Tag Archives: target

From Idea to Launch: Getting Your First Customers

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/how-to-get-your-first-customers/

line outside of Apple

After deciding to build an unlimited backup service and developing our own storage platform, the next step was to get customers and feedback. Not all customers are created equal. Let’s talk about the types, and when and how to attract them.

How to Get Your First Customers

First Step – Don’t Launch Publicly
Launch when you’re ready for the judgments of people who don’t know you at all. Until then, don’t launch. Sign up users and customers either that you know, those you can trust to cut you some slack (while providing you feedback), or at minimum those for whom you can set expectations. For months the Backblaze website was a single page with no ability to get the product and minimal info on what it would be. This is not to counter the Lean Startup ‘iterate quickly with customer feedback’ advice. Rather, this is an acknowledgement that there are different types of feedback required based on your development stage.

Sign Up Your Friends
We knew all of our first customers; they were friends, family, and previous co-workers. Many knew what we were up to and were excited to help us. No magic marketing or tech savviness was required to reach them – we just asked that they try the service. We asked them to provide us feedback on their experience and collected it through email and conversations. While the feedback wasn’t unbiased, it was nonetheless wide-ranging, real, and often insightful. These people were willing to spend time carefully thinking about their feedback and delving deeper into the conversations.

Broaden to Beta
Unless you’re famous or your service costs $1 million per customer, you’ll probably need to expand quickly beyond your friends to build a business – and to get broader feedback. Our next step was to broaden the customer base to beta users.

Opening up the service in beta provides three benefits:

  1. Air cover for the early warts. There are going to be issues, bugs, unnecessarily complicated user flows, and poorly worded text. Beta tells people, “We don’t consider the product ‘done’ and you should expect some of these issues. Please be patient with us.”
  2. A request for feedback. Some people always provide feedback, but beta communicates that you want it.
  3. An awareness opportunity. Opening up in beta provides an early (but not only) opportunity to have an announcement and build awareness.

Pitching Beta to Press
Not all press cares about, or is even willing to cover, beta products. Much of the mainstream press wants to write about services that are fully live, have scale, and are important in the marketplace. However, there are a number of sites that like to cover the leading edge – and that means covering betas. Techcrunch, Ars Technica, and SimpleHelp covered our initial private beta launch. I’ll go into the details of how to work with the press to cover your announcements in a post next month.

Private vs. Public Beta
Both private and public beta provide all three of the benefits above. The difference between the two is that private betas are much more controlled, whereas public ones bring in more users. But this isn’t an either/or – I recommend doing both.

Private Beta
For our original beta in 2008, we decided that we were comfortable with about 1,000 users subscribing to our service. That would provide us with a healthy amount of feedback and get some early adoption, while not overwhelming us or our server capacity, and equally important not causing cash flow issues from having to buy more equipment. So we decided to limit the sign-up to only the first 1,000 people who signed up; then we would shut off sign-ups for a while.

But how do you even get 1,000 people to sign up for your service? In our case, get some major publications to write about our beta. (Note: In a future post I’ll explain exactly how to find and reach out to writers. Sign up to receive all of the entrepreneurial posts in this series.)

Public Beta
For our original service (computer backup), we did not have a public beta; but when we launched Backblaze B2, we had a private and then a public beta. The private beta allowed us to work out early kinks, while the public beta brought us a more varied set of use cases. In public beta, there is no cap on the number of users that may try the service.

While this is a first-class problem to have, if your service is flooded and stops working, it’s still a problem. Think through what you will do if that happens. In our early days, when our system could get overwhelmed by volume, we had a static web page hosted with a different registrar that wouldn’t let customers sign up but would tell them when our service would be open again. When we reached a critical volume level we would redirect to it in order to at least provide status for when we could accept more customers.

Collect Feedback
Since one of the goals of betas is to get feedback, we made sure that we had our email addresses clearly presented on the site so users could send us thoughts. We were most interested in broad qualitative feedback on users’ experience, so all emails went to an internal mailing list that would be read by everyone at Backblaze.

For our B2 public and private betas, we also added an optional short survey to the sign-up process. In order to be considered for the private beta you had to fill the survey out, though we found that 80% of users continued to fill out the survey even when it was not required. This survey had both closed-end questions (“how much data do you have”) and open-ended ones (“what do you want to use cloud storage for?”).

BTW, despite us getting a lot of feedback now via our support team, Twitter, and marketing surveys, we are always open to more – you can email me directly at gleb.budman {at} backblaze.com.

Don’t Throw Away Users
Initially our backup service was available only on Windows, but we had an email sign-up list for people who wanted it for their Mac. This provided us with a sense of market demand and a ready list of folks who could be beta users and early adopters when we had a Mac version. Have a service targeted at doctors but lawyers are expressing interest? Capture that.

Product Launch

When
The first question is “when” to launch. Presuming your service is in ‘public beta’, what is the advantage of moving out of beta and into a “version 1.0”, “gold”, or “public availability”? That depends on your service and customer base. Some services fly through public beta. Gmail, on the other hand, was (in)famous for being in beta for 5 years, despite having over 100 million users.

The term beta says to users, “give us some leeway, but feel free to use the service”. That’s fine for many consumer apps and will have near zero impact on them. However, services aimed at businesses and government will often not be adopted with a beta label as the enterprise customers want to know the company feels the service is ‘ready’. While Backblaze started out as a purely consumer service, because it was a data backup service, it was important for customers to trust that the service was ready.

No product is bug-free. But from a product readiness perspective, the nomenclature should also be a reflection of the quality of the product. You can launch a product with one feature that works well out of beta. But a product with fifty features on which half the users will bump into problems should likely stay in beta. The customer feedback, surveys, and your own internal testing should guide you in determining this quality during the beta. Be careful about “we’ve only seen that one time” or “I haven’t been able to reproduce that on my machine”; those issues are likely to scale with customers when you launch.

How
Launching out of beta can be as simple as removing the beta label from the website/product. However, this can be a great time to reach out to press, write a blog post, and send an email announcement to your customers.

Consider thanking your beta testers somehow; can they get some feature turned out for free, an extension of their trial, or premium support? If nothing else, remember to thank them for their feedback. Users that signed up during your beta are likely the ones who will propel your service. They had the need and interest to both be early adopters and deal with bugs. They are likely the key to getting 1,000 true fans.

The Beginning
The title of this post was “Getting your first customers”, because getting to launch may feel like the peak of your journey when you’re pre-launch, but it really is just the beginning. It’s a step along the journey of building your business. If your launch is wildly successful, enjoy it, work to build on the momentum, but don’t lose track of building your business. If your launch is a dud, go out for a coffee with your team, say “well that sucks”, and then get back to building your business. You can learn a tremendous amount from your early customers, and they can become your biggest fans, but the success of your business will depend on what you continue to do the months and years after your launch.

The post From Idea to Launch: Getting Your First Customers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

How to Create an AMI Builder with AWS CodeBuild and HashiCorp Packer – Part 2

Post Syndicated from Heitor Lessa original https://aws.amazon.com/blogs/devops/how-to-create-an-ami-builder-with-aws-codebuild-and-hashicorp-packer-part-2/

Written by AWS Solutions Architects Jason Barto and Heitor Lessa

 
In Part 1 of this post, we described how AWS CodeBuild, AWS CodeCommit, and HashiCorp Packer can be used to build an Amazon Machine Image (AMI) from the latest version of Amazon Linux. In this post, we show how to use AWS CodePipeline, AWS CloudFormation, and Amazon CloudWatch Events to continuously ship new AMIs. We use Ansible by Red Hat to harden the OS on the AMIs through a well-known set of security controls outlined by the Center for Internet Security in its CIS Amazon Linux Benchmark.

You’ll find the source code for this post in our GitHub repo.

At the end of this post, we will have the following architecture:

Requirements

 
To follow along, you will need Git and a text editor. Make sure Git is configured to work with AWS CodeCommit, as described in Part 1.

Technologies

 
In addition to the services and products used in Part 1 of this post, we also use these AWS services and third-party software:

AWS CloudFormation gives developers and systems administrators an easy way to create and manage a collection of related AWS resources, provisioning and updating them in an orderly and predictable fashion.

Amazon CloudWatch Events enables you to react selectively to events in the cloud and in your applications. Specifically, you can create CloudWatch Events rules that match event patterns, and take actions in response to those patterns.

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and deploys your code every time there is a code change, based on release process models you define.

Amazon SNS is a fast, flexible, fully managed push notification service that lets you send individual messages or to fan out messages to large numbers of recipients. Amazon SNS makes it simple and cost-effective to send push notifications to mobile device users or email recipients. The service can even send messages to other distributed services.

Ansible is a simple IT automation system that handles configuration management, application deployment, cloud provisioning, ad-hoc task-execution, and multinode orchestration.

Getting Started

 
We use CloudFormation to bootstrap the following infrastructure:

Component Purpose
AWS CodeCommit repository Git repository where the AMI builder code is stored.
S3 bucket Build artifact repository used by AWS CodePipeline and AWS CodeBuild.
AWS CodeBuild project Executes the AWS CodeBuild instructions contained in the build specification file.
AWS CodePipeline pipeline Orchestrates the AMI build process, triggered by new changes in the AWS CodeCommit repository.
SNS topic Notifies subscribed email addresses when an AMI build is complete.
CloudWatch Events rule Defines how the AMI builder should send a custom event to notify an SNS topic.
Region AMI Builder Launch Template
N. Virginia (us-east-1)
Ireland (eu-west-1)

After launching the CloudFormation template linked here, we will have a pipeline in the AWS CodePipeline console. (Failed at this stage simply means we don’t have any data in our newly created AWS CodeCommit Git repository.)

Next, we will clone the newly created AWS CodeCommit repository.

If this is your first time connecting to a AWS CodeCommit repository, please see instructions in our documentation on Setup steps for HTTPS Connections to AWS CodeCommit Repositories.

To clone the AWS CodeCommit repository (console)

  1. From the AWS Management Console, open the AWS CloudFormation console.
  2. Choose the AMI-Builder-Blogpost stack, and then choose Output.
  3. Make a note of the Git repository URL.
  4. Use git to clone the repository.

For example: git clone https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/AMI-Builder_repo

To clone the AWS CodeCommit repository (CLI)

# Retrieve CodeCommit repo URL
git_repo=$(aws cloudformation describe-stacks --query 'Stacks[0].Outputs[?OutputKey==`GitRepository`].OutputValue' --output text --stack-name "AMI-Builder-Blogpost")

# Clone repository locally
git clone ${git_repo}

Bootstrap the Repo with the AMI Builder Structure

 
Now that our infrastructure is ready, download all the files and templates required to build the AMI.

Your local Git repo should have the following structure:

.
├── ami_builder_event.json
├── ansible
├── buildspec.yml
├── cloudformation
├── packer_cis.json

Next, push these changes to AWS CodeCommit, and then let AWS CodePipeline orchestrate the creation of the AMI:

git add .
git commit -m "My first AMI"
git push origin master

AWS CodeBuild Implementation Details

 
While we wait for the AMI to be created, let’s see what’s changed in our AWS CodeBuild buildspec.yml file:

...
phases:
  ...
  build:
    commands:
      ...
      - ./packer build -color=false packer_cis.json | tee build.log
  post_build:
    commands:
      - egrep "${AWS_REGION}\:\sami\-" build.log | cut -d' ' -f2 > ami_id.txt
      # Packer doesn't return non-zero status; we must do that if Packer build failed
      - test -s ami_id.txt || exit 1
      - sed -i.bak "s/<<AMI-ID>>/$(cat ami_id.txt)/g" ami_builder_event.json
      - aws events put-events --entries file://ami_builder_event.json
      ...
artifacts:
  files:
    - ami_builder_event.json
    - build.log
  discard-paths: yes

In the build phase, we capture Packer output into a file named build.log. In the post_build phase, we take the following actions:

  1. Look up the AMI ID created by Packer and save its findings to a temporary file (ami_id.txt).
  2. Forcefully make AWS CodeBuild to fail if the AMI ID (ami_id.txt) is not found. This is required because Packer doesn’t fail if something goes wrong during the AMI creation process. We have to tell AWS CodeBuild to stop by informing it that an error occurred.
  3. If an AMI ID is found, we update the ami_builder_event.json file and then notify CloudWatch Events that the AMI creation process is complete.
  4. CloudWatch Events publishes a message to an SNS topic. Anyone subscribed to the topic will be notified in email that an AMI has been created.

Lastly, the new artifacts phase instructs AWS CodeBuild to upload files built during the build process (ami_builder_event.json and build.log) to the S3 bucket specified in the Outputs section of the CloudFormation template. These artifacts can then be used as an input artifact in any later stage in AWS CodePipeline.

For information about customizing the artifacts sequence of the buildspec.yml, see the Build Specification Reference for AWS CodeBuild.

CloudWatch Events Implementation Details

 
CloudWatch Events allow you to extend the AMI builder to not only send email after the AMI has been created, but to hook up any of the supported targets to react to the AMI builder event. This event publication means you can decouple from Packer actions you might take after AMI completion and plug in other actions, as you see fit.

For more information about targets in CloudWatch Events, see the CloudWatch Events API Reference.

In this case, CloudWatch Events should receive the following event, match it with a rule we created through CloudFormation, and publish a message to SNS so that you can receive an email.

Example CloudWatch custom event

[
        {
            "Source": "com.ami.builder",
            "DetailType": "AmiBuilder",
            "Detail": "{ \"AmiStatus\": \"Created\"}",
            "Resources": [ "ami-12cd5guf" ]
        }
]

Cloudwatch Events rule

{
  "detail-type": [
    "AmiBuilder"
  ],
  "source": [
    "com.ami.builder"
  ],
  "detail": {
    "AmiStatus": [
      "Created"
    ]
  }
}

Example SNS message sent in email

{
    "version": "0",
    "id": "f8bdede0-b9d7...",
    "detail-type": "AmiBuilder",
    "source": "com.ami.builder",
    "account": "<<aws_account_number>>",
    "time": "2017-04-28T17:56:40Z",
    "region": "eu-west-1",
    "resources": ["ami-112cd5guf "],
    "detail": {
        "AmiStatus": "Created"
    }
}

Packer Implementation Details

 
In addition to the build specification file, there are differences between the current version of the HashiCorp Packer template (packer_cis.json) and the one used in Part 1.

Variables

  "variables": {
    "vpc": "{{env `BUILD_VPC_ID`}}",
    "subnet": "{{env `BUILD_SUBNET_ID`}}",
         “ami_name”: “Prod-CIS-Latest-AMZN-{{isotime \”02-Jan-06 03_04_05\”}}”
  },
  • ami_name: Prefixes a name used by Packer to tag resources during the Builders sequence.
  • vpc and subnet: Environment variables defined by the CloudFormation stack parameters.

We no longer assume a default VPC is present and instead use the VPC and subnet specified in the CloudFormation parameters. CloudFormation configures the AWS CodeBuild project to use these values as environment variables. They are made available throughout the build process.

That allows for more flexibility should you need to change which VPC and subnet will be used by Packer to launch temporary resources.

Builders

  "builders": [{
    ...
    "ami_name": “{{user `ami_name`| clean_ami_name}}”,
    "tags": {
      "Name": “{{user `ami_name`}}”,
    },
    "run_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "run_volume_tags": {
      "Name": “{{user `ami_name`}}",
    },
    "snapshot_tags": {
      "Name": “{{user `ami_name`}}",
    },
    ...
    "vpc_id": "{{user `vpc` }}",
    "subnet_id": "{{user `subnet` }}"
  }],

We now have new properties (*_tag) and a new function (clean_ami_name) and launch temporary resources in a VPC and subnet specified in the environment variables. AMI names can only contain a certain set of ASCII characters. If the input in project deviates from the expected characters (for example, includes whitespace or slashes), Packer’s clean_ami_name function will fix it.

For more information, see functions on the HashiCorp Packer website.

Provisioners

  "provisioners": [
    {
        "type": "shell",
        "inline": [
            "sudo pip install ansible"
        ]
    }, 
    {
        "type": "ansible-local",
        "playbook_file": "ansible/playbook.yaml",
        "role_paths": [
            "ansible/roles/common"
        ],
        "playbook_dir": "ansible",
        "galaxy_file": "ansible/requirements.yaml"
    },
    {
      "type": "shell",
      "inline": [
        "rm .ssh/authorized_keys ; sudo rm /root/.ssh/authorized_keys"
      ]
    }

We used shell provisioner to apply OS patches in Part 1. Now, we use shell to install Ansible on the target machine and ansible-local to import, install, and execute Ansible roles to make our target machine conform to our standards.

Packer uses shell to remove temporary keys before it creates an AMI from the target and temporary EC2 instance.

Ansible Implementation Details

 
Ansible provides OS patching through a custom Common role that can be easily customized for other tasks.

CIS Benchmark and Cloudwatch Logs are implemented through two Ansible third-party roles that are defined in ansible/requirements.yaml as seen in the Packer template.

The Ansible provisioner uses Ansible Galaxy to download these roles onto the target machine and execute them as instructed by ansible/playbook.yaml.

For information about how these components are organized, see the Playbook Roles and Include Statements in the Ansible documentation.

The following Ansible playbook (ansible</playbook.yaml) controls the execution order and custom properties:

---
- hosts: localhost
  connection: local
  gather_facts: true    # gather OS info that is made available for tasks/roles
  become: yes           # majority of CIS tasks require root
  vars:
    # CIS Controls whitepaper:  http://bit.ly/2mGAmUc
    # AWS CIS Whitepaper:       http://bit.ly/2m2Ovrh
    cis_level_1_exclusions:
    # 3.4.2 and 3.4.3 effectively blocks access to all ports to the machine
    ## This can break automation; ignoring it as there are stronger mechanisms than that
      - 3.4.2 
      - 3.4.3
    # CloudWatch Logs will be used instead of Rsyslog/Syslog-ng
    ## Same would be true if any other software doesn't support Rsyslog/Syslog-ng mechanisms
      - 4.2.1.4
      - 4.2.2.4
      - 4.2.2.5
    # Autofs is not installed in newer versions, let's ignore
      - 1.1.19
    # Cloudwatch Logs role configuration
    logs:
      - file: /var/log/messages
        group_name: "system_logs"
  roles:
    - common
    - anthcourtney.cis-amazon-linux
    - dharrisio.aws-cloudwatch-logs-agent

Both third-party Ansible roles can be easily configured through variables (vars). We use Ansible playbook variables to exclude CIS controls that don’t apply to our case and to instruct the CloudWatch Logs agent to stream the /var/log/messages log file to CloudWatch Logs.

If you need to add more OS or application logs, you can easily duplicate the playbook and make changes. The CloudWatch Logs agent will ship configured log messages to CloudWatch Logs.

For more information about parameters you can use to further customize third-party roles, download Ansible roles for the Cloudwatch Logs Agent and CIS Amazon Linux from the Galaxy website.

Committing Changes

 
Now that Ansible and CloudWatch Events are configured as a part of the build process, commiting any changes to the AWS CodeComit Git Repository will triger a new AMI build process that can be followed through the AWS CodePipeline console.

When the build is complete, an email will be sent to the email address you provided as a part of the CloudFormation stack deployment. The email serves as notification that an AMI has been built and is ready for use.

Summary

 
We used AWS CodeCommit, AWS CodePipeline, AWS CodeBuild, Packer, and Ansible to build a pipeline that continuously builds new, hardened CIS AMIs. We used Amazon SNS so that email addresses subscribed to a SNS topic are notified upon completion of the AMI build.

By treating our AMI creation process as code, we can iterate and track changes over time. In this way, it’s no different from a software development workflow. With that in mind, software patches, OS configuration, and logs that need to be shipped to a central location are only a git commit away.

Next Steps

 
Here are some ideas to extend this AMI builder:

  • Hook up a Lambda function in Cloudwatch Events to update EC2 Auto Scaling configuration upon completion of the AMI build.
  • Use AWS CodePipeline parallel steps to build multiple Packer images.
  • Add a commit ID as a tag for the AMI you created.
  • Create a scheduled Lambda function through Cloudwatch Events to clean up old AMIs based on timestamp (name or additional tag).
  • Implement Windows support for the AMI builder.
  • Create a cross-account or cross-region AMI build.

Cloudwatch Events allow the AMI builder to decouple AMI configuration and creation so that you can easily add your own logic using targets (AWS Lambda, Amazon SQS, Amazon SNS) to add events or recycle EC2 instances with the new AMI.

If you have questions or other feedback, feel free to leave it in the comments or contribute to the AMI Builder repo on GitHub.

Three Men Sentenced Following £2.5m Internet Piracy Case

Post Syndicated from Andy original https://torrentfreak.com/three-men-sentenced-following-2-5m-internet-piracy-case-170622/

While legal action against low-level individual file-sharers is extremely rare in the UK, the country continues to pose a risk for those engaged in larger-scale infringement.

That is largely due to the activities of the Police Intellectual Property Crime Unit and private anti-piracy outfits such as the Federation Against Copyright Theft (FACT). Investigations are often a joint effort which can take many years to complete, but the outcomes can often involve criminal sentences.

That was the profile of another Internet piracy case that concluded in London this week. It involved three men from the UK, Eric Brooks, 43, from Bolton, Mark Valentine, 44, from Manchester, and Craig Lloyd, 33, from Wolverhampton.

The case began when FACT became aware of potentially infringing activity back in February 2011. The anti-piracy group then investigated for more than a year before handing the case to police in March 2012.

On July 4, 2012, officers from City of London Police arrested Eric Brooks’ at his home in Bolton following a joint raid with FACT. Computer equipment was seized containing evidence that Brooks had been running a Netherlands-based server hosting more than £100,000 worth of pirated films, music, games, software and ebooks.

According to police, a spreadsheet on Brooks’ computer revealed he had hundreds of paying customers, all recruited from online forums. Using PayPal or utilizing bank transfers, each paid money to access the server. Police mentioned no group or site names in information released this week.

“Enquiries with PayPal later revealed that [Brooks] had made in excess of £500,000 in the last eight years from his criminal business and had in turn defrauded the film and TV industry alone of more than £2.5 million,” police said.

“As his criminal enterprise affected not only the film and TV but the wider entertainment industry including music, games, books and software it is thought that he cost the wider industry an amount much higher than £2.5 million.”

On the same day police arrested Brooks, Mark Valentine’s home in Manchester had a similar unwelcome visit. A day later, Craig Lloyd’s home in Wolverhampton become the third target for police.

Computer equipment was seized from both addresses which revealed that the pair had been paying for access to Brooks’ servers in order to service their own customers.

“They too had used PayPal as a means of taking payment and had earned thousands of pounds from their criminal actions; Valentine gaining £34,000 and Lloyd making over £70,000,” police revealed.

But after raiding the trio in 2012, it took more than four years to charge the men. In a feature common to many FACT cases, all three were charged with Conspiracy to Defraud rather than copyright infringement offenses. All three men pleaded guilty before trial.

On Monday, the men were sentenced at Inner London Crown Court. Brooks was sentenced to 24 months in prison, suspended for 12 months and ordered to complete 140 hours of unpaid work.

Valentine and Lloyd were each given 18 months in prison, suspended for 12 months. Each was ordered to complete 80 hours unpaid work.

Detective Constable Chris Glover, who led the investigation for the City of London Police, welcomed the sentencing.

“The success of this investigation is a result of co-ordinated joint working between the City of London Police and FACT. Brooks, Valentine and Lloyd all thought that they were operating under the radar and doing something which they thought was beyond the controls of law enforcement,” Glover said.

“Brooks, Valentine and Lloyd will now have time in prison to reflect on their actions and the result should act as deterrent for anyone else who is enticed by abusing the internet to the detriment of the entertainment industry.”

While even suspended sentences are a serious matter, none of the men will see the inside of a cell if they meet the conditions of their sentence for the next 12 months. For a case lasting four years involving such large sums of money, that is probably a disappointing result for FACT and the police.

Nevertheless, the men won’t be allowed to enjoy the financial proceeds of their piracy, if indeed any money is left. City of London Police say the trio will be subject to a future confiscation hearing to seize any proceeds of crime.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

DynamoDB Accelerator (DAX) Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/dynamodb-accelerator-dax-now-generally-available/

Earlier this year I told you about Amazon DynamoDB Accelerator (DAX), a fully-managed caching service that sits in front of (logically speaking) your Amazon DynamoDB tables. DAX returns cached responses in microseconds, making it a great fit for eventually-consistent read-intensive workloads. DAX supports the DynamoDB API, and is seamless and easy to use. As a managed service, you simply create your DAX cluster and use it as the target for your existing reads and writes. You don’t have to worry about patching, cluster maintenance, replication, or fault management.

Now Generally Available
Today I am pleased to announce that DAX is now generally available. We have expanded DAX into additional AWS Regions and used the preview time to fine-tune performance and availability:

Now in Five Regions – DAX is now available in the US East (Northern Virginia), EU (Ireland), US West (Oregon), Asia Pacific (Tokyo), and US West (Northern California) Regions.

In Production – Our preview customers are reporting that they are using DAX in production, that they loved how easy it was to add DAX to their application, and have told us that their apps are now running 10x faster.

Getting Started with DAX
As I outlined in my earlier post, it is easy to use DAX to accelerate your existing DynamoDB applications. You simply create a DAX cluster in the desired region, update your application to reference the DAX SDK for Java (the calls are the same; this is a drop-in replacement), and configure the SDK to use the endpoint to your cluster. As a read-through/write-through cache, DAX seamlessly handles all of the DynamoDB read/write APIs.

We are working on SDK support for other languages, and I will share additional information as it becomes available.

DAX Pricing
You pay for each node in the cluster (see the DynamoDB Pricing page for more information) on a per-hour basis, with prices starting at $0.269 per hour in the US East (Northern Virginia) and US West (Oregon) regions. With DAX, each of the nodes in your cluster serves as a read target and as a failover target for high availability. The DAX SDK is cluster aware and will issue round-robin requests to all nodes in the cluster so that you get to make full use of the cluster’s cache resources.

Because DAX can easily handle sudden spikes in read traffic, you may be able to reduce the amount of provisioned throughput for your tables, resulting in an overall cost savings while still returning results in microseconds.

Jeff;

 

[$] Memory use in CPython and MicroPython

Post Syndicated from jake original https://lwn.net/Articles/725508/rss

At PyCon 2017, Kavya Joshi looked
at some of the differences between the Python reference implementation
(known as “CPython”) and
that of MicroPython. In particular,
she described the differences in memory use and handling between the two.
Those differences are
part of
what allows MicroPython to run on the severely memory-constrained
microcontrollers it targets—an environment that could never support CPython.

Opus 1.2 released

Post Syndicated from ris original https://lwn.net/Articles/726134/rss

Version 1.2 of the Opus audio codec has been released. “For music encoding Opus has already been shown to out-perform other audio codecs at both 64 kb/s and 96 kb/s. We originally thought that 64 kb/s was near the lowest bitrate at which Opus could be useful for streaming stereo music. However, with variable bitrate (VBR) improvements in Opus 1.1, suddenly 48 kb/s became a realistic target. Opus 1.2 continues on the path to lowering the bitrate limit. Music at 48 kb/s is now quite usable and while the artefacts are generally audible, they are rarely annoying. Even more, we’ve actually been pushing all the way to fullband stereo at just 32 kb/s!

Most of the music encoding quality improvements in 1.2 don’t come from big new features (like tonality analysis that got added to version 1.1), but from many small changes that all add up.”

Court Grants Subpoenas to Unmask ‘TVAddons’ and ‘ZemTV’ Operators

Post Syndicated from Ernesto original https://torrentfreak.com/court-grants-subpoenas-to-unmask-tvaddons-and-zemtv-operators-170621/

Earlier this month we broke the news that third-party Kodi add-on ZemTV and the TVAddons library were being sued in a federal court in Texas.

In a complaint filed by American satellite and broadcast provider Dish Network, both stand accused of copyright infringement, facing up to $150,000 for each offense.

While the allegations are serious, Dish doesn’t know the full identities of the defendants.

To find out more, the company requested a broad range of subpoenas from the court, targeting Amazon, Github, Google, Twitter, Facebook, PayPal, and several hosting providers.

From Dish’s request

This week the court granted the subpoenas, which means that they can be forwarded to the companies in question. Whether that will be enough to identify the people behind ‘TVAddons’ and ‘ZemTV’ remains to be seen, but Dish has cast its net wide.

For example, the subpoena directed at Google covers any type of information that can be used to identify the account holder of taacc14@gmail.com, which is believed to be tied to ZemTV.

The information requested from Google includes IP address logs with session date and timestamps, but also covers “all communications,” including GChat messages from 2014 onwards.

Similarly, Twitter is required to hand over information tied to the accounts of the users “TV Addons” and “shani_08_kodi” as well as other accounts linked to tvaddons.ag and streamingboxes.com. This also applies the various tweets that were sent through the account.

The subpoena specifically mentions “all communications, including ‘tweets’, Twitter sent to or received from each Twitter Account during the time period of February 1, 2014 to present.”

From the Twitter subpoena

Similar subpoenas were granted for the other services, tailored towards the information Dish hopes to find there. For example, the broadcast provider also requests details of each transaction from PayPal, as well as all debits and credits to the accounts.

In some parts, the subpoenas appear to be quite broad. PayPal is asked to reveal information on any account with the credit card statement “Shani,” for example. Similarly, Github is required to hand over information on accounts that are ‘associated’ with the tvaddons.ag domain, which is referenced by many people who are not directly connected to the site.

The service providers in question still have the option to challenge the subpoenas or ask the court for further clarification. A full overview of all the subpoena requests is available here (Exhibit 2 and onwards), including all the relevant details. This also includes several letters to foreign hosting providers.

While Dish still appears to be keen to find out who is behind ‘TVAddons’ and ‘ZemTV,’ not much has been heard from the defendants in question.

ZemTV developer “Shani” shut down his addon soon after the lawsuit was announced, without mentioning it specifically. TVAddons, meanwhile, has been offline for well over a week, without any notice in public about the reason for the prolonged downtime.

The court’s order granting the subpoenas and letters of request is available here (pdf).

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Building Loosely Coupled, Scalable, C# Applications with Amazon SQS and Amazon SNS

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/building-loosely-coupled-scalable-c-applications-with-amazon-sqs-and-amazon-sns/

 
Stephen Liedig, Solutions Architect

 

One of the many challenges professional software architects and developers face is how to make cloud-native applications scalable, fault-tolerant, and highly available.

Fundamental to your project success is understanding the importance of making systems highly cohesive and loosely coupled. That means considering the multi-dimensional facets of system coupling to support the distributed nature of the applications that you are building for the cloud.

By that, I mean addressing not only the application-level coupling (managing incoming and outgoing dependencies), but also considering the impacts of of platform, spatial, and temporal coupling of your systems. Platform coupling relates to the interoperability, or lack thereof, of heterogeneous systems components. Spatial coupling deals with managing components at a network topology level or protocol level. Temporal, or runtime coupling, refers to the ability of a component within your system to do any kind of meaningful work while it is performing a synchronous, blocking operation.

The AWS messaging services, Amazon SQS and Amazon SNS, help you deal with these forms of coupling by providing mechanisms for:

  • Reliable, durable, and fault-tolerant delivery of messages between application components
  • Logical decomposition of systems and increased autonomy of components
  • Creating unidirectional, non-blocking operations, temporarily decoupling system components at runtime
  • Decreasing the dependencies that components have on each other through standard communication and network channels

Following on the recent topic, Building Scalable Applications and Microservices: Adding Messaging to Your Toolbox, in this post, I look at some of the ways you can introduce SQS and SNS into your architectures to decouple your components, and show how you can implement them using C#.

Walkthrough

To illustrate some of these concepts, consider a web application that processes customer orders. As good architects and developers, you have followed best practices and made your application scalable and highly available. Your solution included implementing load balancing, dynamic scaling across multiple Availability Zones, and persisting orders in a Multi-AZ Amazon RDS database instance, as in the following diagram.


In this example, the application is responsible for handling and persisting the order data, as well as dealing with increases in traffic for popular items.

One potential point of vulnerability in the order processing workflow is in saving the order in the database. The business expects that every order has been persisted into the database. However, any potential deadlock, race condition, or network issue could cause the persistence of the order to fail. Then, the order is lost with no recourse to restore the order.

With good logging capability, you may be able to identify when an error occurred and which customer’s order failed. This wouldn’t allow you to “restore” the transaction, and by that stage, your customer is no longer your customer.

As illustrated in the following diagram, introducing an SQS queue helps improve your ordering application. Using the queue isolates the processing logic into its own component and runs it in a separate process from the web application. This, in turn, allows the system to be more resilient to spikes in traffic, while allowing work to be performed only as fast as necessary in order to manage costs.


In addition, you now have a mechanism for persisting orders as messages (with the queue acting as a temporary database), and have moved the scope of your transaction with your database further down the stack. In the event of an application exception or transaction failure, this ensures that the order processing can be retired or redirected to the Amazon SQS Dead Letter Queue (DLQ), for re-processing at a later stage. (See the recent post, Using Amazon SQS Dead-Letter Queues to Control Message Failure, for more information on dead-letter queues.)

Scaling the order processing nodes

This change allows you now to scale the web application frontend independently from the processing nodes. The frontend application can continue to scale based on metrics such as CPU usage, or the number of requests hitting the load balancer. Processing nodes can scale based on the number of orders in the queue. Here is an example of scale-in and scale-out alarms that you would associate with the scaling policy.

Scale-out Alarm

aws cloudwatch put-metric-alarm --alarm-name AddCapacityToCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
--statistic Average --period 300 --threshold 3 --comparison-operator GreaterThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
--evaluation-periods 2 --alarm-actions <arn of the scale-out autoscaling policy>

Scale-in Alarm

aws cloudwatch put-metric-alarm --alarm-name RemoveCapacityFromCustomerOrderQueue --metric-name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS" 
 --statistic Average --period 300 --threshold 1 --comparison-operator LessThanOrEqualToThreshold --dimensions Name=QueueName,Value=customer-orders
 --evaluation-periods 2 --alarm-actions <arn of the scale-in autoscaling policy>

In the above example, use the ApproximateNumberOfMessagesVisible metric to discover the queue length and drive the scaling policy of the Auto Scaling group. Another useful metric is ApproximateAgeOfOldestMessage, when applications have time-sensitive messages and developers need to ensure that messages are processed within a specific time period.

Scaling the order processing implementation

On top of scaling at an infrastructure level using Auto Scaling, make sure to take advantage of the processing power of your Amazon EC2 instances by using as many of the available threads as possible. There are several ways to implement this. In this post, we build a Windows service that uses the BackgroundWorker class to process the messages from the queue.

Here’s a closer look at the implementation. In the first section of the consuming application, use a loop to continually poll the queue for new messages, and construct a ReceiveMessageRequest variable.

public static void PollQueue()
{
    while (_running)
    {
        Task<ReceiveMessageResponse> receiveMessageResponse;

        // Pull messages off the queue
        using (var sqs = new AmazonSQSClient())
        {
            const int maxMessages = 10;  // 1-10

            //Receiving a message
            var receiveMessageRequest = new ReceiveMessageRequest
            {
                // Get URL from Configuration
                QueueUrl = _queueUrl, 
                // The maximum number of messages to return. 
                // Fewer messages might be returned. 
                MaxNumberOfMessages = maxMessages, 
                // A list of attributes that need to be returned with message.
                AttributeNames = new List<string> { "All" },
                // Enable long polling. 
                // Time to wait for message to arrive on queue.
                WaitTimeSeconds = 5 
            };

            receiveMessageResponse = sqs.ReceiveMessageAsync(receiveMessageRequest);
        }

The WaitTimeSeconds property of the ReceiveMessageRequest specifies the duration (in seconds) that the call waits for a message to arrive in the queue before returning a response to the calling application. There are a few benefits to using long polling:

  • It reduces the number of empty responses by allowing SQS to wait until a message is available in the queue before sending a response.
  • It eliminates false empty responses by querying all (rather than a limited number) of the servers.
  • It returns messages as soon any message becomes available.

For more information, see Amazon SQS Long Polling.

After you have returned messages from the queue, you can start to process them by looping through each message in the response and invoking a new BackgroundWorker thread.

// Process messages
if (receiveMessageResponse.Result.Messages != null)
{
    foreach (var message in receiveMessageResponse.Result.Messages)
    {
        Console.WriteLine("Received SQS message, starting worker thread");

        // Create background worker to process message
        BackgroundWorker worker = new BackgroundWorker();
        worker.DoWork += (obj, e) => ProcessMessage(message);
        worker.RunWorkerAsync();
    }
}
else
{
    Console.WriteLine("No messages on queue");
}

The event handler, ProcessMessage, is where you implement business logic for processing orders. It is important to have a good understanding of how long a typical transaction takes so you can set a message VisibilityTimeout that is long enough to complete your operation. If order processing takes longer than the specified timeout period, the message becomes visible on the queue. Other nodes may pick it and process the same order twice, leading to unintended consequences.

Handling Duplicate Messages

In order to manage duplicate messages, seek to make your processing application idempotent. In mathematics, idempotent describes a function that produces the same result if it is applied to itself:

f(x) = f(f(x))

No matter how many times you process the same message, the end result is the same (definition from Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions, Hohpe and Wolf, 2004).

There are several strategies you could apply to achieve this:

  • Create messages that have inherent idempotent characteristics. That is, they are non-transactional in nature and are unique at a specified point in time. Rather than saying “place new order for Customer A,” which adds a duplicate order to the customer, use “place order <orderid> on <timestamp> for Customer A,” which creates a single order no matter how often it is persisted.
  • Deliver your messages via an Amazon SQS FIFO queue, which provides the benefits of message sequencing, but also mechanisms for content-based deduplication. You can deduplicate using the MessageDeduplicationId property on the SendMessage request or by enabling content-based deduplication on the queue, which generates a hash for MessageDeduplicationId, based on the content of the message, not the attributes.
var sendMessageRequest = new SendMessageRequest
{
    QueueUrl = _queueUrl,
    MessageBody = JsonConvert.SerializeObject(order),
    MessageGroupId = Guid.NewGuid().ToString("N"),
    MessageDeduplicationId = Guid.NewGuid().ToString("N")
};
  • If using SQS FIFO queues is not an option, keep a message log of all messages attributes processed for a specified period of time, as an alternative to message deduplication on the receiving end. Verifying the existence of the message in the log before processing the message adds additional computational overhead to your processing. This can be minimized through low latency persistence solutions such as Amazon DynamoDB. Bear in mind that this solution is dependent on the successful, distributed transaction of the message and the message log.

Handling exceptions

Because of the distributed nature of SQS queues, it does not automatically delete the message. Therefore, you must explicitly delete the message from the queue after processing it, using the message ReceiptHandle property (see the following code example).

However, if at any stage you have an exception, avoid handling it as you normally would. The intention is to make sure that the message ends back on the queue, so that you can gracefully deal with intermittent failures. Instead, log the exception to capture diagnostic information, and swallow it.

By not explicitly deleting the message from the queue, you can take advantage of the VisibilityTimeout behavior described earlier. Gracefully handle the message processing failure and make the unprocessed message available to other nodes to process.

In the event that subsequent retries fail, SQS automatically moves the message to the configured DLQ after the configured number of receives has been reached. You can further investigate why the order process failed. Most importantly, the order has not been lost, and your customer is still your customer.

private static void ProcessMessage(Message message)
{
    using (var sqs = new AmazonSQSClient())
    {
        try
        {
            Console.WriteLine("Processing message id: {0}", message.MessageId);

            // Implement messaging processing here
            // Ensure no downstream resource contention (parallel processing)
            // <your order processing logic in here…>
            Console.WriteLine("{0} Thread {1}: {2}", DateTime.Now.ToString("s"), Thread.CurrentThread.ManagedThreadId, message.MessageId);
            
            // Delete the message off the queue. 
            // Receipt handle is the identifier you must provide 
            // when deleting the message.
            var deleteRequest = new DeleteMessageRequest(_queueName, message.ReceiptHandle);
            sqs.DeleteMessageAsync(deleteRequest);
            Console.WriteLine("Processed message id: {0}", message.MessageId);

        }
        catch (Exception ex)
        {
            // Do nothing.
            // Swallow exception, message will return to the queue when 
            // visibility timeout has been exceeded.
            Console.WriteLine("Could not process message due to error. Exception: {0}", ex.Message);
        }
    }
}

Using SQS to adapt to changing business requirements

One of the benefits of introducing a message queue is that you can accommodate new business requirements without dramatically affecting your application.

If, for example, the business decided that all orders placed over $5000 are to be handled as a priority, you could introduce a new “priority order” queue. The way the orders are processed does not change. The only significant change to the processing application is to ensure that messages from the “priority order” queue are processed before the “standard order” queue.

The following diagram shows how this logic could be isolated in an “order dispatcher,” whose only purpose is to route order messages to the appropriate queue based on whether the order exceeds $5000. Nothing on the web application or the processing nodes changes other than the target queue to which the order is sent. The rates at which orders are processed can be achieved by modifying the poll rates and scalability settings that I have already discussed.

Extending the design pattern with Amazon SNS

Amazon SNS supports reliable publish-subscribe (pub-sub) scenarios and push notifications to known endpoints across a wide variety of protocols. It eliminates the need to periodically check or poll for new information and updates. SNS supports:

  • Reliable storage of messages for immediate or delayed processing
  • Publish / subscribe – direct, broadcast, targeted “push” messaging
  • Multiple subscriber protocols
  • Amazon SQS, HTTP, HTTPS, email, SMS, mobile push, AWS Lambda

With these capabilities, you can provide parallel asynchronous processing of orders in the system and extend it to support any number of different business use cases without affecting the production environment. This is commonly referred to as a “fanout” scenario.

Rather than your web application pushing orders to a queue for processing, send a notification via SNS. The SNS messages are sent to a topic and then replicated and pushed to multiple SQS queues and Lambda functions for processing.

As the diagram above shows, you have the development team consuming “live” data as they work on the next version of the processing application, or potentially using the messages to troubleshoot issues in production.

Marketing is consuming all order information, via a Lambda function that has subscribed to the SNS topic, inserting the records into an Amazon Redshift warehouse for analysis.

All of this, of course, is happening without affecting your order processing application.

Summary

While I haven’t dived deep into the specifics of each service, I have discussed how these services can be applied at an architectural level to build loosely coupled systems that facilitate multiple business use cases. I’ve also shown you how to use infrastructure and application-level scaling techniques, so you can get the most out of your EC2 instances.

One of the many benefits of using these managed services is how quickly and easily you can implement powerful messaging capabilities in your systems, and lower the capital and operational costs of managing your own messaging middleware.

Using Amazon SQS and Amazon SNS together can provide you with a powerful mechanism for decoupling application components. This should be part of design considerations as you architect for the cloud.

For more information, see the Amazon SQS Developer Guide and Amazon SNS Developer Guide. You’ll find tutorials on all the concepts covered in this post, and more. To can get started using the AWS console or SDK of your choice visit:

Happy messaging!

Schaller: Fedora Workstation 26 and beyond

Post Syndicated from corbet original https://lwn.net/Articles/725992/rss

Christian Schaller has posted an
extensive look forward
at the changes coming to the Fedora desktop.
Another major project we been working on for a long time in Fleet
Commander. Fleet Commander is a tool to allow you to manage Fedora and RHEL
desktops centrally. This is a tool targeted at for instance Universities or
companies with tens, hundreds or thousands of workstation installation. It
gives you a graphical browser based UI (accessible through Cockpit) to
create configuration profiles and deploy across your organization.

The Pirate Bay Isn’t Affected By Adverse Court Rulings – Everyone Else Is

Post Syndicated from Andy original https://torrentfreak.com/the-pirate-bay-isnt-affected-by-adverse-court-rulings-everyone-else-is-170618/

For more than a decade The Pirate Bay has been the world’s most controversial site. Delivering huge quantities of copyrighted content to the masses, the platform is revered and reviled across the copyright spectrum.

Its reputation is one of a defiant Internet swashbuckler, but due to changes in how the site has been run in more recent times, its current philosophy is more difficult to gauge. What has never been in doubt, however, is the site’s original intent to be as provocative as possible.

Through endless publicity stunts, some real, some just for the ‘lulz’, The Pirate Bay managed to attract a massive audience, all while incurring the wrath of every major copyright holder in the world.

Make no mistake, they all queued up to strike back, but every subsequent rightsholder action was met by a Pirate Bay middle finger, two fingers, or chin flick, depending on the mood of the day. This only served to further delight the masses, who happily spread the word while keeping their torrents flowing.

This vicious circle of being targeted by the entertainment industries, mocking them, and then reaping the traffic benefits, developed into the cheapest long-term marketing campaign the Internet had ever seen. But nothing is ever truly for free and there have been consequences.

After taunting Hollywood and the music industry with its refusals to capitulate, endless legal action that the site would have ordinarily been forced to participate in largely took place without The Pirate Bay being present. It doesn’t take a law degree to work out what happened in each and every one of those cases, whatever complex route they took through the legal system. No defense, no win.

For example, the web-blocking phenomenon across the UK, Europe, Asia and Australia was driven by the site’s absolute resilience and although there would clearly have been other scapegoats had The Pirate Bay disappeared, the site was the ideal bogeyman the copyright lobby required to move forward.

Filing blocking lawsuits while bringing hosts, advertisers, and ISPs on board for anti-piracy initiatives were also made easier with the ‘evil’ Pirate Bay still online. Immune from every anti-piracy technique under the sun, the existence of the platform in the face of all onslaughts only strengthened the cases of those arguing for even more drastic measures.

Over a decade, this has meant a significant tightening of the sharing and streaming climate. Without any big legislative changes but plenty of case law against The Pirate Bay, web-blocking is now a walk in the park, ad hoc domain seizures are a fairly regular occurrence, and few companies want to host sharing sites. Advertisers and brands are also hesitant over where they place their ads. It’s a very different world to the one of 10 years ago.

While it would be wrong to attribute every tightening of the noose to the actions of The Pirate Bay, there’s little doubt that the site and its chaotic image played a huge role in where copyright enforcement is today. The platform set out to provoke and succeeded in every way possible, gaining supporters in their millions. It could also be argued it kicked a hole in a hornets’ nest, releasing the hell inside.

But perhaps the site’s most amazing achievement is the way it has managed to stay online, despite all the turmoil.

This week yet another ruling, this time from the powerful European Court of Justice, found that by offering links in the manner it does, The Pirate Bay and other sites are liable for communicating copyright works to the public. Of course, this prompted the usual swathe of articles claiming that this could be the final nail in the site’s coffin.

Wrong.

In common with every ruling, legal defeat, and legislative restriction put in place due to the site’s activities, this week’s decision from the ECJ will have zero effect on the Pirate Bay’s availability. For right or wrong, the site was breaking the law long before this ruling and will continue to do so until it decides otherwise.

What we have instead is a further tightened legal landscape that will have a lasting effect on everything BUT the site, including weaker torrent sites, Internet users, and user-uploaded content sites such as YouTube.

With The Pirate Bay carrying on regardless, that is nothing short of remarkable.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Disney Asks Google to Remove Its Own (Invisible) Takedown Notices

Post Syndicated from Ernesto original https://torrentfreak.com/disney-asks-google-to-remove-its-own-invisible-takedown-notices-170618/

Pretty much every major copyright holder regularly reports infringing links to Google, hoping to decrease the visibility of pirated files.

Over the past several years, the search engine has had to remove more than two billion links and most of these requests have been neatly archived in the Lumen database.

Walt Disney Company is no stranger to these takedown efforts. The company has sent over 20 million takedown requests to the search engine, covering a wide variety of content. All of these notices are listed in Google’s transparency report, and copies are available at Lumen.

While this is nothing new, we recently noticed that Disney doesn’t stop at reporting direct links to traditional “pirate” sites. In fact, they recently targeted one of their own takedown notices in the Lumen database, which was sent on behalf of its daughter company Lucasfilm.

In the notice below, the media giant wants Google to remove a links to a copy of its own takedown notice, claiming that it infringes the copyright of the blockbuster “Star Wars: The Force Awakens.”

Disney vs. Disney?

This is not the first time that a company has engaged in this type of meta-censorship, it appears.

However, it’s all the more relevant this week after a German court decided that Google can be ordered to stop linking to its own takedown notices. While that suggests that Disney was right to ask for its own link to be removed, the reality is a bit more complex.

When it was still known as ChillingEffects, the Lumen Database instructed Google not to index any takedown notices. And indeed, searching for copies of takedown notices yields no result. This means that Disney asked Google to remove a search result that doesn’t exist.

Perhaps things are different in a galaxy far, far away, but Disney’s takedown notice is not only self-censorship but also entirely pointless.

Disney might be better off focusing on content that Google has actually indexed, instead of going after imaginary threats. Or put in the words of Gold Five: “Stay on Target,” Disney..

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Comodo DNS Blocks TorrentFreak Over “Hacking and Warez “

Post Syndicated from Ernesto original https://torrentfreak.com/comodo-dns-blocks-torrentfreak-over-hacking-and-warez-170617/

Website blocking has become one of the go-to methods for reducing online copyright infringement.

In addition to court-ordered blockades, various commercial vendors also offer a broad range of blocking tools. This includes Comodo, which offers a free DNS service that keeps people away from dangerous sites.

The service labeled SecureDNS is part of the Comodo Internet Security bundle but can be used by the general public as well, without charge. Just change the DNS settings on your computer or any other device, and you’re ready to go.

“As a leading provider of computer security solutions, Comodo is keenly aware of the dangers that plague the Internet today. SecureDNS helps users keep safe online with its malware domain filtering feature,” the company explains.

Aside from malware and spyware, Comodo also blocks access to sites that offer access to pirated content. Or put differently, they try to do this. But it’s easier said than done.

This week we were alerted to the fact that Comodo blocks direct access to TorrentFreak. Those who try to access our news site get an ominous warning instead, suggesting that we might share pirated content.

“This website has been blocked temporarily because of the following reason(s): Hacking/Warez: Site may offer illegal sharing of copyrighted software or media,” the warning reads, adding that several users also reported the site to be unsafe.

TorrentFreak blocked

People can still access the site by clicking on a big red cross, although that’s something Comodo doesn’t recommend. However, it is quite clear that new readers will be pretty spooked by the alarming message.

We assume that TorrentFreak was added to Comodo’s blocklist by mistake. And while mistakes can happen everywhere, this once again show that overblocking is a serious concern.

We are lucky enough that readers alerted us to the problem, but in other cases, it could easily go unnoticed.

Interestingly, the ‘piracy’ blocklist is not as stringent as the above would suggest. While we replicated the issue, we also checked several other known ‘pirate’ sites including The Pirate Bay, RARBG, GoMovies, and Pubfilm. These could all be accessed through SecureDNS without any warning.

TorrentFreak contacted Comodo for a comment on their curious blocking efforts, but we have yet to hear back from the company. In the meantime, Comodo SecureDNS users may want to consider switching to a more open DNS provider.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Digital painter rundown

Post Syndicated from Eevee original https://eev.ee/blog/2017/06/17/digital-painter-rundown/

Another patron post! IndustrialRobot asks:

You should totally write about drawing/image manipulation programs! (Inspired by https://eev.ee/blog/2015/05/31/text-editor-rundown/)

This is a little trickier than a text editor comparison — while most text editors are cross-platform, quite a few digital art programs are not. So I’m effectively unable to even try a decent chunk of the offerings. I’m also still a relatively new artist, and image editors are much harder to briefly compare than text editors…

Right, now that your expectations have been suitably lowered:

Krita

I do all of my digital art in Krita. It’s pretty alright.

Okay so Krita grew out of Calligra, which used to be KOffice, which was an office suite designed for KDE (a Linux desktop environment). I bring this up because KDE has a certain… reputation. With KDE, there are at least three completely different ways to do anything, each of those ways has ludicrous amounts of customization and settings, and somehow it still can’t do what you want.

Krita inherits this aesthetic by attempting to do literally everything. It has 17 different brush engines, more than 70 layer blending modes, seven color picker dockers, and an ungodly number of colorspaces. It’s clearly intended primarily for drawing, but it also supports animation and vector layers and a pretty decent spread of raster editing tools. I just right now discovered that it has Photoshop-like “layer styles” (e.g. drop shadow), after a year and a half of using it.

In fairness, Krita manages all of this stuff well enough, and (apparently!) it manages to stay out of your way if you’re not using it. In less fairness, they managed to break erasing with a Wacom tablet pen for three months?

I don’t want to rag on it too hard; it’s an impressive piece of work, and I enjoy using it! The emotion it evokes isn’t so much frustration as… mystified bewilderment.

I once filed a ticket suggesting the addition of a brush size palette — a panel showing a grid of fixed brush sizes that makes it easy to switch between known sizes with a tablet pen (and increases the chances that you’ll be able to get a brush back to the right size again). It’s a prominent feature of Paint Tool SAI and Clip Studio Paint, and while I’ve never used either of those myself, I’ve seen a good few artists swear by it.

The developer response was that I could emulate the behavior by creating brush presets. But that’s flat-out wrong: getting the same effect would require creating a ton of brush presets for every brush I have, plus giving them all distinct icons so the size is obvious at a glance. Even then, it would be much more tedious to use and fill my presets with junk.

And that sort of response is what’s so mysterious to me. I’ve never even been able to use this feature myself, but a year of amateur painting with Krita has convinced me that it would be pretty useful. But a developer didn’t see the use and suggested an incredibly tedious alternative that only half-solves the problem and creates new ones. Meanwhile, of the 28 existing dockable panels, a quarter of them are different ways to choose colors.

What is Krita trying to be, then? What does Krita think it is? Who precisely is the target audience? I have no idea.


Anyway, I enjoy drawing in Krita well enough. It ships with a respectable set of brushes, and there are plenty more floating around. It has canvas rotation, canvas mirroring, perspective guide tools, and other art goodies. It doesn’t colordrop on right click by default, which is arguably a grave sin (it shows a customizable radial menu instead), but that’s easy to rebind. It understands having a background color beneath a bottom transparent layer, which is very nice. You can also toggle any brush between painting and erasing with the press of a button, and that turns out to be very useful.

It doesn’t support infinite canvases, though it does offer a one-click button to extend the canvas in a given direction. I’ve never used it (and didn’t even know what it did until just now), but would totally use an infinite canvas.

I haven’t used the animation support too much, but it’s pretty nice to have. Granted, the only other animation software I’ve used is Aseprite, so I don’t have many points of reference here. It’s a relatively new addition, too, so I assume it’ll improve over time.

The one annoyance I remember with animation was really an interaction with a larger annoyance, which is: working with selections kind of sucks. You can’t drag a selection around with the selection tool; you have to switch to the move tool. That would be fine if you could at least drag the selection ring around with the selection tool, but you can’t do that either; dragging just creates a new selection.

If you want to copy a selection, you have to explicitly copy it to the clipboard and paste it, which creates a new layer. Ctrl-drag with the move tool doesn’t work. So then you have to merge that layer down, which I think is where the problem with animation comes in: a new layer is non-animated by default, meaning it effectively appears in any frame, so simply merging it down with merge it onto every single frame of the layer below. And you won’t even notice until you switch frames or play back the animation. Not ideal.

This is another thing that makes me wonder about Krita’s sense of identity. It has a lot of fancy general-purpose raster editing features that even GIMP is still struggling to implement, like high color depth support and non-destructive filters, yet something as basic as working with selections is clumsy. (In fairness, GIMP is a bit clumsy here too, but it has a consistent notion of “floating selection” that’s easy enough to work with.)

I don’t know how well Krita would work as a general-purpose raster editor; I’ve never tried to use it that way. I can’t think of anything obvious that’s missing. The only real gotcha is that some things you might expect to be tools, like smudge or clone, are just types of brush in Krita.

GIMP

Ah, GIMP — open source’s answer to Photoshop.

It’s very obviously intended for raster editing, and I’m pretty familiar with it after half a lifetime of only using Linux. I even wrote a little Scheme script for it ages ago to automate some simple edits to a couple hundred files, back before I was aware of ImageMagick. I don’t know what to say about it, specifically; it’s fairly powerful and does a wide variety of things.

In fact I’d say it’s almost frustratingly intended for raster editing. I used GIMP in my first attempts at digital painting, before I’d heard of Krita. It was okay, but so much of it felt clunky and awkward. Painting is split between a pencil tool, a paintbrush tool, and an airbrush tool; I don’t really know why. The default brushes are largely uninteresting. Instead of brush presets, there are tool presets that can be saved for any tool; it’s a neat idea, but doesn’t feel like a real substitute for brush presets.

Much of the same functionality as Krita is there, but it’s all somehow more clunky. I’m sure it’s possible to fiddle with the interface to get something friendlier for painting, but I never really figured out how.

And then there’s the surprising stuff that’s missing. There’s no canvas rotation, for example. There’s only one type of brush, and it just stamps the same pattern along a path. I don’t think it’s possible to smear or blend or pick up color while painting. The only way to change the brush size is via the very sensitive slider on the tool options panel, which I remember being a little annoying with a tablet pen. Also, you have to specifically enable tablet support? It’s not difficult or anything, but I have no idea why the default is to ignore tablet pressure and treat it like a regular mouse cursor.

As I mentioned above, there’s also no support for high color depth or non-destructive editing, which is honestly a little embarrassing. Those are the major things Serious Professionals™ have been asking for for ages, and GIMP has been trying to provide them, but it’s taking a very long time. The first signs of GEGL, a new library intended to provide these features, appeared in GIMP 2.6… in 2008. The last major release was in 2012. GIMP has been working on this new plumbing for almost as long as Krita’s entire development history. (To be fair, Krita has also raised almost €90,000 from three Kickstarters to fund its development; I don’t know that GIMP is funded at all.)

I don’t know what’s up with GIMP nowadays. It’s still under active development, but the exact status and roadmap are a little unclear. I still use it for some general-purpose editing, but I don’t see any reason to use it to draw.

I do know that canvas rotation will be in the next release, and there was some experimentation with embedding MyPaint’s brush engine (though when I tried it it was basically unusable), so maybe GIMP is interested in wooing artists? I guess we’ll see.

MyPaint

Ah, MyPaint. I gave it a try once. Once.

It’s a shame, really. It sounds pretty great: specifically built for drawing, has very powerful brushes, supports an infinite canvas, supports canvas rotation, has a simple UI that gets out of your way. Perfect.

Or so it seems. But in MyPaint’s eagerness to shed unnecessary raster editing tools, it forgot a few of the more useful ones. Like selections.

MyPaint has no notion of a selection, nor of copy/paste. If you want to move a head to align better to a body, for example, the sanctioned approach is to duplicate the layer, erase the head from the old layer, erase everything but the head from the new layer, then move the new layer.

I can’t find anything that resembles HSL adjustment, either. I guess the workaround for that is to create H/S/L layers and floodfill them with different colors until you get what you want.

I can’t work seriously without these basic editing tools. I could see myself doodling in MyPaint, but Krita works just as well for doodling as for serious painting, so I’ve never gone back to it.

Drawpile

Drawpile is the modern equivalent to OpenCanvas, I suppose? It lets multiple people draw on the same canvas simultaneously. (I would not recommend it as a general-purpose raster editor.)

It’s a little clunky in places — I sometimes have bugs where keyboard focus gets stuck in the chat, or my tablet cursor becomes invisible — but the collaborative part works surprisingly well. It’s not a brush powerhouse or anything, and I don’t think it allows textured brushes, but it supports tablet pressure and canvas rotation and locked alpha and selections and whatnot.

I’ve used it a couple times, and it’s worked well enough that… well, other people made pretty decent drawings with it? I’m not sure I’ve managed yet. And I wouldn’t use it single-player. Still, it’s fun.

Aseprite

Aseprite is for pixel art so it doesn’t really belong here at all. But it’s very good at that and I like it a lot.

That’s all

I can’t name any other serious contender that exists for Linux.

I’m dimly aware of a thing called “Photo Shop” that’s more intended for photos but functions as a passable painter. More artists seem to swear by Paint Tool SAI and Clip Studio Paint. Also there’s Paint.NET, but I have no idea how well it’s actually suited for painting.

And that’s it! That’s all I’ve got. Krita for drawing, GIMP for editing, Drawpile for collaborative doodling.

Visualize and Monitor Amazon EC2 Events with Amazon CloudWatch Events and Amazon Kinesis Firehose

Post Syndicated from Karan Desai original https://aws.amazon.com/blogs/big-data/visualize-and-monitor-amazon-ec2-events-with-amazon-cloudwatch-events-and-amazon-kinesis-firehose/

Monitoring your AWS environment is important for security, performance, and cost control purposes. For example, by monitoring and analyzing API calls made to your Amazon EC2 instances, you can trace security incidents and gain insights into administrative behaviors and access patterns. The kinds of events you might monitor include console logins, Amazon EBS snapshot creation/deletion/modification, VPC creation/deletion/modification, and instance reboots, etc.

In this post, I show you how to build a near real-time API monitoring solution for EC2 events using Amazon CloudWatch Events and Amazon Kinesis Firehose. Please be sure to have Amazon CloudTrail enabled in your account.

  • CloudWatch Events offers a near real-time stream of system events that describe changes in AWS resources. CloudWatch Events now supports Kinesis Firehose as a target.
  • Kinesis Firehose is a fully managed service for continuously capturing, transforming, and delivering data in minutes to storage and analytics destinations such as Amazon S3, Amazon Kinesis Analytics, Amazon Redshift, and Amazon Elasticsearch Service.

Walkthrough

For this walkthrough, you create a CloudWatch event rule that matches specific EC2 events such as:

  • Starting, stopping, and terminating an instance
  • Creating and deleting VPC route tables
  • Creating and deleting a security group
  • Creating, deleting, and modifying instance volumes and snapshots

Your CloudWatch event target is a Kinesis Firehose delivery stream that delivers this data to an Elasticsearch cluster, where you set up Kibana for visualization. Using this solution, you can easily load and visualize EC2 events in minutes without setting up complicated data pipelines.

Set up the Elasticsearch cluster

Create the Amazon ES domain in the Amazon ES console, or by using the create-elasticsearch-domain command in the AWS CLI.

This example uses the following configuration:

  • Domain Name: esLogSearch
  • Elasticsearch Version: 1
  • Instance Count: 2
  • Instance type:elasticsearch
  • Enable dedicated master: true
  • Enable zone awareness: true
  • Restrict Amazon ES to an IP-based access policy

Other settings are left as the defaults.

Create a Kinesis Firehose delivery stream

In the Kinesis Firehose console, create a new delivery stream with Amazon ES as the destination. For detailed steps, see Create a Kinesis Firehose Delivery Stream to Amazon Elasticsearch Service.

Set up CloudWatch Events

Create a rule, and configure the event source and target. You can choose to configure multiple event sources with several AWS resources, along with options to specify specific or multiple event types.

In the CloudWatch console, choose Events.

For Service Name, choose EC2.

In Event Pattern Preview, choose Edit and copy the pattern below. For this walkthrough, I selected events that are specific to the EC2 API, but you can modify it to include events for any of your AWS resources.

 

{
	"source": [
		"aws.ec2"
	],
	"detail-type": [
		"AWS API Call via CloudTrail"
	],
	"detail": {
		"eventSource": [
			"ec2.amazonaws.com"
		],
		"eventName": [
			"RunInstances",
			"StopInstances",
			"StartInstances",
			"CreateFlowLogs",
			"CreateImage",
			"CreateNatGateway",
			"CreateVpc",
			"DeleteKeyPair",
			"DeleteNatGateway",
			"DeleteRoute",
			"DeleteRouteTable",
"CreateSnapshot",
"DeleteSnapshot",
			"DeleteVpc",
			"DeleteVpcEndpoints",
			"DeleteSecurityGroup",
			"ModifyVolume",
			"ModifyVpcEndpoint",
			"TerminateInstances"
		]
	}
}

The following screenshot shows what your event looks like in the console.

Next, choose Add target and select the delivery stream that you just created.

Set up Kibana on the Elasticsearch cluster

Amazon ES provides a default installation of Kibana with every Amazon ES domain. You can find the Kibana endpoint on your domain dashboard in the Amazon ES console. You can restrict Amazon ES access to an IP-based access policy.

In the Kibana console, for Index name or pattern, type log. This is the name of the Elasticsearch index.

For Time-field name, choose @time.

To view the events, choose Discover.

The following chart demonstrates the API operations and the number of times that they have been triggered in the past 12 hours.

Summary

In this post, you created a continuous, near real-time solution to monitor various EC2 events such as starting and shutting down instances, creating VPCs, etc. Likewise, you can build a continuous monitoring solution for all the API operations that are relevant to your daily AWS operations and resources.

With Kinesis Firehose as a new target for CloudWatch Events, you can retrieve, transform, and load system events to the storage and analytics destination of your choice in minutes, without setting up complicated data pipelines.

If you have any questions or suggestions, please comment below.


Additional Reading

Learn how to build a serverless architecture to analyze Amazon CloudFront access logs using AWS Lambda, Amazon Athena, and Amazon Kinesis Analytics

 

 

 

Court Orders Google to Remove Links to Takedown Notice

Post Syndicated from Ernesto original https://torrentfreak.com/court-orders-google-to-remove-links-to-takedown-notice-170616/

On an average day Google processes more than three million takedown notices from copyright holders, and that’s for its search engine alone.

Thanks to Google’s transparency report, the public is able to see where these notices come from and what content they’re targeting. In addition, Google partners with Lumen to post copies of most notices online.

Founded by Harvard’s Berkman Center, Lumen is one of the few tools that helps to keep copyright holders accountable, while offering an invaluable database for researchers and the public in general.

However, not everyone is pleased with the service. Many copyright holders find it unfair that Google still indirectly links to the infringing URLs, because the search results point people to the takedown notice on Lumen, where these are listed in public.

Google linking to a standard DMCA notice

In Germany, a similar complaint was at the center of a lawsuit. A local company found that when people entered its name into the search engine combined with the term ‘suspected fraud’ (Betrugsverdacht), several search results would appear suggesting that the two were linked.

Since making false claims against companies is not allowed in Germany, the company wanted the results removed. The court agreed with this assessment and ordered Google to take action, which it did. However, after removing the results, Google added a mention at the bottom of the results pointing users to the takedown request on Lumen.

“As a reaction to a legal request that was sent to Google, we have removed one search result. You can find further information at LumenDatabase.org,” Google noted, with a link.

The company wasn’t happy with this and wanted Google to remove this mention, since it indirectly linked to the offensive URLs. After a lower court first sided with Google, the Higher Regional Court of Munich has now ordered (pdf) the search engine to remove the link to the Lumen notice.

Mirko Brüß, a lawyer and expert on German copyright law, wrote a detailed overview of the case in question on IPKAT explaining the court’s reasoning.

“By presenting its users an explanation about the deleted search result, combined with a hyperlink to the Lumen website where the deleted search result could be clicked, Google (still) enabled users to find and read the infringing statements, even after being ordered by a court to discontinue doing so,” he notes.

“The court found that it made no difference whether one or two clicks are needed to get to the result,” Brüß adds.

Lumen

While the order only refers to the link at the bottom of the search results, it may also apply to the transparency report itself, Brüß informs TorrentFreak.

It will be interesting to see if copyright holders will use similar means to ensure that Google stops linking to copies of their takedown notices. That would seriously obstruct Google’s well-intentioned transparency efforts, but thus far this hasn’t happened.

Finally, it is worth noting that Google doesn’t index the takedown notices from Lumen itself. Links to takedown notices are only added to search results where content has been removed, either by court order or following a DMCA request.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

[$] The Brave web browser

Post Syndicated from jake original https://lwn.net/Articles/725261/rss

The Brave web browser is a project from
a new company called Brave Software. It was founded by Brendan Eich, who is the
inventor of JavaScript and former developer and CTO at Mozilla; he
hopes to dramatically re-invent the advertising model of the web while
strengthening user anonymity and security. Brave’s value proposition is
that instead of being served advertisements from web sites that use the
revenue to pay their bills, users can opt to directly pay the content
providers of their choosing with cryptocurrency. Also, there is a
recognition of the
utility of targeted advertising, so users have an option of saving a local,
protected profile that can be used anonymously to obtain targeted
advertisements instead of having their online behavior tracked and sold by
a third party.

New – Auto Scaling for Amazon DynamoDB

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-auto-scaling-for-amazon-dynamodb/

Amazon DynamoDB has more than one hundred thousand customers, spanning a wide range of industries and use cases. These customers depend on DynamoDB’s consistent performance at any scale and presence in 16 geographic regions around the world. A recent trend we’ve been observing is customers using DynamoDB to power their serverless applications. This is a good match: with DynamoDB, you don’t have to think about things like provisioning servers, performing OS and database software patching, or configuring replication across availability zones to ensure high availability – you can simply create tables and start adding data, and let DynamoDB handle the rest.

DynamoDB provides a provisioned capacity model that lets you set the amount of read and write capacity required by your applications. While this frees you from thinking about servers and enables you to change provisioning for your table with a simple API call or button click in the AWS Management Console, customers have asked us how we can make managing capacity for DynamoDB even easier.

Today we are introducing Auto Scaling for DynamoDB to help automate capacity management for your tables and global secondary indexes. You simply specify the desired target utilization and provide upper and lower bounds for read and write capacity. DynamoDB will then monitor throughput consumption using Amazon CloudWatch alarms and then will adjust provisioned capacity up or down as needed. Auto Scaling will be on by default for all new tables and indexes, and you can also configure it for existing ones.

Even if you’re not around, DynamoDB Auto Scaling will be monitoring your tables and indexes to automatically adjust throughput in response to changes in application traffic. This can make it easier to administer your DynamoDB data, help you maximize availability for your applications, and help you reduce your DynamoDB costs.

Let’s see how it works…

Using Auto Scaling
The DynamoDB Console now proposes a comfortable set of default parameters when you create a new table. You can accept them as-is or you can uncheck Use default settings and enter your own parameters:

Here’s how you enter your own parameters:

Target utilization is expressed in terms of the ratio of consumed capacity to provisioned capacity. The parameters above would allow for sufficient headroom to allow consumed capacity to double due to a burst in read or write requests (read Capacity Unit Calculations to learn more about the relationship between DynamoDB read and write operations and provisioned capacity). Changes in provisioned capacity take place in the background.

Auto Scaling in Action
In order to see this important new feature in action, I followed the directions in the Getting Started Guide. I launched a fresh EC2 instance, installed (sudo pip install boto3) and configured (aws configure) the AWS SDK for Python. Then I used the code in the Python and DynamoDB section to create and populate a table with some data, and manually configured the table for 5 units each of read and write capacity.

I took a quick break in order to have clean, straight lines for the CloudWatch metrics so that I could show the effect of Auto Scaling. Here’s what the metrics look like before I started to apply a load:

I modified the code in Step 3 to continually issue queries for random years in the range of 1920 to 2007, ran a single copy of the code, and checked the read metrics a minute or two later:

The consumed capacity is higher than the provisioned capacity, resulting in a large number of throttled reads. Time for Auto Scaling!

I returned to the console and clicked on the Capacity tab for my table. Then I clicked on Read capacity, accepted the default values, and clicked on Save:

DynamoDB created a new IAM role (DynamoDBAutoscaleRole) and a pair of CloudWatch alarms to manage the Auto Scaling of read capacity:

DynamoDB Auto Scaling will manage the thresholds for the alarms, moving them up and down as part of the scaling process. The first alarm was triggered and the table state changed to Updating while additional read capacity was provisioned:

The change was visible in the read metrics within minutes:

I started a couple of additional copies of my modified query script and watched as additional capacity was provisioned, as indicated by the red line:

I killed all of the scripts and turned my attention to other things while waiting for the scale-down alarm to trigger. Here’s what I saw when I came back:

The next morning I checked my Scaling activities and saw that the alarm had triggered several more times overnight:

This was also visible in the metrics:

Until now, you would prepare for this situation by setting your read capacity well about your expected usage, and pay for the excess capacity (the space between the blue line and the red line). Or, you might set it too low, forget to monitor it, and run out of capacity when traffic picked up. With Auto Scaling you can get the best of both worlds: an automatic response when an increase in demand suggests that more capacity is needed, and another automated response when the capacity is no longer needed.

Things to Know
DynamoDB Auto Scaling is designed to accommodate request rates that vary in a somewhat predictable, generally periodic fashion. If you need to accommodate unpredictable bursts of read activity, you should use Auto Scaling in combination with DAX (read Amazon DynamoDB Accelerator (DAX) – In-Memory Caching for Read-Intensive Workloads to learn more). Also, the AWS SDKs will detect throttled read and write requests and retry them after a suitable delay.

I mentioned the DynamoDBAutoscaleRole earlier. This role provides Auto Scaling with the privileges that it needs to have in order for it to be able to scale your tables and indexes up and down. To learn more about this role and the permissions that it uses, read Grant User Permissions for DynamoDB Auto Scaling.

Auto Scaling has complete CLI and API support, including the ability to enable and disable the Auto Scaling policies. If you have some predictable, time-bound spikes in traffic, you can programmatically disable an Auto Scaling policy, provision higher throughput for a set period of time, and then enable Auto Scaling again later.

As noted on the Limits in DynamoDB page, you can increase provisioned capacity as often as you would like and as high as you need (subject to per-account limits that we can increase on request). You can decrease capacity up to nine times per day for each table or global secondary index.

You pay for the capacity that you provision, at the regular DynamoDB prices. You can also purchase DynamoDB Reserved Capacity to further savings.

Available Now
This feature is available now in all regions and you can start using it today!

Jeff;

Security Flaws in 4G VoLTE

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/06/security_flaws_1.html

Research paper: “Subscribers remote geolocation and tracking using 4G VoLTE enabled Android phone,” by Patrick Ventuzelo, Olivier Le Moal, and Thomas Coudray.

Abstract: VoLTE (Voice over LTE) is a technology implemented by many operators over the world. Unlike previous 2G/3G technologies, VoLTE offers the possibility to use the end-to-end IP networks to handle voice communications. This technology uses VoIP (Voice over IP) standards over IMS (IP Multimedia Subsystem) networks. In this paper, we will first introduce the basics of VoLTE technology. We will then demonstrate how to use an Android phone to communicate with VoLTE networks and what normal VoLTE communications look like. Finally, we will describe different issues and implementations’ problems. We will present vulnerabilities, both passive and active, and attacks that can be done using VoLTE Android smartphones to attack subscribers and operators’ infrastructures. Some of these vulnerabilities are new and not previously disclosed: they may allow an attacker to silently retrieve private pieces of information on targeted subscribers, such as their geolocation.

News article. Slashdot thread.

Popular Release Group ShAaNiG Permanently Shuts Down

Post Syndicated from Andy original https://torrentfreak.com/popular-release-group-shaanig-permanently-shuts-down-170612/

While there are dozens of torrent release groups in operation today, some providing extremely high quality work, every few years a notable ‘brand’ group appears.

Two of the most famous from recent memory were aXXo and YIFY. Neither were known for historic individual releases or world-beating quality, but both were particularly consistent. An aXXo or YIFY label on an official torrent assured the potential downloader they would be getting a ‘McDonalds-quality’ product; never haute cuisine but just enough taste and in enough volume to fill people up.

As a result, these groups gained millions of followers, something that put anti-piracy targets on their backs. No surprise then that neither are around today, with YIFY subjected to legal action in New Zealand and aXXo….well, no one seems to know.

With those groups gone, there was a gap in the market for a similar product. Popular releases delivered to the masses in small file sizes is clearly a recipe for success and an existing group called ShAaNiG decided to step in to take up some of the slack.

What followed was thousands of ShAaNiG movie and TV show releases, which were uploaded to The Pirate Bay and direct download sites. They also took pride of place on the group’s forum at Shaanig.org, where they were neatly organized into relevant categories.

ShAaNiG’s release forum

But like aXXO and YIFY before it, something went wrong at ShAaNiG. After publishing a couple of releases on Saturday, including a Blu-ray rip of the movie Jawbone and an episode of TV show Outcast, ShAaNiG unexpectedly threw in the towel. A notice on the group’s homepage gives no reason for the sudden shutdown but makes it clear that ShAaNiG won’t be coming back.

“ShAaNiG has shut down permanently,” it reads. “Every journey must come to an end, This is the end of our journey. Thank you for all your support.”

While there are only so many ways to say that a site has been shut down for good, the first sentence is identical to the one used by ExtraTorrent when it closed down last month.

Another potentially interesting similarity is that both ExtraTorrent and ShAaNiG had huge followings in India, with both sites indexing a lot of local content, especially movies.

More than 30% of ShAaNiG’s traffic came from India, with much of it driven from The Pirate Bay where more than a thousand releases live on today. When ExtraTorrent shut down, around 40% of the new traffic arriving at another popular platform came from India.

Whether the Indian connection is pure coincidence remains to be seen, but it seems possible if not likely that some kind of legal pressure played a part in the demise of both. However, if the situation plays out in the same manner, we’ll hear no more and like ExtraTorrent, ShAaNiG will simply fade away.

While that will come as a huge disappointment to ShAaNiG fans, other file-sharers are likely to have less sympathy. Like aXXo and YIFY before it, ShAaNiG was rarely (if ever) the source of the material it released, instead preferring to re-encode existing releases. For some pirates, that’s a red line that should never be crossed.

Whether a new group will rise phoenix-like from the ashes will remain to be seen but as these ‘brand’ groups have established time and again, there’s always a market for passable quality movie releases, if they come in a compact file-size.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.