Tag Archives: teach

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

Start a CoderDojo with our free online training

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/start-a-coderdojo-with-our-free-online-training/

You can now sign up to our newest free online course Start a CoderDojo to learn more about CoderDojo and how you can easily set up one of these free coding clubs for young people in your area. With less than two weeks until the course begins, we wanted to tell you about the course’s content and why the course’s creator put it together for you.

Start a CoderDojo || free online learning || Raspberry Pi Foundation

Get support and advice on how to grow your confidence in coding and start a CoderDojo for young people in your area.

What is CoderDojo?

CoderDojo is a global network of free, volunteer-led, community-based programming clubs for young people aged 7 to 17. There are currently more than 1700 Dojos running regularly across 75 countries. All of these clubs were started by individuals who are passionate about giving young people the opportunity to learn to code. Some people assume you need technical skills to start a Dojo, but that’s not true. The most important thing is that you can bring people together for a shared goal.

What is covered on the course?

The course was developed by Philip, CoderDojo’s Educational Content Lead. It gives those who think empowering young people to be tech creators is important the resources and supports to achieve that goal by starting a Dojo. Divided over three weeks and running for about four hours in total, the course provides practical advice and resources on everything you need to know to plan and run a fun, social, and creative coding club for young people.

“In the first week, you’ll look at what coding is, at the worldwide CoderDojo community of coding clubs, and at the creative approach CoderDojos take to helping young people learn to code. In week two, you’ll move on to setting up your Dojo with a team, a venue, and any needed materials. You’ll also look at how to find young people to attend. Week three wraps up the course by giving you sample plans for a Dojo session and a Dojo’s year, and we’ll be talking about how to grow and develop your Dojo over time as your attendees become better coders.”
— Philip

Who is the course for?

Anyone interested in enabling young people to be tech creators should take this course. Parents, teachers, librarians, IT professionals, youth workers, and others have all started Dojos in their community. They say that “it’s an amazing experience that led [them] to expand [their] personal horizons”, and that they “find it really rewarding”.

The course is free and open to all — if you’re interested, then sign up now.

If you’re already mentoring at a Dojo, the course is a great opportunity to revise what you’ve learnt, and a chance to share your insights with newcomers in the discussion sections. Parents and guardians who wish to learn more about CoderDojo and are considering getting involved are also more than welcome to join.

The post Start a CoderDojo with our free online training appeared first on Raspberry Pi.

Engineering deep dive: Encoding of SCTs in certificates

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org/2018/04/04/sct-encoding.html

<p>Let&rsquo;s Encrypt recently <a href="https://community.letsencrypt.org/t/signed-certificate-timestamps-embedded-in-certificates/57187">launched SCT embedding in
certificates</a>.
This feature allows browsers to check that a certificate was submitted to a
<a href="https://en.wikipedia.org/wiki/Certificate_Transparency">Certificate Transparency</a>
log. As part of the launch, we did a thorough review
that the encoding of Signed Certificate Timestamps (SCTs) in our certificates
matches the relevant specifications. In this post, I&rsquo;ll dive into the details.
You&rsquo;ll learn more about X.509, ASN.1, DER, and TLS encoding, with references to
the relevant RFCs.</p>

<p>Certificate Transparency offers three ways to deliver SCTs to a browser: In a
TLS extension, in stapled OCSP, or embedded in a certificate. We chose to
implement the embedding method because it would just work for Let&rsquo;s Encrypt
subscribers without additional work. In the SCT embedding method, we submit
a &ldquo;precertificate&rdquo; with a <a href="#poison">poison extension</a> to a set of
CT logs, and get back SCTs. We then issue a real certificate based on the
precertificate, with two changes: The poison extension is removed, and the SCTs
obtained earlier are added in another extension.</p>

<p>Given a certificate, let&rsquo;s first look for the SCT list extension. According to CT (<a href="https://tools.ietf.org/html/rfc6962#section-3.3">RFC 6962
section 3.3</a>),
the extension OID for a list of SCTs is <code>1.3.6.1.4.1.11129.2.4.2</code>. An <a href="http://www.hl7.org/Oid/information.cfm">OID (object
ID)</a> is a series of integers, hierarchically
assigned and globally unique. They are used extensively in X.509, for instance
to uniquely identify extensions.</p>

<p>We can <a href="https://acme-v01.api.letsencrypt.org/acme/cert/031f2484307c9bc511b3123cb236a480d451">download an example certificate</a>,
and view it using OpenSSL (if your OpenSSL is old, it may not display the
detailed information):</p>

<pre><code>$ openssl x509 -noout -text -inform der -in Downloads/031f2484307c9bc511b3123cb236a480d451

CT Precertificate SCTs:
Signed Certificate Timestamp:
Version : v1(0)
Log ID : DB:74:AF:EE:CB:29:EC:B1:FE:CA:3E:71:6D:2C:E5:B9:
AA:BB:36:F7:84:71:83:C7:5D:9D:4F:37:B6:1F:BF:64
Timestamp : Mar 29 18:45:07.993 2018 GMT
Extensions: none
Signature : ecdsa-with-SHA256
30:44:02:20:7E:1F:CD:1E:9A:2B:D2:A5:0A:0C:81:E7:
13:03:3A:07:62:34:0D:A8:F9:1E:F2:7A:48:B3:81:76:
40:15:9C:D3:02:20:65:9F:E9:F1:D8:80:E2:E8:F6:B3:
25:BE:9F:18:95:6D:17:C6:CA:8A:6F:2B:12:CB:0F:55:
FB:70:F7:59:A4:19
Signed Certificate Timestamp:
Version : v1(0)
Log ID : 29:3C:51:96:54:C8:39:65:BA:AA:50:FC:58:07:D4:B7:
6F:BF:58:7A:29:72:DC:A4:C3:0C:F4:E5:45:47:F4:78
Timestamp : Mar 29 18:45:08.010 2018 GMT
Extensions: none
Signature : ecdsa-with-SHA256
30:46:02:21:00:AB:72:F1:E4:D6:22:3E:F8:7F:C6:84:
91:C2:08:D2:9D:4D:57:EB:F4:75:88:BB:75:44:D3:2F:
95:37:E2:CE:C1:02:21:00:8A:FF:C4:0C:C6:C4:E3:B2:
45:78:DA:DE:4F:81:5E:CB:CE:2D:57:A5:79:34:21:19:
A1:E6:5B:C7:E5:E6:9C:E2
</code></pre>

<p>Now let&rsquo;s go a little deeper. How is that extension represented in
the certificate? Certificates are expressed in
<a href="https://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One">ASN.1</a>,
which generally refers to both a language for expressing data structures
and a set of formats for encoding them. The most common format,
<a href="https://en.wikipedia.org/wiki/X.690#DER_encoding">DER</a>,
is a tag-length-value format. That is, to encode an object, first you write
down a tag representing its type (usually one byte), then you write
down a number expressing how long the object is, then you write down
the object contents. This is recursive: An object can contain multiple
objects within it, each of which has its own tag, length, and value.</p>

<p>One of the cool things about DER and other tag-length-value formats is that you
can decode them to some degree without knowing what they mean. For instance, I
can tell you that 0x30 means the data type &ldquo;SEQUENCE&rdquo; (a struct, in ASN.1
terms), and 0x02 means &ldquo;INTEGER&rdquo;, then give you this hex byte sequence to
decode:</p>

<pre><code>30 06 02 01 03 02 01 0A
</code></pre>

<p>You could tell me right away that decodes to:</p>

<pre><code>SEQUENCE
INTEGER 3
INTEGER 10
</code></pre>

<p>Try it yourself with this great <a href="https://lapo.it/asn1js/#300602010302010A">JavaScript ASN.1
decoder</a>. However, you wouldn&rsquo;t know
what those integers represent without the corresponding ASN.1 schema (or
&ldquo;module&rdquo;). For instance, if you knew that this was a piece of DogData, and the
schema was:</p>

<pre><code>DogData ::= SEQUENCE {
legs INTEGER,
cutenessLevel INTEGER
}
</code></pre>

<p>You&rsquo;d know this referred to a three-legged dog with a cuteness level of 10.</p>

<p>We can take some of this knowledge and apply it to our certificates. As a first
step, convert the above certificate to hex with
<code>xxd -ps &lt; Downloads/031f2484307c9bc511b3123cb236a480d451</code>. You can then copy
and paste the result into
<a href="https://lapo.it/asn1js">lapo.it/asn1js</a> (or use <a href="https://lapo.it/asn1js/#3082062F30820517A0030201020212031F2484307C9BC511B3123CB236A480D451300D06092A864886F70D01010B0500304A310B300906035504061302555331163014060355040A130D4C6574277320456E6372797074312330210603550403131A4C6574277320456E637279707420417574686F72697479205833301E170D3138303332393137343530375A170D3138303632373137343530375A302D312B3029060355040313223563396137662E6C652D746573742E686F66666D616E2D616E64726577732E636F6D30820122300D06092A864886F70D01010105000382010F003082010A0282010100BCEAE8F504D9D91FCFC69DB943254A7FED7C6A3C04E2D5C7DDD010CBBC555887274489CA4F432DCE6D7AB83D0D7BDB49C466FBCA93102DC63E0EB1FB2A0C50654FD90B81A6CB357F58E26E50F752BF7BFE9B56190126A47409814F59583BDD337DFB89283BE22E81E6DCE13B4E21FA6009FC8A7F903A17AB05C8BED85A715356837E849E571960A8999701EAE9CE0544EAAB936B790C3C35C375DB18E9AA627D5FA3579A0FB5F8079E4A5C9BE31C2B91A7F3A63AFDFEDB9BD4EA6668902417D286BE4BBE5E43CD9FE1B8954C06F21F5C5594FD3AB7D7A9CBD6ABF19774D652FD35C5718C25A3BA1967846CED70CDBA95831CF1E09FF7B8014E63030CE7A776750203010001A382032A30820326300E0603551D0F0101FF0404030205A0301D0603551D250416301406082B0601050507030106082B06010505070302300C0603551D130101FF04023000301D0603551D0E041604148B3A21ABADF50C4B30DCCD822724D2C4B9BA29E3301F0603551D23041830168014A84A6A63047DDDBAE6D139B7A64565EFF3A8ECA1306F06082B0601050507010104633061302E06082B060105050730018622687474703A2F2F6F6373702E696E742D78332E6C657473656E63727970742E6F7267302F06082B060105050730028623687474703A2F2F636572742E696E742D78332E6C657473656E63727970742E6F72672F302D0603551D110426302482223563396137662E6C652D746573742E686F66666D616E2D616E64726577732E636F6D3081FE0603551D200481F63081F33008060667810C0102013081E6060B2B0601040182DF130101013081D6302606082B06010505070201161A687474703A2F2F6370732E6C657473656E63727970742E6F72673081AB06082B0601050507020230819E0C819B54686973204365727469666963617465206D6179206F6E6C792062652072656C6965642075706F6E2062792052656C79696E67205061727469657320616E64206F6E6C7920696E206163636F7264616E636520776974682074686520436572746966696361746520506F6C69637920666F756E642061742068747470733A2F2F6C657473656E63727970742E6F72672F7265706F7369746F72792F30820104060A2B06010401D6790204020481F50481F200F0007500DB74AFEECB29ECB1FECA3E716D2CE5B9AABB36F7847183C75D9D4F37B61FBF64000001627313EB19000004030046304402207E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD30220659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419007700293C519654C83965BAAA50FC5807D4B76FBF587A2972DCA4C30CF4E54547F478000001627313EB2A0000040300483046022100AB72F1E4D6223EF87FC68491C208D29D4D57EBF47588BB7544D32F9537E2CEC10221008AFFC40CC6C4E3B24578DADE4F815ECBCE2D57A579342119A1E65BC7E5E69CE2300D06092A864886F70D01010B0500038201010095F87B663176776502F792DDD232C216943C7803876FCBEB46393A36354958134482E0AFEED39011618327C2F0203351758FEB420B73CE6C797B98F88076F409F3903F343D1F5D9540F41EF47EB39BD61B62873A44F00B7C8B593C6A416458CF4B5318F35235BC88EABBAA34F3E3F81BD3B047E982EE1363885E84F76F2F079F2B6EEB4ECB58EFE74C8DE7D54DE5C89C4FB5BB0694B837BD6F02BAFD5A6C007D1B93D25007BDA9B2BDBF82201FE1B76B628CE34E2D974E8E623EC57A5CB53B435DD4B9993ADF6BA3972F2B29D259594A94E17BBE06F34AAE5CF0F50297548C4DFFC5566136F78A3D3B324EAE931A14EB6BE6DA1D538E48CF077583C67B52E7E8">this handy link</a>). You can also run <code>openssl asn1parse -i -inform der -in Downloads/031f2484307c9bc511b3123cb236a480d451</code> to use OpenSSL&rsquo;s parser, which is less easy to use in some ways, but easier to copy and paste.</p>

<p>In the decoded data, we can find the OID <code>1.3.6.1.4.1.11129.2.4.2</code>, indicating
the SCT list extension. Per <a href="https://tools.ietf.org/html/rfc5280#page-17">RFC 5280, section
4.1</a>, an extension is defined:</p>

<pre><code>Extension ::= SEQUENCE {
extnID OBJECT IDENTIFIER,
critical BOOLEAN DEFAULT FALSE,
extnValue OCTET STRING
— contains the DER encoding of an ASN.1 value
— corresponding to the extension type identified
— by extnID
}
</code></pre>

<p>We&rsquo;ve found the <code>extnID</code>. The &ldquo;critical&rdquo; field is omitted because it has the
default value (false). Next up is the <code>extnValue</code>. This has the type
<code>OCTET STRING</code>, which has the tag &ldquo;0x04&rdquo;. <code>OCTET STRING</code> means &ldquo;here&rsquo;s
a bunch of bytes!&rdquo; In this case, as described by the spec, those bytes
happen to contain more DER. This is a fairly common pattern in X.509
to deal with parameterized data. For instance, this allows defining a
structure for extensions without knowing ahead of time all the structures
that a future extension might want to carry in its value. If you&rsquo;re a C
programmer, think of it as a <code>void*</code> for data structures. If you prefer Go,
think of it as an <code>interface{}</code>.</p>

<p>Here&rsquo;s that <code>extnValue</code>:</p>

<pre><code>04 81 F5 0481F200F0007500DB74AFEECB29ECB1FECA3E716D2CE5B9AABB36F7847183C75D9D4F37B61FBF64000001627313EB19000004030046304402207E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD30220659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419007700293C519654C83965BAAA50FC5807D4B76FBF587A2972DCA4C30CF4E54547F478000001627313EB2A0000040300483046022100AB72F1E4D6223EF87FC68491C208D29D4D57EBF47588BB7544D32F9537E2CEC10221008AFFC40CC6C4E3B24578DADE4F815ECBCE2D57A579342119A1E65BC7E5E69CE2
</code></pre>

<p>That&rsquo;s tag &ldquo;0x04&rdquo;, meaning <code>OCTET STRING</code>, followed by &ldquo;0x81 0xF5&rdquo;, meaning
&ldquo;this string is 245 bytes long&rdquo; (the 0x81 prefix is part of <a href="#variable-length">variable length
number encoding</a>).</p>

<p>According to <a href="https://tools.ietf.org/html/rfc6962#section-3.3">RFC 6962, section
3.3</a>, &ldquo;obtained SCTs
can be directly embedded in the final certificate, by encoding the
SignedCertificateTimestampList structure as an ASN.1 <code>OCTET STRING</code>
and inserting the resulting data in the TBSCertificate as an X.509v3
certificate extension&rdquo;</p>

<p>So, we have an <code>OCTET STRING</code>, all&rsquo;s good, right? Except if you remove the
tag and length from extnValue to get its value, you&rsquo;re left with:</p>

<pre><code>04 81 F2 00F0007500DB74AFEEC…
</code></pre>

<p>There&rsquo;s that &ldquo;0x04&rdquo; tag again, but with a shorter length. Why
do we nest one <code>OCTET STRING</code> inside another? It&rsquo;s because the
contents of extnValue are required by RFC 5280 to be valid DER, but a
SignedCertificateTimestampList is not encoded using DER (more on that
in a minute). So, by RFC 6962, a SignedCertificateTimestampList is wrapped in an
<code>OCTET STRING</code>, which is wrapped in another <code>OCTET STRING</code> (the extnValue).</p>

<p>Once we decode that second <code>OCTET STRING</code>, we&rsquo;re left with the contents:</p>

<pre><code>00F0007500DB74AFEEC…
</code></pre>

<p>&ldquo;0x00&rdquo; isn&rsquo;t a valid tag in DER. What is this? It&rsquo;s TLS encoding. This is
defined in <a href="https://tools.ietf.org/html/rfc5246#section-4">RFC 5246, section 4</a>
(the TLS 1.2 RFC). TLS encoding, like ASN.1, has both a way to define data
structures and a way to encode those structures. TLS encoding differs
from DER in that there are no tags, and lengths are only encoded when necessary for
variable-length arrays. Within an encoded structure, the type of a field is determined by
its position, rather than by a tag. This means that TLS-encoded structures are
more compact than DER structures, but also that they can&rsquo;t be processed without
knowing the corresponding schema. For instance, here&rsquo;s the top-level schema from
<a href="https://tools.ietf.org/html/rfc6962#section-3.3">RFC 6962, section 3.3</a>:</p>

<pre><code> The contents of the ASN.1 OCTET STRING embedded in an OCSP extension
or X509v3 certificate extension are as follows:

opaque SerializedSCT&lt;1..2^16-1&gt;;

struct {
SerializedSCT sct_list &lt;1..2^16-1&gt;;
} SignedCertificateTimestampList;

Here, &quot;SerializedSCT&quot; is an opaque byte string that contains the
serialized TLS structure.
</code></pre>

<p>Right away, we&rsquo;ve found one of those variable-length arrays. The length of such
an array (in bytes) is always represented by a length field just big enough to
hold the max array size. The max size of an <code>sct_list</code> is 65535 bytes, so the
length field is two bytes wide. Sure enough, those first two bytes are &ldquo;0x00
0xF0&rdquo;, or 240 in decimal. In other words, this <code>sct_list</code> will have 240 bytes. We
don&rsquo;t yet know how many SCTs will be in it. That will become clear only by
continuing to parse the encoded data and seeing where each struct ends (spoiler
alert: there are two SCTs!).</p>

<p>Now we know the first SerializedSCT starts with <code>0075…</code>. SerializedSCT
is itself a variable-length field, this time containing <code>opaque</code> bytes (much like <code>OCTET STRING</code>
back in the ASN.1 world). Like SignedCertificateTimestampList, it has a max size
of 65535 bytes, so we pull off the first two bytes and discover that the first
SerializedSCT is 0x0075 (117 decimal) bytes long. Here&rsquo;s the whole thing, in
hex:</p>

<pre><code>00DB74AFEECB29ECB1FECA3E716D2CE5B9AABB36F7847183C75D9D4F37B61FBF64000001627313EB19000004030046304402207E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD30220659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419
</code></pre>

<p>This can be decoded using the TLS encoding struct defined in <a href="https://tools.ietf.org/html/rfc6962#page-13">RFC 6962, section
3.2</a>:</p>

<pre><code>enum { v1(0), (255) }
Version;

struct {
opaque key_id[32];
} LogID;

opaque CtExtensions&lt;0..2^16-1&gt;;

struct {
Version sct_version;
LogID id;
uint64 timestamp;
CtExtensions extensions;
digitally-signed struct {
Version sct_version;
SignatureType signature_type = certificate_timestamp;
uint64 timestamp;
LogEntryType entry_type;
select(entry_type) {
case x509_entry: ASN.1Cert;
case precert_entry: PreCert;
} signed_entry;
CtExtensions extensions;
};
} SignedCertificateTimestamp;
</code></pre>

<p>Breaking that down:</p>

<pre><code># Version sct_version v1(0)
00
# LogID id (aka opaque key_id[32])
DB74AFEECB29ECB1FECA3E716D2CE5B9AABB36F7847183C75D9D4F37B61FBF64
# uint64 timestamp (milliseconds since the epoch)
000001627313EB19
# CtExtensions extensions (zero-length array)
0000
# digitally-signed struct
04030046304402207E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD30220659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419
</code></pre>

<p>To understand the &ldquo;digitally-signed struct,&rdquo; we need to turn back to <a href="https://tools.ietf.org/html/rfc5246#section-4.7">RFC 5246,
section 4.7</a>. It says:</p>

<pre><code>A digitally-signed element is encoded as a struct DigitallySigned:

struct {
SignatureAndHashAlgorithm algorithm;
opaque signature&lt;0..2^16-1&gt;;
} DigitallySigned;
</code></pre>

<p>And in <a href="https://tools.ietf.org/html/rfc5246#section-7.4.1.4.1">section
7.4.1.4.1</a>:</p>

<pre><code>enum {
none(0), md5(1), sha1(2), sha224(3), sha256(4), sha384(5),
sha512(6), (255)
} HashAlgorithm;

enum { anonymous(0), rsa(1), dsa(2), ecdsa(3), (255) }
SignatureAlgorithm;

struct {
HashAlgorithm hash;
SignatureAlgorithm signature;
} SignatureAndHashAlgorithm;
</code></pre>

<p>We have &ldquo;0x0403&rdquo;, which corresponds to sha256(4) and ecdsa(3). The next two
bytes, &ldquo;0x0046&rdquo;, tell us the length of the &ldquo;opaque signature&rdquo; field, 70 bytes in
decimal. To decode the signature, we reference <a href="https://tools.ietf.org/html/rfc4492#page-20">RFC 4492 section
5.4</a>, which says:</p>

<pre><code>The digitally-signed element is encoded as an opaque vector &lt;0..2^16-1&gt;, the
contents of which are the DER encoding corresponding to the
following ASN.1 notation.

Ecdsa-Sig-Value ::= SEQUENCE {
r INTEGER,
s INTEGER
}
</code></pre>

<p>Having dived through two layers of TLS encoding, we are now back in ASN.1 land!
We
<a href="https://lapo.it/asn1js/#304402207E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD30220659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419">decode</a>
the remaining bytes into a SEQUENCE containing two INTEGERS. And we&rsquo;re done! Here&rsquo;s the whole
extension decoded:</p>

<pre><code># Extension SEQUENCE – RFC 5280
30
# length 0x0104 bytes (260 decimal)
820104
# OBJECT IDENTIFIER
06
# length 0x0A bytes (10 decimal)
0A
# value (1.3.6.1.4.1.11129.2.4.2)
2B06010401D679020402
# OCTET STRING
04
# length 0xF5 bytes (245 decimal)
81F5
# OCTET STRING (embedded) – RFC 6962
04
# length 0xF2 bytes (242 decimal)
81F2
# Beginning of TLS encoded SignedCertificateTimestampList – RFC 5246 / 6962
# length 0xF0 bytes
00F0
# opaque SerializedSCT&lt;1..2^16-1&gt;
# length 0x75 bytes
0075
# Version sct_version v1(0)
00
# LogID id (aka opaque key_id[32])
DB74AFEECB29ECB1FECA3E716D2CE5B9AABB36F7847183C75D9D4F37B61FBF64
# uint64 timestamp (milliseconds since the epoch)
000001627313EB19
# CtExtensions extensions (zero-length array)
0000
# digitally-signed struct – RFC 5426
# SignatureAndHashAlgorithm (ecdsa-sha256)
0403
# opaque signature&lt;0..2^16-1&gt;;
# length 0x0046
0046
# DER-encoded Ecdsa-Sig-Value – RFC 4492
30 # SEQUENCE
44 # length 0x44 bytes
02 # r INTEGER
20 # length 0x20 bytes
# value
7E1FCD1E9A2BD2A50A0C81E713033A0762340DA8F91EF27A48B3817640159CD3
02 # s INTEGER
20 # length 0x20 bytes
# value
659FE9F1D880E2E8F6B325BE9F18956D17C6CA8A6F2B12CB0F55FB70F759A419
# opaque SerializedSCT&lt;1..2^16-1&gt;
# length 0x77 bytes
0077
# Version sct_version v1(0)
00
# LogID id (aka opaque key_id[32])
293C519654C83965BAAA50FC5807D4B76FBF587A2972DCA4C30CF4E54547F478
# uint64 timestamp (milliseconds since the epoch)
000001627313EB2A
# CtExtensions extensions (zero-length array)
0000
# digitally-signed struct – RFC 5426
# SignatureAndHashAlgorithm (ecdsa-sha256)
0403
# opaque signature&lt;0..2^16-1&gt;;
# length 0x0048
0048
# DER-encoded Ecdsa-Sig-Value – RFC 4492
30 # SEQUENCE
46 # length 0x46 bytes
02 # r INTEGER
21 # length 0x21 bytes
# value
00AB72F1E4D6223EF87FC68491C208D29D4D57EBF47588BB7544D32F9537E2CEC1
02 # s INTEGER
21 # length 0x21 bytes
# value
008AFFC40CC6C4E3B24578DADE4F815ECBCE2D57A579342119A1E65BC7E5E69CE2
</code></pre>

<p>One surprising thing you might notice: In the first SCT, <code>r</code> and <code>s</code> are twenty
bytes long. In the second SCT, they are both twenty-one bytes long, and have a
leading zero. Integers in DER are two&rsquo;s complement, so if the leftmost bit is
set, they are interpreted as negative. Since <code>r</code> and <code>s</code> are positive, if the
leftmost bit would be a 1, an extra byte has to be added so that the leftmost
bit can be 0.</p>

<p>This is a little taste of what goes into encoding a certificate. I hope it was
informative! If you&rsquo;d like to learn more, I recommend &ldquo;<a href="http://luca.ntop.org/Teaching/Appunti/asn1.html">A Layman&rsquo;s Guide to a
Subset of ASN.1, BER, and DER</a>.&rdquo;</p>

<p><a name="poison"></a>Footnote 1: A &ldquo;poison extension&rdquo; is defined by <a href="https://tools.ietf.org/html/rfc6962#section-3.1">RFC 6962
section 3.1</a>:</p>

<pre><code>The Precertificate is constructed from the certificate to be issued by adding a special
critical poison extension (OID `1.3.6.1.4.1.11129.2.4.3`, whose
extnValue OCTET STRING contains ASN.1 NULL data (0x05 0x00))
</code></pre>

<p>In other words, it&rsquo;s an empty extension whose only purpose is to ensure that
certificate processors will not accept precertificates as valid certificates. The
specification ensures this by setting the &ldquo;critical&rdquo; bit on the extension, which
ensures that code that doesn&rsquo;t recognize the extension will reject the whole
certificate. Code that does recognize the extension specifically as poison
will also reject the certificate.</p>

<p><a name="variable-length"></a>Footnote 2: Lengths from 0-127 are represented by
a single byte (short form). To express longer lengths, more bytes are used (long form).
The high bit (0x80) on the first byte is set to distinguish long form from short
form. The remaining bits are used to express how many more bytes to read for the
length. For instance, 0x81F5 means &ldquo;this is long form because the length is
greater than 127, but there&rsquo;s still only one byte of length (0xF5) to decode.&rdquo;</p>

Take home Mugsy, the Raspberry Pi coffee robot

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mugsy/

We love Mugsy, the Raspberry Pi coffee robot that has smashed its crowdfunding goal within days! Our latest YouTube video shows our catch-up with Mugsy and its creator Matthew Oswald at Maker Faire New York last year.

MUGSY THE RASPBERRY PI COFFEE ROBOT #MFNYC

Uploaded by Raspberry Pi on 2018-03-22.

Mugsy

Labelled ‘the world’s first hackable, customisable, dead simple, robotic coffee maker’, Mugsy allows you to take control of every aspect of the coffee-making process: from grind size and water temperature, to brew and bloom time. Feeling lazy instead? Read in your beans’ barcode via an onboard scanner, and it will automatically use the best settings for your brew.

Mugsy Raspberry Pi Coffee Robot

Looking to start your day with your favourite coffee straight out of bed? Send the robot a text, email, or tweet, and it will notify you when your coffee is ready!

Learning through product development

“Initially, I used [Mugsy] as a way to teach myself hardware design,” explained Matthew at his Editor’s Choice–winning Maker Faire stand. “I really wanted to hold something tangible in my hands. By using the Raspberry Pi and just being curious, anytime I wanted to use a new technology, I would try to pull back [and ask] ‘How can I integrate this into Mugsy?’”

Mugsy Raspberry Pi Coffee Robot

By exploring his passions and using Mugsy as his guinea pig, Matthew created a project that not only solves a problem — how to make amazing coffee at home — but also brings him one step closer to ‘making things’ for a living. “I used to dream about this stuff when I was a kid, and I used to say ‘I’m never going to be able to do something like that.’” he admitted. But now, with open-source devices like the Raspberry Pi so readily available, he “can see the end of the road”: making his passion his livelihood.

Back Mugsy

With only a few days left on the Kickstarter campaign, Mugsy has reached its goal and then some. It’s available for backing from $150 if you provide your own Raspberry Pi 3, or from $175 with a Pi included — check it out today!

The post Take home Mugsy, the Raspberry Pi coffee robot appeared first on Raspberry Pi.

Our 2017 Annual Review

Post Syndicated from Oliver Quinlan original https://www.raspberrypi.org/blog/annual-review-2017/

Each year we take stock at the Raspberry Pi Foundation, looking back at what we’ve achieved over the previous twelve months. We’ve just published our Annual Review for 2017, reflecting on the progress we’ve made as a foundation and a community towards putting the power of digital making in the hands of people all over the world.

In the review, you can find out about all the different education programmes we run. Moreover, you can hear from people who have taken part, learned through making, and discovered they can do things with technology that they never thought they could.

Growing our reach

Our reach grew hugely in 2017, and the numbers tell this story.

By the end of 2017, we’d sold over 17 million Raspberry Pi computers, bringing tools for learning programming and physical computing to people all over the world.

Vibrant learning and making communities

Code Club grew by 2964 clubs in 2017, to over 10000 clubs across the world reaching over 150000 9- to 13-year-olds.

“The best moment is seeing a child discover something for the first time. It is amazing.”
– Code Club volunteer

In 2017 CoderDojo became part of the Raspberry Pi family. Over the year, it grew by 41% to 1556 active Dojos, involving nearly 40000 7- to 17-year-olds in creating with code and collaborating to learn about technology.

Raspberry Jams continued to grow, with 18700 people attending events organised by our amazing community members.



Supporting teaching and learning

We reached 208 projects in our online resources in 2017, and 8.5 million people visited these to get making.

“I like coding because it’s like a whole other language that you have to learn, and it creates something very interesting in the end.”
– Betty, Year 10 student

2017 was also the year we began offering online training courses. 19000 people joined us to learn about programming, physical computing, and running a Code Club.



Over 6800 young people entered Mission Zero and Mission Space Lab, 2017’s two Astro Pi challenges. They created code that ran on board the International Space Station or will run soon.

More than 600 educators joined our face-to-face Picademy training last year. Our community of Raspberry Pi Certified Educators grew to 1500, all leading digital making across schools, libraries, and other settings where young people learn.

Being social

Well over a million people follow us on social media, and in 2017 we’ve seen big increases in our YouTube and Instagram followings. We have been creating much more video content to share what we do with audiences on these and other social networks.

The future

It’s been a big year, as we continue to reach even more people. This wouldn’t be possible without the amazing work of volunteers and community members who do so much to create opportunities for others to get involved. Behind each of these numbers is a person discovering digital making for the first time, learning new skills, or succeeding with a project that makes a difference to something they care about.

You can read our 2017 Annual Review in full over on our About Us page.

The post Our 2017 Annual Review appeared first on Raspberry Pi.

Raspberry Pi 3 Model B+ on sale now at $35

Post Syndicated from Eben Upton original https://www.raspberrypi.org/blog/raspberry-pi-3-model-bplus-sale-now-35/

Here’s a long post. We think you’ll find it interesting. If you don’t have time to read it all, we recommend you watch this video, which will fill you in with everything you need, and then head straight to the product page to fill yer boots. (We recommend the video anyway, even if you do have time for a long read. ‘Cos it’s fab.)

A BRAND-NEW PI FOR π DAY

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

If you’ve been a Raspberry Pi watcher for a while now, you’ll have a bit of a feel for how we update our products. Just over two years ago, we released Raspberry Pi 3 Model B. This was our first 64-bit product, and our first product to feature integrated wireless connectivity. Since then, we’ve sold over nine million Raspberry Pi 3 units (we’ve sold 19 million Raspberry Pis in total), which have been put to work in schools, homes, offices and factories all over the globe.

Those Raspberry Pi watchers will know that we have a history of releasing improved versions of our products a couple of years into their lives. The first example was Raspberry Pi 1 Model B+, which added two additional USB ports, introduced our current form factor, and rolled up a variety of other feedback from the community. Raspberry Pi 2 didn’t get this treatment, of course, as it was superseded after only one year; but it feels like it’s high time that Raspberry Pi 3 received the “plus” treatment.

So, without further ado, Raspberry Pi 3 Model B+ is now on sale for $35 (the same price as the existing Raspberry Pi 3 Model B), featuring:

  • A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU
  • Dual-band 802.11ac wireless LAN and Bluetooth 4.2
  • Faster Ethernet (Gigabit Ethernet over USB 2.0)
  • Power-over-Ethernet support (with separate PoE HAT)
  • Improved PXE network and USB mass-storage booting
  • Improved thermal management

Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

Behold the shiny

Raspberry Pi 3B+ is available to buy today from our network of Approved Resellers.

New features, new chips

Roger Thornton did the design work on this revision of the Raspberry Pi. Here, he and I have a chat about what’s new.

Introducing the Raspberry Pi 3 Model B+

Raspberry Pi 3 Model B+ is now on sale now for $35, featuring: – A 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU – Dual-band 802.11ac wireless LAN and Bluetooth 4.2 – Faster Ethernet (Gigabit Ethernet over USB 2.0) – Power-over-Ethernet support (with separate PoE HAT) – Improved PXE network and USB mass-storage booting – Improved thermal management Alongside a 200MHz increase in peak CPU clock frequency, we have roughly three times the wired and wireless network throughput, and the ability to sustain high performance for much longer periods.

The new product is built around BCM2837B0, an updated version of the 64-bit Broadcom application processor used in Raspberry Pi 3B, which incorporates power integrity optimisations, and a heat spreader (that’s the shiny metal bit you can see in the photos). Together these allow us to reach higher clock frequencies (or to run at lower voltages to reduce power consumption), and to more accurately monitor and control the temperature of the chip.

Dual-band wireless LAN and Bluetooth are provided by the Cypress CYW43455 “combo” chip, connected to a Proant PCB antenna similar to the one used on Raspberry Pi Zero W. Compared to its predecessor, Raspberry Pi 3B+ delivers somewhat better performance in the 2.4GHz band, and far better performance in the 5GHz band, as demonstrated by these iperf results from LibreELEC developer Milhouse.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 35.7 35.6
Raspberry Pi 3B+ (2.4GHz) 46.7 46.3
Raspberry Pi 3B+ (5GHz) 102 102

The wireless circuitry is encapsulated under a metal shield, rather fetchingly embossed with our logo. This has allowed us to certify the entire board as a radio module under FCC rules, which in turn will significantly reduce the cost of conformance testing Raspberry Pi-based products.

We’ll be teaching metalwork next.

Previous Raspberry Pi devices have used the LAN951x family of chips, which combine a USB hub and 10/100 Ethernet controller. For Raspberry Pi 3B+, Microchip have supported us with an upgraded version, LAN7515, which supports Gigabit Ethernet. While the USB 2.0 connection to the application processor limits the available bandwidth, we still see roughly a threefold increase in throughput compared to Raspberry Pi 3B. Again, here are some typical iperf results.

Tx bandwidth (Mb/s) Rx bandwidth (Mb/s)
Raspberry Pi 3B 94.1 95.5
Raspberry Pi 3B+ 315 315

We use a magjack that supports Power over Ethernet (PoE), and bring the relevant signals to a new 4-pin header. We will shortly launch a PoE HAT which can generate the 5V necessary to power the Raspberry Pi from the 48V PoE supply.

There… are… four… pins!

Coming soon to a Raspberry Pi 3B+ near you

Raspberry Pi 3B was our first product to support PXE Ethernet boot. Testing it in the wild shook out a number of compatibility issues with particular switches and traffic environments. Gordon has rolled up fixes for all known issues into the BCM2837B0 boot ROM, and PXE boot is now enabled by default.

Clocking, voltages and thermals

The improved power integrity of the BCM2837B0 package, and the improved regulation accuracy of our new MaxLinear MxL7704 power management IC, have allowed us to tune our clocking and voltage rules for both better peak performance and longer-duration sustained performance.

Below 70°C, we use the improvements to increase the core frequency to 1.4GHz. Above 70°C, we drop to 1.2GHz, and use the improvements to decrease the core voltage, increasing the period of time before we reach our 80°C thermal throttle; the reduction in power consumption is such that many use cases will never reach the throttle. Like a modern smartphone, we treat the thermal mass of the device as a resource, to be spent carefully with the goal of optimising user experience.

This graph, courtesy of Gareth Halfacree, demonstrates that Raspberry Pi 3B+ runs faster and at a lower temperature for the duration of an eight‑minute quad‑core Sysbench CPU test.

Note that Raspberry Pi 3B+ does consume substantially more power than its predecessor. We strongly encourage you to use a high-quality 2.5A power supply, such as the official Raspberry Pi Universal Power Supply.

FAQs

We’ll keep updating this list over the next couple of days, but here are a few to get you started.

Are you discontinuing earlier Raspberry Pi models?

No. We have a lot of industrial customers who will want to stick with the existing products for the time being. We’ll keep building these models for as long as there’s demand. Raspberry Pi 1B+, Raspberry Pi 2B, and Raspberry Pi 3B will continue to sell for $25, $35, and $35 respectively.

What about Model A+?

Raspberry Pi 1A+ continues to be the $20 entry-level “big” Raspberry Pi for the time being. We are considering the possibility of producing a Raspberry Pi 3A+ in due course.

What about the Compute Module?

CM1, CM3 and CM3L will continue to be available. We may offer versions of CM3 and CM3L with BCM2837B0 in due course, depending on customer demand.

Are you still using VideoCore?

Yes. VideoCore IV 3D is the only publicly-documented 3D graphics core for ARM‑based SoCs, and we want to make Raspberry Pi more open over time, not less.

Credits

A project like this requires a vast amount of focused work from a large team over an extended period. Particular credit is due to Roger Thornton, who designed the board and ran the exhaustive (and exhausting) RF compliance campaign, and to the team at the Sony UK Technology Centre in Pencoed, South Wales. A partial list of others who made major direct contributions to the BCM2837B0 chip program, CYW43455 integration, LAN7515 and MxL7704 developments, and Raspberry Pi 3B+ itself follows:

James Adams, David Armour, Jonathan Bell, Maria Blazquez, Jamie Brogan-Shaw, Mike Buffham, Rob Campling, Cindy Cao, Victor Carmon, KK Chan, Nick Chase, Nigel Cheetham, Scott Clark, Nigel Clift, Dominic Cobley, Peter Coyle, John Cronk, Di Dai, Kurt Dennis, David Doyle, Andrew Edwards, Phil Elwell, John Ferdinand, Doug Freegard, Ian Furlong, Shawn Guo, Philip Harrison, Jason Hicks, Stefan Ho, Andrew Hoare, Gordon Hollingworth, Tuomas Hollman, EikPei Hu, James Hughes, Andy Hulbert, Anand Jain, David John, Prasanna Kerekoppa, Shaik Labeeb, Trevor Latham, Steve Le, David Lee, David Lewsey, Sherman Li, Xizhe Li, Simon Long, Fu Luo Larson, Juan Martinez, Sandhya Menon, Ben Mercer, James Mills, Max Passell, Mark Perry, Eric Phiri, Ashwin Rao, Justin Rees, James Reilly, Matt Rowley, Akshaye Sama, Ian Saturley, Serge Schneider, Manuel Sedlmair, Shawn Shadburn, Veeresh Shivashimper, Graham Smith, Ben Stephens, Mike Stimson, Yuree Tchong, Stuart Thomson, John Wadsworth, Ian Watch, Sarah Williams, Jason Zhu.

If you’re not on this list and think you should be, please let me know, and accept my apologies.

The post Raspberry Pi 3 Model B+ on sale now at $35 appeared first on Raspberry Pi.

Fstoppers Uploaded a Brilliant Hoax ‘Anti-Piracy’ Tutorial to The Pirate Bay

Post Syndicated from Andy original https://torrentfreak.com/fstoppers-uploaded-a-brilliant-hoax-anti-piracy-tutorial-to-the-pirate-bay-180307/

Fstoppers is an online community that produces extremely high-quality photographic tutorials. One of its most popular series is called Photographing the World which sees photographer Elia Locardi travel to exotic locations to demonstrate landscape and cityscape photography.

These tutorials sell for almost $300, with two or three versions in a pack selling for up $700. Of course, like any other media they get pirated so when Fstoppers were ready to release Photographing the World 3, they released it themselves on torrent sites a few days before retail.

Well, that’s what they wanted the world to believe.

“I think it’s fair to say that we’ve all downloaded ‘something’ illegally in the past. Whether it’s an MP3 years ago or a movie or a TV show, and occasionally you download something and it turns out it was kinda like a Rick Roll,” says Locardi.

“So we kept talking and we thought it would be a good idea to create this dummy lesson or shadow tutorial that was actually a fake and then seed it on BitTorrent.”

Where Fstoppers normally go to beautiful and exotic international locations, for their fake they decided to go to an Olive Garden in Charleston, South Carolina. Yet despite the clear change of location, they wanted people to believe the tutorial was legitimate.

“We wanted to ride this constant line of ‘Is this for real? Could this possibly be real? Is Elia [Locardi] joking right now? I don’t think he’s joking, he’s being totally serious’,” says Lee Morris, one of the co-owners of Fstoppers.

People really have to watch the tutorial to see what a fantastic job Fstoppers did in achieving that goal. For anyone unfamiliar with their work, the tutorial is initially hard to spot as a fake and even for veterans the level of ambiguity is really impressive.

However, when the tutorial heads back to the studio, where the post-processing lesson gets underway, there can be no doubt that something is amiss.

Things start off normally with serious teaching, then over time, the tutorial gets more and more ridiculous. Then, when the camera cuts away to show Locardi forming a ‘mask’ on an Olive Garden image, there can be no confusion.

That’s a cool mask….wait..

In order to get the tutorial out to the world, the site created its own torrent. They had never done anything like it before so got some associates to upload the huge 25GB+ package to The Pirate Bay and have their friends seed it. Then, in order to get past more savvy users on the site, they had other people come in and give the torrent good (but fake) reviews.

The fake torrent on The Pirate Bay (as of yesterday)

Screenshots provided by Fstoppers taken months ago reveal hundreds of downloaders. And, according to Morris, the fake became the most-downloaded Photographing the World 3 torrent online, meaning that the “majority of downloaders” got the comedy version.

Also of interest is the feedback Fstoppers got following their special release. Emails flooded in from pirates, some of whom were confused while others were upset at the ‘quality’ of the tutorial.

“The whole time we were thinking: ‘This isn’t even on the market yet! You guys are totally stealing this and emailing us and complaining about it,” says Fstoppers co-owner Patrick Hall.

While the tutorial itself is brilliant, Fstoppers points to a certain hypocrisy within its target audience of photographers, who themselves have to put up with a lot of online piracy of their work. Yet, clearly, many are happy to pirate the work of other photographers in order to make their own art better.

All that being said, the exercise is certainly an interesting one and the creativity behind the hoax puts it head and shoulders above more aggressive anti-piracy campaigns. However, when TF tracked down the torrent on The Pirate Bay last evening, it’s popularity had nosedived.

While it was initially downloaded by a lot of eager photographers, probably encouraged by the fake comments placed on the site by Fstoppers, the torrent is now only being shared by less than 10 people. As usual, the Pirate Bay users appear to have caught on, flagging the torrent as a fake. The moderators, it seems, have also deleted the fake comments.

While most people won’t want to download a 25GB torrent to see what Fstoppers came up with, the site has uploaded the fake tutorial to YouTube. It’s best viewed alongside their other work, which is sensational, but people should get a good idea by watching the explanation below.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

New free online course about building makerspaces

Post Syndicated from Andrew Collins original https://www.raspberrypi.org/blog/futurelearn-course-makerspace/

Helping people to get into making is at the heart of what we do, and so we’ve created a brand-new, free online course to support educators to start their own makerspaces. If you’re interested in the maker movement, then this course is for you! Sign up now and start learning with Build a Makerspace for Young People on FutureLearn.

Building a makerspace – free online learning

Find out how to create and run a makerspace for young people. Look at the pedagogy and approaches behind digital making.

Dive into the maker movement

From planning to execution, this course will cover everything you need to know to set up and lead your very own makerspace. You’ll learn about different approaches to designing makerspace environments, understand the pedagogy that underpins the maker movement, and create your own makerspace action plan. By the end of the course, you will be well versed in makerspace culture, and you’ll have the skills and knowledge to build a successful and thriving makerspace in your community.

Raspberry Pi Makerspace FutureLearn Online Course

Let makerspace experts lead your journey

This new course features five fantastic case studies about real-life makerspace educators. They’ll share their stories of starting a makerspace: what worked, what didn’t, and what’s next on their journey. Hear from Jessica Simons as she describes her experience starting the MCHS Maker Lab, connect with Patrick Ferrell as he details his teaching at the Jocelyn H. Lee Innovation Lab, and learn from Nick Provenzano as he shares his top tips on how to ensure the legacy of your makerspace. These accomplished educators will give you their practical advice and expert insights, helping you learn the best practices of starting a makerspace environment.

Raspberry Pi Makerspace FutureLearn Online Course

Connect with educators worldwide

By taking this course, you’ll also be connecting with talented and like-minded educators from across the globe. This is your opportunity to develop a community of practice while learning from fellow teachers, librarians, and community leaders who are also engaged in the maker movement.

“I like this course and how it progresses from introducing the concept of makerspaces and how they have come to education, all the way through to creating my own action plan to get started.”— Makerspace Educator in Hayward, California USA

Sign up now

The first run of our Build a Makerspace for Young People course starts on 12 March 2018. You can sign up and access all content for four weeks. After that period, we’ll run the course again multiple times throughout the year. Enjoy, and happy making!

The post New free online course about building makerspaces appeared first on Raspberry Pi.

Transition from Scratch to Python with FutureLearn

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/futurelearn-scratch-to-python/

With the launch of our first new free online course of 2018 — Scratch to Python: Moving from Block- to Text-based Programming — two weeks away, I thought this would be a great opportunity to introduce you to the ins and outs of the course content so you know what to expect.

FutureLearn: Moving from Scratch to Python

Learn how to apply the thinking and programming skills you’ve learnt in Scratch to text-based programming languages like Python.

Take the plunge into text-based programming

The idea for this course arose from our conversations with educators who had set up a Code Club in their schools. Most people start a club by teaching Scratch, a block-based programming language, because it allows learners to drag and drop blocks of pre-written code into a window to create a program. The blocks automatically snap together, making it easy to build fun and educational projects that don’t require much troubleshooting. You can do almost anything a beginner could wish for with Scratch, even physical computing to control LEDs, buzzers, buttons, motors, and more!

Scratch to Python FutureLearn Raspberry Pi

However, on our face-to-face training programme Picademy, educators told us that they were finding it hard to engage children who had outgrown Scratch and needed a new challenge. It was easy for me to imagine: a young learner, who once felt confident about programming using Scratch, is now confused by the alien, seemingly awkward interface of Python. What used to take them minutes in Scratch now takes them hours to code, and they start to lose interest — not a good result, I’m sure you’ll agree. I wanted to help educators to navigate this period in their learners’ development, and so I’ve written a course that shows you how to take the programming and thinking skills you and your learners have developed in Scratch, and apply them to Python.

Scratch to Python FutureLearn Raspberry Pi

Who is the course for?

Educators from all backgrounds who are working with secondary school-aged learners. It will also be interesting to anyone who has spent time working with Scratch and wants to understand how programming concepts translate between different languages.

“It was great fun, and I thought that the ideas and resources would be great to use with Year 7 classes.”
Sue Grey, Classroom Teacher

What is covered?

After showing you the similarities and differences of Scratch and Python, and how the skills learned using one can be applied to the other, we will look at turning more complex Scratch scripts into Python programs. Through creating a Mad Libs game and developing a username generator, you will see how programs can be simplified in a text-based language. We will give you our top tips for debugging Python code, and you’ll have the chance to share your ideas for introducing more complex programs to your students.

Scratch to Python FutureLearn Raspberry Pi

After that, we will look at different data types in Python and write a script to calculate how old you are in dog years. Finally, you’ll dive deeper into the possibilities of Python by installing and using external Python libraries to perform some amazing tasks.

By the end of the course, you’ll be able to:

  • Transfer programming and thinking skills from Scratch to Python
  • Use fundamental Python programming skills
  • Identify errors in your Python code based on error messages, and debug your scripts
  • Produce tools to support students’ transition from block-based to text-based programming
  • Understand the power of text-based programming and what you can create with it

Where can I sign up?

The free four-week course starts on 12 March 2018, and you can sign up now on FutureLearn. While you’re there, be sure to check out our other free courses, such as Prepare to Run a Code Club, Teaching Physical Computing with a Raspberry Pi and Python, and our second new course Build a Makerspace for Young People — more information on it will follow in tomorrow’s blog post.

The post Transition from Scratch to Python with FutureLearn appeared first on Raspberry Pi.

Getting product security engineering right

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2018/02/getting-product-security-engineering.html

Product security is an interesting animal: it is a uniquely cross-disciplinary endeavor that spans policy, consulting,
process automation, in-depth software engineering, and cutting-edge vulnerability research. And in contrast to many
other specializations in our field of expertise – say, incident response or network security – we have virtually no
time-tested and coherent frameworks for setting it up within a company of any size.

In my previous post, I shared some thoughts
on nurturing technical organizations and cultivating the right kind of leadership within. Today, I figured it would
be fitting to follow up with several notes on what I learned about structuring product security work – and about actually
making the effort count.

The “comfort zone” trap

For security engineers, knowing your limits is a sought-after quality: there is nothing more dangerous than a security
expert who goes off script and starts dispensing authoritatively-sounding but bogus advice on a topic they know very
little about. But that same quality can be destructive when it prevents us from growing beyond our most familiar role: that of
a critic who pokes holes in other people’s designs.

The role of a resident security critic lends itself all too easily to a sense of supremacy: the mistaken
belief that our cognitive skills exceed the capabilities of the engineers and product managers who come to us for help
– and that the cool bugs we file are the ultimate proof of our special gift. We start taking pride in the mere act
of breaking somebody else’s software – and then write scathing but ineffectual critiques addressed to executives,
demanding that they either put a stop to a project or sign off on a risk. And hey, in the latter case, they better
brace for our triumphant “I told you so” at some later date.

Of course, escalations of this type have their place, but they need to be a very rare sight; when practiced routinely, they are a telltale
sign of a dysfunctional team. We might be failing to think up viable alternatives that are in tune with business or engineering needs; we might
be very unpersuasive, failing to communicate with other rational people in a language they understand; or it might be that our tolerance for risk
is badly out of whack with the rest of the company. Whatever the cause, I’ve seen high-level escalations where the security team
spoke of valiant efforts to resist inexplicably awful design decisions or data sharing setups; and where product leads in turn talked about
pressing business needs randomly blocked by obstinate security folks. Sometimes, simply having them compare their notes would be enough to arrive
at a technical solution – such as sharing a less sensitive subset of the data at hand.

To be effective, any product security program must be rooted in a partnership with the rest of the company, focused on helping them get stuff done
while eliminating or reducing security risks. To combat the toxic us-versus-them mentality, I found it helpful to have some team members with
software engineering backgrounds, even if it’s the ownership of a small open-source project or so. This can broaden our horizons, helping us see
that we all make the same mistakes – and that not every solution that sounds good on paper is usable once we code it up.

Getting off the treadmill

All security programs involve a good chunk of operational work. For product security, this can be a combination of product launch reviews, design consulting requests, incoming bug reports, or compliance-driven assessments of some sort. And curiously, such reactive work also has the property of gradually expanding to consume all the available resources on a team: next year is bound to bring even more review requests, even more regulatory hurdles, and even more incoming bugs to triage and fix.

Being more tractable, such routine tasks are also more readily enshrined in SDLs, SLAs, and all kinds of other official documents that are often mistaken for a mission statement that justifies the existence of our teams. Soon, instead of explaining to a developer why they should fix a particular problem right away, we end up pointing them to page 17 in our severity classification guideline, which defines that “severity 2” vulnerabilities need to be resolved within a month. Meanwhile, another policy may be telling them that they need to run a fuzzer or a web application scanner for a particular number of CPU-hours – no matter whether it makes sense or whether the job is set up right.

To run a product security program that scales sublinearly, stays abreast of future threats, and doesn’t erect bureaucratic speed bumps just for the sake of it, we need to recognize this inherent tendency for operational work to take over – and we need to reign it in. No matter what the last year’s policy says, we usually don’t need to be doing security reviews with a particular cadence or to a particular depth; if we need to scale them back 10% to staff a two-quarter project that fixes an important API and squashes an entire class of bugs, it’s a short-term risk we should feel empowered to take.

As noted in my earlier post, I find contingency planning to be a valuable tool in this regard: why not ask ourselves how the team would cope if the workload went up another 30%, but bad financial results precluded any team growth? It’s actually fun to think about such hypotheticals ahead of the time – and hey, if the ideas sound good, why not try them out today?

Living for a cause

It can be difficult to understand if our security efforts are structured and prioritized right; when faced with such uncertainty, it is natural to stick to the safe fundamentals – investing most of our resources into the very same things that everybody else in our industry appears to be focusing on today.

I think it’s important to combat this mindset – and if so, we might as well tackle it head on. Rather than focusing on tactical objectives and policy documents, try to write down a concise mission statement explaining why you are a team in the first place, what specific business outcomes you are aiming for, how do you prioritize it, and how you want it all to change in a year or two. It should be a fluid narrative that reads right and that everybody on your team can take pride in; my favorite way of starting the conversation is telling folks that we could always have a new VP tomorrow – and that the VP’s first order of business could be asking, “why do you have so many people here and how do I know they are doing the right thing?”. It’s a playful but realistic framing device that motivates people to get it done.

In general, a comprehensive product security program should probably start with the assumption that no matter how many resources we have at our disposal, we will never be able to stay in the loop on everything that’s happening across the company – and even if we did, we’re not going to be able to catch every single bug. It follows that one of our top priorities for the team should be making sure that bugs don’t happen very often; a scalable way of getting there is equipping engineers with intuitive and usable tools that make it easy to perform common tasks without having to worry about security at all. Examples include standardized, managed containers for production jobs; safe-by-default APIs, such as strict contextual autoescaping for XSS or type safety for SQL; security-conscious style guidelines; or plug-and-play libraries that take care of common crypto or ACL enforcement tasks.

Of course, not all problems can be addressed on framework level, and not every engineer will always reach for the right tools. Because of this, the next principle that I found to be worth focusing on is containment and mitigation: making sure that bugs are difficult to exploit when they happen, or that the damage is kept in check. The solutions in this space can range from low-level enhancements (say, hardened allocators or seccomp-bpf sandboxes) to client-facing features such as browser origin isolation or Content Security Policy.

The usual consulting, review, and outreach tasks are an important facet of a product security program, but probably shouldn’t be the sole focus of your team. It’s also best to avoid undue emphasis on vulnerability showmanship: while valuable in some contexts, it creates a hypercompetitive environment that may be hostile to less experienced team members – not to mention, squashing individual bugs offers very limited value if the same issue is likely to be reintroduced into the codebase the next day. I like to think of security reviews as a teaching opportunity instead: it’s a way to raise awareness, form partnerships with engineers, and help them develop lasting habits that reduce the incidence of bugs. Metrics to understand the impact of your work are important, too; if your engagements are seen mostly as a yet another layer of red tape, product teams will stop reaching out to you for advice.

The other tenet of a healthy product security effort requires us to recognize at a scale and given enough time, every defense mechanism is bound to fail – and so, we need ways to prevent bugs from turning into incidents. The efforts in this space may range from developing product-specific signals for the incident response and monitoring teams; to offering meaningful vulnerability reward programs and nourishing a healthy and respectful relationship with the research community; to organizing regular offensive exercises in hopes of spotting bugs before anybody else does.

Oh, one final note: an important feature of a healthy security program is the existence of multiple feedback loops that help you spot problems without the need to micromanage the organization and without being deathly afraid of taking chances. For example, the data coming from bug bounty programs, if analyzed correctly, offers a wonderful way to alert you to systemic problems in your codebase – and later on, to measure the impact of any remediation and hardening work.

[$] New tricks for XFS

Post Syndicated from jake original https://lwn.net/Articles/747633/rss

The XFS filesystem has been in the kernel for fifteen years and was used in
production on IRIX systems for five years before that. But it might just
be time to teach that “old dog” of a filesystem some new tricks, Dave
Chinner said, at the beginning of his linux.conf.au 2018 presentation.
There are a number of features that XFS lacks when compared to more modern
filesystems, such as snapshots and subvolumes; but he has been thinking—and
writing code—on a path to get them into XFS.

Community Profile: Estefannie Explains It All

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-estefannie/

This column is from The MagPi issue 59. You can download a PDF of the full issue for free, or subscribe to receive the print edition through your letterbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve our charitable goals.

“Hey, world!” Estefannie exclaims, a wide grin across her face as the camera begins to roll for another YouTube tutorial video. With a growing number of followers and wonderful support from her fans, Estefannie is building a solid reputation as an online maker, creating unique, fun content accessible to all.

A woman sitting at a desk with a laptop and papers — Estefannie Explains it All Raspberry Pi

It’s as if she was born into performing and making for an audience, but this fun, enjoyable journey to social media stardom came not from a desire to be in front of the camera, but rather as a unique approach to her own learning. While studying, Estefannie decided the best way to confirm her knowledge of a subject was to create an educational video explaining it. If she could teach a topic successfully, she knew she’d retained the information. And so her YouTube channel, Estefannie Explains It All, came into being.

Note taking — Estefannie Explains it All

Her first videos featured pages of notes with voice-over explanations of data structure and algorithm analysis. Then she moved in front of the camera, and expanded her skills in the process.

But YouTube isn’t her only outlet. With nearly 50000 followers, Estefannie’s Instagram game is strong, adding to an increasing number of female coders taking to the platform. Across her Instagram grid, you’ll find insights into her daily routine, from programming on location for work to behind-the-scenes troubleshooting as she begins to create another tutorial video. It’s hard work, with content creation for both Instagram and YouTube forever on her mind as she continues to work and progress successfully as a software engineer.

A woman showing off a game on a tablet — Estefannie Explains it All Raspberry Pi

As a thank you to her Instagram fans for helping her reach 10000 followers, Estefannie created a free game for Android and iOS called Gravitris — imagine Tetris with balance issues!

Estefannie was born and raised in Mexico, with ambitions to become a graphic designer and animator. However, a documentary on coding at Pixar, and the beauty of Merida’s hair in Brave, opened her mind to the opportunities of software engineering in animation. She altered her career path, moved to the United States, and switched to a Computer Science course.

A woman wearing safety goggles hugging a keyboard Estefannie Explains it All Raspberry Pi

With a constant desire to make and to learn, Estefannie combines her software engineering profession with her hobby to create fun, exciting content for YouTube.

While studying, Estefannie started a Computer Science Girls Club at the University of Houston, Texas, and she found herself eager to put more time and effort into the movement to increase the percentage of women in the industry. The club was a success, and still is to this day. While Estefannie has handed over the reins, she’s still very involved in the cause.

Through her YouTube videos, Estefannie continues the theme of inclusion, with every project offering a warm sense of approachability for all, regardless of age, gender, or skill. From exploring Scratch and Makey Makey with her young niece and nephew to creating her own Disney ‘Made with Magic’ backpack for a trip to Disney World, Florida, Estefannie’s videos are essentially a documentary of her own learning process, produced so viewers can learn with her — and learn from her mistakes — to create their own tech wonders.

Using the Raspberry Pi, she’s been able to broaden her skills and, in turn, her projects, creating a home-automated gingerbread house at Christmas, building a GPS-controlled GoPro for her trip to London, and making everyone’s life better with an Internet Button–controlled French press.

Estefannie Explains it All Raspberry Pi Home Automated Gingerbread House

Estefannie’s automated gingerbread house project was a labour of love, with electronics, wires, and candy strewn across both her living room and kitchen for weeks before completion. While she already was a skilled programmer, the world of physical digital making was still fairly new for Estefannie. Having ditched her hot glue gun in favour of a soldering iron in a previous video, she continued to experiment and try out new, interesting techniques that are now second nature to many members of the maker community. With the gingerbread house, Estefannie was able to research and apply techniques such as light controls, servos, and app making, although the latter was already firmly within her skill set. The result? A fun video of ups and downs that resulted in a wonderful, festive treat. She even gave her holiday home its own solar panel!

A DAY AT RASPBERRY PI TOWERS!! LINK IN BIO ⚡🎥 @raspberrypifoundation

1,910 Likes, 43 Comments – Estefannie Explains It All (@estefanniegg) on Instagram: “A DAY AT RASPBERRY PI TOWERS!! LINK IN BIO ⚡🎥 @raspberrypifoundation”

And that’s just the beginning of her adventures with Pi…but we won’t spoil her future plans by telling you what’s coming next. Sorry! However, since this article was written last year, Estefannie has released a few more Pi-based project videos, plus some awesome interviews and live-streams with other members of the maker community such as Simone Giertz. She even made us an awesome video for our Raspberry Pi YouTube channel! So be sure to check out her latest releases.

Best day yet!! I got to hangout, play Jenga with a huge arm robot, and have afternoon tea with @simonegiertz and robots!! 🤖👯 #shittyrobotnation

2,264 Likes, 56 Comments – Estefannie Explains It All (@estefanniegg) on Instagram: “Best day yet!! I got to hangout, play Jenga with a huge arm robot, and have afternoon tea with…”

While many wonderful maker videos show off a project without much explanation, or expect a certain level of skill from viewers hoping to recreate the project, Estefannie’s videos exist almost within their own category. We can’t wait to see where Estefannie Explains It All goes next!

The post Community Profile: Estefannie Explains It All appeared first on Raspberry Pi.

The Fisher Piano: make music in the air

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/air-piano/

Piano keys are so limiting! Why not swap them out for LEDs and the wealth of instruments in Pygame to build air keys, as demonstrated by Instructables maker 2fishy?

Raspberry Pi LED Light Schroeder Piano – Twinkle Little Star

Raspberry Pi LED Light Schroeder Piano – Twinkle Little Star

Keys? Where we’re going you don’t need keys!

This project, created by either Yolanda or Ken Fisher (or both!), uses an array of LEDs and photoresistors to form a MIDI sequencer. Twelve LEDs replace piano keys, and another three change octaves and access the menu.

Each LED is paired with a photoresistor, which detects the emitted light to form a closed circuit. Interrupting the light beam — in this case with a finger — breaks the circuit, telling the Python program to perform an action.

2fishy LED light piano raspberry pi

We’re all hoping this is just the scaled-down prototype of a full-sized LED grand piano

Using Pygame, the 2fishy team can access 75 different instruments and 128 notes per instrument, making their wooden piano more than just a one-hit wonder.

Piano building

The duo made the piano’s body out of plywood, hardboard, and dowels, and equipped it with a Raspberry Pi 2, a speaker, and the aforementioned LEDs and photoresistors.

2fishy LED light piano raspberry pi

A Raspberry Pi 2 and speaker sit within the wooden body, with LEDs and photoresistors in place of the keys.

A complete how-to for the build, including some rather fancy and informative schematics, is available at Instructables, where 2fishy received a bronze medal for their project. Congratulations!

Learn more

If you’d like to learn more about using Pygame, check out The MagPi’s Make Games with Python Essentials Guide, available both in print and as a free PDF download.

And for more music-based projects using a variety of tech, be sure to browse our free resources.

Lastly, if you’d like to see more piano-themed Raspberry Pi projects, take a look at our Big Minecraft Piano, these brilliant piano stairs, this laser-guided piano teacher, and our video below about the splendid Street Fighter duelling pianos we witnessed at Maker Faire.

Pianette: Piano Street Fighter at Maker Faire NYC 2016

Two pianos wired up as Playstation 2 controllers allow users to battle…musically! We caught up with makers Eric Redon and Cyril Chapellier of foobarflies a…

The post The Fisher Piano: make music in the air appeared first on Raspberry Pi.

Four days of STEAM at Bett 2018

Post Syndicated from Dan Fisher original https://www.raspberrypi.org/blog/bett-2018/

If you’re an educator from the UK, chances are you’ve heard of Bett. For everyone else: Bett stands for British Education Technology Tradeshow. It’s the El Dorado of edtech, where every street is adorned with interactive whiteboards, VR headsets, and new technologies for the classroom. Every year since 2014, the Raspberry Pi Foundation has been going to the event hosted in the ExCeL London to chat to thousands of lovely educators about our free programmes and resources.

Raspberry Pi Bett 2018

On a mission

Our setup this year consisted of four pods (imagine tables on steroids) in the STEAM village, and the mission of our highly trained team of education agents was to establish a new world record for Highest number of teachers talked to in a four-day period. I’m only half-joking.

Bett 2018 Raspberry Pi

Educators with a mission

Meeting educators

The best thing about being at Bett is meeting the educators who use our free content and training materials. It’s easy to get wrapped up in the everyday tasks of the office without stopping to ask: “Hey, have we asked our users what they want recently?” Events like Bett help us to connect with our audience, creating some lovely moments for both sides. We had plenty of Hello World authors visit us, including Gary Stager, co-author of Invent to Learn, a must-read for any computing educator. More than 700 people signed up for a digital subscription, we had numerous lovely conversations about our content and about ideas for new articles, and we met many new authors expressing an interest in writing for us in the future.

BETT 2018 Hello World Raspberry Pi
BETT 2018 Hello World Raspberry Pi
BETT 2018 Hello World Raspberry Pi

We also talked to lots of Raspberry Pi Certified Educators who we’d trained in our free Picademy programme — new dates in Belfast and Dublin now! — and who are now doing exciting and innovative things in their local areas. For example, Chris Snowden came to tell us about the great digital making outreach work he has been doing with the Eureka! museum in Yorkshire.

Bett 2018 Raspberry Pi

Raspberry Pi Certified Educator Chris Snowden

Digital making for kids

The other best thing about being at Bett is running workshops for young learners and seeing the delight on their faces when they accomplish something they believed to be impossible only five minutes ago. On the Saturday, we ran a massive Raspberry Jam/Code Club where over 250 children, parents, and curious onlookers got stuck into some of our computing activities. We were super happy to find out that we’d won the Bett Kids’ Choice Award for Best Hands-on Experience — a fantastic end to a busy four days. With Bett over for another year, our tired and happy ‘rebel alliance’ from across the Foundation still had the energy to pose for a group photo.

Bett 2018 Raspberry Pi

Celebrating our ‘Best Hands-on Experience’ award

More events

You can find out more about starting a Code Club here, and if you’re running a Jam, why not get involved with our global Raspberry Jam Big Birthday Weekend celebrations in March?

Raspberry Pi Big Birthday Weekend 2018. GIF with confetti and bopping JAM balloons

We’ll be at quite a few events in 2018, including the Big Bang Fair in March — do come and say hi.

The post Four days of STEAM at Bett 2018 appeared first on Raspberry Pi.

2018 Picademy dates in the United States

Post Syndicated from Andrew Collins original https://www.raspberrypi.org/blog/new-picademy-2018-dates-in-united-states/

Cue the lights! Cue the music! Picademy is back for another year stateside. We’re excited to bring our free computer science and digital making professional development program for educators to four new cities this summer — you can apply right now.

Picademy USA Denver Raspberry Pi
Picademy USA Seattle Raspberry Pi
Picademy USA Jersey City Raspberry Pi
Raspberry Pi Picademy USA Atlanta

We’re thrilled to kick off our 2018 season! Before we get started, let’s take a look back at our community’s accomplishments in the 2017 Picademy North America season.

Picademy 2017 highlights

Last year, we partnered with four awesome venues to host eight Picademy events in the United States. At every event across the country, we met incredibly talented educators passionate about bringing digital making to their learners. Whether it was at Ann Arbor District Library’s makerspace, UC Irvine’s College of Engineering, or a creative community center in Boise, Idaho, we were truly inspired by all our Picademy attendees and were thrilled to welcome them to the Raspberry Pi Certified Educator community.

JWU Hosts Picademy

JWU Providence’s College of Engineering & Design recently partnered with the Raspberry Pi Foundation to host Picademy, a free training session designed to give educators the tools to teach computer skills with confidence and creativity. | http://www.jwu.edu

The 2017 Picademy cohorts were a diverse bunch with a lot of experience in their field. We welcomed more than 300 educators from 32 U.S. states and 10 countries. They were a mix of high school, middle school, and elementary classroom teachers, librarians, museum staff, university lecturers, and teacher trainers. More than half of our attendees were teaching computer science or technology already, and over 90% were specifically interested in incorporating physical computing into their work.

Picademy has a strong and lasting impact on educators. Over 80% of graduates said they felt confident using Raspberry Pi after attending, and 88% said they were now interested in leading a digital making event in their community. To showcase two wonderful examples of this success: Chantel Mason led a Raspberry Pi workshop for families and educators in her community in St. Louis, Missouri this fall, and Dean Palmer led a digital making station at the Computer Science for Rhode Island Summit in December.

Picademy 2018 dates

This year, we’re partnering with four new venues to host our Picademy season.


We’ll be at mindSpark Learning in Denver the first week in June, at Liberty Science Center in Jersey City later that month, at Georgia Tech University in Atlanta in mid-July, and finally at the Living Computer Museum in Seattle the first week in August.


A big thank you to each of these venues for hosting us and supporting our free educator professional development program!

Ready to join us for Picademy 2018? Learn more and apply now: rpf.io/picademy2018.

The post 2018 Picademy dates in the United States appeared first on Raspberry Pi.

The problematic Wannacry North Korea attribution

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/the-problematic-wannacry-north-korea.html

Last month, the US government officially “attributed” the Wannacry ransomware worm to North Korea. This attribution has three flaws, which are a good lesson for attribution in general.

It was an accident

The most important fact about Wannacry is that it was an accident. We’ve had 30 years of experience with Internet worms teaching us that worms are always accidents. While launching worms may be intentional, their effects cannot be predicted. While they appear to have targets, like Slammer against South Korea, or Witty against the Pentagon, further analysis shows this was just a random effect that was impossible to predict ahead of time. Only in hindsight are these effects explainable.
We should hold those causing accidents accountable, too, but it’s a different accountability. The U.S. has caused more civilian deaths in its War on Terror than the terrorists caused triggering that war. But we hold these to be morally different: the terrorists targeted the innocent, whereas the U.S. takes great pains to avoid civilian casualties. 
Since we are talking about blaming those responsible for accidents, we also must include the NSA in that mix. The NSA created, then allowed the release of, weaponized exploits. That’s like accidentally dropping a load of unexploded bombs near a village. When those bombs are then used, those having lost the weapons are held guilty along with those using them. Yes, while we should blame the hacker who added ETERNAL BLUE to their ransomware, we should also blame the NSA for losing control of ETERNAL BLUE.

A country and its assets are different

Was it North Korea, or hackers affilliated with North Korea? These aren’t the same.

It’s hard for North Korea to have hackers of its own. It doesn’t have citizens who grow up with computers to pick from. Moreover, an internal hacking corps would create tainted citizens exposed to dangerous outside ideas. Update: Some people have pointed out that Kim Il-sung University in the capital does have some contact with the outside world, with academics granted limited Internet access, so I guess some tainting is allowed. Still, what we know of North Korea hacking efforts largley comes from hackers they employ outside North Korea. It was the Lazurus Group, outside North Korea, that did Wannacry.
Instead, North Korea develops external hacking “assets”, supporting several external hacking groups in China, Japan, and South Korea. This is similar to how intelligence agencies develop human “assets” in foreign countries. While these assets do things for their handlers, they also have normal day jobs, and do many things that are wholly independent and even sometimes against their handler’s interests.
For example, this Muckrock FOIA dump shows how “CIA assets” independently worked for Castro and assassinated a Panamanian president. That they also worked for the CIA does not make the CIA responsible for the Panamanian assassination.
That CIA/intelligence assets work this way is well-known and uncontroversial. The fact that countries use hacker assets like this is the controversial part. These hackers do act independently, yet we refuse to consider this when we want to “attribute” attacks.

Attribution is political

We have far better attribution for the nPetya attacks. It was less accidental (they clearly desired to disrupt Ukraine), and the hackers were much closer to the Russian government (Russian citizens). Yet, the Trump administration isn’t fighting Russia, they are fighting North Korea, so they don’t officially attribute nPetya to Russia, but do attribute Wannacry to North Korea.
Trump is in conflict with North Korea. He is looking for ways to escalate the conflict. Attributing Wannacry helps achieve his political objectives.
That it was blatantly politics is demonstrated by the way it was released to the press. It wasn’t released in the normal way, where the administration can stand behind it, and get challenged on the particulars. Instead, it was pre-released through the normal system of “anonymous government officials” to the NYTimes, and then backed up with op-ed in the Wall Street Journal. The government leaks information like this when it’s weak, not when its strong.

The proper way is to release the evidence upon which the decision was made, so that the public can challenge it. Among the questions the public would ask is whether it they believe it was North Korea’s intention to cause precisely this effect, such as disabling the British NHS. Or, whether it was merely hackers “affiliated” with North Korea, or hackers carrying out North Korea’s orders. We cannot challenge the government this way because the government intentionally holds itself above such accountability.

Conclusion

We believe hacking groups tied to North Korea are responsible for Wannacry. Yet, even if that’s true, we still have three attribution problems. We still don’t know if that was intentional, in pursuit of some political goal, or an accident. We still don’t know if it was at the direction of North Korea, or whether their hacker assets acted independently. We still don’t know if the government has answers to these questions, or whether it’s exploiting this doubt to achieve political support for actions against North Korea.

UK Government Teaches 7-Year-Olds That Piracy is Stealing

Post Syndicated from Ernesto original https://torrentfreak.com/uk-government-teaches-7-year-olds-that-piracy-is-stealing-180118/

In 2014, Mike Weatherley, the UK Government’s top IP advisor at the time, offered a recommendation that copyright education should be added to the school curriculum, starting with the youngest kids in primary school.

New generations should learn copyright moral and ethics, the idea was, and a few months later the first version of the new “Cracking Ideas” curriculum was made public.

In the years that followed new course material was added, published by the UK’s Intellectual Property Office (IPO) with support from the local copyright industry. The teaching material is aimed at a variety of ages, including those who have just started primary school.

Part of the education features a fictitious cartoon band called Nancy and the Meerkats. With help from their manager, they learn key copyright insights and this week several new videos were published, BBC points out.

The videos try to explain concepts including copyright, trademarks, and how people can protect the things they’ve created. Interestingly, the videos themselves use names of existing musicians, with puns such as Ed Shealing, Justin Beaver, and the evil Kitty Perry. Even Nancy and the Meerkats appears to be a play on the classic 1970s cartoon series Josie and the Pussycats, featuring a pop band of the same name.

The play on Ed Sheeran’s name is interesting, to say the least. While he’s one of the most popular artists today, he also mentioned in the past that file-sharing made his career.

“…illegal fire sharing was what made me. It was students in England going to university, sharing my songs with each other,” Sheeran said in an interview with CBS last year.

But that didn’t stop the IPO from using his likeness for their anti-file-sharing campaign. According to Catherine Davies of IPO’s education outreach department, knowledge about key intellectual property issues is a “life skill” nowadays.

“In today’s digital environment, even very young people are IP consumers, accessing online digital content independently and regularly,” she tells the BBC. “A basic understanding of IP and a respect for others’ IP rights is therefore a key life skill.”

While we doubt that these concepts will appeal to the average five-year-old, the course material does it best to simplify complex copyright issues. Perhaps that’s also where the danger lies.

The program is in part backed by copyright-reliant industries, who have a different view on the matter than many others. For example, a previously published video of Nancy and the Meerkats deals with the topic of file-sharing.

After the Meerkats found out that people were downloading their tracks from pirate sites and became outraged, their manager Big Joe explained that file-sharing is just the same as stealing a CD from a physical store.

“In a way, all those people who downloaded free copies are doing the same thing as walking out of the shop with a CD and forgetting to go the till,” he says.

“What these sites are doing is sometimes called piracy. It not only affects music but also videos, books, and movies.If someone owns the copyright to something, well, it is stealing. Simple as that,” Big Joe adds.

The Pirates of the Internet!

While we won’t go into the copying vs. stealing debate, it’s interesting that there is no mention of more liberal copyright licenses. There are thousands of artists who freely share their work after all, by adopting Creative Commons licenses for example. Downloading these tracks is certainly not stealing.

Jim Killock, director of the Open Rights Group, notes that the campaign is a bit extreme at points.

“Infringing copyright is a bad thing, but it is not the same as physical theft. Many children will guess that making a copy is not the same as making off with the local store’s chocolate bars,” he says.

“Children aren’t born bureaucrats, and they are surrounded by stupid rules made by stupid adults. Presumably, the IPO doesn’t want children to conclude that copyright is just another one, so they should be a bit more careful with how they explain things.”

Killock also stresses that children copy a lot of things in school, which would normally violate copyright. However, thanks to the educational exceptions they’re not getting in trouble. The IPO could pay more attention to these going forward.

Perhaps Nancy and the Meerkats could decide to release a free to share track in a future episode, for example, and encourage kids to use it for their own remixes, or other creative projects. Creativity and copyright are not all about restrictions, after all.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Hello World Issue 4: Professional Development

Post Syndicated from Carrie Anne Philbin original https://www.raspberrypi.org/blog/hello-world-issue-4/

Another new year brings with it thoughts of setting goals and targets. Thankfully, there is a new issue of Hello World packed with practical advise to set you on the road to success.

Hello World is our magazine about computing and digital making for educators, and it’s a collaboration between the Raspberry Pi Foundation and Computing at School, which is part of the British Computing Society.

Hello World 4 Professional Development Raspberry Pi CAS

In issue 4, our international panel of educators and experts recommends approaches to continuing professional development in computer science education.

Approaches to professional development, and much more

With recommendations for more professional development in the Royal Society’s report, and government funding to support this, our cover feature explores some successful approaches. In addition, the issue is packed with other great resources, guides, features, and lesson plans to support educators.

Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS
Hello World 4 Professional Development Raspberry Pi CAS

Highlights include:

  • The Royal Society: After the Reboot — learn about the latest report and its findings about computing education
  • The Cyber Games — a new programme looking for the next generation of security experts
  • Engaging Students with Drones
  • Digital Literacy: Lost in Translation?
  • Object-oriented Coding with Python

Get your copy of Hello World 4

Hello World is available as a free Creative Commons download for anyone around the world who is interested in computer science and digital making education. You can get the latest issue as a PDF file straight from the Hello World website.

Thanks to the very generous sponsorship of BT, we are able to offer free print copies of the magazine to serving educators in the UK. It’s for teachers, Code Club volunteers, teaching assistants, teacher trainers, and others who help children and young people learn about computing and digital making. So remember to subscribe to have your free print magazine posted directly to your home — 6000 educators have already signed up to receive theirs!

Could you write for Hello World?

By sharing your knowledge and experience of working with young people to learn about computing, computer science, and digital making in Hello World, you will help inspire others to get involved. You will also help bring the power of digital making to more and more educators and learners.

The computing education community is full of people who lend their experience to help colleagues. Contributing to Hello World is a great way to take an active part in this supportive community, and you’ll be adding to a body of free, open-source learning resources that are available for anyone to use, adapt, and share. It’s also a tremendous platform to broadcast your work: Hello World digital versions alone have been downloaded more than 50000 times!

Wherever you are in the world, get in touch with us by emailing our editorial team about your article idea.

The post Hello World Issue 4: Professional Development appeared first on Raspberry Pi.