftClusters, the automated deployment includes temporary credentials that you must update after the deployment:

  1. Go to the parameter store.
  2. Note the parameters <<cluster_name>>.user and redshift_query_logs.<<cluster_name>>.password that correspond to each Amazon Redshift cluster for which you enabled this solution. Edit these parameters to replace the placeholder values with the right credentials.

For example, if product-warehouse is one of the clusters for which you enabled system table export, you edit these two parameters with the right user name and password and choose Save parameter.

Querying the exported system tables

Within a few minutes after the solution deployment, you should see Amazon Redshift query logs being exported to the Amazon S3 location, <<S3Bucket_you_provided>>/extract_redshift_query_logs/data/. In that bucket, you should see the eight system tables partitioned by customer name and date: stl_alert_event_log, stl_dlltext, stl_explain, stl_query, stl_querytext, stl_scan, stl_utilitytext, and stl_wlm_query.

To run cross-cluster diagnostic queries on the exported system tables, create external tables in the AWS Glue Data Catalog. To make it easier for you to get started, I provide a CloudFormation template that creates an AWS Glue crawler, which crawls the exported system tables stored in Amazon S3 and builds the external tables in the AWS Glue Data Catalog.

Launch this CloudFormation template to create external tables that correspond to the Amazon Redshift system tables. S3Bucket is the only input parameter required for this stack deployment. Provide the same Amazon S3 bucket name where the system tables’ data is being exported. After you successfully create the stack, you can see the eight tables in the database, redshift_query_logs_db, as shown in the following screenshot.

Now, navigate to the Athena console to run cross-cluster diagnostic queries. The following screenshot shows a diagnostic query executed in Athena that retrieves query alerts logged across multiple Amazon Redshift clusters.

You can build the following example Amazon QuickSight dashboard by running cross-cluster diagnostic queries on Athena to identify the hourly query count and the key query alert events across multiple Amazon Redshift clusters.

How to extend the solution

You can extend this post’s solution in two ways:

  • Add any new Amazon Redshift clusters that you spin up after you deploy the solution.
  • Add other system tables or custom query results to the list of exports from an Amazon Redshift cluster.

Extend the solution to other Amazon Redshift clusters

To extend the solution to more Amazon Redshift clusters, add the three cluster-specific parameters in the AWS Systems Manager parameter store following the guidelines earlier in this post. Modify the redshift_query_logs.global.enabled_cluster_list parameter to append the new cluster to the comma-separated string.

Extend the solution to add other tables or custom queries to an Amazon Redshift cluster

The current solution ships with the export functionality for the following Amazon Redshift system tables:

  • stl_alert_event_log
  • stl_dlltext
  • stl_explain
  • stl_query
  • stl_querytext
  • stl_scan
  • stl_utilitytext
  • stl_wlm_query

You can easily add another system table or custom query by adding a few lines of code to the AWS Glue ETL job, <<cluster-name>_extract_rs_query_logs. For example, suppose that from the product-warehouse Amazon Redshift cluster you want to export orders greater than $2,000. To do so, add the following five lines of code to the AWS Glue ETL job product-warehouse_extract_rs_query_logs, where product-warehouse is your cluster name:

  1. Get the last-processed time-stamp value. The function creates a value if it doesn’t already exist.

salesLastProcessTSValue = functions.getLastProcessedTSValue(trackingEntry=”mydb.sales_2000",job_configs=job_configs)

  1. Run the custom query with the time stamp.

returnDF=functions.runQuery(query="select * from sales s join order o where o.order_amnt > 2000 and sale_timestamp > '{}'".format (salesLastProcessTSValue) ,tableName="mydb.sales_2000",job_configs=job_configs)

  1. Save the results to Amazon S3.

functions.saveToS3(dataframe=returnDF,s3Prefix=s3Prefix,tableName="mydb.sales_2000",partitionColumns=["sale_date"],job_configs=job_configs)

  1. Get the latest time-stamp value from the returned data frame in Step 2.

latestTimestampVal=functions.getMaxValue(returnDF,"sale_timestamp",job_configs)

  1. Update the last-processed time-stamp value in the DynamoDB table.

functions.updateLastProcessedTSValue(“mydb.sales_2000",latestTimestampVal[0],job_configs)

Conclusion

In this post, I demonstrate a serverless solution to retain the system tables’ log data across multiple Amazon Redshift clusters. By using this solution, you can incrementally export the data from system tables into Amazon S3. By performing this export, you can build cross-cluster diagnostic queries, build audit dashboards, and derive insights into capacity planning by using services such as Athena. I also demonstrate how you can extend this solution to other ad hoc query use cases or tables other than system tables by adding a few lines of code.


Additional Reading

If you found this post useful, be sure to check out Using Amazon Redshift Spectrum, Amazon Athena, and AWS Glue with Node.js in Production and Amazon Redshift – 2017 Recap.


About the Author

Karthik Sonti is a senior big data architect at Amazon Web Services. He helps AWS customers build big data and analytical solutions and provides guidance on architecture and best practices.

 

 

 

 

Build a house in Minecraft using Python

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/build-minecraft-house-using-python/

In this tutorial from The MagPi issue 68, Steve Martin takes us through the process of house-building in Minecraft Pi. Get your copy of The MagPi in stores now, or download it as a free PDF here.

Minecraft Pi is provided for free as part of the Raspbian operating system. To start your Minecraft: Pi Edition adventures, try our free tutorial Getting started with Minecraft.

Minecraft Raspberry Pi

Writing programs that create things in Minecraft is not only a great way to learn how to code, but it also means that you have a program that you can run again and again to make as many copies of your Minecraft design as you want. You never need to worry about your creation being destroyed by your brother or sister ever again — simply rerun your program and get it back! Whilst it might take a little longer to write the program than to build one house, once it’s finished you can build as many houses as you want.

Co-ordinates in Minecraft

Let’s start with a review of the coordinate system that Minecraft uses to know where to place blocks. If you are already familiar with this, you can skip to the next section. Otherwise, read on.

Minecraft Raspberry Pi Edition

Plan view of our house design

Minecraft shows us a three-dimensional (3D) view of the world. Imagine that the room you are in is the Minecraft world and you want to describe your location within that room. You can do so with three numbers, as follows:

  • How far across the room are you? As you move from side to side, you change this number. We can consider this value to be our X coordinate.
  • How high off the ground are you? If you are upstairs, or if you jump, this value increases. We can consider this value to be our Y coordinate.
  • How far into the room are you? As you walk forwards or backwards, you change this number. We can consider this value to be our Z coordinate.

You might have done graphs in school with X going across the page and Y going up the page. Coordinates in Minecraft are very similar, except that we have an extra value, Z, for our third dimension. Don’t worry if this still seems a little confusing: once we start to build our house, you will see how these three dimensions work in Minecraft.

Designing our house

It is a good idea to start with a rough design for our house. This will help us to work out the values for the coordinates when we are adding doors and windows to our house. You don’t have to plan every detail of your house right away. It is always fun to enhance it once you have got the basic design written. The image above shows the plan view of the house design that we will be creating in this tutorial. Note that because this is a plan view, it only shows the X and Z co-ordinates; we can’t see how high anything is. Hopefully, you can imagine the house extending up from the screen.

We will build our house close to where the Minecraft player is standing. This a good idea when creating something in Minecraft with Python, as it saves us from having to walk around the Minecraft world to try to find our creation.

Starting our program

Type in the code as you work through this tutorial. You can use any editor you like; we would suggest either Python 3 (IDLE) or Thonny Python IDE, both of which you can find on the Raspberry Pi menu under Programming. Start by selecting the File menu and creating a new file. Save the file with a name of your choice; it must end with .py so that the Raspberry Pi knows that it is a Python program.

It is important to enter the code exactly as it is shown in the listing. Pay particular attention to both the spelling and capitalisation (upper- or lower-case letters) used. You may find that when you run your program the first time, it doesn’t work. This is very common and just means there’s a small error somewhere. The error message will give you a clue about where the error is.

It is good practice to start all of your Python programs with the first line shown in our listing. All other lines that start with a # are comments. These are ignored by Python, but they are a good way to remind us what the program is doing.

The two lines starting with from tell Python about the Minecraft API; this is a code library that our program will be using to talk to Minecraft. The line starting mc = creates a connection between our Python program and the game. Then we get the player’s location broken down into three variables: x, y, and z.

Building the shell of our house

To help us build our house, we define three variables that specify its width, height, and depth. Defining these variables makes it easy for us to change the size of our house later; it also makes the code easier to understand when we are setting the co-ordinates of the Minecraft bricks. For now, we suggest that you use the same values that we have; you can go back and change them once the house is complete and you want to alter its design.

It’s now time to start placing some bricks. We create the shell of our house with just two lines of code! These lines of code each use the setBlocks command to create a complete block of bricks. This function takes the following arguments:

setBlocks(x1, y1, z1, x2, y2, z2, block-id, data)

x1, y1, and z1 are the coordinates of one corner of the block of bricks that we want to create; x1, y1, and z1 are the coordinates of the other corner. The block-id is the type of block that we want to use. Some blocks require another value called data; we will see this being used later, but you can ignore it for now.

We have to work out the values that we need to use in place of x1, y1, z1, x1, y1, z1 for our walls. Note that what we want is a larger outer block made of bricks and that is filled with a slightly smaller block of air blocks. Yes, in Minecraft even air is actually just another type of block.

Once you have typed in the two lines that create the shell of your house, you almost ready to run your program. Before doing so, you must have Minecraft running and displaying the contents of your world. Do not have a world loaded with things that you have created, as they may get destroyed by the house that we are building. Go to a clear area in the Minecraft world before running the program. When you run your program, check for any errors in the ‘console’ window and fix them, repeatedly running the code again until you’ve corrected all the errors.

You should see a block of bricks now, as shown above. You may have to turn the player around in the Minecraft world before you can see your house.

Adding the floor and door

Now, let’s make our house a bit more interesting! Add the lines for the floor and door. Note that the floor extends beyond the boundary of the wall of the house; can you see how we achieve this?

Hint: look closely at how we calculate the x and z attributes as compared to when we created the house shell above. Also note that we use a value of y-1 to create the floor below our feet.

Minecraft doors are two blocks high, so we have to create them in two parts. This is where we have to use the data argument. A value of 0 is used for the lower half of the door, and a value of 8 is used for the upper half (the part with the windows in it). These values will create an open door. If we add 4 to each of these values, a closed door will be created.

Before you run your program again, move to a new location in Minecraft to build the house away from the previous one. Then run it to check that the floor and door are created; you will need to fix any errors again. Even if your program runs without errors, check that the floor and door are positioned correctly. If they aren’t, then you will need to check the arguments so setBlock and setBlocks are exactly as shown in the listing.

Adding windows

Hopefully you will agree that your house is beginning to take shape! Now let’s add some windows. Looking at the plan for our house, we can see that there is a window on each side; see if you can follow along. Add the four lines of code, one for each window.

Now you can move to yet another location and run the program again; you should have a window on each side of the house. Our house is starting to look pretty good!

Adding a roof

The final stage is to add a roof to the house. To do this we are going to use wooden stairs. We will do this inside a loop so that if you change the width of your house, more layers are added to the roof. Enter the rest of the code. Be careful with the indentation: I recommend using spaces and avoiding the use of tabs. After the if statement, you need to indent the code even further. Each indentation level needs four spaces, so below the line with if on it, you will need eight spaces.

Since some of these code lines are lengthy and indented a lot, you may well find that the text wraps around as you reach the right-hand side of your editor window — don’t worry about this. You will have to be careful to get those indents right, however.

Now move somewhere new in your world and run the complete program. Iron out any last bugs, then admire your house! Does it look how you expect? Can you make it better?

Customising your house

Now you can start to customise your house. It is a good idea to use Save As in the menu to save a new version of your program. Then you can keep different designs, or refer back to your previous program if you get to a point where you don’t understand why your new one doesn’t work.

Consider these changes:

  • Change the size of your house. Are you able also to move the door and windows so they stay in proportion?
  • Change the materials used for the house. An ice house placed in an area of snow would look really cool!
  • Add a back door to your house. Or make the front door a double-width door!

We hope that you have enjoyed writing this program to build a house. Now you can easily add a house to your Minecraft world whenever you want to by simply running this program.

Get the complete code for this project here.

Continue your Minecraft journey

Minecraft Pi’s programmable interface is an ideal platform for learning Python. If you’d like to try more of our free tutorials, check out:

You may also enjoy Martin O’Hanlon’s and David Whale’s Adventures in Minecraft, and the Hacking and Making in Minecraft MagPi Essentials guide, which you can download for free or buy in print here.

The post Build a house in Minecraft using Python appeared first on Raspberry Pi.

Performing Unit Testing in an AWS CodeStar Project

Post Syndicated from Jerry Mathen Jacob original https://aws.amazon.com/blogs/devops/performing-unit-testing-in-an-aws-codestar-project/

In this blog post, I will show how you can perform unit testing as a part of your AWS CodeStar project. AWS CodeStar helps you quickly develop, build, and deploy applications on AWS. With AWS CodeStar, you can set up your continuous delivery (CD) toolchain and manage your software development from one place.

Because unit testing tests individual units of application code, it is helpful for quickly identifying and isolating issues. As a part of an automated CI/CD process, it can also be used to prevent bad code from being deployed into production.

Many of the AWS CodeStar project templates come preconfigured with a unit testing framework so that you can start deploying your code with more confidence. The unit testing is configured to run in the provided build stage so that, if the unit tests do not pass, the code is not deployed. For a list of AWS CodeStar project templates that include unit testing, see AWS CodeStar Project Templates in the AWS CodeStar User Guide.

The scenario

As a big fan of superhero movies, I decided to list my favorites and ask my friends to vote on theirs by using a WebService endpoint I created. The example I use is a Python web service running on AWS Lambda with AWS CodeCommit as the code repository. CodeCommit is a fully managed source control system that hosts Git repositories and works with all Git-based tools.

Here’s how you can create the WebService endpoint:

Sign in to the AWS CodeStar console. Choose Start a project, which will take you to the list of project templates.

create project

For code edits I will choose AWS Cloud9, which is a cloud-based integrated development environment (IDE) that you use to write, run, and debug code.

choose cloud9

Here are the other tasks required by my scenario:

  • Create a database table where the votes can be stored and retrieved as needed.
  • Update the logic in the Lambda function that was created for posting and getting the votes.
  • Update the unit tests (of course!) to verify that the logic works as expected.

For a database table, I’ve chosen Amazon DynamoDB, which offers a fast and flexible NoSQL database.

Getting set up on AWS Cloud9

From the AWS CodeStar console, go to the AWS Cloud9 console, which should take you to your project code. I will open up a terminal at the top-level folder under which I will set up my environment and required libraries.

Use the following command to set the PYTHONPATH environment variable on the terminal.

export PYTHONPATH=/home/ec2-user/environment/vote-your-movie

You should now be able to use the following command to execute the unit tests in your project.

python -m unittest discover vote-your-movie/tests

cloud9 setup

Start coding

Now that you have set up your local environment and have a copy of your code, add a DynamoDB table to the project by defining it through a template file. Open template.yml, which is the Serverless Application Model (SAM) template file. This template extends AWS CloudFormation to provide a simplified way of defining the Amazon API Gateway APIs, AWS Lambda functions, and Amazon DynamoDB tables required by your serverless application.

AWSTemplateFormatVersion: 2010-09-09
Transform:
- AWS::Serverless-2016-10-31
- AWS::CodeStar

Parameters:
  ProjectId:
    Type: String
    Description: CodeStar projectId used to associate new resources to team members

Resources:
  # The DB table to store the votes.
  MovieVoteTable:
    Type: AWS::Serverless::SimpleTable
    Properties:
      PrimaryKey:
        # Name of the "Candidate" is the partition key of the table.
        Name: Candidate
        Type: String
  # Creating a new lambda function for retrieving and storing votes.
  MovieVoteLambda:
    Type: AWS::Serverless::Function
    Properties:
      Handler: index.handler
      Runtime: python3.6
      Environment:
        # Setting environment variables for your lambda function.
        Variables:
          TABLE_NAME: !Ref "MovieVoteTable"
          TABLE_REGION: !Ref "AWS::Region"
      Role:
        Fn::ImportValue:
          !Join ['-', [!Ref 'ProjectId', !Ref 'AWS::Region', 'LambdaTrustRole']]
      Events:
        GetEvent:
          Type: Api
          Properties:
            Path: /
            Method: get
        PostEvent:
          Type: Api
          Properties:
            Path: /
            Method: post

We’ll use Python’s boto3 library to connect to AWS services. And we’ll use Python’s mock library to mock AWS service calls for our unit tests.
Use the following command to install these libraries:

pip install --upgrade boto3 mock -t .

install dependencies

Add these libraries to the buildspec.yml, which is the YAML file that is required for CodeBuild to execute.

version: 0.2

phases:
  install:
    commands:

      # Upgrade AWS CLI to the latest version
      - pip install --upgrade awscli boto3 mock

  pre_build:
    commands:

      # Discover and run unit tests in the 'tests' directory. For more information, see <https://docs.python.org/3/library/unittest.html#test-discovery>
      - python -m unittest discover tests

  build:
    commands:

      # Use AWS SAM to package the application by using AWS CloudFormation
      - aws cloudformation package --template template.yml --s3-bucket $S3_BUCKET --output-template template-export.yml

artifacts:
  type: zip
  files:
    - template-export.yml

Open the index.py where we can write the simple voting logic for our Lambda function.

import json
import datetime
import boto3
import os

table_name = os.environ['TABLE_NAME']
table_region = os.environ['TABLE_REGION']

VOTES_TABLE = boto3.resource('dynamodb', region_name=table_region).Table(table_name)
CANDIDATES = {"A": "Black Panther", "B": "Captain America: Civil War", "C": "Guardians of the Galaxy", "D": "Thor: Ragnarok"}

def handler(event, context):
    if event['httpMethod'] == 'GET':
        resp = VOTES_TABLE.scan()
        return {'statusCode': 200,
                'body': json.dumps({item['Candidate']: int(item['Votes']) for item in resp['Items']}),
                'headers': {'Content-Type': 'application/json'}}

    elif event['httpMethod'] == 'POST':
        try:
            body = json.loads(event['body'])
        except:
            return {'statusCode': 400,
                    'body': 'Invalid input! Expecting a JSON.',
                    'headers': {'Content-Type': 'application/json'}}
        if 'candidate' not in body:
            return {'statusCode': 400,
                    'body': 'Missing "candidate" in request.',
                    'headers': {'Content-Type': 'application/json'}}
        if body['candidate'] not in CANDIDATES.keys():
            return {'statusCode': 400,
                    'body': 'You must vote for one of the following candidates - {}.'.format(get_allowed_candidates()),
                    'headers': {'Content-Type': 'application/json'}}

        resp = VOTES_TABLE.update_item(
            Key={'Candidate': CANDIDATES.get(body['candidate'])},
            UpdateExpression='ADD Votes :incr',
            ExpressionAttributeValues={':incr': 1},
            ReturnValues='ALL_NEW'
        )
        return {'statusCode': 200,
                'body': "{} now has {} votes".format(CANDIDATES.get(body['candidate']), resp['Attributes']['Votes']),
                'headers': {'Content-Type': 'application/json'}}

def get_allowed_candidates():
    l = []
    for key in CANDIDATES:
        l.append("'{}' for '{}'".format(key, CANDIDATES.get(key)))
    return ", ".join(l)

What our code basically does is take in the HTTPS request call as an event. If it is an HTTP GET request, it gets the votes result from the table. If it is an HTTP POST request, it sets a vote for the candidate of choice. We also validate the inputs in the POST request to filter out requests that seem malicious. That way, only valid calls are stored in the table.

In the example code provided, we use a CANDIDATES variable to store our candidates, but you can store the candidates in a JSON file and use Python’s json library instead.

Let’s update the tests now. Under the tests folder, open the test_handler.py and modify it to verify the logic.

import os
# Some mock environment variables that would be used by the mock for DynamoDB
os.environ['TABLE_NAME'] = "MockHelloWorldTable"
os.environ['TABLE_REGION'] = "us-east-1"

# The library containing our logic.
import index

# Boto3's core library
import botocore
# For handling JSON.
import json
# Unit test library
import unittest
## Getting StringIO based on your setup.
try:
    from StringIO import StringIO
except ImportError:
    from io import StringIO
## Python mock library
from mock import patch, call
from decimal import Decimal

@patch('botocore.client.BaseClient._make_api_call')
class TestCandidateVotes(unittest.TestCase):

    ## Test the HTTP GET request flow. 
    ## We expect to get back a successful response with results of votes from the table (mocked).
    def test_get_votes(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'GET'}
        # The mocked values in our DynamoDB table.
        items_in_db = [{'Candidate': 'Black Panther', 'Votes': Decimal('3')},
                        {'Candidate': 'Captain America: Civil War', 'Votes': Decimal('8')},
                        {'Candidate': 'Guardians of the Galaxy', 'Votes': Decimal('8')},
                        {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('1')}
                    ]
        # The mocked DynamoDB response.
        expected_ddb_response = {'Items': items_in_db}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB Scan function during execution with these parameters.
        expected_calls = [call('Scan', {'TableName': os.environ['TABLE_NAME']})]

        # Call the function to test.
        result = index.handler(expected_event, {})

        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        result_body = json.loads(result.get('body'))
        # Verifying that the results match to that from the table.
        assert len(result_body) == len(items_in_db)
        for i in range(len(result_body)):
            assert result_body.get(items_in_db[i].get("Candidate")) == int(items_in_db[i].get("Votes"))

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for a selected candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_valid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"D\"}"}
        # The mocked response in our DynamoDB table.
        expected_ddb_response = {'Attributes': {'Candidate': "Thor: Ragnarok", 'Votes': Decimal('2')}}
        # The mocked response we expect back by calling DynamoDB through boto.
        response_body = botocore.response.StreamingBody(StringIO(str(expected_ddb_response)),
                                                        len(str(expected_ddb_response)))
        # Setting the expected value in the mock.
        boto_mock.side_effect = [expected_ddb_response]
        # Expecting that there would be a call to DynamoDB UpdateItem function during execution with these parameters.
        expected_calls = [call('UpdateItem', {
                                                'TableName': os.environ['TABLE_NAME'], 
                                                'Key': {'Candidate': 'Thor: Ragnarok'},
                                                'UpdateExpression': 'ADD Votes :incr',
                                                'ExpressionAttributeValues': {':incr': 1},
                                                'ReturnValues': 'ALL_NEW'
                                            })]
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 200

        assert result.get('body') == "{} now has {} votes".format(
            expected_ddb_response['Attributes']['Candidate'], 
            expected_ddb_response['Attributes']['Votes'])

        assert boto_mock.call_count == 1
        boto_mock.assert_has_calls(expected_calls)

    ## Test the HTTP POST request flow that places a vote for an non-existant candidate.
    ## We expect to get back a successful response with a confirmation message.
    def test_place_invalid_candidate_vote(self, boto_mock):
        # Input event to our method to test.
        # The valid IDs for the candidates are A, B, C, and D
        expected_event = {'httpMethod': 'POST', 'body': "{\"candidate\": \"E\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'You must vote for one of the following candidates - {}.'.format(index.get_allowed_candidates())

    ## Test the HTTP POST request flow that places a vote for a selected candidate but associated with an invalid key in the POST body.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_invalid_data_vote(self, boto_mock):
        # Input event to our method to test.
        # "name" is not the expected input key.
        expected_event = {'httpMethod': 'POST', 'body': "{\"name\": \"D\"}"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Missing "candidate" in request.'

    ## Test the HTTP POST request flow that places a vote for a selected candidate but not as a JSON string which the body of the request expects.
    ## We expect to get back a failed (400) response with an appropriate error message.
    def test_place_malformed_json_vote(self, boto_mock):
        # Input event to our method to test.
        # "body" receives a string rather than a JSON string.
        expected_event = {'httpMethod': 'POST', 'body': "Thor: Ragnarok"}
        # Call the function to test.
        result = index.handler(expected_event, {})
        # Run unit test assertions to verify the expected calls to mock have occurred and verify the response.
        assert result.get('headers').get('Content-Type') == 'application/json'
        assert result.get('statusCode') == 400
        assert result.get('body') == 'Invalid input! Expecting a JSON.'

if __name__ == '__main__':
    unittest.main()

I am keeping the code samples well commented so that it’s clear what each unit test accomplishes. It tests the success conditions and the failure paths that are handled in the logic.

In my unit tests I use the patch decorator (@patch) in the mock library. @patch helps mock the function you want to call (in this case, the botocore library’s _make_api_call function in the BaseClient class).
Before we commit our changes, let’s run the tests locally. On the terminal, run the tests again. If all the unit tests pass, you should expect to see a result like this:

You:~/environment $ python -m unittest discover vote-your-movie/tests
.....
----------------------------------------------------------------------
Ran 5 tests in 0.003s

OK
You:~/environment $

Upload to AWS

Now that the tests have passed, it’s time to commit and push the code to source repository!

Add your changes

From the terminal, go to the project’s folder and use the following command to verify the changes you are about to push.

git status

To add the modified files only, use the following command:

git add -u

Commit your changes

To commit the changes (with a message), use the following command:

git commit -m "Logic and tests for the voting webservice."

Push your changes to AWS CodeCommit

To push your committed changes to CodeCommit, use the following command:

git push

In the AWS CodeStar console, you can see your changes flowing through the pipeline and being deployed. There are also links in the AWS CodeStar console that take you to this project’s build runs so you can see your tests running on AWS CodeBuild. The latest link under the Build Runs table takes you to the logs.

unit tests at codebuild

After the deployment is complete, AWS CodeStar should now display the AWS Lambda function and DynamoDB table created and synced with this project. The Project link in the AWS CodeStar project’s navigation bar displays the AWS resources linked to this project.

codestar resources

Because this is a new database table, there should be no data in it. So, let’s put in some votes. You can download Postman to test your application endpoint for POST and GET calls. The endpoint you want to test is the URL displayed under Application endpoints in the AWS CodeStar console.

Now let’s open Postman and look at the results. Let’s create some votes through POST requests. Based on this example, a valid vote has a value of A, B, C, or D.
Here’s what a successful POST request looks like:

POST success

Here’s what it looks like if I use some value other than A, B, C, or D:

 

POST Fail

Now I am going to use a GET request to fetch the results of the votes from the database.

GET success

And that’s it! You have now created a simple voting web service using AWS Lambda, Amazon API Gateway, and DynamoDB and used unit tests to verify your logic so that you ship good code.
Happy coding!