Tag Archives: students

Tech wishes for 2018

Post Syndicated from Eevee original https://eev.ee/blog/2018/02/18/tech-wishes-for-2018/

Anonymous asks, via money:

What would you like to see happen in tech in 2018?

(answer can be technical, social, political, combination, whatever)

Hmm.

Less of this

I’m not really qualified to speak in depth about either of these things, but let me put my foot in my mouth anyway:

The Blockchain™

Bitcoin was a neat idea. No, really! Decentralization is cool. Overhauling our terrible financial infrastructure is cool. Hash functions are cool.

Unfortunately, it seems to have devolved into mostly a get-rich-quick scheme for nerds, and by nearly any measure it’s turning into a spectacular catastrophe. Its “success” is measured in how much a bitcoin is worth in US dollars, which is pretty close to an admission from its own investors that its only value is in converting back to “real” money — all while that same “success” is making it less useful as a distinct currency.

Blah, blah, everyone already knows this.

What concerns me slightly more is the gold rush hype cycle, which is putting cryptocurrency and “blockchain” in the news and lending it all legitimacy. People have raked in millions of dollars on ICOs of novel coins I’ve never heard mentioned again. (Note: again, that value is measured in dollars.) Most likely, none of the investors will see any return whatsoever on that money. They can’t, really, unless a coin actually takes off as a currency, and that seems at odds with speculative investing since everyone either wants to hoard or ditch their coins. When the coins have no value themselves, the money can only come from other investors, and eventually the hype winds down and you run out of other investors.

I fear this will hurt a lot of people before it’s over, so I’d like for it to be over as soon as possible.


That said, the hype itself has gotten way out of hand too. First it was the obsession with “blockchain” like it’s a revolutionary technology, but hey, Git is a fucking blockchain. The novel part is the way it handles distributed consensus (which in Git is basically left for you to figure out), and that’s uniquely important to currency because you want to be pretty sure that money doesn’t get duplicated or lost when moved around.

But now we have startups trying to use blockchains for website backends and file storage and who knows what else? Why? What advantage does this have? When you say “blockchain”, I hear “single Git repository” — so when you say “email on the blockchain”, I have an aneurysm.

Bitcoin seems to have sparked imagination in large part because it’s decentralized, but I’d argue it’s actually a pretty bad example of a decentralized network, since people keep forking it. The ability to fork is a feature, sure, but the trouble here is that the Bitcoin family has no notion of federation — there is one canonical Bitcoin ledger and it has no notion of communication with any other. That’s what you want for currency, not necessarily other applications. (Bitcoin also incentivizes frivolous forking by giving the creator an initial pile of coins to keep and sell.)

And federation is much more interesting than decentralization! Federation gives us email and the web. Federation means I can set up my own instance with my own rules and still be able to meaningfully communicate with the rest of the network. Federation has some amount of tolerance for changes to the protocol, so such changes are more flexible and rely more heavily on consensus.

Federation is fantastic, and it feels like a massive tragedy that this rekindled interest in decentralization is mostly focused on peer-to-peer networks, which do little to address our current problems with centralized platforms.

And hey, you know what else is federated? Banks.

AI

Again, the tech is cool and all, but the marketing hype is getting way out of hand.

Maybe what I really want from 2018 is less marketing?

For one, I’ve seen a huge uptick in uncritically referring to any software that creates or classifies creative work as “AI”. Can we… can we not. It’s not AI. Yes, yes, nerds, I don’t care about the hair-splitting about the nature of intelligence — you know that when we hear “AI” we think of a human-like self-aware intelligence. But we’re applying it to stuff like a weird dog generator. Or to whatever neural network a website threw into production this week.

And this is dangerously misleading — we already had massive tech companies scapegoating The Algorithm™ for the poor behavior of their software, and now we’re talking about those algorithms as though they were self-aware, untouchable, untameable, unknowable entities of pure chaos whose decisions we are arbitrarily bound to. Ancient, powerful gods who exist just outside human comprehension or law.

It’s weird to see this stuff appear in consumer products so quickly, too. It feels quick, anyway. The latest iPhone can unlock via facial recognition, right? I’m sure a lot of effort was put into ensuring that the same person’s face would always be recognized… but how confident are we that other faces won’t be recognized? I admit I don’t follow all this super closely, so I may be imagining a non-problem, but I do know that humans are remarkably bad at checking for negative cases.

Hell, take the recurring problem of major platforms like Twitter and YouTube classifying anything mentioning “bisexual” as pornographic — because the word is also used as a porn genre, and someone threw a list of porn terms into a filter without thinking too hard about it. That’s just a word list, a fairly simple thing that any human can review; but suddenly we’re confident in opaque networks of inferred details?

I don’t know. “Traditional” classification and generation are much more comforting, since they’re a set of fairly abstract rules that can be examined and followed. Machine learning, as I understand it, is less about rules and much more about pattern-matching; it’s built out of the fingerprints of the stuff it’s trained on. Surely that’s just begging for tons of edge cases. They’re practically made of edge cases.


I’m reminded of a point I saw made a few days ago on Twitter, something I’d never thought about but should have. TurnItIn is a service for universities that checks whether students’ papers match any others, in order to detect cheating. But this is a paid service, one that fundamentally hinges on its corpus: a large collection of existing student papers. So students pay money to attend school, where they’re required to let their work be given to a third-party company, which then profits off of it? What kind of a goofy business model is this?

And my thoughts turn to machine learning, which is fundamentally different from an algorithm you can simply copy from a paper, because it’s all about the training data. And to get good results, you need a lot of training data. Where is that all coming from? How many for-profit companies are setting a neural network loose on the web — on millions of people’s work — and then turning around and selling the result as a product?

This is really a question of how intellectual property works in the internet era, and it continues our proud decades-long tradition of just kinda doing whatever we want without thinking about it too much. Nothing if not consistent.

More of this

A bit tougher, since computers are pretty alright now and everything continues to chug along. Maybe we should just quit while we’re ahead. There’s some real pie-in-the-sky stuff that would be nice, but it certainly won’t happen within a year, and may never happen except in some horrific Algorithmic™ form designed by people that don’t know anything about the problem space and only works 60% of the time but is treated as though it were bulletproof.

Federation

The giants are getting more giant. Maybe too giant? Granted, it could be much worse than Google and Amazon — it could be Apple!

Amazon has its own delivery service and brick-and-mortar stores now, as well as providing the plumbing for vast amounts of the web. They’re not doing anything particularly outrageous, but they kind of loom.

Ad company Google just put ad blocking in its majority-share browser — albeit for the ambiguously-noble goal of only blocking obnoxious ads so that people will be less inclined to install a blanket ad blocker.

Twitter is kind of a nightmare but no one wants to leave. I keep trying to use Mastodon as well, but I always forget about it after a day, whoops.

Facebook sounds like a total nightmare but no one wants to leave that either, because normies don’t use anything else, which is itself direly concerning.

IRC is rapidly bleeding mindshare to Slack and Discord, both of which are far better at the things IRC sadly never tried to do and absolutely terrible at the exact things IRC excels at.

The problem is the same as ever: there’s no incentive to interoperate. There’s no fundamental technical reason why Twitter and Tumblr and MySpace and Facebook can’t intermingle their posts; they just don’t, because why would they bother? It’s extra work that makes it easier for people to not use your ecosystem.

I don’t know what can be done about that, except that hope for a really big player to decide to play nice out of the kindness of their heart. The really big federated success stories — say, the web — mostly won out because they came along first. At this point, how does a federated social network take over? I don’t know.

Social progress

I… don’t really have a solid grasp on what’s happening in tech socially at the moment. I’ve drifted a bit away from the industry part, which is where that all tends to come up. I have the vague sense that things are improving, but that might just be because the Rust community is the one I hear the most about, and it puts a lot of effort into being inclusive and welcoming.

So… more projects should be like Rust? Do whatever Rust is doing? And not so much what Linus is doing.

Open source funding

I haven’t heard this brought up much lately, but it would still be nice to see. The Bay Area runs on open source and is raking in zillions of dollars on its back; pump some of that cash back into the ecosystem, somehow.

I’ve seen a couple open source projects on Patreon, which is fantastic, but feels like a very small solution given how much money is flowing through the commercial tech industry.

Ad blocking

Nice. Fuck ads.

One might wonder where the money to host a website comes from, then? I don’t know. Maybe we should loop this in with the above thing and find a more informal way to pay people for the stuff they make when we find it useful, without the financial and cognitive overhead of A Transaction or Giving Someone My Damn Credit Card Number. You know, something like Bitco— ah, fuck.

Year of the Linux Desktop

I don’t know. What are we working on at the moment? Wayland? Do Wayland, I guess. Oh, and hi-DPI, which I hear sucks. And please fix my sound drivers so PulseAudio stops blaming them when it fucks up.

AWS Hot Startups for February 2018: Canva, Figma, InVision

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-for-february-2018-canva-figma-invision/

Note to readers! Starting next month, we will be publishing our monthly Hot Startups blog post on the AWS Startup Blog. Please come check us out.

As visual communication—whether through social media channels like Instagram or white space-heavy product pages—becomes a central part of everyone’s life, accessible design platforms and tools become more and more important in the world of tech. This trend is why we have chosen to spotlight three design-related startups—namely Canva, Figma, and InVision—as our hot startups for the month of February. Please read on to learn more about these design-savvy companies and be sure to check out our full post here.

Canva (Sydney, Australia)

For a long time, creating designs required expensive software, extensive studying, and time spent waiting for feedback from clients or colleagues. With Canva, a graphic design tool that makes creating designs much simpler and accessible, users have the opportunity to design anything and publish anywhere. The platform—which integrates professional design elements, including stock photography, graphic elements, and fonts for users to build designs either entirely from scratch or from thousands of free templates—is available on desktop, iOS, and Android, making it possible to spin up an invitation, poster, or graphic on a smartphone at any time.

To learn more about Canva, read our full interview with CEO Melanie Perkins here.

Figma (San Francisco, CA)

Figma is a cloud-based design platform that empowers designers to communicate and collaborate more effectively. Using recent advancements in WebGL, Figma offers a design tool that doesn’t require users to install any software or special operating systems. It also allows multiple people to work in a file at the same time—a crucial feature.

As the need for new design talent increases, the industry will need plenty of junior designers to keep up with the demand. Figma is prepared to help students by offering their platform for free. Through this, they “hope to give young designers the resources necessary to kick-start their education and eventually, their careers.”

For more about Figma, check out our full interview with CEO Dylan Field here.

InVision (New York, NY)

Founded in 2011 with the goal of helping improve every digital experience in the world, digital product design platform InVision helps users create a streamlined and scalable product design process, build and iterate on prototypes, and collaborate across organizations. The company, which raised a $100 million series E last November, bringing the company’s total funding to $235 million, currently powers the digital product design process at more than 80 percent of the Fortune 100 and brands like Airbnb, HBO, Netflix, and Uber.

Learn more about InVision here.

Be sure to check out our full post on the AWS Startups blog!

-Tina

Astro Pi celebrates anniversary of ISS Columbus module

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-celebrates-anniversary/

Right now, 400km above the Earth aboard the International Space Station, are two very special Raspberry Pi computers. They were launched into space on 6 December 2015 and are, most assuredly, the farthest-travelled Raspberry Pi computers in existence. Each year they run experiments that school students create in the European Astro Pi Challenge.

Raspberry Astro Pi units on the International Space Station

Left: Astro Pi Vis (Ed); right: Astro Pi IR (Izzy). Image credit: ESA.

The European Columbus module

Today marks the tenth anniversary of the launch of the European Columbus module. The Columbus module is the European Space Agency’s largest single contribution to the ISS, and it supports research in many scientific disciplines, from astrobiology and solar science to metallurgy and psychology. More than 225 experiments have been carried out inside it during the past decade. It’s also home to our Astro Pi computers.

Here’s a video from 7 February 2008, when Space Shuttle Atlantis went skywards carrying the Columbus module in its cargo bay.

STS-122 Launch NASA TV Coverage

From February 7th, 2008 NASA-TV Coverage of The 121st Space Shuttle Launch Launched At:2:45:30 P.M E.T – Coverage begins exactly one hour till launch STS-122 Crew:

Today, coincidentally, is also the deadline for the European Astro Pi Challenge: Mission Space Lab. Participating teams have until midnight tonight to submit their experiments.

Anniversary celebrations

At 16:30 GMT today there will be a live event on NASA TV for the Columbus module anniversary with NASA flight engineers Joe Acaba and Mark Vande Hei.

Our Astro Pi computers will be joining in the celebrations by displaying a digital birthday candle that the crew can blow out. It works by detecting an increase in humidity when someone blows on it. The video below demonstrates the concept.

AstroPi candle

Uploaded by Effi Edmonton on 2018-01-17.

Do try this at home

The exact Astro Pi code that will run on the ISS today is available for you to download and run on your own Raspberry Pi and Sense HAT. You’ll notice that the program includes code to make it stop automatically when the date changes to 8 February. This is just to save time for the ground control team.

If you have a Raspberry Pi and a Sense HAT, you can use the terminal commands below to download and run the code yourself:

wget http://rpf.io/colbday -O birthday.py
chmod +x birthday.py
./birthday.py

When you see a blank blue screen with the brightness increasing, the Sense HAT is measuring the baseline humidity. It does this every 15 minutes so it can recalibrate to take account of natural changes in background humidity. A humidity increase of 2% is needed to blow out the candle, so if the background humidity changes by more than 2% in 15 minutes, it’s possible to get a false positive. Press Ctrl + C to quit.

Please tweet pictures of your candles to @astro_pi – we might share yours! And if we’re lucky, we might catch a glimpse of the candle on the ISS during the NASA TV event at 16:30 GMT today.

The post Astro Pi celebrates anniversary of ISS Columbus module appeared first on Raspberry Pi.

Astro Pi Mission Zero: your code is in space

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-mission-zero-day/

Every school year, we run the European Astro Pi challenge to find the next generation of space scientists who will program two space-hardened Raspberry Pi units, called Astro Pis, living aboard the International Space Station.

Italian ESA Astronaut Paolo Nespoli with the Astro Pi units. Image credit ESA.

Astro Pi Mission Zero

The 2017–2018 challenge included the brand-new non-competitive Mission Zero, which guaranteed that participants could have their code run on the ISS for 30 seconds, provided they followed the rules. They would also get a certificate showing the exact time period during which their code ran in space.

Astro Pi Mission Zero logo

We asked participants to write a simple Python program to display a personalised message and the air temperature on the Astro Pi screen. No special hardware was needed, since all the code could be written in a web browser using the Sense HAT emulator developed in partnership with Trinket.

Scott McKenzie on Twitter

Students coding #astropi emulator to scroll a message to astronauts on @Raspberry_Pi in space this summer. Try it here: https://t.co/0KURq11X0L #Rm9Parents #CSforAll #ontariocodes

And now it’s time…

We received over 2500 entries for Mission Zero, and we’re excited to announce that tomorrow all entries with flight status will be run on the ISS…in SPAAACE!

There are 1771 Python programs with flight status, which will run back-to-back on Astro Pi VIS (Ed). The whole process will take about 14 hours. This means that everyone will get a timestamp showing 1 February, so we’re going to call this day Mission Zero Day!

Part of each team’s certificate will be a map, like the one below, showing the exact location of the ISS while the team’s code was running.

The grey line is the ISS orbital path, the red marker shows the ISS’s location when their code was running. Produced using Google Static Maps API.

The programs will be run in the same sequence in which we received them. For operational reasons, we can’t guarantee that they will run while the ISS flies over any particular location. However, if you have submitted an entry to Mission Zero, there is a chance that your code will run while the ISS is right overhead!

Go out and spot the station

Spotting the ISS is a great activity to do by yourself or with your students. The station looks like a very fast-moving star that crosses the sky in just a few minutes. If you know when and where to look, and it’s not cloudy, you literally can’t miss it.

Source Andreas Möller, Wikimedia Commons.

The ISS passes over most ground locations about twice a day. For it to be clearly visible though, you need darkness on the ground with sunlight on the ISS due to its altitude. There are a number of websites which can tell you when these visible passes occur, such as NASA’s Spot the Station. Each of the sites requires you to give your location so it can work out when visible passes will occur near you.

Visible ISS pass star chart from Heavens Above, on which familiar constellations such as the Plough (see label Ursa Major) can be seen.

A personal favourite of mine is Heavens Above. It’s slightly more fiddly to use than other sites, but it produces brilliant star charts that show you precisely where to look in the sky. This is how it works:

  1. Go to www.heavens-above.com
  2. To set your location, click on Unspecified in the top right-hand corner
  3. Enter your location (e.g. Cambridge, United Kingdom) into the text box and click Search
  4. The map should change to the correct location — scroll down and click Update
  5. You’ll be taken back to the homepage, but with your location showing at the top right
  6. Click on ISS in the Satellites section
  7. A table of dates will now show, which are the upcoming visible passes for your location
  8. Click on a row to view the star chart for that pass — the line is the path of the ISS, and the arrow shows direction of travel
  9. Be outside in cloudless weather at the start time, look towards the direction where the line begins, and hope the skies stay clear

If you go out and do this, then tweet some pictures to @raspberry_pi, @astro_pi, and @esa. Good luck!

More Astro Pi

Mission Zero certificates will be arriving in participants’ inboxes shortly. We would like to thank everyone who participated in Mission Zero this school year, and we hope that next time you’ll take it one step further and try Mission Space Lab.

Mission Zero and Mission Space Lab are two really exciting programmes that young people of all ages can take part in. If you would like to be notified when the next round of Astro Pi opens for registrations, sign up to our mailing list here.

The post Astro Pi Mission Zero: your code is in space appeared first on Raspberry Pi.

Raspberry Crusoe: how a Pi got lost at sea

Post Syndicated from James Robinson original https://www.raspberrypi.org/blog/lost-high-altitude-balloon/

The tale of the little HAB that could and its three-month journey from Portslade Aldridge Community Academy in the UK to the coast of Denmark.

PACA Computing on Twitter

Where did it land ???? #skypaca #skycademy @pacauk #RaspberryPi

High-altitude ballooning

Some of you may be familiar with Raspberry Pi being used as the flight computer, or tracker, of high-altitude balloon (HAB) payloads. For those who aren’t, high-altitude ballooning is a relatively simple activity (at least in principle) where a tracker is attached to a large weather balloon which is then released into the atmosphere. While the HAB ascends, the tracker takes pictures and data readings the whole time. Eventually (around 30km up) the balloon bursts, leaving the payload free to descend and be recovered. For a better explanation, I’m handing over to the students of UTC Oxfordshire:

Pi in the Sky | UTC Oxfordshire

On Tuesday 2nd May, students launched a Raspberry Pi computer 35,000 metres into the stratosphere as part of an Employer-Led project at UTC Oxfordshire, set by the Raspberry Pi Foundation. The project involved engineering, scientific and communication/publicity skills being developed to create the payload and code to interpret experiments set by the science team.

Skycademy

Over the past few years, we’ve seen schools and their students explore the possibilities that high-altitude ballooning offers, and back in 2015 and 2016 we ran Skycademy. The programme was simple enough: get a bunch of educators together in the same space, show them how to launch a balloon flight, and then send them back to their students to try and repeat what they’ve learned. Since the first Skycademy event, a number of participants have carried out launches, and we are extremely proud of each and every one of them.

The case of the vanishing PACA HAB

Not every launch has been a 100% success though. There are many things that can and do go wrong during HAB flights, and watching each launch from the comfort of our office can be a nerve-wracking experience. We had such an experience back in July 2017, during the launch performed by Skycademy graduate and Raspberry Pi Certified Educator Dave Hartley and his students from Portslade Aldridge Community Academy (PACA).

Dave and his team had been working on their payload for some time, and were awaiting suitable weather conditions. Early one Wednesday in July, everything aligned: they had a narrow window of good weather and so set their launch plan in motion. Soon they had assembled the payload in the school grounds and all was ready for the launch.

Dave Hartley on Twitter

Launch day! @pacauk #skycademy #skypaca #raspberrypi

Just before 11:00, they’d completed their final checks and released their payload into the atmosphere. Over the course of 64 minutes, the HAB steadily rose to an altitude of 25647m, where it captured some amazing pictures before the balloon burst and a rapid descent began.

Portslade Aldridge Community Academy Skycademy Raspberry Pi
Portslade Aldridge Community Academy Skycademy Raspberry Pi

Soon after the payload began to descend, the team noticed something worrying: their predicted descent path took the payload dangerously far south — it was threatening to land in the sea. As the payload continued to lose altitude, their calculated results kept shifting, alternately predicting a landing on the ground or out to sea. Eventually it became clear that the payload would narrowly overshoot the land, and it finally landed about 2 km out to sea.

Portslade Aldridge Community Academy Skycademy Raspberry Pi High Altitude Ballooning

The path of the balloon

It’s not uncommon for a HAB payload to get lost. There are many ways this can happen, particularly in a narrow country with a prevailing easterly wind like the UK. Payloads can get lost at sea, land somewhere inaccessible, or simply run out of power before they are located and retrieved. So normally, this would be the end of the story for the PACA students — even if the team had had a speedboat to hand, their payload was surely lost for good.

A message from Denmark

However, this is not the end of our story! A couple of months later, I arrived at work and saw this tweet from a colleague:

Raspberry Pi on Twitter

Anyone lost a Raspberry Pi HAB? Someone found this one on a beach in south western Denmark yesterday #UKHAS https://t.co/7lBzFiemgr

Good Samaritan Henning Hansen had found a Raspberry Pi washed up on a remote beach in Denmark! While walking a stretch of coast to collect plastic debris for an environmental monitoring project, he came across something unusual near the shore at 55°04’53.0″N and 8°38’46.9″E.

This of course piqued my interest, and we began to investigate the image he had shared on Facebook.

Portslade Aldridge Community Academy Skycademy Raspberry Pi High Altitude Ballooning

Inspecting the photo closely, we noticed a small asset label — the kind of label that, over a year earlier, we’d stuck to each and every bit of Skycademy field kit. We excitedly claimed the kit on behalf of Dave and his students, and contacted Henning to arrange the recovery of the payload. He told us it must have been carried ashore with the tide some time between 21 and 27 September, and probably on 21 September, since that day had the highest tide over the period. This meant the payload must have spent over two months at sea!

From the photo we could tell that the Raspberry Pi had suffered significant corrosion, having been exposed to salt water for so long, and so we felt pessimistic about the chances that there would be any recoverable data on it. However, Henning said that he’d been able to read some files from the FAT partition of the SD card, so all hope was not lost.

After a few weeks and a number of complications around dispatch and delivery (thank you, Henning, for your infinite patience!), Helen collected the HAB from a local Post Office.

Portslade Aldridge Community Academy Skycademy Raspberry Pi High Altitude Ballooning

SUCCESS!

We set about trying to read the data from the SD card, and eventually became disheartened: despite several attempts, we were unable to read its contents.

In a last-ditch effort, we gave the SD card to Jonathan, one of our engineers, who initially laughed at the prospect of recovering any data from it. But ten minutes later, he returned with news of success!

Portslade Aldridge Community Academy Skycademy Raspberry Pi
Portslade Aldridge Community Academy Skycademy Raspberry Pi
Portslade Aldridge Community Academy Skycademy Raspberry Pi
Portslade Aldridge Community Academy Skycademy Raspberry Pi

Since then, we’ve been able to reunite the payload with the PACA launch team, and the students sent us the perfect message to end this story:

Portslade Aldridge Community Academy Skycademy Raspberry Pi High Altitude Ballooning

The post Raspberry Crusoe: how a Pi got lost at sea appeared first on Raspberry Pi.

Hello World Issue 4: Professional Development

Post Syndicated from Carrie Anne Philbin original https://www.raspberrypi.org/blog/hello-world-issue-4/

Another new year brings with it thoughts of setting goals and targets. Thankfully, there is a new issue of Hello World packed with practical advise to set you on the road to success.

Hello World is our magazine about computing and digital making for educators, and it’s a collaboration between the Raspberry Pi Foundation and Computing at School, which is part of the British Computing Society.

Hello World 4 Professional Development Raspberry Pi CAS

In issue 4, our international panel of educators and experts recommends approaches to continuing professional development in computer science education.

Approaches to professional development, and much more

With recommendations for more professional development in the Royal Society’s report, and government funding to support this, our cover feature explores some successful approaches. In addition, the issue is packed with other great resources, guides, features, and lesson plans to support educators.

Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS

Highlights include:

  • The Royal Society: After the Reboot — learn about the latest report and its findings about computing education
  • The Cyber Games — a new programme looking for the next generation of security experts
  • Engaging Students with Drones
  • Digital Literacy: Lost in Translation?
  • Object-oriented Coding with Python

Get your copy of Hello World 4

Hello World is available as a free Creative Commons download for anyone around the world who is interested in computer science and digital making education. You can get the latest issue as a PDF file straight from the Hello World website.

Thanks to the very generous sponsorship of BT, we are able to offer free print copies of the magazine to serving educators in the UK. It’s for teachers, Code Club volunteers, teaching assistants, teacher trainers, and others who help children and young people learn about computing and digital making. So remember to subscribe to have your free print magazine posted directly to your home — 6000 educators have already signed up to receive theirs!

Could you write for Hello World?

By sharing your knowledge and experience of working with young people to learn about computing, computer science, and digital making in Hello World, you will help inspire others to get involved. You will also help bring the power of digital making to more and more educators and learners.

The computing education community is full of people who lend their experience to help colleagues. Contributing to Hello World is a great way to take an active part in this supportive community, and you’ll be adding to a body of free, open-source learning resources that are available for anyone to use, adapt, and share. It’s also a tremendous platform to broadcast your work: Hello World digital versions alone have been downloaded more than 50000 times!

Wherever you are in the world, get in touch with us by emailing our editorial team about your article idea.

The post Hello World Issue 4: Professional Development appeared first on Raspberry Pi.

What do you want your button to do?

Post Syndicated from Carrie Anne Philbin original https://www.raspberrypi.org/blog/button/

Here at Raspberry Pi, we know that getting physical with computing is often a catalyst for creativity. Building a simple circuit can open up a world of making possibilities! This ethos of tinkering and invention is also being used in the classroom to inspire a whole new generation of makers too, and here is why.

The all-important question

Physical computing provides a great opportunity for creative expression: the button press! By explaining how a button works, how to build one with a breadboard attached to computer, and how to program the button to work when it’s pressed, you can give learners young and old all the conceptual skills they need to build a thing that does something. But what do they want their button to do? Have you ever asked your students or children at home? I promise it will be one of the most mindblowing experiences you’ll have if you do.

A button. A harmless, little arcade button.

Looks harmless now, but put it into the hands of a child and see what happens!

Amy will want her button to take a photo, Charlie will want his button to play a sound, Tumi will want her button to explode TNT in Minecraft, Jack will want their button to fire confetti out of a cannon, and James Robinson will want his to trigger silly noises (doesn’t he always?)! Idea generation is the inherent gift that every child has in abundance. As educators and parents, we’re always looking to deeply engage our young people in the subject matter we’re teaching, and they are never more engaged than when they have an idea and want to implement it. Way back in 2012, I wanted my button to print geeky sayings:

Geek Gurl Diaries Raspberry Pi Thermal Printer Project Sneak Peek!

A sneak peek at the finished Geek Gurl Diaries ‘Box of Geek’. I’ve been busy making this for a few weeks with some help from friends. Tutorial to make your own box coming soon, so keep checking the Geek Gurl Diaries Twitter, facebook page and channel.

What are the challenges for this approach in education?

Allowing this kind of free-form creativity and tinkering in the classroom obviously has its challenges for teachers, especially those confined to rigid lesson structures, timings, and small classrooms. The most common worry I hear from teachers is “what if they ask a question I can’t answer?” Encouraging this sort of creative thinking makes that almost an inevitability. How can you facilitate roughly 30 different projects simultaneously? The answer is by using those other computational and transferable thinking skills:

  • Problem-solving
  • Iteration
  • Collaboration
  • Evaluation

Clearly specifying a problem, surveying the tools available to solve it (including online references and external advice), and then applying them to solve the problem is a hugely important skill, and this is a great opportunity to teach it.

A girl plays a button reaction game at a Raspberry Pi event

Press ALL the buttons!

Hands-off guidance

When we train teachers at Picademy, we group attendees around themes that have come out of the idea generation session. Together they collaborate on an achievable shared goal. One will often sketch something on a whiteboard, decomposing the problem into smaller parts; then the group will divide up the tasks. Each will look online or in books for tutorials to help them with their step. I’ve seen this behaviour in student groups too, and it’s very easy to facilitate. You don’t need to be the resident expert on every project that students want to work on.

The key is knowing where to guide students to find the answers they need. Curating online videos, blogs, tutorials, and articles in advance gives you the freedom and confidence to concentrate on what matters: the learning. We have a number of physical computing projects that use buttons, linked to our curriculum for learners to combine inputs and outputs to solve a problem. The WhooPi cushion and GPIO music box are two of my favourites.

A Raspberry Pi and button attached to a computer display

Outside of formal education, events such as Raspberry Jams, CoderDojos, CAS Hubs, and hackathons are ideal venues for seeking and receiving support and advice.

Cross-curricular participation

The rise of the global maker movement, I think, is in response to abstract concepts and disciplines. Children are taught lots of concepts in isolation that aren’t always relevant to their lives or immediate environment. Digital making provides a unique and exciting way of bridging different subject areas, allowing for cross-curricular participation. I’m not suggesting that educators should throw away all their schemes of work and leave the full direction of the computing curriculum to students. However, there’s huge value in exposing learners to the possibilities for creativity in computing. Creative freedom and expression guide learning, better preparing young people for the workplace of tomorrow.

So…what do you want your button to do?

Hello World

Learn more about today’s subject, and read further articles regarding computer science in education, in Hello World magazine issue 1.

Read Hello World issue 1 for more…

UK-based educators can subscribe to Hello World to receive a hard copy delivered for free to their doorstep, while the PDF is available for free to everyone via the Hello World website.

The post What do you want your button to do? appeared first on Raspberry Pi.

Computing in schools: the report card

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/after-the-reboot/

Today the Royal Society published After the Reboot, a report card on the state of computing education in UK schools. It’s a serious piece of work, published with lots of accompanying research and data, and well worth a read if you care about these issues (which, if you’re reading this blog, I guess you do).

The headline message is that, while a lot has been achieved, there’s a long way to go before we can say that young people are consistently getting the computing education they need and deserve in UK schools.

If this were a school report card, it would probably say: “good progress when he applies himself, but would benefit from more focus and effort in class” (which is eerily reminiscent of my own school reports).

A child coding in Scratch on a laptop - Royal Society After the Reboot

Good progress

After the Reboot comes five and a half years after the Royal Society’s first review of computing education, Shut down or restart, a report that was published just a few days before the Education Secretary announced in January 2012 that he was scrapping the widely discredited ICT programme of study.

There’s no doubt that a lot has been achieved since 2012, and the Royal Society has done a good job of documenting those successes in this latest report. Computing is now part of the curriculum for all schools. There’s a Computer Science GCSE that is studied by thousands of young people. Organisations like Computing At School have built a grassroots movement of educators who are leading fantastic work in schools up and down the country. Those are big wins.

The Raspberry Pi Foundation has been playing its part. With the support of partners like Google, we’ve trained over a thousand UK educators through our Picademy programme. Those educators have gone on to work with hundreds of thousands of students, and many have become leaders in the field. Many thousands more have taken our free online training courses, and through our partnership with BT, CAS and the BCS on the Barefoot programme, we’re supporting thousands of primary school teachers to deliver the computing curriculum. Earlier this year we launched a free magazine for computing educators, Hello World, which has over 14,000 subscribers after just three editions.

A group of people learning about digital making - Royal Society After the Reboot

More to do

Despite all the progress, the Royal Society study has confirmed what many of us have been saying for some time: we need to do much more to support teachers to develop the skills and confidence to deliver the computing curriculum. More than anything, we need to give them the time to invest in their own professional development. The UK led the way on putting computing in the curriculum. Now we need to follow through on that promise by investing in a huge effort to support professional development across the school system.

This isn’t a problem that any one organisation or sector can solve on its own. It will require a grand coalition of government, industry, non-profits, and educators if we are going to make change at the pace that our young people need and deserve. Over the coming weeks and months, we’ll be working with our partners to figure out how we make that happen.

A boy learning about computing from a woman - Royal Society After the Reboot

The other 75%

While the Royal Society report rightly focuses on what happens in classrooms during the school day, we need to remember that children spend only 25% of their waking hours there. What about the other 75%?

Ask any computer scientist, engineer, or maker, and they’ll tell stories about how much they learned in those precious discretionary hours.

Ask an engineer of a certain age (ahem), and they will tell you about the local computing club where they got hands-on with new technologies, picked up new ideas, and were given help by peers and mentors. They might also tell you how they would spend dozens of hours typing in hundreds of line of code from a magazine to create their own game, and dozens more debugging when it didn’t work.

One of our goals at the Raspberry Pi Foundation is to lead the revival in that culture of informal learning.

The revival of computing clubs

There are now more than 6,000 active Code Clubs in the UK, engaging over 90,000 young people each week. 41% of the kids at Code Club are girls. More than 150 UK CoderDojos take place in universities, science centres, and corporate offices, providing a safe space for over 4,000 young people to learn programming and digital making.

So far this year, there have been 164 Raspberry Jams in the UK, volunteer-led meetups attended by over 10,000 people, who come to learn from volunteers and share their digital making projects.

It’s a movement, and it’s growing fast. One of the most striking facts is that whenever a new Code Club, CoderDojo, or Raspberry Jam is set up, it is immediately oversubscribed.

So while we work on fixing the education system, there’s a tangible way that we can all make a huge difference right now. You can help set up a Code Club, get involved with CoderDojo, or join the Raspberry Jam movement.

The post Computing in schools: the report card appeared first on Raspberry Pi.

Say Hello To Our Newest AWS Community Heroes (Fall 2017 Edition)

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/say-hello-to-our-newest-aws-community-heroes-fall-2017-edition/

The AWS Community Heroes program helps shine a spotlight on some of the innovative work being done by rockstar AWS developers around the globe. Marrying cloud expertise with a passion for community building and education, these heroes share their time and knowledge across social media and through in-person events. Heroes also actively help drive community-led tracks at conferences. At this year’s re:Invent, many Heroes will be speaking during the Monday Community Day track.

This November, we are thrilled to have four Heroes joining our network of cloud innovators. Without further ado, meet to our newest AWS Community Heroes!

 

Anh Ho Viet

Anh Ho Viet is the founder of AWS Vietnam User Group, Co-founder & CEO of OSAM, an AWS Consulting Partner in Vietnam, an AWS Certified Solutions Architect, and a cloud lover.

At OSAM, Anh and his enthusiastic team have helped many companies, from SMBs to Enterprises, move to the cloud with AWS. They offer a wide range of services, including migration, consultation, architecture, and solution design on AWS. Anh’s vision for OSAM is beyond a cloud service provider; the company will take part in building a complete AWS ecosystem in Vietnam, where other companies are encouraged to become AWS partners through training and collaboration activities.

In 2016, Anh founded the AWS Vietnam User Group as a channel to share knowledge and hands-on experience among cloud practitioners. Since then, the community has reached more than 4,800 members and is still expanding. The group holds monthly meetups, connects many SMEs to AWS experts, and provides real-time, free-of-charge consultancy to startups. In August 2017, Anh joined as lead content creator of a program called “Cloud Computing Lectures for Universities” which includes translating AWS documentation & news into Vietnamese, providing students with fundamental, up-to-date knowledge of AWS cloud computing, and supporting students’ career paths.

 

Thorsten Höger

Thorsten Höger is CEO and Cloud consultant at Taimos, where he is advising customers on how to use AWS. Being a developer, he focuses on improving development processes and automating everything to build efficient deployment pipelines for customers of all sizes.

Before being self-employed, Thorsten worked as a developer and CTO of Germany’s first private bank running on AWS. With his colleagues, he migrated the core banking system to the AWS platform in 2013. Since then he organizes the AWS user group in Stuttgart and is a frequent speaker at Meetups, BarCamps, and other community events.

As a supporter of open source software, Thorsten is maintaining or contributing to several projects on Github, like test frameworks for AWS Lambda, Amazon Alexa, or developer tools for CloudFormation. He is also the maintainer of the Jenkins AWS Pipeline plugin.

In his spare time, he enjoys indoor climbing and cooking.

 

Becky Zhang

Yu Zhang (Becky Zhang) is COO of BootDev, which focuses on Big Data solutions on AWS and high concurrency web architecture. Before she helped run BootDev, she was working at Yubis IT Solutions as an operations manager.

Becky plays a key role in the AWS User Group Shanghai (AWSUGSH), regularly organizing AWS UG events including AWS Tech Meetups and happy hours, gathering AWS talent together to communicate the latest technology and AWS services. As a female in technology industry, Becky is keen on promoting Women in Tech and encourages more woman to get involved in the community.

Becky also connects the China AWS User Group with user groups in other regions, including Korea, Japan, and Thailand. She was invited as a panelist at AWS re:Invent 2016 and spoke at the Seoul AWS Summit this April to introduce AWS User Group Shanghai and communicate with other AWS User Groups around the world.

Besides events, Becky also promotes the Shanghai AWS User Group by posting AWS-related tech articles, event forecasts, and event reports to Weibo, Twitter, Meetup.com, and WeChat (which now has over 2000 official account followers).

 

Nilesh Vaghela

Nilesh Vaghela is the founder of ElectroMech Corporation, an AWS Cloud and open source focused company (the company started as an open source motto). Nilesh has been very active in the Linux community since 1998. He started working with AWS Cloud technologies in 2013 and in 2014 he trained a dedicated cloud team and started full support of AWS cloud services as an AWS Standard Consulting Partner. He always works to establish and encourage cloud and open source communities.

He started the AWS Meetup community in Ahmedabad in 2014 and as of now 12 Meetups have been conducted, focusing on various AWS technologies. The Meetup has quickly grown to include over 2000 members. Nilesh also created a Facebook group for AWS enthusiasts in Ahmedabad, with over 1500 members.

Apart from the AWS Meetup, Nilesh has delivered a number of seminars, workshops, and talks around AWS introduction and awareness, at various organizations, as well as at colleges and universities. He has also been active in working with startups, presenting AWS services overviews and discussing how startups can benefit the most from using AWS services.

Nilesh is Red Hat Linux Technologies and AWS Cloud Technologies trainer as well.

 

To learn more about the AWS Community Heroes Program and how to get involved with your local AWS community, click here.

[$] A report from the Realtime Summit

Post Syndicated from jake original https://lwn.net/Articles/738001/rss

The 2017
Realtime Summit
(RT-Summit) was hosted by the Czech Technical University on
Saturday, October 21 in Prague, just before the Embedded Linux
Conference. It
was attended by more than 50 individuals with backgrounds ranging from
academic to
industrial, and some local students daring enough to spend a day with that
group. Guest author Mathieu Poirier provides summaries of some of the
talks from the summit.

Can you survive our free zombie resources?

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/free-zombie-resources/

Looking for something more exciting than pumpkin carving this Halloween weekend? Try your hand at our free new creepy, zombie-themed resources — perfect for both digital makers both living and undead!

Pride and Prejudice for zombies

Sketch of a G eorgian zombie couple - Raspberry Pi free resources zombie survival

If you’ve always imagined Lady Catherine de Bourgh as resembling one of the undead, you’re not alone. And if you don’t know who Lady Catherine de Bourgh is, now is the perfect time to read Pride and Prejudice, before using our resource to translate the text for your favourite zombies.

This resource will show you how to apply abstraction and decomposition to solve more complex programming problems, in line with the Raspberry Pi digital curriculum.*

*Zombie translation: Grrrrr arrrrggg braaaaains aaaaaah graaaaarg urrrrrg Raaaarghsberry Pi gurriculum.

Zombie apocalypse survival map

Sketch of two children inspecting a zombie survial map - Raspberry Pi free resources zombie survival

Are you ready to take on the zombie infestation and survive the apocalypse brought about by the undead? This resource shows you how to create a map of a specific area and mark the locations of supplies, secret bases, and enemies, and thus ensure the best chances of survival for you and your team.

In line with our digital curriculum, this resource shows you how to combine programming constructs to solve a problem, and how to design 2D and 3D assets.

Where’s Zombie?

Sketch of two people hiding behind a wall from two zombies - Raspberry Pi free resources zombie survival

Our ‘Where’s Zombie?’ resource is a step-by-step guide to turning your apocalypse survival map into a zombie-tracking game. Use the GPS on your phone to collect supplies while avoiding the undead.

By the way, if you’re not into zombies, don’t worry: these resources are easily modifiable to fit any genre or franchise! Jane Eyre for kittens, anyone? Or an ‘Hide from the stormtroopers’ map?

Pioneers

If you’re a person between the age of 11 and 16 and based in the UK or Ireland, or if you know one who enjoys making, make sure to check out our newest Pioneers challenge, Only you can save us.

Pioneers 'Only you can save us' logo - Raspberry Pi free resources zombie survival

We’re tasking our Pioneers to build something to help humankind survive a calamity of epic proportions. Are you up for the challenge?

Transferable skills

The Raspberry Pi digital curriculum was created to support our goal of putting the power of digital making into the hands of people all over the world.

Sketch of four people holding a toy robot, a sledge hammer, sitting at a destop with a PC, and with four arms holding various tools - Raspberry Pi free resources zombie survival

As Carrie Anne Philbin, Director of Education for the Raspberry Pi Foundation, explains:

We have a large and diverse community of people who are interested in digital making. Some might use the curriculum to help guide and inform their own learning, or perhaps their children’s learning. People who run digital making clubs at schools, community centres, and Raspberry Jams may draw on it for extra guidance on activities that will engage their learners. Some teachers may wish to use the curriculum as inspiration for what to teach their students.

By working through resources such as the ones above, you’re not only learning new skills, but also building on pre-existing ones. You’ll expand both your understanding of digital making and your imagination, and you’ll be able to use what you’ve gained when you create your own exciting projects.

All of our resources are available for free on our website, and we continually update them to offer you more ways to work on your abilities, whatever your age and experience may be.

Have you built anything using our resources? Let us know in the comments!

The post Can you survive our free zombie resources? appeared first on Raspberry Pi.

Bringing Datacenter-Scale Hardware-Software Co-design to the Cloud with FireSim and Amazon EC2 F1 Instances

Post Syndicated from Mia Champion original https://aws.amazon.com/blogs/compute/bringing-datacenter-scale-hardware-software-co-design-to-the-cloud-with-firesim-and-amazon-ec2-f1-instances/

The recent addition of Xilinx FPGAs to AWS Cloud compute offerings is one way that AWS is enabling global growth in the areas of advanced analytics, deep learning and AI. The customized F1 servers use pooled accelerators, enabling interconnectivity of up to 8 FPGAs, each one including 64 GiB DDR4 ECC protected memory, with a dedicated PCIe x16 connection. That makes this a powerful engine with the capacity to process advanced analytical applications at scale, at a significantly faster rate. For example, AWS commercial partner Edico Genome is able to achieve an approximately 30X speedup in analyzing whole genome sequencing datasets using their DRAGEN platform powered with F1 instances.

While the availability of FPGA F1 compute on-demand provides clear accessibility and cost advantages, many mainstream users are still finding that the “threshold to entry” in developing or running FPGA-accelerated simulations is too high. Researchers at the UC Berkeley RISE Lab have developed “FireSim”, powered by Amazon FPGA F1 instances as an open-source resource, FireSim lowers that entry bar and makes it easier for everyone to leverage the power of an FPGA-accelerated compute environment. Whether you are part of a small start-up development team or working at a large datacenter scale, hardware-software co-design enables faster time-to-deployment, lower costs, and more predictable performance. We are excited to feature FireSim in this post from Sagar Karandikar and his colleagues at UC-Berkeley.

―Mia Champion, Sr. Data Scientist, AWS

Mapping an 8-node FireSim cluster simulation to Amazon EC2 F1

As traditional hardware scaling nears its end, the data centers of tomorrow are trending towards heterogeneity, employing custom hardware accelerators and increasingly high-performance interconnects. Prototyping new hardware at scale has traditionally been either extremely expensive, or very slow. In this post, I introduce FireSim, a new hardware simulation platform under development in the computer architecture research group at UC Berkeley that enables fast, scalable hardware simulation using Amazon EC2 F1 instances.

FireSim benefits both hardware and software developers working on new rack-scale systems: software developers can use the simulated nodes with new hardware features as they would use a real machine, while hardware developers have full control over the hardware being simulated and can run real software stacks while hardware is still under development. In conjunction with this post, we’re releasing the first public demo of FireSim, which lets you deploy your own 8-node simulated cluster on an F1 Instance and run benchmarks against it. This demo simulates a pre-built “vanilla” cluster, but demonstrates FireSim’s high performance and usability.

Why FireSim + F1?

FPGA-accelerated hardware simulation is by no means a new concept. However, previous attempts to use FPGAs for simulation have been fraught with usability, scalability, and cost issues. FireSim takes advantage of EC2 F1 and open-source hardware to address the traditional problems with FPGA-accelerated simulation:
Problem #1: FPGA-based simulations have traditionally been expensive, difficult to deploy, and difficult to reproduce.
FireSim uses public-cloud infrastructure like F1, which means no upfront cost to purchase and deploy FPGAs. Developers and researchers can distribute pre-built AMIs and AFIs, as in this public demo (more details later in this post), to make experiments easy to reproduce. FireSim also automates most of the work involved in deploying an FPGA simulation, essentially enabling one-click conversion from new RTL to deploying on an FPGA cluster.

Problem #2: FPGA-based simulations have traditionally been difficult (and expensive) to scale.
Because FireSim uses F1, users can scale out experiments by spinning up additional EC2 instances, rather than spending hundreds of thousands of dollars on large FPGA clusters.

Problem #3: Finding open hardware to simulate has traditionally been difficult. Finding open hardware that can run real software stacks is even harder.
FireSim simulates RocketChip, an open, silicon-proven, RISC-V-based processor platform, and adds peripherals like a NIC and disk device to build up a realistic system. Processors that implement RISC-V automatically support real operating systems (such as Linux) and even support applications like Apache and Memcached. We provide a custom Buildroot-based FireSim Linux distribution that runs on our simulated nodes and includes many popular developer tools.

Problem #4: Writing hardware in traditional HDLs is time-consuming.
Both FireSim and RocketChip use the Chisel HDL, which brings modern programming paradigms to hardware description languages. Chisel greatly simplifies the process of building large, highly parameterized hardware components.

How to use FireSim for hardware/software co-design

FireSim drastically improves the process of co-designing hardware and software by acting as a push-button interface for collaboration between hardware developers and systems software developers. The following diagram describes the workflows that hardware and software developers use when working with FireSim.

Figure 2. The FireSim custom hardware development workflow.

The hardware developer’s view:

  1. Write custom RTL for your accelerator, peripheral, or processor modification in a productive language like Chisel.
  2. Run a software simulation of your hardware design in standard gate-level simulation tools for early-stage debugging.
  3. Run FireSim build scripts, which automatically build your simulation, run it through the Vivado toolchain/AWS shell scripts, and publish an AFI.
  4. Deploy your simulation on EC2 F1 using the generated simulation driver and AFI
  5. Run real software builds released by software developers to benchmark your hardware

The software developer’s view:

  1. Deploy the AMI/AFI generated by the hardware developer on an F1 instance to simulate a cluster of nodes (or scale out to many F1 nodes for larger simulated core-counts).
  2. Connect using SSH into the simulated nodes in the cluster and boot the Linux distribution included with FireSim. This distribution is easy to customize, and already supports many standard software packages.
  3. Directly prototype your software using the same exact interfaces that the software will see when deployed on the real future system you’re prototyping, with the same performance characteristics as observed from software, even at scale.

FireSim demo v1.0

Figure 3. Cluster topology simulated by FireSim demo v1.0.

This first public demo of FireSim focuses on the aforementioned “software-developer’s view” of the custom hardware development cycle. The demo simulates a cluster of 1 to 8 RocketChip-based nodes, interconnected by a functional network simulation. The simulated nodes work just like “real” machines:  they boot Linux, you can connect to them using SSH, and you can run real applications on top. The nodes can see each other (and the EC2 F1 instance on which they’re deployed) on the network and communicate with one another. While the demo currently simulates a pre-built “vanilla” cluster, the entire hardware configuration of these simulated nodes can be modified after FireSim is open-sourced.

In this post, I walk through bringing up a single-node FireSim simulation for experienced EC2 F1 users. For more detailed instructions for new users and instructions for running a larger 8-node simulation, see FireSim Demo v1.0 on Amazon EC2 F1. Both demos walk you through setting up an instance from a demo AMI/AFI and booting Linux on the simulated nodes. The full demo instructions also walk you through an example workload, running Memcached on the simulated nodes, with YCSB as a load generator to demonstrate network functionality.

Deploying the demo on F1

In this release, we provide pre-built binaries for driving simulation from the host and a pre-built AFI that contains the FPGA infrastructure necessary to simulate a RocketChip-based node.

Starting your F1 instances

First, launch an instance using the free FireSim Demo v1.0 product available on the AWS Marketplace on an f1.2xlarge instance. After your instance has booted, log in using the user name centos. On the first login, you should see the message “FireSim network config completed.” This sets up the necessary tap interfaces and bridge on the EC2 instance to enable communicating with the simulated nodes.

AMI contents

The AMI contains a variety of tools to help you run simulations and build software for RISC-V systems, including the riscv64 toolchain, a Buildroot-based Linux distribution that runs on the simulated nodes, and the simulation driver program. For more details, see the AMI Contents section on the FireSim website.

Single-node demo

First, you need to flash the FPGA with the FireSim AFI. To do so, run:

[[email protected]_ADDR ~]$ sudo fpga-load-local-image -S 0 -I agfi-00a74c2d615134b21

To start a simulation, run the following at the command line:

[[email protected]_ADDR ~]$ boot-firesim-singlenode

This automatically calls the simulation driver, telling it to load the Linux kernel image and root filesystem for the Linux distro. This produces output similar to the following:

Simulations Started. You can use the UART console of each simulated node by attaching to the following screens:

There is a screen on:

2492.fsim0      (Detached)

1 Socket in /var/run/screen/S-centos.

You could connect to the simulated UART console by connecting to this screen, but instead opt to use SSH to access the node instead.

First, ping the node to make sure it has come online. This is currently required because nodes may get stuck at Linux boot if the NIC does not receive any network traffic. For more information, see Troubleshooting/Errata. The node is always assigned the IP address 192.168.1.10:

[[email protected]_ADDR ~]$ ping 192.168.1.10

This should eventually produce the following output:

PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.

From 192.168.1.1 icmp_seq=1 Destination Host Unreachable

64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=2017 ms

64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=1018 ms

64 bytes from 192.168.1.10: icmp_seq=3 ttl=64 time=19.0 ms

At this point, you know that the simulated node is online. You can connect to it using SSH with the user name root and password firesim. It is also convenient to make sure that your TERM variable is set correctly. In this case, the simulation expects TERM=linux, so provide that:

[[email protected]_ADDR ~]$ TERM=linux ssh ro[email protected]

The authenticity of host ‘192.168.1.10 (192.168.1.10)’ can’t be established.

ECDSA key fingerprint is 63:e9:66:d0:5c:06:2c:1d:5c:95:33:c8:36:92:30:49.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ‘192.168.1.10’ (ECDSA) to the list of known hosts.

[email protected]’s password:

#

At this point, you’re connected to the simulated node. Run uname -a as an example. You should see the following output, indicating that you’re connected to a RISC-V system:

# uname -a

Linux buildroot 4.12.0-rc2 #1 Fri Aug 4 03:44:55 UTC 2017 riscv64 GNU/Linux

Now you can run programs on the simulated node, as you would with a real machine. For an example workload (running YCSB against Memcached on the simulated node) or to run a larger 8-node simulation, see the full FireSim Demo v1.0 on Amazon EC2 F1 demo instructions.

Finally, when you are finished, you can shut down the simulated node by running the following command from within the simulated node:

# poweroff

You can confirm that the simulation has ended by running screen -ls, which should now report that there are no detached screens.

Future plans

At Berkeley, we’re planning to keep improving the FireSim platform to enable our own research in future data center architectures, like FireBox. The FireSim platform will eventually support more sophisticated processors, custom accelerators (such as Hwacha), network models, and peripherals, in addition to scaling to larger numbers of FPGAs. In the future, we’ll open source the entire platform, including Midas, the tool used to transform RTL into FPGA simulators, allowing users to modify any part of the hardware/software stack. Follow @firesimproject on Twitter to stay tuned to future FireSim updates.

Acknowledgements

FireSim is the joint work of many students and faculty at Berkeley: Sagar Karandikar, Donggyu Kim, Howard Mao, David Biancolin, Jack Koenig, Jonathan Bachrach, and Krste Asanović. This work is partially funded by AWS through the RISE Lab, by the Intel Science and Technology Center for Agile HW Design, and by ASPIRE Lab sponsors and affiliates Intel, Google, HPE, Huawei, NVIDIA, and SK hynix.

More Raspberry Pi labs in West Africa

Post Syndicated from Rachel Churcher original https://www.raspberrypi.org/blog/pi-based-ict-west-africa/

Back in May 2013, we heard from Dominique Laloux about an exciting project to bring Raspberry Pi labs to schools in rural West Africa. Until 2012, 75 percent of teachers there had never used a computer. The project has been very successful, and Dominique has been in touch again to bring us the latest news.

A view of the inside of the new Pi lab building

Preparing the new Pi labs building in Kuma Tokpli, Togo

Growing the project

Thanks to the continuing efforts of a dedicated team of teachers, parents and other supporters, the Centre Informatique de Kuma, now known as INITIC (from the French ‘INItiation aux TIC’), runs two Raspberry Pi labs in schools in Togo, and plans to open a third in December. The second lab was opened last year in Kpalimé, a town in the Plateaux Region in the west of the country.

Student using a Raspberry Pi computer

Using the new Raspberry Pi labs in Kpalimé, Togo

More than 400 students used the new lab intensively during the last school year. Dominique tells us more:

“The report made in early July by the seven teachers who accompanied the students was nothing short of amazing: the young people covered a very impressive number of concepts and skills, from the GUI and the file system, to a solid introduction to word processing and spreadsheets, and many other skills. The lab worked exactly as expected. Its 21 Raspberry Pis worked flawlessly, with the exception of a couple of SD cards that needed re-cloning, and a couple of old screens that needed to be replaced. All the Raspberry Pis worked without a glitch. They are so reliable!”

The teachers and students have enjoyed access to a range of software and resources, all running on Raspberry Pi 2s and 3s.

“Our current aim is to introduce the students to ICT using the Raspberry Pis, rather than introducing them to programming and electronics (a step that will certainly be considered later). We use Ubuntu Mate along with a large selection of applications, from LibreOffice, Firefox, GIMP, Audacity, and Calibre, to special maths, science, and geography applications. There are also special applications such as GnuCash and GanttProject, as well as logic games including PyChess. Since December, students also have access to a local server hosting Kiwix, Wiktionary (a local copy of Wikipedia in four languages), several hundred videos, and several thousand books. They really love it!”

Pi lab upgrade

This summer, INITIC upgraded the equipment in their Pi lab in Kuma Adamé, which has been running since 2014. 21 older model Raspberry Pis were replaced with Pi 2s and 3s, to bring this lab into line with the others, and encourage co-operation between the different locations.

“All 21 first-generation Raspberry Pis worked flawlessly for three years, despite the less-than-ideal conditions in which they were used — tropical conditions, dust, frequent power outages, etc. I brought them all back to Brussels, and they all still work fine. The rationale behind the upgrade was to bring more computing power to the lab, and also to have the same equipment in our two Raspberry Pi labs (and in other planned installations).”

Students and teachers using the upgraded Pi labs in Kuma Adamé

Students and teachers using the upgraded Pi lab in Kuma Adamé

An upgrade of the organisation’s first lab, installed in 2012 in Kuma Tokpli, will be completed in December. This lab currently uses ‘retired’ laptops, which will be replaced with Raspberry Pis and peripherals. INITIC, in partnership with the local community, is also constructing a new building to house the upgraded technology, and the organisation’s third Raspberry Pi lab.

Reliable tech

Dominique has been very impressed with the performance of the Raspberry Pis since 2014.

“Our experience of three years, in two very different contexts, clearly demonstrates that the Raspberry Pi is a very convincing alternative to more ‘conventional’ computers for introducing young students to ICT where resources are scarce. I wish I could convince more communities in the world to invest in such ‘low cost, low consumption, low maintenance’ infrastructure. It really works!”

He goes on to explain that:

“Our goal now is to build at least one new Raspberry Pi lab in another Togolese school each year. That will, of course, depend on how successful we are at gathering the funds necessary for each installation, but we are confident we can convince enough friends to give us the financial support needed for our action.”

A desk with Raspberry Pis and peripherals

Reliable Raspberry Pis in the labs at Kpalimé

Get involved

We are delighted to see the Raspberry Pi being used to bring information technology to new teachers, students, and communities in Togo – it’s wonderful to see this project becoming established and building on its achievements. The mission of the Raspberry Pi Foundation is to put the power of digital making into the hands of people all over the world. Therefore, projects like this, in which people use our tech to fulfil this mission in places with few resources, are wonderful to us.

More information about INITIC and its projects can be found on its website. If you are interested in helping the organisation to meet its goals, visit the How to help page. And if you are involved with a project like this, bringing ICT, computer science, and coding to new places, please tell us about it in the comments below.

The post More Raspberry Pi labs in West Africa appeared first on Raspberry Pi.

Natural Language Processing at Clemson University – 1.1 Million vCPUs & EC2 Spot Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/natural-language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-instances/

My colleague Sanjay Padhi shared the guest post below in order to recognize an important milestone in the use of EC2 Spot Instances.

Jeff;


A group of researchers from Clemson University achieved a remarkable milestone while studying topic modeling, an important component of machine learning associated with natural language processing, breaking the record for creating the largest high-performance cluster by using more than 1,100,000 vCPUs on Amazon EC2 Spot Instances running in a single AWS region. The researchers conducted nearly half a million topic modeling experiments to study how human language is processed by computers. Topic modeling helps in discovering the underlying themes that are present across a collection of documents. Topic models are important because they are used to forecast business trends and help in making policy or funding decisions. These topic models can be run with many different parameters and the goal of the experiments is to explore how these parameters affect the model outputs.

The Experiment
Professor Amy Apon, Co-Director of the Complex Systems, Analytics and Visualization Institute at Clemson University with Professor Alexander Herzog and graduate students Brandon Posey and Christopher Gropp in collaboration with members of the AWS team as well as AWS Partner Omnibond performed the experiments.  They used software infrastructure based on CloudyCluster that provisions high performance computing clusters on dynamically allocated AWS resources using Amazon EC2 Spot Fleet. Spot Fleet is a collection of biddable spot instances in EC2 responsible for maintaining a target capacity specified during the request. The SLURM scheduler was used as an overlay virtual workload manager for the data analytics workflows. The team developed additional provisioning and workflow automation software as shown below for the design and orchestration of the experiments. This setup allowed them to evaluate various topic models on different data sets with massively parallel parameter sweeps on dynamically allocated AWS resources. This framework can easily be used beyond the current study for other scientific applications that use parallel computing.

Ramping to 1.1 Million vCPUs
The figure below shows elastic, automatic expansion of resources as a function of time, in the US East (Northern Virginia) Region. At just after 21:40 (GMT-1) on Aug. 26, 2017, the number of vCPUs utilized was 1,119,196. Clemson researchers also took advantage of the new per-second billing for the EC2 instances that they launched. The vCPU count usage is comparable to the core count on the largest supercomputers in the world.

Here’s the breakdown of the EC2 instance types that they used:

Campus resources at Clemson funded by the National Science Foundation were used to determine an effective configuration for the AWS experiments as compared to campus resources, and the AWS cloud resources complement the campus resources for large-scale experiments.

Meet the Team
Here’s the team that ran the experiment (Professor Alexander Herzog, graduate students Christopher Gropp and Brandon Posey, and Professor Amy Apon):

Professor Apon said about the experiment:

I am absolutely thrilled with the outcome of this experiment. The graduate students on the project are amazing. They used resources from AWS and Omnibond and developed a new software infrastructure to perform research at a scale and time-to-completion not possible with only campus resources. Per-second billing was a key enabler of these experiments.

Boyd Wilson (CEO, Omnibond, member of the AWS Partner Network) told me:

Participating in this project was exciting, seeing how the Clemson team developed a provisioning and workflow automation tool that tied into CloudyCluster to build a huge Spot Fleet supercomputer in a single region in AWS was outstanding.

About the Experiment
The experiments test parameter combinations on a range of topics and other parameters used in the topic model. The topic model outputs are stored in Amazon S3 and are currently being analyzed. The models have been applied to 17 years of computer science journal abstracts (533,560 documents and 32,551,540 words) and full text papers from the NIPS (Neural Information Processing Systems) Conference (2,484 documents and 3,280,697 words). This study allows the research team to systematically measure and analyze the impact of parameters and model selection on model convergence, topic composition and quality.

Looking Forward
This study constitutes an interaction between computer science, artificial intelligence, and high performance computing. Papers describing the full study are being submitted for peer-reviewed publication. I hope that you enjoyed this brief insight into the ways in which AWS is helping to break the boundaries in the frontiers of natural language processing!

Sanjay Padhi, Ph.D, AWS Research and Technical Computing

 

Announcing the 2017-18 European Astro Pi challenge!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/announcing-2017-18-astro-pi/

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.

YouTube

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.

Questions?

If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

Astro Pi upgrades on the International Space Station

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-upgrades/

In 2015, The Raspberry Pi Foundation built two space-hardened Raspberry Pi units, or Astro Pis, to run student code on board the International Space Station (ISS).

Astro Pi

A space-hardened Raspberry Pi

Astro Pi upgrades

Each school year we run an Astro Pi challenge to find the next generation of space scientists to program them. After the students have their code run in space, any output files are downloaded to ground and returned to them for analysis.

That download process was originally accomplished by an astronaut shutting down the Astro Pi, moving its micro SD card to a crew laptop and copying over the files manually. This used about 20 minutes of precious crew time.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

Last year, we passed the qualification to allow the Astro Pi computers to be connected to the Local Area Network (LAN) on board the ISS. This allows us to remotely access them from the ground, upload student code and download the results without having to involve the crew.

This year, we have been preparing a new payload to upgrade the operational capabilities of the Astro Pi units.

The payload consists of the following items:

  • 2 × USB WiFi dongles
  • 5 × optical filters
  • 4 × 32GB micro SD cards

Before anyone asks – no, we’re not going outside into the vacuum of space!

USB WiFi dongle

Currently both Astro Pi units are located in the European Columbus module. They’re even visible on Google Street View (pan down and right)! You can see that we’ve created a bit of a bird’s nest of wires behind them.

Astro Pi

The D-Link DWA-171

The decision to add WiFi capability is partly to clean up the cabling situation, but mainly so that the Astro Pi units can be deployed in ISS locations other than the Columbus module, where we won’t have access to an Ethernet switch.

The Raspberry Pi used in the Astro Pi flight units is the B+ (released in 2014), which does not have any built in wireless connectivity, so we need to use a USB dongle. This particular D-Link dongle was recommended by the European Space Agency (ESA) because a number of other payloads are already using it.

Astro Pi

An Astro Pi unit with WiFi dongle installed

Plans have been made for one of the Astro Pi units to be deployed on an Earth-facing window, to allow Earth-observation student experiments. This is where WiFi connectivity will be required to maintain LAN access for ground control.

Optical filters

With Earth-observation experiments in mind, we are also sending some flexible film optical filters. These are made from the same material as the blue square which is shipped with the Pi NoIR camera module, as noted in this post from when the product was launched. You can find the data sheet here.

Astro Pi

Rosco Roscalux #2007 Storaro Blue

To permit the filter to be easily attached to the Astro Pi unit, the film is laser-cut to friction-fit onto the 12 inner heatsink pins on the base, so that the camera aperture is covered.

Astro Pi

Laser cutting at Makespace

The laser-cutting work was done right here in Cambridge at Makespace by our own Alex Bate, and local artist Diana Probst.

Astro Pi

An Astro Pi with the optical filter installed

32GB micro SD cards

A consequence of running Earth observation experiments is a dramatic increase in the amount of disk space needed. To avoid a high frequency of commanding windows to download imagery to ground, we’re also flying some larger 32GB micro SD cards to replace the current 8GB cards.

Astro Pi

The Samsung Evo MB-MP32DA/EU

This particular type of micro SD card is X-ray proof, waterproof, and resistant to magnetism and heat. Operationally speaking there is no difference, other than the additional available disk space.

Astro Pi

An Astro Pi unit with the new micro SD card installed

The micro SD cards will be flown with a security-hardened version of Raspbian pre-installed.

Crew activities

We have several crew activities planned for when this payload arrives on the ISS. These include the installation of the upgrade items on both Astro Pi units; moving one of the units from Columbus to an earth-facing window (possibly in Node 2); and then moving it back a few weeks later.

Currently it is expected that these activities will be carried out by German ESA astronaut Alexander Gerst who launches to the ISS in November (and will also be the ISS commander for Expedition 57).

Payload launch

We are targeting a January 2018 launch date for the payload. The exact launch vehicle is yet to be determined, but it could be SpaceX CRS 14. We will update you closer to the time.

Questions?

If you have any questions about this payload, how an item works, or why that specific model was chosen, please post them in the comments below, and we’ll try to answer them.

The post Astro Pi upgrades on the International Space Station appeared first on Raspberry Pi.

The Weather Station and the eclipse

Post Syndicated from Richard Hayler original https://www.raspberrypi.org/blog/weather-station-eclipse/

As everyone knows, one of the problems with the weather is that it can be difficult to predict a long time in advance. In the UK we’ve had stormy conditions for weeks but, of course, now that I’ve finished my lightning detector, everything has calmed down. If you’re planning to make scientific measurements of a particular phenomenon, patience is often required.

Oracle Weather Station

Wake STEM ECH get ready to safely observe the eclipse

In the path of the eclipse

Fortunately, this wasn’t a problem for Mr Burgess and his students at Wake STEM Early College High School in Raleigh, North Carolina, USA. They knew exactly when the event they were interested in studying was going to occur: they were going to use their Raspberry Pi Oracle Weather Station to monitor the progress of the 2017 solar eclipse.

Wake STEM EC HS on Twitter

Through the @Celestron telescope #Eclipse2017 @WCPSS via @stemburgess

Measuring the temperature drop

The Raspberry Pi Oracle Weather Stations are always active and recording data, so all the students needed to do was check that everything was connected and working. That left them free to enjoy the eclipse, and take some amazing pictures like the one above.

You can see from the data how the changes in temperature lag behind the solar events – this makes sense, as it takes a while for the air to cool down. When the sun starts to return, the temperature rise continues on its pre-eclipse trajectory.

Oracle Weather Station

Weather station data 21st Aug: the yellow bars mark the start and end of the eclipse, the red bar marks the maximum sun coverage.

Reading Mr Burgess’ description, I’m feeling rather jealous. Being in the path of the Eclipse sounds amazing: “In North Carolina we experienced 93% coverage, so a lot of sunlight was still shining, but the landscape took on an eerie look. And there was a cool wind like you’d experience at dusk, not at 2:30 pm on a hot summer day. I was amazed at the significant drop in temperature that occurred in a small time frame.”

Temperature drop during Eclipse Oracle Weather Station.

Close up of data showing temperature drop as recorded by the Raspberry Pi Oracle Weather Station. The yellow bars mark the start and end of the eclipse, the red bar marks the maximum sun coverage.

 Weather Station in the classroom

I’ve been preparing for the solar eclipse for almost two years, with the weather station arriving early last school year. I did not think about temperature data until I read about citizen scientists on a NASA website,” explains Mr Burgess, who is now in his second year of working with the Raspberry Pi Oracle Weather Station. Around 120 ninth-grade students (ages 14-15) have been involved with the project so far. “I’ve found that students who don’t have a strong interest in meteorology find it interesting to look at real data and figure out trends.”

Wake STEM EC Raspberry Pi Oracle Weather Station installation

Wake STEM EC Raspberry Pi Oracle Weather Station installation

As many schools have discovered, Mr Burgess found that the biggest challenge with the Weather Station project “was finding a suitable place to install the weather station in a place that could get power and Ethernet“. To help with this problem, we’ve recently added two new guides to help with installing the wind sensors outside and using WiFi to connect the kit to the Internet.

Raspberry Pi Oracle Weather Station

If you want to keep up to date with all the latest Raspberry Pi Oracle Weather Station activities undertaken by our network of schools around the world, make sure you regularly check our weather station forum. Meanwhile, everyone at Wake STEM ECH is already starting to plan for their next eclipse on Monday, April 8, 2024. I wonder if they’d like some help with their Weather Station?

The post The Weather Station and the eclipse appeared first on Raspberry Pi.

Code Club reaches 1 in 5 UK secondary schools

Post Syndicated from Maria Quevedo original https://www.raspberrypi.org/blog/code-club-9-to-13/

Today, we’re excited to announce the expansion of Code Club to secondary school ages up to 13. When we made our plans known last May, we were beginning work with a pilot group of 50 UK secondary schools to discover how we could best support them, and how we could make Code Club work as well for children aged 12 and 13 as it does for its original age range of 9 to 11 years. Now, new projects are available for secondary-aged children, and we will continue to create more resources to build on the support we offer this age group.

An animated gif with happy Code Club robots and text showing that Code Club is extending to 9- to 13-year-olds

One in five UK secondary schools

In extending Code Club’s age range to 9-13, we’re responding to huge demand. One in five UK state-sector secondary schools has already registered with the programme, and most of these – almost 600 of them – are already running Code Clubs.

By giving secondaries access to the Code Club support network and providing new, more advanced programming projects, we will help schools better to meet the needs of their students, and offer many thousands more children the opportunity to develop essential skills in programming and computing. Libraries and other non-school venues will also be able to welcome children of a wider range of ages to their clubs.

New Code Club resources

Our first five projects for older children offer a variety of ways for more advanced coders to build on their skills and explore further programming concepts.

From ‘Flappy Parrot’ and Where’s Wally-inspired ‘Lineup’, to ‘Binary Hero’ and quiz-tastic ‘Guess the Flag’, there’s something to spark everyone’s imagination. You can read more about these new resources in today’s Code Club UK blog post.

Help Code Club in your local school

Around 300 secondary schools across the UK have registered with Code Club but have not yet started their club, because they’re still looking for volunteers to support them. Can you help these keen teachers and students get up and running? If you can volunteer an hour each week, either on your own or by taking turns with friends or colleagues, you could make all the difference to a Code Club near you.

A Code Club in every community

We want every 9- to 13-year-old to have the opportunity to join a Code Club, and we will continue working hard to deliver our goal of putting a Code Club in every community. Make sure your local school, youth club, or library knows how to get involved.

The post Code Club reaches 1 in 5 UK secondary schools appeared first on Raspberry Pi.