Tag Archives: teach

More Raspberry Pi labs in West Africa

Post Syndicated from Rachel Churcher original https://www.raspberrypi.org/blog/pi-based-ict-west-africa/

Back in May 2013, we heard from Dominique Laloux about an exciting project to bring Raspberry Pi labs to schools in rural West Africa. Until 2012, 75 percent of teachers there had never used a computer. The project has been very successful, and Dominique has been in touch again to bring us the latest news.

A view of the inside of the new Pi lab building

Preparing the new Pi labs building in Kuma Tokpli, Togo

Growing the project

Thanks to the continuing efforts of a dedicated team of teachers, parents and other supporters, the Centre Informatique de Kuma, now known as INITIC (from the French ‘INItiation aux TIC’), runs two Raspberry Pi labs in schools in Togo, and plans to open a third in December. The second lab was opened last year in Kpalimé, a town in the Plateaux Region in the west of the country.

Student using a Raspberry Pi computer

Using the new Raspberry Pi labs in Kpalimé, Togo

More than 400 students used the new lab intensively during the last school year. Dominique tells us more:

“The report made in early July by the seven teachers who accompanied the students was nothing short of amazing: the young people covered a very impressive number of concepts and skills, from the GUI and the file system, to a solid introduction to word processing and spreadsheets, and many other skills. The lab worked exactly as expected. Its 21 Raspberry Pis worked flawlessly, with the exception of a couple of SD cards that needed re-cloning, and a couple of old screens that needed to be replaced. All the Raspberry Pis worked without a glitch. They are so reliable!”

The teachers and students have enjoyed access to a range of software and resources, all running on Raspberry Pi 2s and 3s.

“Our current aim is to introduce the students to ICT using the Raspberry Pis, rather than introducing them to programming and electronics (a step that will certainly be considered later). We use Ubuntu Mate along with a large selection of applications, from LibreOffice, Firefox, GIMP, Audacity, and Calibre, to special maths, science, and geography applications. There are also special applications such as GnuCash and GanttProject, as well as logic games including PyChess. Since December, students also have access to a local server hosting Kiwix, Wiktionary (a local copy of Wikipedia in four languages), several hundred videos, and several thousand books. They really love it!”

Pi lab upgrade

This summer, INITIC upgraded the equipment in their Pi lab in Kuma Adamé, which has been running since 2014. 21 older model Raspberry Pis were replaced with Pi 2s and 3s, to bring this lab into line with the others, and encourage co-operation between the different locations.

“All 21 first-generation Raspberry Pis worked flawlessly for three years, despite the less-than-ideal conditions in which they were used — tropical conditions, dust, frequent power outages, etc. I brought them all back to Brussels, and they all still work fine. The rationale behind the upgrade was to bring more computing power to the lab, and also to have the same equipment in our two Raspberry Pi labs (and in other planned installations).”

Students and teachers using the upgraded Pi labs in Kuma Adamé

Students and teachers using the upgraded Pi lab in Kuma Adamé

An upgrade of the organisation’s first lab, installed in 2012 in Kuma Tokpli, will be completed in December. This lab currently uses ‘retired’ laptops, which will be replaced with Raspberry Pis and peripherals. INITIC, in partnership with the local community, is also constructing a new building to house the upgraded technology, and the organisation’s third Raspberry Pi lab.

Reliable tech

Dominique has been very impressed with the performance of the Raspberry Pis since 2014.

“Our experience of three years, in two very different contexts, clearly demonstrates that the Raspberry Pi is a very convincing alternative to more ‘conventional’ computers for introducing young students to ICT where resources are scarce. I wish I could convince more communities in the world to invest in such ‘low cost, low consumption, low maintenance’ infrastructure. It really works!”

He goes on to explain that:

“Our goal now is to build at least one new Raspberry Pi lab in another Togolese school each year. That will, of course, depend on how successful we are at gathering the funds necessary for each installation, but we are confident we can convince enough friends to give us the financial support needed for our action.”

A desk with Raspberry Pis and peripherals

Reliable Raspberry Pis in the labs at Kpalimé

Get involved

We are delighted to see the Raspberry Pi being used to bring information technology to new teachers, students, and communities in Togo – it’s wonderful to see this project becoming established and building on its achievements. The mission of the Raspberry Pi Foundation is to put the power of digital making into the hands of people all over the world. Therefore, projects like this, in which people use our tech to fulfil this mission in places with few resources, are wonderful to us.

More information about INITIC and its projects can be found on its website. If you are interested in helping the organisation to meet its goals, visit the How to help page. And if you are involved with a project like this, bringing ICT, computer science, and coding to new places, please tell us about it in the comments below.

The post More Raspberry Pi labs in West Africa appeared first on Raspberry Pi.

Popcorn Time Creator Readies BitTorrent & Blockchain-Powered Video Platform

Post Syndicated from Andy original https://torrentfreak.com/popcorn-time-creator-readies-bittorrent-blockchain-powered-youtube-competitor-171012/

Without a doubt, YouTube is one of the most important websites available on the Internet today.

Its massive archive of videos brings pleasure to millions on a daily basis but its centralized nature means that owner Google always exercises control.

Over the years, people have looked to decentralize the YouTube concept and the latest project hoping to shake up the market has a particularly interesting player onboard.

Until 2015, only insiders knew that Argentinian designer Federico Abad was actually ‘Sebastian’, the shadowy figure behind notorious content sharing platform Popcorn Time.

Now he’s part of the team behind Flixxo, a BitTorrent and blockchain-powered startup hoping to wrestle a share of the video market from YouTube. Here’s how the team, which features blockchain startup RSK Labs, hope things will play out.

The Flixxo network will have no centralized storage of data, eliminating the need for expensive hosting along with associated costs. Instead, transfers will take place between peers using BitTorrent, meaning video content will be stored on the machines of Flixxo users. In practice, the content will be downloaded and uploaded in much the same way as users do on The Pirate Bay or indeed Abad’s baby, Popcorn Time.

However, there’s a twist to the system that envisions content creators, content consumers, and network participants (seeders) making revenue from their efforts.

At the heart of the Flixxo system are digital tokens (think virtual currency), called Flixx. These Flixx ‘coins’, which will go on sale in 12 days, can be used to buy access to content. Creators can also opt to pay consumers when those people help to distribute their content to others.

“Free from structural costs, producers can share the earnings from their content with the network that supports them,” the team explains.

“This way you get paid for helping us improve Flixxo, and you earn credits (in the form of digital tokens called Flixx) for watching higher quality content. Having no intermediaries means that the price you pay for watching the content that you actually want to watch is lower and fairer.”

The Flixxo team

In addition to earning tokens from helping to distribute content, people in the Flixxo ecosystem can also earn currency by watching sponsored content, i.e advertisements. While in a traditional system adverts are often considered a nuisance, Flixx tokens have real value, with a promise that users will be able to trade their Flixx not only for videos, but also for tangible and semi-tangible goods.

“Use your Flixx to reward the producers you follow, encouraging them to create more awesome content. Or keep your Flixx in your wallet and use them to buy a movie ticket, a pair of shoes from an online retailer, a chest of coins in your favourite game or even convert them to old-fashioned cash or up-and-coming digital assets, like Bitcoin,” the team explains.

The Flixxo team have big plans. After foundation in early 2016, the second quarter of 2017 saw the completion of a functional alpha release. In a little under two weeks, the project will begin its token generation event, with new offices in Los Angeles planned for the first half of 2018 alongside a premiere of the Flixxo platform.

“A total of 1,000,000,000 (one billion) Flixx tokens will be issued. A maximum of 300,000,000 (three hundred million) tokens will be sold. Some of these tokens (not more than 33% or 100,000,000 Flixx) may be sold with anticipation of the token allocation event to strategic investors,” Flixxo states.

Like all content platforms, Flixxo will live or die by the quality of the content it provides and whether, at least in the first instance, it can persuade people to part with their hard-earned cash. Only time will tell whether its content will be worth a premium over readily accessible YouTube content but with much-reduced costs, it may tempt creators seeking a bigger piece of the pie.

“Flixxo will also educate its community, teaching its users that in this new internet era value can be held and transferred online without intermediaries, a value that can be earned back by participating in a community, by contributing, being rewarded for every single social interaction,” the team explains.

Of course, the elephant in the room is what will happen when people begin sharing copyrighted content via Flixxo. Certainly, the fact that Popcorn Time’s founder is a key player and rival streaming platform Stremio is listed as a partner means that things could get a bit spicy later on.

Nevertheless, the team suggests that piracy and spam content distribution will be limited by mechanisms already built into the system.

“[A]uthors have to time-block tokens in a smart contract (set as a warranty) in order to upload content. This contract will also handle and block their earnings for a certain period of time, so that in the case of a dispute the unfair-uploader may lose those tokens,” they explain.

That being said, Flixxo also says that “there is no way” for third parties to censor content “which means that anyone has the chance of making any piece of media available on the network.” However, Flixxo says it will develop tools for filtering what it describes as “inappropriate content.”

At this point, things start to become a little unclear. On the one hand Flixxo says it could become a “revolutionary tool for uncensorable and untraceable media” yet on the other it says that it’s necessary to ensure that adult content, for example, isn’t seen by kids.

“We know there is a thin line between filtering or curating content and censorship, and it is a fact that we have an open network for everyone to upload any content. However, Flixxo as a platform will apply certain filtering based on clear rules – there should be a behavior-code for uploaders in order to offer the right content to the right user,” Flixxo explains.

To this end, Flixxo says it will deploy a centralized curation function, carried out by 101 delegates elected by the community, which will become progressively decentralized over time.

“This curation will have a cost, paid in Flixx, and will be collected from the warranty blocked by the content uploaders,” they add.

There can be little doubt that if Flixxo begins ‘curating’ unsuitable content, copyright holders will call on it to do the same for their content too. And, if the platform really takes off, 101 curators probably won’t scratch the surface. There’s also the not inconsiderable issue of what might happen to curators’ judgment when they’re incentivized to block curate content.

Finally, for those sick of “not available in your region” messages, there’s good and bad news. Flixxo insists there will be no geo-blocking of content on its part but individual creators will still have that feature available to them, should they choose.

The Flixx whitepaper can be downloaded here (pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Kim Dotcom Plots Hollywood Execs’ Downfall in Wake of Weinstein Scandal

Post Syndicated from Andy original https://torrentfreak.com/kim-dotcom-plots-hollywood-execs-downfall-in-wake-of-weinstein-scandal-171011/

It has been nothing short of a disastrous week for movie mogul Harvey Weinstein.

Accused of sexual abuse and harassment by a string of actresses, the latest including Angelina Jolie and Gwyneth Paltrow, the 65-year-old is having his life taken apart.

This week, the influential producer was fired by his own The Weinstein Company, which is now seeking to change its name. And yesterday, following allegations of rape made in The New Yorker magazine, his wife, designer Georgina Chapman, announced she was leaving the Miramax co-founder.

“My heart breaks for all the women who have suffered tremendous pain because of these unforgivable actions,” the 41-year-old told People magazine.

As the scandal continues and more victims come forward, there are signs of a general emboldening of women in Hollywood, some of whom are publicly speaking out about their own experiences. If that continues to gain momentum – and the opportunity is certainly there – one man with his own experiences of Hollywood’s wrath wants to play a prominent role.

“Just the beginning. Sexual abuse and slavery by the Hollywood elites is as common as dirt. Tsunami,” Kim Dotcom wrote on Twitter.

Dotcom initially suggested that via a website, victims of Hollywood abuse could share their stories anonymously, shining light on a topic that is often shrouded in fear and secrecy. But soon the idea was growing legs.

“Looking for a Los Angeles law firm willing to represent hundreds of sexual abuse victims of Hollywood elites, pro-bono. I’ll find funding,” he said.

Within hours, Dotcom announced that he’d found lawyers in the US who are willing to help victims, for free.

“I had talks with Hollywood lawyers. Found a big law firm willing to represent sexual abuse victims, for free. Next, the website,” he teased.

It’s not hard to see why Dotcom is making this battle his own. Aside from any empathy he feels towards victims on a personal level, he sees his family as kindred spirits, people who have also felt the wrath of Hollywood executives.

That being said, the Megaupload founder is extremely clear that framing this as revenge or a personal vendetta would be not only wrong, but also disrespectful to the victims of abuse.

“I want to help victims because I’m a victim,” he told TorrentFreak.

“I’m an abuse victim of Hollywood, not sexual abuse, but certainly abuse of power. It’s time to shine some light on those Hollywood elites who think they are above the law and untouchable.”

Dotcom told NZ Herald that people like Harvey Weinstein rub shoulders with the great and the good, hoping to influence decision-makers for their own personal gain. It’s something Dotcom, his family, and his colleagues have felt the effects of.

“They dine with presidents, donate millions to powerful politicians and buy favors like tax breaks and new copyright legislation, even the Megaupload raid. They think they can destroy lives and businesses with impunity. They think they can get away with anything. But they can’t. We’ll teach them,” he warned.

The Megaupload founder says he has both “the motive and the resources” to help victims and he’s promising to do that with proven skills. Ironically, many of these have been honed as a direct result of Hollywood’s attack on Megaupload and Dotcom’s relentless drive to bounce back with new sites like Mega and his latest K.im / Bitcache project.

“I’m an experienced fundraiser. A high traffic crowdfunding campaign for this cause can raise millions. The costs won’t be an issue,” Dotcom informs TF. “There seems to be an appetite for these cases because defendants usually settle quickly. I have calls with LA firms today and tomorrow.

“Just the beginning. Watch me,” he concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Students Overwhelmingly Vote Pirate Party in Simulated “General Election”

Post Syndicated from Andy original https://torrentfreak.com/students-overwhelmingly-vote-pirate-party-in-simulated-general-election-171007/

While millions of people have died throughout history fighting for the right to vote, there is a significant wave of apathy among large swathes of the population in democracies where the ballot box is taken for granted.

With this in mind, an educational project in the Czech Republic aims to familiarize high school students with basic democratic principles, acquaint them with the local electoral system, while promoting dialog among students, teachers, and parents. The main goal is to increase participation of young people in elections.

In line with this project, young students across the country are invited to take part in a simulated general election, to get a taste of what things will be like when they reach voting age. This year, these Student Elections took place over two days starting October 3 in secondary schools across the Czech Republic.

Under the One World Education Program at People in Need, a nonprofit that implements educational and human rights programs in crisis zones, 40,068 students from 281 schools cast their votes for political parties, movements and coalition candidates standing for the Chamber of Deputies of the Czech Parliament in the upcoming real elections.

Students 15-years-old and above were eligible to vote and when they were all counted, the results were quite something for any follower of the worldwide Pirate Party movement.

Of all groups, the Czech Pirate Party won a decisive victory, netting 24.5% of the overall vote, double that achieved by the ANO movement (11.9%) and the right-wing TOP 09 (11.8%). The fourth and fifth-placed candidates topped out at 7.76% and 6.33% respectively.

“The results of the Student Elections will be compared to the results of the election in a couple of weeks. It is certain they will vary greatly,” says Karel Strachota, director of the One World at School Education Program and the person who launched the Student Election project seven years ago.

“At the same time, however, the choice of students seems to indicate a certain trend in the development of voter preferences. From our teachers and school visits, we know that, as in the past, most of the pupils have been able to choose responsibly.”

According to Prague Monitor, opinion polls for the upcoming election (October 20-21) place the ANO movement as the clear favorites, with the Pirates having “a big chance to succeed” with up to 7% of the vote. Given the results of the simulation, elections in coming years could be something really special for the Pirates.

The full results of the Student Elections 2017 can be found on the One World website here. Meanwhile, Czech Pirate Party President Ivan Bartos sings to voters in the pre-election video below, explaining why Pirates are needed in Parliament in 2017.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Algo-rhythmic PianoAI

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/pianoai/

It’s no secret that we love music projects at Pi Towers. On the contrary, we often shout it from the rooftops like we’re in Moulin Rouge! But the PianoAI project by Zack left us slack-jawed: he built an AI on a Raspberry Pi that listens to his piano playing, and then produces improvised, real-time accompaniment.

Jamming with PIanoAI (clip #1) (Version 1.0)

Another example of a short teaching and then jamming with piano with a version I’m more happy with. I have to play for the Pi for a little while before the Pi has enough data to make its own music.

The PianoAI

Inspired by a story about jazz musician Dan Tepfer, Zack set out to create an AI able to imitate his piano-playing style in real time. He began programming the AI in Python, before starting over in the open-source programming language Go.

The Go language gopher mascot with headphones and a MIDI keyboard

The Go mascot is a gopher. Why not?

Zack has published an excellent write-up of how he built PianoAI. It’s a very readable account of the progress he made and the obstacles he had to overcome while writing PianoAI, and it includes more example videos. It’s hard to add anything to Zack’s own words, so I shan’t try.

Paper notes for PianoAI algorithm

Some of Zack’s notes for his AI

If you just want to try out PianoAI, head over to his GitHub. He provides a detailed guide that talks you through how to implement and use it.

Music to our ears

The Raspberry Pi community never fails to amaze us with their wonderful builds, not least when it comes to musical ones. Check out this cool-looking synth by Toby Hendricks, this geometric instrument by David Sharples, and this pyrite-disc-reading music player by Dmitry Morozov. Aren’t they all splendid? And the list goes on and on

Which instrument do you play? The recorder? The ocarina? The jaw harp? Could you create an AI like Zack’s for it? Let us know in the comments below, and share your builds with us via social media.

The post Algo-rhythmic PianoAI appeared first on Raspberry Pi.

The possibilities of the Sense HAT

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/sense-hat-projects/

Did you realise the Sense HAT has been available for over two years now? Used by astronauts on the International Space Station, the exact same hardware is available to you on Earth. With a new Astro Pi challenge just launched, it’s time for a retrospective/roundup/inspiration post about this marvellous bit of kit.

Sense HAT attached to Pi and power cord

The Sense HAT on a Pi in full glory

The Sense HAT explained

We developed our scientific add-on board to be part of the Astro Pi computers we sent to the International Space Station with ESA astronaut Tim Peake. For a play-by-play of Astro Pi’s history, head to the blog archive.

Astro Pi logo with starry background

Just to remind you, this is all the cool stuff our engineers have managed to fit onto the HAT:

  • A gyroscope (sensing pitch, roll, and yaw)
  • An accelerometer
  • A magnetometer
  • Sensors for temperature, humidity, and barometric pressure
  • A joystick
  • An 8×8 LED matrix

You can find a roundup of the technical specs here on the blog.

How to Sense HAT

It’s easy to begin exploring this device: take a look at our free Getting started with the Sense HAT resource, or use one of our Code Club Sense HAT projects. You can also try out the emulator, available offline on Raspbian and online on Trinket.

Sense HAT emulator on Trinket

The Sense HAT emulator on trinket.io

Fun and games with the Sense HAT

Use the LED matrix and joystick to recreate games such as Pong or Flappy Bird. Of course, you could also add sensor input to your game: code an egg drop game or a Magic 8 Ball that reacts to how the device moves.

Sense HAT Random Sparkles

Create random sparkles on the Sense HAT

Once December rolls around, you could brighten up your home with a voice-controlled Christmas tree or an advent calendar on your Sense HAT.

If you like the great outdoors, you could also use your Sense HAT to recreate this Hiking Companion by Marcus Johnson. Take it with you on your next hike!

Art with the Sense HAT

The LED matrix is perfect for getting creative. To draw something basic without having to squint at a Python list, use this app by our very own Richard Hayler. Feeling more ambitious? The MagPi will teach you how to create magnificent pixel art. Ben Nuttall has created this neat little Python script for displaying a photo taken by the Raspberry Pi Camera Module on the Sense HAT.

Brett Haines Mathematica on the Sense HAT

It’s also possible to incorporate Sense HAT data into your digital art! The Python Turtle module and the Processing language are both useful tools for creating beautiful animations based on real-world information.

A Sense HAT project that also uses this principle is Giorgio Sancristoforo’s Tableau, a ‘generative music album’. This device creates music according to the sensor data:

Tableau Generative Album

“There is no doubt that, as music is removed by the phonographrecord from the realm of live production and from the imperative of artistic activity and becomes petrified, it absorbs into itself, in this process of petrification, the very life that would otherwise vanish.”

Science with the Sense HAT

This free Essentials book from The MagPi team covers all the Sense HAT science basics. You can, for example, learn how to measure gravity.

Cropped cover of Experiment with the Sense HAT book

Our online resource shows you how to record the information your HAT picks up. Next you can analyse and graph your data using Mathematica, which is included for free on Raspbian. This resource walks you through how this software works.

If you’re seeking inspiration for experiments you can do on our Astro Pis Izzy and Ed on the ISS, check out the winning entries of previous rounds of the Astro Pi challenge.

Thomas Pesquet with Ed and Izzy

Thomas Pesquet with Ed and Izzy

But you can also stick to terrestrial scientific investigations. For example, why not build a weather station and share its data on your own web server or via Weather Underground?

Your code in space!

If you’re a student or an educator in one of the 22 ESA member states, you can get a team together to enter our 2017-18 Astro Pi challenge. There are two missions to choose from, including Mission Zero: follow a few guidelines, and your code is guaranteed to run in space!

The post The possibilities of the Sense HAT appeared first on Raspberry Pi.

Announcing the 2017-18 European Astro Pi challenge!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/announcing-2017-18-astro-pi/

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.

YouTube

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.

Questions?

If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

FRED-209 Nerf gun tank

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/nerf-gun-tank-fred-209/

David Pride, known to many of you as an active member of our maker community, has done it again! His FRED-209 build combines a Nerf gun, 3D printing, a Raspberry Pi Zero, and robotics to make one neat remotely controlled Nerf tank.

FRED-209 – 3D printed Raspberry Pi Nerf Tank

Uploaded by David Pride on 2017-09-17.

A Nerf gun for FRED-209

David says he worked on FRED-209 over the summer in order to have some fun with Nerf guns, which weren’t around when he was a kid. He purchased an Elite Stryfe model at a car boot sale, and took it apart to see what made it tick. Then he set about figuring out how to power it with motors and a servo.

Nerf Elite Stryfe components for the FRED-209 Nerf tank of David Pride

To control the motors, David used a ZeroBorg add-on board for the Pi Zero, and he set up a PlayStation 3 controller to pilot his tank. These components were also part of a robot that David entered into the Pi Wars competition, so he had already written code for them.

3D printing for FRED-209

During prototyping for his Nerf tank, which David named after ED-209 from RoboCop, he used lots of eBay loot and several 3D-printed parts. He used the free OpenSCAD software package to design the parts he wanted to print. If you’re a novice at 3D printing, you might find the printing advice he shares in the write-up on his blog very useful.

3D-printed lid of FRED-209 nerf gun tank by David Pride

David found the 3D printing of the 24cm-long lid of FRED-209 tricky

On eBay, David found some cool-looking chunky wheels, but these turned out to be too heavy for the motors. In the end, he decided to use a Rover 5 chassis, which changed the look of FRED-209 from ‘monster truck’ to ‘tank’.

FRED-209 Nerf tank by David Pride

Next step: teach it to use stairs

The final result looks awesome, and David’s video demonstrates that it shoots very accurately as well. A make like this might be a great defensive project for our new apocalypse-themed Pioneers challenge!

Taking FRED-209 further

David will be uploading code and STL files for FRED-209 soon, so keep an eye on his blog or Twitter for updates. He’s also bringing the Nerf tank to the Cotswold Raspberry Jam this weekend. If you’re attending the event, make sure you catch him and try FRED-209 out yourself.

Never one to rest on his laurels, David is already working on taking his build to the next level. He wants to include a web interface controller and a camera, and is working on implementing OpenCV to give the Nerf tank the ability to autonomously detect targets.

Pi Wars 2018

I have a feeling we might get to see an advanced version of David’s project at next year’s Pi Wars!

The 2018 Pi Wars have just been announced. They will take place on 21-22 April at the Cambridge Computer Laboratory, and you have until 3 October to apply to enter the competition. What are you waiting for? Get making! And as always, do share your robot builds with us via social media.

The post FRED-209 Nerf gun tank appeared first on Raspberry Pi.

Make your own game with CoderDojo’s new book

Post Syndicated from Nuala McHale original https://www.raspberrypi.org/blog/coderdojo-nano/

The first official CoderDojo book, CoderDojo Nano: Build Your Own Website, was a resounding success: thousands of copies have been bought by aspiring CoderDojo Ninjas, and it‘s available in ten languages, including Bulgarian, Czech, Dutch, Lithuanian, Latvian, Portuguese, Spanish, and Slovakian. Now we are delighted to announce the release of the second book in our Create with Code trilogy, titled CoderDojo Nano: Make Your Own Game.

Cover of CoderDojo Nano Make your own game

The paperback book will be available in English from Thursday 7 September (with English flexibound and Dutch versions scheduled to follow in the coming months), enabling young people and adults to learn creative and fun coding skills!

What will you learn?

The new book explains the fundamentals of the JavaScript language in a clear, logical way while supporting you to create your very own computer game.

Pixel image of laptop displaying a jump-and-run game

You will learn how to animate characters, create a world for your game, and use the physics of movement within it. The book is full of clear step-by-step instructions and illustrated screenshots to make reviewing your code easy. Additionally, challenges and open-ended prompts at the end of each section will encourage you to get creative while making your game.

This book is the perfect first step towards understanding game development, particularly for those of you who do not (yet) have a local Dojo. Regardless of where you live, using our books you too can learn to ‘Create with Code’!

Tried and tested

As always, CoderDojo Ninjas from all around the world tested our book, and their reactions have been hugely positive. Here is a selection of their thoughts:

“The book is brilliant. The [game] is simple yet innovative. I personally love it, and want to get stuck in making it right away!”

“What I really like is that, unlike most books on coding, this one properly explains what’s happening, and what each piece of code does and where it comes from.”

“I found the book most enjoyable. The layout is great, with lots of colour, and I found the information very easy to follow. The Ninja Tips are a great help in case you get a bit stuck. I liked that the book represents a mix of boy and girl Ninjas — it really makes coding fun for all.”

“The book is a great guide for both beginners and people who want to do something creative with their knowledge of code. Even people who cannot go to a CoderDojo can learn code using this book!”

Writer Jurie Horneman

Author of CoderDojo Nano: Make Your Own Game Jurie Horneman has been working in the game development industry for more than 15 years.

stuffed toy rabbit wearing glasses

Jurie would get on well with Babbage, I think.

He shares how he got into coding, and what he has learnt while creating this awesome book:

“I’ve been designing and programming games since 1991, starting with ancient home computers, and now I’m working with PCs and consoles. As a game designer, it’s my job to teach players the rules of the game in a fun and playful manner — that gave me some useful experience for writing the book.

I believe that, if you want to understand something properly, you have to teach it to others. Therefore, writing this book was very educational for me, as I hope reading it will be for learners.”

Asked what his favorite thing about the book is, Jurie said he loves the incredible pixel art design: “The artist (Gary J Lucken, Army of Trolls) did a great job to help explain some of the abstract concepts in the book.”

Pixel image of a landscape with an East Asian temple on a lonely mountain

Gary’s art is also just gorgeous.

How can you get your copy?

You can pre-order CoderDojo Nano: Make Your Own Game here. Its initial pricing is £9.99 (around €11), and discounted copies with free international delivery are available here.

The post Make your own game with CoderDojo’s new book appeared first on Raspberry Pi.

Code Club reaches 1 in 5 UK secondary schools

Post Syndicated from Maria Quevedo original https://www.raspberrypi.org/blog/code-club-9-to-13/

Today, we’re excited to announce the expansion of Code Club to secondary school ages up to 13. When we made our plans known last May, we were beginning work with a pilot group of 50 UK secondary schools to discover how we could best support them, and how we could make Code Club work as well for children aged 12 and 13 as it does for its original age range of 9 to 11 years. Now, new projects are available for secondary-aged children, and we will continue to create more resources to build on the support we offer this age group.

An animated gif with happy Code Club robots and text showing that Code Club is extending to 9- to 13-year-olds

One in five UK secondary schools

In extending Code Club’s age range to 9-13, we’re responding to huge demand. One in five UK state-sector secondary schools has already registered with the programme, and most of these – almost 600 of them – are already running Code Clubs.

By giving secondaries access to the Code Club support network and providing new, more advanced programming projects, we will help schools better to meet the needs of their students, and offer many thousands more children the opportunity to develop essential skills in programming and computing. Libraries and other non-school venues will also be able to welcome children of a wider range of ages to their clubs.

New Code Club resources

Our first five projects for older children offer a variety of ways for more advanced coders to build on their skills and explore further programming concepts.

From ‘Flappy Parrot’ and Where’s Wally-inspired ‘Lineup’, to ‘Binary Hero’ and quiz-tastic ‘Guess the Flag’, there’s something to spark everyone’s imagination. You can read more about these new resources in today’s Code Club UK blog post.

Help Code Club in your local school

Around 300 secondary schools across the UK have registered with Code Club but have not yet started their club, because they’re still looking for volunteers to support them. Can you help these keen teachers and students get up and running? If you can volunteer an hour each week, either on your own or by taking turns with friends or colleagues, you could make all the difference to a Code Club near you.

A Code Club in every community

We want every 9- to 13-year-old to have the opportunity to join a Code Club, and we will continue working hard to deliver our goal of putting a Code Club in every community. Make sure your local school, youth club, or library knows how to get involved.

The post Code Club reaches 1 in 5 UK secondary schools appeared first on Raspberry Pi.

Create a text-based adventure game with FutureLearn

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/text-based-futurelearn/

Learning with Raspberry Pi has never been so easy! We’re adding a new course to FutureLearn today, and you can take part anywhere in the world.

FutureLearn: the story so far…

In February 2017, we were delighted to launch two free online CPD training courses on the FutureLearn platform, available anywhere in the world. Since the launch, more than 30,000 educators have joined these courses: Teaching Programming in Primary Schools, and Teaching Physical Computing with Raspberry Pi and Python.

Futurelearn Raspberry Pi

Thousands of educators have been building their skills – completing tasks such as writing a program in Python to make an LED blink, or building a voting app in Scratch. The two courses are scaffolded to build skills, week by week. Learners are supported by videos, screencasts, and articles, and they have the chance to apply what they have learned in as many different practical projects as possible.

We have had some excellent feedback from learners on the courses, such as Kyle Wilke who commented: “Fantastic course. Nice integration of text-based and video instruction. Was very impressed how much support was provided by fellow students, kudos to us. Can’t wait to share this with fellow educators.”

Brand new course

We are launching a new course this autumn. You can join lead educator Laura Sachs to learn object-oriented programming principles by creating your own text-based adventure game in Python. The course is aimed at educators who have programming experience, but have never programmed in the object-oriented style.

Future Learn: Object-oriented Programming in Python trailer

Our newest FutureLearn course in now live. You can join lead educator Laura Sachs to learn object-oriented programming principles by creating your own text-based adventure game in Python. The course is aimed at educators who have programming experience, but have never programmed in the object-oriented style.

The course will introduce you to the principles of object-oriented programming in Python, showing you how to create objects, functions, methods, and classes. You’ll use what you learn to create your own text-based adventure game. You will have the chance to share your code with other learners, and to see theirs. If you’re an educator, you’ll also be able to develop ideas for using object-oriented programming in your classroom.

Take part

Sign up now to join us on the course, starting today, September 4. Our courses are free to join online – so you can learn wherever you are, and whenever you want.

The post Create a text-based adventure game with FutureLearn appeared first on Raspberry Pi.

Hello World Issue 3: Approaching Assessment

Post Syndicated from Carrie Anne Philbin original https://www.raspberrypi.org/blog/hello-world-3/

It’s the beginning of a new school year, and the latest issue of Hello World is here! Hello World is our magazine about computing and digital making for educators, and it’s a collaboration between The Raspberry Pi Foundation and Computing at School, part of the British Computing Society.

The front cover of Hello World Issue 3

In issue 3, our international panel of experts takes an in-depth look at assessment in computer science.

Approaching assessment, and much more

Our cover feature explores innovative, practical, and effective approaches to testing and learning. The issue is packed with other great resources, guides, features and lesson plans to support educators.

Highlights include:

  • Tutorials and lesson plans on Scratch Pong, games design, and the database-building Python library, SQLite3
  • Supporting learning with online video
  • The potential of open-source resources in education
  • A bluffer’s guide to Non-Examination Assessments (NEA) for GCSE Computer Science
  • A look at play and creativity in programming

Get your copy of Hello World 3

Hello World is available as a free Creative Commons download for anyone around the world who is interested in Computer Science and digital making education. Grab the latest issue straight from the Hello World website.

Thanks to the very generous support of our sponsors BT, we are able to offer free printed versions of the magazine to serving educators in the UK. It’s for teachers, Code Club volunteers, teaching assistants, teacher trainers, and others who help children and young people learn about computing and digital making. Remember to subscribe to receive your free copy, posted directly to your home.

Free book!

As a special bonus for our print subscribers, this issue comes bundled with a copy of Ian Livingstone and Shahneila Saeed’s new book, Hacking the Curriculum: Creative Computing and the Power of Play

Front cover of Hacking the Curriculum by Ian Livingstone and Shahneila Saeed - Hello World 3

This gorgeous-looking image comes courtesy of Jonathan Green

The book explains the critical importance of coding and computing in modern schools, and offers teachers and school leaders practical guidance on how to improve their computing provision. Thanks to Ian Livingstone, Shahneila Saeed, and John Catt Educational Ltd. for helping to make this possible. The book will be available with issue 3 to new subscribers while stocks last.

10,000 subscribers

We are very excited to announce that Hello World now has more than 10,000 subscribers!

Banner to celebrate 10000 subscribers

We’re celebrating this milestone, but we’d love to reach even more computing and digital making educators. Help us to spread the word to teachers, volunteers and home educators in the UK.

Get involved

Share your teaching experiences in computing and related subjects with Hello World, and help us to help other educators! When you air your questions and challenges on our letters page, other educators are ready to help you. Drop us an email to submit letters, articles, lesson plans, and questions for our FAQ pages – wherever you are in the world, get in touch with us by emailing [email protected].

The post Hello World Issue 3: Approaching Assessment appeared first on Raspberry Pi.

Michael Reeves and the ridiculous Subscriber Robot

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/michael-reeves-subscriber-robot/

At the beginning of his new build’s video, YouTuber Michael Reeves discusses a revelation he had about why some people don’t subscribe to his channel:

The real reason some people don’t subscribe is that when you hit this button, that’s all, that’s it, it’s done. It’s not special, it’s not enjoyable. So how do we make subscribing a fun, enjoyable process? Well, we do it by slowly chipping away at the content creator’s psyche every time someone subscribes.

His fix? The ‘fun’ interactive Subscriber Robot that is the subject of the video.

Be aware that Michael uses a couple of mild swears in this video, so maybe don’t watch it with a child.

The Subscriber Robot

Just showing that subscriber dedication My Patreon Page: https://www.patreon.com/michaelreeves Personal Site: https://michaelreeves.us/ Twitter: https://twitter.com/michaelreeves08 Song: Summer Salt – Sweet To Me

Who is Michael Reeves?

Software developer and student Michael Reeves started his YouTube account a mere four months ago, with the premiere of his robot that shines lasers into your eyes – now he has 110k+ subscribers. At only 19, Michael co-owns and manages a company together with friends, and is set on his career path in software and computing. So when he is not making videos, he works a nine-to-five job “to pay for college and, y’know, live”.

The Subscriber Robot

Michael shot to YouTube fame with the aforementioned laser robot built around an Arduino. But by now he has also be released videos for a few Raspberry Pi-based contraptions.

Michael Reeves Raspberry Pi Subscriber Robot

Michael, talking us through the details of one of the worst ideas ever made

His Subscriber Robot uses a series of Python scripts running on a Raspberry Pi to check for new subscribers to Michael’s channel via the YouTube API. When it identifies one, the Pi uses a relay to make the ceiling lights in Michael’s office flash ten times a second while ear-splitting noise is emitted by a 102-decibel-rated buzzer. Needless to say, this buzzer is not recommended for home use, work use, or any use whatsoever! Moreover, the Raspberry Pi also connects to a speaker that announces the name of the new subscriber, so Michael knows who to thank.

Michael Reeves Raspberry Pi Subscriber Robot

Subscriber Robot: EEH! EEH! EEH! MoistPretzels has subscribed.
Michael: Thank you, MoistPretzels…

Given that Michael has gained a whopping 30,000 followers in the ten days since the release of this video, it’s fair to assume he is currently curled up in a ball on the office floor, quietly crying to himself.

If you think Michael only makes videos about ridiculous builds, you’re mistaken. He also uses YouTube to provide educational content, because he believes that “it’s super important for people to teach themselves how to program”. For example, he has just released a new C# beginners tutorial, the third in the series.

Support Michael

If you’d like to help Michael in his mission to fill the world with both tutorials and ridiculous robot builds, make sure to subscribe to his channel. You can also follow him on Twitter and support him on Patreon.

You may also want to check out the Useless Duck Company and Simone Giertz if you’re in the mood for more impractical, yet highly amusing, robot builds.

Good luck with your channel, Michael! We are looking forward to, and slightly dreading, more videos from one of our favourite new YouTubers.

The post Michael Reeves and the ridiculous Subscriber Robot appeared first on Raspberry Pi.

Community Profile: David Pride

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-david-pride/

This column is from The MagPi issue 55. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

David Pride’s experiences in computer education came slightly later in life. He admits to not being a grade-A student: he left school with few qualifications, unable to pursue further education at university. There was, however, a teacher who instilled in him a passion for computers and coding which would stick with him indefinitely.

David Pride The MagPi Raspberry Pi Community Profile

David joined us at the St James’s Palace community celebration, mingling with the likes of the Duke of York, plus organisers of Jams and clubs, such as Grace and Femi

Welcome to the Community

Twenty years later, back in 2012, David heard of the Raspberry Pi – a soon-to-be-released “new little marvel” that he instantly fell for, head first. Despite a lack of knowledge in Linux and Python, he experimented and had fun. He found a Raspberry Jam and, with it, Pi enthusiasts like Mike Horne and Peter Onion. The projects on display at the Jam were enough to push David further into the Raspberry Pi rabbit hole and, after working his way through several Python books, he began to take steps into the world of formal higher education.

David Pride The MagPi Raspberry Pi Community Profile

David’s determination to access and complete further education in computing has earned him a three-year PhD studentship. Not bad for a “lousy student”

Back to School

With a Mooc qualification from Rice University under his belt, he continued to improve upon his self-taught knowledge, and was fortunate enough to be accepted to study for a master’s degree in Computer Science at the University of Hertfordshire. With a distinction for his final dissertation, David completed the course with an overall distinction for his MSc, and was recently awarded a fully funded PhD studentship with The Open University’s Knowledge Media Institute.

David Pride The MagPi Raspberry Pi Community Profile

Self-playing xylophones, Wiimote air drums, Lego sorters, Pi Wars robots, and more. David is continually hacking toys, giving them new Pi-powered life

Maker of things

The portfolio of projects that helped him to achieve his many educational successes has provided regular retweet material for the Raspberry Pi Twitter account, and we’ve highlighted his fun, imaginative work on this blog before. His builds have travelled to a range of Jams and made their way to the Raspberry Pi and Code Club stands at the Bett Show, as well as to our birthday celebrations.

David Pride The MagPi Raspberry Pi Community Profile

“Pi & Chips – with a little extra source”

His website, the pun-tastic Pi and Chips, is home to the majority of his work; David also links to YouTube videos and walk-throughs of his projects, and relates his experiences at various events. If you’ve followed any of the action across the Raspberry Pi social media channels – or indeed read any previous issues of The MagPi magazine – you’ll no doubt have seen a couple of David’s projects.

David Pride The MagPi Raspberry Pi Community Profile 4-Bot

Many readers will have come across the wonderful 4-Bot before, and it has even made an appearance alongside David in a recent Bloomberg interview. Considering the trillions of possible game positions, David made a compromise and, if you’re lucky, you may just be able to beat it

The 4-Bot, a robotic second player for the family game Connect Four, allows people to go head to head with a Pi-powered robotic arm. Using a Python imaging library, the 4-Bot splits the game grid into 42 squares, and recognises them as being red, yellow, or empty by reading the RGB value of the space. Using the minimax algorithm, 4-Bot is able to play each move within 25 seconds. Believe us when we say that it’s not as easy to beat as you’d hope. Then there’s his more recent air drum kit, which uses an old toy found at a car boot sale together with a Wiimote to make a functional air drum that showcases David’s toy-hacking abilities… and his complete lack of rhythm. He does fare much better on his homemade laser harp, though!

The post Community Profile: David Pride appeared first on Raspberry Pi.

Growing up alongside tech

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/09/growing-up-alongside-tech/

IndustrialRobot asks… or, uh, asked last month:

industrialrobot: How has your views on tech changed as you’ve got older?

This is so open-ended that it’s actually stumped me for a solid month. I’ve had a surprisingly hard time figuring out where to even start.


It’s not that my views of tech have changed too much — it’s that they’ve changed very gradually. Teasing out and explaining any one particular change is tricky when it happened invisibly over the course of 10+ years.

I think a better framework for this is to consider how my relationship to tech has changed. It’s gone through three pretty distinct phases, each of which has strongly colored how I feel and talk about technology.

Act I

In which I start from nothing.

Nothing is an interesting starting point. You only really get to start there once.

Learning something on my own as a kid was something of a magical experience, in a way that I don’t think I could replicate as an adult. I liked computers; I liked toying with computers; so I did that.

I don’t know how universal this is, but when I was a kid, I couldn’t even conceive of how incredible things were made. Buildings? Cars? Paintings? Operating systems? Where does any of that come from? Obviously someone made them, but it’s not the sort of philosophical point I lingered on when I was 10, so in the back of my head they basically just appeared fully-formed from the æther.

That meant that when I started trying out programming, I had no aspirations. I couldn’t imagine how far I would go, because all the examples of how far I would go were completely disconnected from any idea of human achievement. I started out with BASIC on a toy computer; how could I possibly envision a connection between that and something like a mainstream video game? Every new thing felt like a new form of magic, so I couldn’t conceive that I was even in the same ballpark as whatever process produced real software. (Even seeing the source code for GORILLAS.BAS, it didn’t quite click. I didn’t think to try reading any of it until years after I’d first encountered the game.)

This isn’t to say I didn’t have goals. I invented goals constantly, as I’ve always done; as soon as I learned about a new thing, I’d imagine some ways to use it, then try to build them. I produced a lot of little weird goofy toys, some of which entertained my tiny friend group for a couple days, some of which never saw the light of day. But none of it felt like steps along the way to some mountain peak of mastery, because I didn’t realize the mountain peak was even a place that could be gone to. It was pure, unadulterated (!) playing.

I contrast this to my art career, which started only a couple years ago. I was already in my late 20s, so I’d already spend decades seeing a very broad spectrum of art: everything from quick sketches up to painted masterpieces. And I’d seen the people who create that art, sometimes seen them create it in real-time. I’m even in a relationship with one of them! And of course I’d already had the experience of advancing through tech stuff and discovering first-hand that even the most amazing software is still just code someone wrote.

So from the very beginning, from the moment I touched pencil to paper, I knew the possibilities. I knew that the goddamn Sistine Chapel was something I could learn to do, if I were willing to put enough time in — and I knew that I’m not, so I’d have to settle somewhere a ways before that. I knew that I’d have to put an awful lot of work in before I’d be producing anything very impressive.

I did it anyway (though perhaps waited longer than necessary to start), but those aren’t things I can un-know, and so I can never truly explore art from a place of pure ignorance. On the other hand, I’ve probably learned to draw much more quickly and efficiently than if I’d done it as a kid, precisely because I know those things. Now I can decide I want to do something far beyond my current abilities, then go figure out how to do it. When I was just playing, that kind of ambition was impossible.


So, I played.

How did this affect my views on tech? Well, I didn’t… have any. Learning by playing tends to teach you things in an outward sprawl without many abrupt jumps to new areas, so you don’t tend to run up against conflicting information. The whole point of opinions is that they’re your own resolution to a conflict; without conflict, I can’t meaningfully say I had any opinions. I just accepted whatever I encountered at face value, because I didn’t even know enough to suspect there could be alternatives yet.

Act II

That started to seriously change around, I suppose, the end of high school and beginning of college. I was becoming aware of this whole “open source” concept. I took classes that used languages I wouldn’t otherwise have given a second thought. (One of them was Python!) I started to contribute to other people’s projects. Eventually I even got a job, where I had to work with other people. It probably also helped that I’d had to maintain my own old code a few times.

Now I was faced with conflicting subjective ideas, and I had to form opinions about them! And so I did. With gusto. Over time, I developed an idea of what was Right based on experience I’d accrued. And then I set out to always do things Right.

That’s served me decently well with some individual problems, but it also led me to inflict a lot of unnecessary pain on myself. Several endeavors languished for no other reason than my dissatisfaction with the architecture, long before the basic functionality was done. I started a number of “pure” projects around this time, generic tools like imaging libraries that I had no direct need for. I built them for the sake of them, I guess because I felt like I was improving some niche… but of course I never finished any. It was always in areas I didn’t know that well in the first place, which is a fine way to learn if you have a specific concrete goal in mind — but it turns out that building a generic library for editing images means you have to know everything about images. Perhaps that ambition went a little haywire.

I’ve said before that this sort of (self-inflicted!) work was unfulfilling, in part because the best outcome would be that a few distant programmers’ lives are slightly easier. I do still think that, but I think there’s a deeper point here too.

In forgetting how to play, I’d stopped putting any of myself in most of the work I was doing. Yes, building an imaging library is kind of a slog that someone has to do, but… I assume the people who work on software like PIL and ImageMagick are actually interested in it. The few domains I tried to enter and revolutionize weren’t passions of mine; I just happened to walk through the neighborhood one day and decided I could obviously do it better.

Not coincidentally, this was the same era of my life that led me to write stuff like that PHP post, which you may notice I am conspicuously not even linking to. I don’t think I would write anything like it nowadays. I could see myself approaching the same subject, but purely from the point of view of language design, with more contrasts and tradeoffs and less going for volume. I certainly wouldn’t lead off with inflammatory puffery like “PHP is a community of amateurs”.

Act III

I think I’ve mellowed out a good bit in the last few years.

It turns out that being Right is much less important than being Not Wrong — i.e., rather than trying to make something perfect that can be adapted to any future case, just avoid as many pitfalls as possible. Code that does something useful has much more practical value than unfinished code with some pristine architecture.

Nowhere is this more apparent than in game development, where all code is doomed to be crap and the best you can hope for is to stem the tide. But there’s also a fixed goal that’s completely unrelated to how the code looks: does the game work, and is it fun to play? Yes? Ship the damn thing and forget about it.

Games are also nice because it’s very easy to pour my own feelings into them and evoke feelings in the people who play them. They’re mine, something with my fingerprints on them — even the games I’ve built with glip have plenty of my own hallmarks, little touches I added on a whim or attention to specific details that I care about.

Maybe a better example is the Doom map parser I started writing. It sounds like a “pure” problem again, except that I actually know an awful lot about the subject already! I also cleverly (accidentally) released some useful results of the work I’ve done thusfar — like statistics about Doom II maps and a few screenshots of flipped stock maps — even though I don’t think the parser itself is far enough along to release yet. The tool has served a purpose, one with my fingerprints on it, even without being released publicly. That keeps it fresh in my mind as something interesting I’d like to keep working on, eventually. (When I run into an architecture question, I step back for a while, or I do other work in the hopes that the solution will reveal itself.)

I also made two simple Pokémon ROM hacks this year, despite knowing nothing about Game Boy internals or assembly when I started. I just decided I wanted to do an open-ended thing beyond my reach, and I went to do it, not worrying about cleanliness and willing to accept a bumpy ride to get there. I played, but in a more experienced way, invoking the stuff I know (and the people I’ve met!) to help me get a running start in completely unfamiliar territory.


This feels like a really fine distinction that I’m not sure I’m doing justice. I don’t know if I could’ve appreciated it three or four years ago. But I missed making toys, and I’m glad I’m doing it again.

In short, I forgot how to have fun with programming for a little while, and I’ve finally started to figure it out again. And that’s far more important than whether you use PHP or not.

Updates to GPIO Zero, the physical computing API

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/gpio-zero-update/

GPIO Zero v1.4 is out now! It comes with a set of new features, including a handy pinout command line tool. To start using this newest version of the API, update your Raspbian OS now:

sudo apt update && sudo apt upgrade

Some of the things we’ve added will make it easier for you try your hand on different programming styles. In doing so you’ll build your coding skills, and will improve as a programmer. As a consequence, you’ll learn to write more complex code, which will enable you to take on advanced electronics builds. And on top of that, you can use the skills you’ll acquire in other computing projects.

GPIO Zero pinout tool

The new pinout tool

Developing GPIO Zero

Nearly two years ago, I started the GPIO Zero project as a simple wrapper around the low-level RPi.GPIO library. I wanted to create a simpler way to control GPIO-connected devices in Python, based on three years’ experience of training teachers, running workshops, and building projects. The idea grew over time, and the more we built for our Python library, the more sophisticated and powerful it became.

One of the great things about Python is that it’s a multi-paradigm programming language. You can write code in a number of different styles, according to your needs. You don’t have to write classes, but you can if you need them. There are functional programming tools available, but beginners get by without them. Importantly, the more advanced features of the language are not a barrier to entry.

Become a more advanced programmer

As a beginner to programming, you usually start by writing procedural programs, in which the flow moves from top to bottom. Then you’ll probably add loops and create your own functions. Your next step might be to start using libraries which introduce new patterns that operate in a different manner to what you’ve written before, for example threaded callbacks (event-driven programming). You might move on to object-oriented programming, extending the functionality of classes provided by other libraries, and starting to write your own classes. Occasionally, you may make use of tools created with functional programming techniques.

Five buttons in different colours

Take control of the buttons in your life

It’s much the same with GPIO Zero: you can start using it very easily, and we’ve made it simple to progress along the learning curve towards more advanced programming techniques. For example, if you want to make a push button control an LED, the easiest way to do this is via procedural programming using a while loop:

from gpiozero import LED, Button

led = LED(17)
button = Button(2)

while True:
    if button.is_pressed:
        led.on()
    else:
        led.off()

But another way to achieve the same thing is to use events:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

pause()

You could even use a declarative approach, and set the LED’s behaviour in a single line:

from gpiozero import LED, Button
from signal import pause

led = LED(17)
button = Button(2)

led.source = button.values

pause()

You will find that using the procedural approach is a great start, but at some point you’ll hit a limit, and will have to try a different approach. The example above can be approach in several programming styles. However, if you’d like to control a wider range of devices or a more complex system, you need to carefully consider which style works best for what you want to achieve. Being able to choose the right programming style for a task is a skill in itself.

Source/values properties

So how does the led.source = button.values thing actually work?

Every GPIO Zero device has a .value property. For example, you can read a button’s state (True or False), and read or set an LED’s state (so led.value = True is the same as led.on()). Since LEDs and buttons operate with the same value set (True and False), you could say led.value = button.value. However, this only sets the LED to match the button once. If you wanted it to always match the button’s state, you’d have to use a while loop. To make things easier, we came up with a way of telling devices they’re connected: we added a .values property to all devices, and a .source to output devices. Now, a loop is no longer necessary, because this will do the job:

led.source = button.values

This is a simple approach to connecting devices using a declarative style of programming. In one single line, we declare that the LED should get its values from the button, i.e. when the button is pressed, the LED should be on. You can even mix the procedural with the declarative style: at one stage of the program, the LED could be set to match the button, while in the next stage it could just be blinking, and finally it might return back to its original state.

These additions are useful for connecting other devices as well. For example, a PWMLED (LED with variable brightness) has a value between 0 and 1, and so does a potentiometer connected via an ADC (analogue-digital converter) such as the MCP3008. The new GPIO Zero update allows you to say led.source = pot.values, and then twist the potentiometer to control the brightness of the LED.

But what if you want to do something more complex, like connect two devices with different value sets or combine multiple inputs?

We provide a set of device source tools, which allow you to process values as they flow from one device to another. They also let you send in artificial values such as random data, and you can even write your own functions to generate values to pass to a device’s source. For example, to control a motor’s speed with a potentiometer, you could use this code:

from gpiozero import Motor, MCP3008
from signal import pause

motor = Motor(20, 21)
pot = MCP3008()

motor.source = pot.values

pause()

This works, but it will only drive the motor forwards. If you wanted the potentiometer to drive it forwards and backwards, you’d use the scaled tool to scale its values to a range of -1 to 1:

from gpiozero import Motor, MCP3008
from gpiozero.tools import scaled
from signal import pause

motor = Motor(20, 21)
pot = MCP3008()

motor.source = scaled(pot.values, -1, 1)

pause()

And to separately control a robot’s left and right motor speeds with two potentiometers, you could do this:

from gpiozero import Robot, MCP3008
from signal import pause

robot = Robot(left=(2, 3), right=(4, 5))
left = MCP3008(0)
right = MCP3008(1)

robot.source = zip(left.values, right.values)

pause()

GPIO Zero and Blue Dot

Martin O’Hanlon created a Python library called Blue Dot which allows you to use your Android device to remotely control things on their Raspberry Pi. The API is very similar to GPIO Zero, and it even incorporates the value/values properties, which means you can hook it up to GPIO devices easily:

from bluedot import BlueDot
from gpiozero import LED
from signal import pause

bd = BlueDot()
led = LED(17)

led.source = bd.values

pause()

We even included a couple of Blue Dot examples in our recipes.

Make a series of binary logic gates using source/values

Read more in this source/values tutorial from The MagPi, and on the source/values documentation page.

Remote GPIO control

GPIO Zero supports multiple low-level GPIO libraries. We use RPi.GPIO by default, but you can choose to use RPIO or pigpio instead. The pigpio library supports remote connections, so you can run GPIO Zero on one Raspberry Pi to control the GPIO pins of another, or run code on a PC (running Windows, Mac, or Linux) to remotely control the pins of a Pi on the same network. You can even control two or more Pis at once!

If you’re using Raspbian on a Raspberry Pi (or a PC running our x86 Raspbian OS), you have everything you need to remotely control GPIO. If you’re on a PC running Windows, Mac, or Linux, you just need to install gpiozero and pigpio using pip. See our guide on configuring remote GPIO.

I road-tested the new pin_factory syntax at the Raspberry Jam @ Pi Towers

There are a number of different ways to use remote pins:

  • Set the default pin factory and remote IP address with environment variables:
$ GPIOZERO_PIN_FACTORY=pigpio PIGPIO_ADDR=192.168.1.2 python3 blink.py
  • Set the default pin factory in your script:
import gpiozero
from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory

gpiozero.Device.pin_factory = PiGPIOFactory(host='192.168.1.2')

led = LED(17)
  • The pin_factory keyword argument allows you to use multiple Pis in the same script:
from gpiozero import LED
from gpiozero.pins.pigpio import PiGPIOFactory

factory2 = PiGPIOFactory(host='192.168.1.2')
factory3 = PiGPIOFactory(host='192.168.1.3')

local_hat = TrafficHat()
remote_hat2 = TrafficHat(pin_factory=factory2)
remote_hat3 = TrafficHat(pin_factory=factory3)

This is a really powerful feature! For more, read this remote GPIO tutorial in The MagPi, and check out the remote GPIO recipes in our documentation.

GPIO Zero on your PC

GPIO Zero doesn’t have any dependencies, so you can install it on your PC using pip. In addition to the API’s remote GPIO control, you can use its ‘mock’ pin factory on your PC. We originally created the mock pin feature for the GPIO Zero test suite, but we found that it’s really useful to be able to test GPIO Zero code works without running it on real hardware:

$ GPIOZERO_PIN_FACTORY=mock python3
>>> from gpiozero import LED
>>> led = LED(22)
>>> led.blink()
>>> led.value
True
>>> led.value
False

You can even tell pins to change state (e.g. to simulate a button being pressed) by accessing an object’s pin property:

>>> from gpiozero import LED
>>> led = LED(22)
>>> button = Button(23)
>>> led.source = button.values
>>> led.value
False
>>> button.pin.drive_low()
>>> led.value
True

You can also use the pinout command line tool if you set your pin factory to ‘mock’. It gives you a Pi 3 diagram by default, but you can supply a revision code to see information about other Pi models. For example, to use the pinout tool for the original 256MB Model B, just type pinout -r 2.

GPIO Zero documentation and resources

On the API’s website, we provide beginner recipes and advanced recipes, and we have added remote GPIO configuration including PC/Mac/Linux and Pi Zero OTG, and a section of GPIO recipes. There are also new sections on source/values, command-line tools, FAQs, Pi information and library development.

You’ll find plenty of cool projects using GPIO Zero in our learning resources. For example, you could check out the one that introduces physical computing with Python and get stuck in! We even provide a GPIO Zero cheat sheet you can download and print.

There are great GPIO Zero tutorials and projects in The MagPi magazine every month. Moreover, they also publish Simple Electronics with GPIO Zero, a book which collects a series of tutorials useful for building your knowledge of physical computing. And the best thing is, you can download it, and all magazine issues, for free!

Check out the API documentation and read more about what’s new in GPIO Zero on my blog. We have lots planned for the next release. Watch this space.

Get building!

The world of physical computing is at your fingertips! Are you feeling inspired?

If you’ve never tried your hand on physical computing, our Build a robot buggy learning resource is the perfect place to start! It’s your step-by-step guide for building a simple robot controlled with the help of GPIO Zero.

If you have a gee-whizz idea for an electronics project, do share it with us below. And if you’re currently working on a cool build and would like to show us how it’s going, pop a link to it in the comments.

The post Updates to GPIO Zero, the physical computing API appeared first on Raspberry Pi.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:

http://www.example.com/documents?id=138493

Then you can edit it to see the next document on the server:

http://www.example.com/documents?id=138494

The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing

Conclusion

Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

AWS Hot Startups – July 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-july-2017/

Welcome back to another month of Hot Startups! Every day, startups are creating innovative and exciting businesses, applications, and products around the world. Each month we feature a handful of startups doing cool things using AWS.

July is all about learning! These companies are focused on providing access to tools and resources to expand knowledge and skills in different ways.

This month’s startups:

  • CodeHS – provides fun and accessible computer science curriculum for middle and high schools.
  • Insight – offers intensive fellowships to grow technical talent in Data Science.
  • iTranslate – enables people to read, write, and speak in over 90 languages, anywhere in the world.

CodeHS (San Francisco, CA)

In 2012, Stanford students Zach Galant and Jeremy Keeshin were computer science majors and TAs for introductory classes when they noticed a trend among their peers. Many wished that they had been exposed to computer science earlier in life. In their senior year, Zach and Jeremy launched CodeHS to give middle and high schools the opportunity to provide a fun, accessible computer science education to students everywhere. CodeHS is a web-based curriculum pathway complete with teacher resources, lesson plans, and professional development opportunities. The curriculum is supplemented with time-saving teacher tools to help with lesson planning, grading and reviewing student code, and managing their classroom.

CodeHS aspires to empower all students to meaningfully impact the future, and believe that coding is becoming a new foundational skill, along with reading and writing, that allows students to further explore any interest or area of study. At the time CodeHS was founded in 2012, only 10% of high schools in America offered a computer science course. Zach and Jeremy set out to change that by providing a solution that made it easy for schools and districts to get started. With CodeHS, thousands of teachers have been trained and are teaching hundreds of thousands of students all over the world. To use CodeHS, all that’s needed is the internet and a web browser. Students can write and run their code online, and teachers can immediately see what the students are working on and how they are doing.

Amazon EC2, Amazon RDS, Amazon ElastiCache, Amazon CloudFront, and Amazon S3 make it possible for CodeHS to scale their site to meet the needs of schools all over the world. CodeHS also relies on AWS to compile and run student code in the browser, which is extremely important when teaching server-side languages like Java that powers the AP course. Since usage rises and falls based on school schedules, Amazon CloudWatch and ELBs are used to easily scale up when students are running code so they have a seamless experience.

Be sure to visit the CodeHS website, and to learn more about bringing computer science to your school, click here!

Insight (Palo Alto, CA)

Insight was founded in 2012 to create a new educational model, optimize hiring for data teams, and facilitate successful career transitions among data professionals. Over the last 5 years, Insight has kept ahead of market trends and launched a series of professional training fellowships including Data Science, Health Data Science, Data Engineering, and Artificial Intelligence. Finding individuals with the right skill set, background, and culture fit is a challenge for big companies and startups alike, and Insight is focused on developing top talent through intensive 7-week fellowships. To date, Insight has over 1,000 alumni at over 350 companies including Amazon, Google, Netflix, Twitter, and The New York Times.

The Data Engineering team at Insight is well-versed in the current ecosystem of open source tools and technologies and provides mentorship on the best practices in this space. The technical teams are continually working with external groups in a variety of data advisory and mentorship capacities, but the majority of Insight partners participate in professional sessions. Companies visit the Insight office to speak with fellows in an informal setting and provide details on the type of work they are doing and how their teams are growing. These sessions have proved invaluable as fellows experience a significantly better interview process and companies yield engaged and enthusiastic new team members.

An important aspect of Insight’s fellowships is the opportunity for hands-on work, focusing on everything from building big-data pipelines to contributing novel features to industry-standard open source efforts. Insight provides free AWS resources for all fellows to use, in addition to mentorships from the Data Engineering team. Fellows regularly utilize Amazon S3, Amazon EC2, Amazon Kinesis, Amazon EMR, AWS Lambda, Amazon Redshift, Amazon RDS, among other services. The experience with AWS gives fellows a solid skill set as they transition into the industry. Fellowships are currently being offered in Boston, New York, Seattle, and the Bay Area.

Check out the Insight blog for more information on trends in data infrastructure, artificial intelligence, and cutting-edge data products.

 

iTranslate (Austria)

When the App Store was introduced in 2008, the founders of iTranslate saw an opportunity to be part of something big. The group of four fully believed that the iPhone and apps were going to change the world, and together they brainstormed ideas for their own app. The combination of translation and mobile devices seemed a natural fit, and by 2009 iTranslate was born. iTranslate’s mission is to enable travelers, students, business professionals, employers, and medical staff to read, write, and speak in all languages, anywhere in the world. The app allows users to translate text, voice, websites and more into nearly 100 languages on various platforms. Today, iTranslate is the leading player for conversational translation and dictionary apps, with more than 60 million downloads and 6 million monthly active users.

iTranslate is breaking language barriers through disruptive technology and innovation, enabling people to translate in real time. The app has a variety of features designed to optimize productivity including offline translation, website and voice translation, and language auto detection. iTranslate also recently launched the world’s first ear translation device in collaboration with Bragi, a company focused on smart earphones. The Dash Pro allows people to communicate freely, while having a personal translator right in their ear.

iTranslate started using Amazon Polly soon after it was announced. CEO Alexander Marktl said, “As the leading translation and dictionary app, it is our mission at iTranslate to provide our users with the best possible tools to read, write, and speak in all languages across the globe. Amazon Polly provides us with the ability to efficiently produce and use high quality, natural sounding synthesized speech.” The stable and simple-to-use API, low latency, and free caching allow iTranslate to scale as they continue adding features to their app. Customers also enjoy the option to change speech rate and change between male and female voices. To assure quality, speed, and reliability of their products, iTranslate also uses Amazon EC2, Amazon S3, and Amazon Route 53.

To get started with iTranslate, visit their website here.

—–

Thanks for reading!

-Tina

Now Available: Three New AWS Specialty Training Courses

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/now-available-three-new-aws-specialty-training-courses/

AWS Training allows you to learn from the experts so you can advance your knowledge with practical skills and get more out of the AWS Cloud. Today I am happy to announce that three of our most popular training bootcamps (a staple at AWS re:Invent and AWS Global Summits) are becoming part of our permanent instructor-led training portfolio:

These one-day courses are intended for individuals who would like to dive deeper into a specialized topic with an expert trainer.

You can explore our complete course catalog, and you can search for a public class near you within the AWS Training and Certification Portal. You can also request a private onsite training session for your team by contacting us.

Jeff;