Tag Archives: Tested

Google’s Chrome Web Store Spammed With Dodgy ‘Pirate’ Movie Links

Post Syndicated from Andy original https://torrentfreak.com/googles-chrome-web-store-spammed-with-dodgy-pirate-movie-links-180527/

Launched in 2010, Google’s Chrome Store is the go-to place for people looking to pimp their Chrome browser.

Often referred to as apps and extensions, the programs offered by the platform run in Chrome and can perform a dazzling array of functions, from improving security and privacy, to streaming video or adding magnet links to torrent sites.

Also available on the Chrome Store are themes, which can be installed locally to change the appearance of the Chrome browser.

While there are certainly plenty to choose from, some additions to the store over the past couple of months are not what most people have come to expect from the add-on platform.

Free movies on Chrome’s Web Store?

As the image above suggests, unknown third parties appear to be exploiting the Chrome Store’s ‘theme’ section to offer visitors access to a wide range of pirate movies including Black Panther, Avengers: Infinity War and Rampage.

When clicking through to the page offering Ready Player One, for example, users are presented with a theme that apparently allows them to watch the movie online in “Full HD Online 4k.”

Of course, the whole scheme is a dubious scam which eventually leads users to Vioos.co, a platform that tries very hard to give the impression of being a pirate streaming portal but actually provides nothing of use.

Nothing to see here

In fact, as soon as one clicks the play button on movies appearing on Vioos.co, visitors are re-directed to another site called Zumastar which asks people to “create a free account” to “access unlimited downloads & streaming.”

“With over 20 million titles, Zumastar is your number one entertainment resource. Join hundreds of thousands of satisfied members and enjoy the hottest movies,” the site promises.

With this kind of marketing, perhaps we should think about this offer for a second. Done. No thanks.

In extended testing, some visits to Vioos.co resulted in a redirection to EtnaMedia.net, a domain that was immediately blocked by MalwareBytes due to suspected fraud. However, after allowing the browser to make the connection, TF was presented with another apparent subscription site.

We didn’t follow through with a sign-up but further searches revealed upset former customers complaining of money being taken from their credit cards when they didn’t expect that to happen.

Quite how many people have signed up to Zumastar or EtnaMedia via this convoluted route from Google’s Chrome Store isn’t clear but a worrying number appear to have installed the ‘themes’ (if that’s what they are) offered on each ‘pirate movie’ page.

At the time of writing the ‘free Watch Rampage Online Full Movie’ ‘theme’ has 2,196 users, the “Watch Avengers Infinity War Full Movie” variant has 974, the ‘Watch Ready Player One 2018 Full HD’ page has 1,031, and the ‘Watch Black Panther Online Free 123putlocker’ ‘theme’ has more than 1,800. Clearly, a worrying number of people will click and install just about anything.

We haven’t tested the supposed themes to see what they do but it’s a cast-iron guarantee that they don’t offer the movies displayed and there’s always a chance they’ll do something awful. As a rule of thumb, it’s nearly always wise to steer clear of anything with “full movie” in the title, they can rarely be trusted.

Finally, those hoping to get some guidance on quality from the reviews on the Chrome Store will be bitterly disappointed.

Garbage reviews, probably left by the scammers

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Use Slack ChatOps to Deploy Your Code – How to Integrate Your Pipeline in AWS CodePipeline with Your Slack Channel

Post Syndicated from Rumi Olsen original https://aws.amazon.com/blogs/devops/use-slack-chatops-to-deploy-your-code-how-to-integrate-your-pipeline-in-aws-codepipeline-with-your-slack-channel/

Slack is widely used by DevOps and development teams to communicate status. Typically, when a build has been tested and is ready to be promoted to a staging environment, a QA engineer or DevOps engineer kicks off the deployment. Using Slack in a ChatOps collaboration model, the promotion can be done in a single click from a Slack channel. And because the promotion happens through a Slack channel, the whole development team knows what’s happening without checking email.

In this blog post, I will show you how to integrate AWS services with a Slack application. I use an interactive message button and incoming webhook to promote a stage with a single click.

To follow along with the steps in this post, you’ll need a pipeline in AWS CodePipeline. If you don’t have a pipeline, the fastest way to create one for this use case is to use AWS CodeStar. Go to the AWS CodeStar console and select the Static Website template (shown in the screenshot). AWS CodeStar will create a pipeline with an AWS CodeCommit repository and an AWS CodeDeploy deployment for you. After the pipeline is created, you will need to add a manual approval stage.

You’ll also need to build a Slack app with webhooks and interactive components, write two Lambda functions, and create an API Gateway API and a SNS topic.

As you’ll see in the following diagram, when I make a change and merge a new feature into the master branch in AWS CodeCommit, the check-in kicks off my CI/CD pipeline in AWS CodePipeline. When CodePipeline reaches the approval stage, it sends a notification to Amazon SNS, which triggers an AWS Lambda function (ApprovalRequester).

The Slack channel receives a prompt that looks like the following screenshot. When I click Yes to approve the build promotion, the approval result is sent to CodePipeline through API Gateway and Lambda (ApprovalHandler). The pipeline continues on to deploy the build to the next environment.

Create a Slack app

For App Name, type a name for your app. For Development Slack Workspace, choose the name of your workspace. You’ll see in the following screenshot that my workspace is AWS ChatOps.

After the Slack application has been created, you will see the Basic Information page, where you can create incoming webhooks and enable interactive components.

To add incoming webhooks:

  1. Under Add features and functionality, choose Incoming Webhooks. Turn the feature on by selecting Off, as shown in the following screenshot.
  2. Now that the feature is turned on, choose Add New Webhook to Workspace. In the process of creating the webhook, Slack lets you choose the channel where messages will be posted.
  3. After the webhook has been created, you’ll see its URL. You will use this URL when you create the Lambda function.

If you followed the steps in the post, the pipeline should look like the following.

Write the Lambda function for approval requests

This Lambda function is invoked by the SNS notification. It sends a request that consists of an interactive message button to the incoming webhook you created earlier.  The following sample code sends the request to the incoming webhook. WEBHOOK_URL and SLACK_CHANNEL are the environment variables that hold values of the webhook URL that you created and the Slack channel where you want the interactive message button to appear.

# This function is invoked via SNS when the CodePipeline manual approval action starts.
# It will take the details from this approval notification and sent an interactive message to Slack that allows users to approve or cancel the deployment.

import os
import json
import logging
import urllib.parse

from base64 import b64decode
from urllib.request import Request, urlopen
from urllib.error import URLError, HTTPError

# This is passed as a plain-text environment variable for ease of demonstration.
# Consider encrypting the value with KMS or use an encrypted parameter in Parameter Store for production deployments.
SLACK_WEBHOOK_URL = os.environ['SLACK_WEBHOOK_URL']
SLACK_CHANNEL = os.environ['SLACK_CHANNEL']

logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    print("Received event: " + json.dumps(event, indent=2))
    message = event["Records"][0]["Sns"]["Message"]
    
    data = json.loads(message) 
    token = data["approval"]["token"]
    codepipeline_name = data["approval"]["pipelineName"]
    
    slack_message = {
        "channel": SLACK_CHANNEL,
        "text": "Would you like to promote the build to production?",
        "attachments": [
            {
                "text": "Yes to deploy your build to production",
                "fallback": "You are unable to promote a build",
                "callback_id": "wopr_game",
                "color": "#3AA3E3",
                "attachment_type": "default",
                "actions": [
                    {
                        "name": "deployment",
                        "text": "Yes",
                        "style": "danger",
                        "type": "button",
                        "value": json.dumps({"approve": True, "codePipelineToken": token, "codePipelineName": codepipeline_name}),
                        "confirm": {
                            "title": "Are you sure?",
                            "text": "This will deploy the build to production",
                            "ok_text": "Yes",
                            "dismiss_text": "No"
                        }
                    },
                    {
                        "name": "deployment",
                        "text": "No",
                        "type": "button",
                        "value": json.dumps({"approve": False, "codePipelineToken": token, "codePipelineName": codepipeline_name})
                    }  
                ]
            }
        ]
    }

    req = Request(SLACK_WEBHOOK_URL, json.dumps(slack_message).encode('utf-8'))

    response = urlopen(req)
    response.read()
    
    return None

 

Create a SNS topic

Create a topic and then create a subscription that invokes the ApprovalRequester Lambda function. You can configure the manual approval action in the pipeline to send a message to this SNS topic when an approval action is required. When the pipeline reaches the approval stage, it sends a notification to this SNS topic. SNS publishes a notification to all of the subscribed endpoints. In this case, the Lambda function is the endpoint. Therefore, it invokes and executes the Lambda function. For information about how to create a SNS topic, see Create a Topic in the Amazon SNS Developer Guide.

Write the Lambda function for handling the interactive message button

This Lambda function is invoked by API Gateway. It receives the result of the interactive message button whether or not the build promotion was approved. If approved, an API call is made to CodePipeline to promote the build to the next environment. If not approved, the pipeline stops and does not move to the next stage.

The Lambda function code might look like the following. SLACK_VERIFICATION_TOKEN is the environment variable that contains your Slack verification token. You can find your verification token under Basic Information on Slack manage app page. When you scroll down, you will see App Credential. Verification token is found under the section.

# This function is triggered via API Gateway when a user acts on the Slack interactive message sent by approval_requester.py.

from urllib.parse import parse_qs
import json
import os
import boto3

SLACK_VERIFICATION_TOKEN = os.environ['SLACK_VERIFICATION_TOKEN']

#Triggered by API Gateway
#It kicks off a particular CodePipeline project
def lambda_handler(event, context):
	#print("Received event: " + json.dumps(event, indent=2))
	body = parse_qs(event['body'])
	payload = json.loads(body['payload'][0])

	# Validate Slack token
	if SLACK_VERIFICATION_TOKEN == payload['token']:
		send_slack_message(json.loads(payload['actions'][0]['value']))
		
		# This will replace the interactive message with a simple text response.
		# You can implement a more complex message update if you would like.
		return  {
			"isBase64Encoded": "false",
			"statusCode": 200,
			"body": "{\"text\": \"The approval has been processed\"}"
		}
	else:
		return  {
			"isBase64Encoded": "false",
			"statusCode": 403,
			"body": "{\"error\": \"This request does not include a vailid verification token.\"}"
		}


def send_slack_message(action_details):
	codepipeline_status = "Approved" if action_details["approve"] else "Rejected"
	codepipeline_name = action_details["codePipelineName"]
	token = action_details["codePipelineToken"] 

	client = boto3.client('codepipeline')
	response_approval = client.put_approval_result(
							pipelineName=codepipeline_name,
							stageName='Approval',
							actionName='ApprovalOrDeny',
							result={'summary':'','status':codepipeline_status},
							token=token)
	print(response_approval)

 

Create the API Gateway API

  1. In the Amazon API Gateway console, create a resource called InteractiveMessageHandler.
  2. Create a POST method.
    • For Integration type, choose Lambda Function.
    • Select Use Lambda Proxy integration.
    • From Lambda Region, choose a region.
    • In Lambda Function, type a name for your function.
  3.  Deploy to a stage.

For more information, see Getting Started with Amazon API Gateway in the Amazon API Developer Guide.

Now go back to your Slack application and enable interactive components.

To enable interactive components for the interactive message (Yes) button:

  1. Under Features, choose Interactive Components.
  2. Choose Enable Interactive Components.
  3. Type a request URL in the text box. Use the invoke URL in Amazon API Gateway that will be called when the approval button is clicked.

Now that all the pieces have been created, run the solution by checking in a code change to your CodeCommit repo. That will release the change through CodePipeline. When the CodePipeline comes to the approval stage, it will prompt to your Slack channel to see if you want to promote the build to your staging or production environment. Choose Yes and then see if your change was deployed to the environment.

Conclusion

That is it! You have now created a Slack ChatOps solution using AWS CodeCommit, AWS CodePipeline, AWS Lambda, Amazon API Gateway, and Amazon Simple Notification Service.

Now that you know how to do this Slack and CodePipeline integration, you can use the same method to interact with other AWS services using API Gateway and Lambda. You can also use Slack’s slash command to initiate an action from a Slack channel, rather than responding in the way demonstrated in this post.

Practice Makes Perfect: Testing Campaigns Before You Send Them

Post Syndicated from Zach Barbitta original https://aws.amazon.com/blogs/messaging-and-targeting/practice-makes-perfect-testing-campaigns-before-you-send-them/

In an article we posted to Medium in February, we talked about how to determine the best time to engage your customers by using Amazon Pinpoint’s built-in session heat map. The session heat map allows you to find the times that your customers are most likely to use your app. In this post, we continued on the topic of best practices—specifically, how to appropriately test a campaign before going live.

In this post, we’ll talk about the old adage “practice makes perfect,” and how it applies to the campaigns you send using Amazon Pinpoint. Let’s take a scenario many of our customers encounter daily: creating a campaign to engage users by sending a push notification.

As you can see from the preceding screenshot, the segment we plan to target has nearly 1.7M recipients, which is a lot! Of course, before we got to this step, we already put several best practices into practice. For example, we determined the best time to engage our audience, scheduled the message based on recipients’ local time zones, performed A/B/N testing, measured lift using a hold-out group, and personalized the content for maximum effectiveness. Now that we’re ready to send the notification, we should test the message before we send it to all of the recipients in our segment. The reason for testing the message is pretty straightforward: we want to make sure every detail of the message is accurate before we send it to all 1,687,575 customers.

Fortunately, Amazon Pinpoint makes it easy to test your messages—in fact, you don’t even have to leave the campaign wizard in order to do so. In step 3 of the campaign wizard, below the message editor, there’s a button labelled Test campaign.

When you choose the Test campaign button, you have three options: you can send the test message to a segment of 100 endpoints or less, or to a set of specific endpoint IDs (up to 10), or to a set of specific device tokens (up to 10), as shown in the following image.

In our case, we’ve already created a segment of internal recipients who will test our message. On the Test Campaign window, under Send a test message to, we choose A segment. Then, in the drop-down menu, we select our test segment, and then choose Send test message.

Because we’re sending the test message to a segment, Amazon Pinpoint automatically creates a new campaign dedicated to this test. This process executes a test campaign, complete with message analytics, which allows you to perform end-to-end testing as if you sent the message to your production audience. To see the analytics for your test campaign, go to the Campaigns tab, and then choose the campaign (the name of the campaign contains the word “test”, followed by four random characters, followed by the name of the campaign).

After you complete a successful test, you’re ready to launch your campaign. As a final check, the Review & Launch screen includes a reminder that indicates whether or not you’ve tested the campaign, as shown in the following image.

There are several other ways you can use this feature. For example, you could use it for troubleshooting a campaign, or for iterating on existing campaigns. To learn more about testing campaigns, see the Amazon Pinpoint User Guide.

Airbash – Fully Automated WPA PSK Handshake Capture Script

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/05/airbash-fully-automated-wpa-psk-handshake-capture-script/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Airbash – Fully Automated WPA PSK Handshake Capture Script

Airbash is a POSIX-compliant, fully automated WPA PSK handshake capture script aimed at penetration testing. It is compatible with Bash and Android Shell (tested on Kali Linux and Cyanogenmod 10.2) and uses aircrack-ng to scan for clients that are currently connected to access points (AP).

Those clients are then deauthenticated in order to capture the handshake when attempting to reconnect to the AP. Verification of a captured handshake is done using aircrack-ng.

Read the rest of Airbash – Fully Automated WPA PSK Handshake Capture Script now! Only available at Darknet.

This is a really lovely Raspberry Pi tricorder

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

At the moment I’m spending my evenings watching all of Star Trek in order. Yes, I have watched it before (but with some really big gaps). Yes, including the animated series (I’m up to The Terratin Incident). So I’m gratified to find this beautiful The Original Series–style tricorder build.

Star Trek Tricorder with Working Display!

At this year’s Replica Prop Forum showcase, we meet up once again wtih Brian Mix, who brought his new Star Trek TOS Tricorder. This beautiful replica captures the weight and finish of the filming hand prop, and Brian has taken it one step further with some modern-day electronics!

A what now?

If you don’t know what a tricorder is, which I guess is faintly possible, the easiest way I can explain is to steal words that Liz wrote when Recantha made one back in 2013. It’s “a made-up thing used by the crew of the Enterprise to measure stuff, store data, and scout ahead remotely when exploring strange new worlds, seeking out new life and new civilisations, and all that jazz.”

A brief history of Picorders

We’ve seen other Raspberry Pi–based realisations of this iconic device. Recantha’s LEGO-cased tricorder delivered some authentic functionality, including temperature sensors, an ultrasonic distance sensor, a photosensor, and a magnetometer. Michael Hahn’s tricorder for element14’s Sci-Fi Your Pi competition in 2015 packed some similar functions, along with Original Series audio effects, into a neat (albeit non-canon) enclosure.

Brian Mix’s Original Series tricorder

Brian Mix’s tricorder, seen in the video above from Tested at this year’s Replica Prop Forum showcase, is based on a high-quality kit into which, he discovered, a Raspberry Pi just fits. He explains that the kit is the work of the late Steve Horch, a special effects professional who provided props for later Star Trek series, including the classic Deep Space Nine episode Trials and Tribble-ations.

A still from an episode of Star Trek: Deep Space Nine: Jadzia Dax, holding an Original Series-sylte tricorder, speaks with Benjamin Sisko

Dax, equipped for time travel

This episode’s plot required sets and props — including tricorders — replicating the USS Enterprise of The Original Series, and Steve Horch provided many of these. Thus, a tricorder kit from him is about as close to authentic as you can possibly find unless you can get your hands on a screen-used prop. The Pi allows Brian to drive a real display and a speaker: “Being the geek that I am,” he explains, “I set it up to run every single Original Series Star Trek episode.”

Even more wonderful hypothetical tricorders that I would like someone to make

This tricorder is beautiful, and it makes me think how amazing it would be to squeeze in some of the sensor functionality of the devices depicted in the show. Space in the case is tight, but it looks like there might be a little bit of depth to spare — enough for an IMU, maybe, or a temperature sensor. I’m certain the future will bring more Pi tricorder builds, and I, for one, can’t wait. Please tell us in the comments if you’re planning something along these lines, and, well, I suppose some other sci-fi franchises have decent Pi project potential too, so we could probably stand to hear about those.

If you’re commenting, no spoilers please past The Animated Series S1 E11. Thanks.

The post This is a really lovely Raspberry Pi tricorder appeared first on Raspberry Pi.

Bad Software Is Our Fault

Post Syndicated from Bozho original https://techblog.bozho.net/bad-software-is-our-fault/

Bad software is everywhere. One can even claim that every software is bad. Cool companies, tech giants, established companies, all produce bad software. And no, yours is not an exception.

Who’s to blame for bad software? It’s all complicated and many factors are intertwined – there’s business requirements, there’s organizational context, there’s lack of sufficient skilled developers, there’s the inherent complexity of software development, there’s leaky abstractions, reliance on 3rd party software, consequences of wrong business and purchase decisions, time limitations, flawed business analysis, etc. So yes, despite the catchy title, I’m aware it’s actually complicated.

But in every “it’s complicated” scenario, there’s always one or two factors that are decisive. All of them contribute somehow, but the major drivers are usually a handful of things. And in the case of base software, I think it’s the fault of technical people. Developers, architects, ops.

We don’t seem to care about best practices. And I’ll do some nasty generalizations here, but bear with me. We can spend hours arguing about tabs vs spaces, curly bracket on new line, git merge vs rebase, which IDE is better, which framework is better and other largely irrelevant stuff. But we tend to ignore the important aspects that span beyond the code itself. The context in which the code lives, the non-functional requirements – robustness, security, resilience, etc.

We don’t seem to get security. Even trivial stuff such as user authentication is almost always implemented wrong. These days Twitter and GitHub realized they have been logging plain-text passwords, for example, but that’s just the tip of the iceberg. Too often we ignore the security implications.

“But the business didn’t request the security features”, one may say. The business never requested 2-factor authentication, encryption at rest, PKI, secure (or any) audit trail, log masking, crypto shredding, etc., etc. Because the business doesn’t know these things – we do and we have to put them on the backlog and fight for them to be implemented. Each organization has its specifics and tech people can influence the backlog in different ways, but almost everywhere we can put things there and prioritize them.

The other aspect is testing. We should all be well aware by now that automated testing is mandatory. We have all the tools in the world for unit, functional, integration, performance and whatnot testing, and yet many software projects lack the necessary test coverage to be able to change stuff without accidentally breaking things. “But testing takes time, we don’t have it”. We are perfectly aware that testing saves time, as we’ve all had those “not again!” recurring bugs. And yet we think of all sorts of excuses – “let the QAs test it”, we have to ship that now, we’ll test it later”, “this is too trivial to be tested”, etc.

And you may say it’s not our job. We don’t define what has do be done, we just do it. We don’t define the budget, the scope, the features. We just write whatever has been decided. And that’s plain wrong. It’s not our job to make money out of our code, and it’s not our job to define what customers need, but apart from that everything is our job. The way the software is structured, the security aspects and security features, the stability of the code base, the way the software behaves in different environments. The non-functional requirements are our job, and putting them on the backlog is our job.

You’ve probably heard that every software becomes “legacy” after 6 months. And that’s because of us, our sloppiness, our inability to mitigate external factors and constraints. Too often we create a mess through “just doing our job”.

And of course that’s a generalization. I happen to know a lot of great professionals who don’t make these mistakes, who strive for excellence and implement things the right way. But our industry as a whole doesn’t. Our industry as a whole produces bad software. And it’s our fault, as developers – as the only people who know why a certain piece of software is bad.

In a talk of his, Bob Martin warns us of the risks of our sloppiness. We have been building websites so far, but we are more and more building stuff that interacts with the real world, directly and indirectly. Ultimately, lives may depend on our software (like the recent unfortunate death caused by a self-driving car). And I’ll agree with Uncle Bob that it’s high time we self-regulate as an industry, before some technically incompetent politician decides to do that.

How, I don’t know. We’ll have to think more about it. But I’m pretty sure it’s our fault that software is bad, and no amount of blaming the management, the budget, the timing, the tools or the process can eliminate our responsibility.

Why do I insist on bashing my fellow software engineers? Because if we start looking at software development with more responsibility; with the fact that if it fails, it’s our fault, then we’re more likely to get out of our current bug-ridden, security-flawed, fragile software hole and really become the experts of the future.

The post Bad Software Is Our Fault appeared first on Bozho's tech blog.

CI/CD with Data: Enabling Data Portability in a Software Delivery Pipeline with AWS Developer Tools, Kubernetes, and Portworx

Post Syndicated from Kausalya Rani Krishna Samy original https://aws.amazon.com/blogs/devops/cicd-with-data-enabling-data-portability-in-a-software-delivery-pipeline-with-aws-developer-tools-kubernetes-and-portworx/

This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect

Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.

For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).

Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.

In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.

 

Stateful Pipelines: Need for Portable Volumes

As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.

Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.

Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.

Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.

As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here

 

 

 

AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx

In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.

The continuous deployment pipeline runs as follows:

  • Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
  • Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
  • AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
  • AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
  • Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
  • AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB
    • The MongoDB instance mounts the snapshot.

At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.

 

Summary

This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.

This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.

The reference architecture and code are available on GitHub:

● Reference architecture: https://github.com/portworx/aws-kube-codesuite
● Lambda function source code for Portworx additions: https://github.com/portworx/aws-kube-codesuite/blob/master/src/kube-lambda.py

For more information about persistent storage for containers, visit the Portworx website. For more information about Code Pipeline, see the AWS CodePipeline User Guide.

Danish Traffic to Pirate Sites Increases 67% in Just a Year

Post Syndicated from Andy original https://torrentfreak.com/danish-traffic-to-pirate-sites-increases-67-in-just-a-year-180501/

For close to 20 years, rightsholders have tried to stem the tide of mainstream Internet piracy. Yet despite increasingly powerful enforcement tools, infringement continues on a grand scale.

While the problem is global, rightsholder groups often zoom in on their home turf, to see how the fight is progressing locally. Covering Denmark, the Rights Alliance Data Report 2017 paints a fairly pessimistic picture.

Published this week, the industry study – which uses SimilarWeb and MarkMonitor data – finds that Danes visited 2,000 leading pirate sites 596 million times in 2017. That represents a 67% increase over the 356 million visits to unlicensed platforms made by citizens during 2016.

The report notes that, at least in part, this explosive growth can be attributed to mobile-compatible sites and services, which make it easier than ever to consume illicit content on the move, as well as at home.

In a sea of unauthorized streaming sites, Rights Alliance highlights one platform above all the others as a particularly bad influence in 2017 – 123movies (also known as GoMovies and GoStream, among others).

“The popularity of this service rose sharply in 2017 from 40 million visits in 2016 to 175 million visits in 2017 – an increase of 337 percent, of which most of the traffic originates from mobile devices,” the report notes.

123movies recently announced its closure but before that the platform was subjected to web-blocking in several jurisdictions.

Rights Alliance says that Denmark has one of the most effective blocking systems in the world but that still doesn’t stop huge numbers of people from consuming pirate content from sites that aren’t yet blocked.

“Traffic to infringing sites is overwhelming, and therefore blocking a few sites merely takes the top of the illegal activities,” Rights Alliance chief Maria Fredenslund informs TorrentFreak.

“Blocking is effective by stopping 75% of traffic to blocked sites but certainly, an upscaled effort is necessary.”

Rights Alliance also views the promotion of legal services as crucial to its anti-piracy strategy so when people visit a blocked site, they’re also directed towards legitimate platforms.

“That is why we are working at the moment with Denmark’s Ministry of Culture and ISPs on a campaign ‘Share With Care 2′ which promotes legal services e.g. by offering a search function for legal services which will be placed in combination with the signs that are put on blocked websites,” the anti-piracy group notes.

But even with such measures in place, the thirst for unlicensed content is great. In 2017 alone, 500 of the most popular films and TV shows were downloaded from P2P networks like BitTorrent more than 15 million times from Danish IP addresses, that’s up from 11.9 million in 2016.

Given the dramatic rise in visits to pirate sites overall, the suggestion is that plenty of consumers are still getting through. Rights Alliance says that the number of people being restricted is also hampered by people who don’t use their ISP’s DNS service, which is the method used to block sites in Denmark.

Additionally, interest in VPNs and similar anonymization and bypass-capable technologies is on the increase. Between 3.5% and 5% of Danish Internet users currently use a VPN, a number that’s expected to go up. Furthermore, Rights Alliance reports greater interest in “closed” pirate communities.

“The data is based on closed [BitTorrent] networks. We also address the challenges with private communities on Facebook and other [social media] platforms,” Fredenslund explains.

“Due to the closed doors of these platforms it is not possible for us to say anything precisely about the amount of infringing activities there. However, we receive an increasing number of notices from our members who discover that their products are distributed illegally and also we do an increased monitoring of these platforms.”

But while more established technologies such as torrents and regular web-streaming continue in considerable volumes, newer IPTV-style services accessible via apps and dedicated platforms are also gaining traction.

“The volume of visitors to these services’ websites has been sharply rising in 2017 – an increase of 84 percent from January to December,” Rights Alliance notes.

“Even though the number of visitors does not say anything about actual consumption, as users usually only visit pages one time to download the program, the number gives an indication that the interest in IPTV is increasing.”

To combat this growth market, Rights Alliance says it wants to establish web-blockades against sites hosting the software applications.

Also on the up are visits to platforms offering live sports illegally. In 2017, Danish IP addresses made 2.96 million visits to these services, corresponding to almost 250,000 visits per month and representing an annual increase of 28%.

Rights Alliance informs TF that in future a ‘live’ blocking mechanism similar to the one used by the Premier League in the UK could be deployed in Denmark.

“We already have a dynamic blocking system, and we see an increasing demand for illegal TV products, so this could be a natural next step,” Fredenslund explains.

Another small but perhaps significant detail is how users are accessing pirate sites. According to the report, large volumes of people are now visiting platforms directly, with more than 50% doing so in preference to referrals from search engines such as Google.

In terms of deterrence, the Rights Alliance report sticks to the tried-and-tested approaches seen so often in the anti-piracy arena.

Firstly, the group notes that it’s increasingly encountering people who are paying for legal services such as Netflix and Spotify so believe that allows them to grab something extra from a pirate site. However, in common with similar organizations globally, the group counters that pirate sites can serve malware or have other nefarious business interests behind the scenes, so people should stay away.

Whether significant volumes will heed this advice will remain to be seen but if a 67% increase last year is any predictor of the future, piracy is here to stay – and then some. Rights Alliance says it is ready for the challenge but will need some assistance to achieve its goals.

“As it is evident from the traffic data, criminal activities are not something that we, private companies (right holders in cooperation with ISPs), can handle alone,” Fredenslund says.

“Therefore, we are very pleased that DK Government recently announced that the IP taskforce which was set down as a trial period has now been made permanent. In that regard it is important and necessary that the police will also obtain the authority to handle blocking of massively infringing websites. Police do not have the authority to carry out blocking as it is today.”

The full report is available here (Danish, pdf)

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Implement continuous integration and delivery of serverless AWS Glue ETL applications using AWS Developer Tools

Post Syndicated from Prasad Alle original https://aws.amazon.com/blogs/big-data/implement-continuous-integration-and-delivery-of-serverless-aws-glue-etl-applications-using-aws-developer-tools/

AWS Glue is an increasingly popular way to develop serverless ETL (extract, transform, and load) applications for big data and data lake workloads. Organizations that transform their ETL applications to cloud-based, serverless ETL architectures need a seamless, end-to-end continuous integration and continuous delivery (CI/CD) pipeline: from source code, to build, to deployment, to product delivery. Having a good CI/CD pipeline can help your organization discover bugs before they reach production and deliver updates more frequently. It can also help developers write quality code and automate the ETL job release management process, mitigate risk, and more.

AWS Glue is a fully managed data catalog and ETL service. It simplifies and automates the difficult and time-consuming tasks of data discovery, conversion, and job scheduling. AWS Glue crawls your data sources and constructs a data catalog using pre-built classifiers for popular data formats and data types, including CSV, Apache Parquet, JSON, and more.

When you are developing ETL applications using AWS Glue, you might come across some of the following CI/CD challenges:

  • Iterative development with unit tests
  • Continuous integration and build
  • Pushing the ETL pipeline to a test environment
  • Pushing the ETL pipeline to a production environment
  • Testing ETL applications using real data (live test)
  • Exploring and validating data

In this post, I walk you through a solution that implements a CI/CD pipeline for serverless AWS Glue ETL applications supported by AWS Developer Tools (including AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild) and AWS CloudFormation.

Solution overview

The following diagram shows the pipeline workflow:

This solution uses AWS CodePipeline, which lets you orchestrate and automate the test and deploy stages for ETL application source code. The solution consists of a pipeline that contains the following stages:

1.) Source Control: In this stage, the AWS Glue ETL job source code and the AWS CloudFormation template file for deploying the ETL jobs are both committed to version control. I chose to use AWS CodeCommit for version control.

To get the ETL job source code and AWS CloudFormation template, download the gluedemoetl.zip file. This solution is developed based on a previous post, Build a Data Lake Foundation with AWS Glue and Amazon S3.

2.) LiveTest: In this stage, all resources—including AWS Glue crawlers, jobs, S3 buckets, roles, and other resources that are required for the solution—are provisioned, deployed, live tested, and cleaned up.

The LiveTest stage includes the following actions:

  • Deploy: In this action, all the resources that are required for this solution (crawlers, jobs, buckets, roles, and so on) are provisioned and deployed using an AWS CloudFormation template.
  • AutomatedLiveTest: In this action, all the AWS Glue crawlers and jobs are executed and data exploration and validation tests are performed. These validation tests include, but are not limited to, record counts in both raw tables and transformed tables in the data lake and any other business validations. I used AWS CodeBuild for this action.
  • LiveTestApproval: This action is included for the cases in which a pipeline administrator approval is required to deploy/promote the ETL applications to the next stage. The pipeline pauses in this action until an administrator manually approves the release.
  • LiveTestCleanup: In this action, all the LiveTest stage resources, including test crawlers, jobs, roles, and so on, are deleted using the AWS CloudFormation template. This action helps minimize cost by ensuring that the test resources exist only for the duration of the AutomatedLiveTest and LiveTestApproval

3.) DeployToProduction: In this stage, all the resources are deployed using the AWS CloudFormation template to the production environment.

Try it out

This code pipeline takes approximately 20 minutes to complete the LiveTest test stage (up to the LiveTest approval stage, in which manual approval is required).

To get started with this solution, choose Launch Stack:

This creates the CI/CD pipeline with all of its stages, as described earlier. It performs an initial commit of the sample AWS Glue ETL job source code to trigger the first release change.

In the AWS CloudFormation console, choose Create. After the template finishes creating resources, you see the pipeline name on the stack Outputs tab.

After that, open the CodePipeline console and select the newly created pipeline. Initially, your pipeline’s CodeCommit stage shows that the source action failed.

Allow a few minutes for your new pipeline to detect the initial commit applied by the CloudFormation stack creation. As soon as the commit is detected, your pipeline starts. You will see the successful stage completion status as soon as the CodeCommit source stage runs.

In the CodeCommit console, choose Code in the navigation pane to view the solution files.

Next, you can watch how the pipeline goes through the LiveTest stage of the deploy and AutomatedLiveTest actions, until it finally reaches the LiveTestApproval action.

At this point, if you check the AWS CloudFormation console, you can see that a new template has been deployed as part of the LiveTest deploy action.

At this point, make sure that the AWS Glue crawlers and the AWS Glue job ran successfully. Also check whether the corresponding databases and external tables have been created in the AWS Glue Data Catalog. Then verify that the data is validated using Amazon Athena, as shown following.

Open the AWS Glue console, and choose Databases in the navigation pane. You will see the following databases in the Data Catalog:

Open the Amazon Athena console, and run the following queries. Verify that the record counts are matching.

SELECT count(*) FROM "nycitytaxi_gluedemocicdtest"."data";
SELECT count(*) FROM "nytaxiparquet_gluedemocicdtest"."datalake";

The following shows the raw data:

The following shows the transformed data:

The pipeline pauses the action until the release is approved. After validating the data, manually approve the revision on the LiveTestApproval action on the CodePipeline console.

Add comments as needed, and choose Approve.

The LiveTestApproval stage now appears as Approved on the console.

After the revision is approved, the pipeline proceeds to use the AWS CloudFormation template to destroy the resources that were deployed in the LiveTest deploy action. This helps reduce cost and ensures a clean test environment on every deployment.

Production deployment is the final stage. In this stage, all the resources—AWS Glue crawlers, AWS Glue jobs, Amazon S3 buckets, roles, and so on—are provisioned and deployed to the production environment using the AWS CloudFormation template.

After successfully running the whole pipeline, feel free to experiment with it by changing the source code stored on AWS CodeCommit. For example, if you modify the AWS Glue ETL job to generate an error, it should make the AutomatedLiveTest action fail. Or if you change the AWS CloudFormation template to make its creation fail, it should affect the LiveTest deploy action. The objective of the pipeline is to guarantee that all changes that are deployed to production are guaranteed to work as expected.

Conclusion

In this post, you learned how easy it is to implement CI/CD for serverless AWS Glue ETL solutions with AWS developer tools like AWS CodePipeline and AWS CodeBuild at scale. Implementing such solutions can help you accelerate ETL development and testing at your organization.

If you have questions or suggestions, please comment below.

 


Additional Reading

If you found this post useful, be sure to check out Implement Continuous Integration and Delivery of Apache Spark Applications using AWS and Build a Data Lake Foundation with AWS Glue and Amazon S3.

 


About the Authors

Prasad Alle is a Senior Big Data Consultant with AWS Professional Services. He spends his time leading and building scalable, reliable Big data, Machine learning, Artificial Intelligence and IoT solutions for AWS Enterprise and Strategic customers. His interests extend to various technologies such as Advanced Edge Computing, Machine learning at Edge. In his spare time, he enjoys spending time with his family.

 
Luis Caro is a Big Data Consultant for AWS Professional Services. He works with our customers to provide guidance and technical assistance on big data projects, helping them improving the value of their solutions when using AWS.

 

 

 

Japan Seeks to Outmaneuver Constitution With Piracy Blocking Proposals

Post Syndicated from Andy original https://torrentfreak.com/japan-seeks-to-outmaneuver-constitution-with-piracy-blocking-proposals-180406/

Speaking at a news conference last month, Japan’s Chief Cabinet Secretary Yoshihide Suga said that the Japanese government is considering measures to prohibit access to pirate sites, initially to protect the country’s manga and anime industries.

“The damage is getting worse. We are considering the possibilities of all measures including site blocking,” he said.

But Japan has a problem.

The country has no specific legislation that allows for site-blocking of any kind, let alone on copyright infringement grounds. In fact, the constitution expressly supports freedom of speech and expressly forbids censorship.

“Freedom of assembly and association as well as speech, press and all other forms of expression are guaranteed,” Article 21 reads.

“No censorship shall be maintained, nor shall the secrecy of any means of communication be violated,” the constitution adds.

Nevertheless, the government appears determined to do something about the piracy threat. As detailed last month, that looks like manifesting itself in a site-blocking regime. But how will this be achieved?

Mainichi reports that the government will argue there are grounds for “averting present danger”, a phrase that’s detailed in Article 37 of Japan’s Penal Code.

“An act unavoidably performed to avert a present danger to the life, body, liberty
or property of oneself or any other person is not punishable only when the harm
produced by such act does not exceed the harm to be averted,” the Article (pdf) begins.

It’s fairly clear that this branch of Japanese law was never designed for use against pirate sites. Furthermore, there is also a clause noting that where an act (in this case blocking) causes excessive harm it may lead “to the punishment being reduced or may exculpate the offender in light of the circumstances.”

How, when, or if that ever comes into play will remain to be seen but in common with most legal processes against pirate site operators elsewhere, few turn up to argue in their defense. A contested process is therefore unlikely.

It appears that rather than forcing Internet providers into compliance, the government will ask for their “understanding” on the basis that damage is being done to the anime and manga industries. ISPs reportedly already cooperate to censor child abuse sites so it’s hoped a similar agreement can be reached on piracy.

Initially, the blocking requests will relate to just three as-yet-unnamed platforms, one local and two based outside the country. Of course, this is just the tip of the iceberg and if ISPs agree to block this trio, more demands are sure to follow.

Meanwhile, the government is also working towards tightening up the law to deal with an estimated 200 local sites that link, but do not host pirated content. Under current legislation, linking isn’t considered illegal, which is a major problem given the manner in which most file-sharing and streaming is carried out these days.

However, there are also concerns that any amendments to tackle linking could fall foul of the constitutional right to freedom of expression. It’s a problem that has been tackled elsewhere, notably in Europe, but in most cases the latter has been trumped by the former. In any event, the government will need to tread carefully.

The proposals are expected to be formally approved at a Cabinet meeting on crime prevention policy later this month, Mainichi reports.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Police Assisted By MPAA Shut Down Pirate TV Box Sellers

Post Syndicated from Andy original https://torrentfreak.com/police-assisted-by-mpaa-shut-down-pirate-tv-box-sellers-180404/

Piracy configured set-top boxes are the next big thing, today. Millions have been sold around the world and anti-piracy groups are scrambling to rein them in.

Many strategies are being tested, from pressurizing developers of allegedly infringing addons to filing aggressive lawsuits against sites such as TVAddons, a Kodi addon repository now facing civil action in both the United States and Canada.

Also under fire are companies that sell set-top boxes that come ready configured for piracy. Both Tickbox TV and Dragon Media Inc are being sued by the Alliance for Creativity and Entertainment (ACE) in the US. At this stage, neither case looks promising for the defendants.

However, civil action isn’t the only way to deal with defendants in the United States, as a man and woman team from Tampa, Florida, have just discovered after being arrested by local police.

Mickael Cantrell and Nancy Major were allegedly the brains behind NBEETV, a company promising to supply set-top boxes that deliver “every movie, every tv show that’s ever been made, plus live sports with no blackouts” with “no monthly fees ever.”

As similar cases have shown, this kind of marketing spiel rarely ends well for defendants but the people behind NBEE TV (also known as FreeTVForLife Inc.) were either oblivious or simply didn’t care about the consequences.

A company press release dated April 2017 advertising the company’s NBPro 3+ box and tracked down by TF this week reveals the extent of the boasts.

“NBPRO 3+ is a TV box that offers instant access to watch every episode of any TV show without paying any monthly bill. One just must attach the loaded box to his TV and stream whatever they want, with no commercials,” the company wrote.

But while “Free TV for Life” was the slogan, that wasn’t the reality at the outset.

NBEETV’s Kodi-powered Android boxes were hellishly expensive with the NBPRO 1, NBPRO 3, NBPRO 5 costing $199.00, $279.00 and $359.00 respectively. This, however, was presented as a bargain alongside a claim that the “average [monthly] cable bill across the country is approximately $198.00” per month.

On top of the base product, NBEETV offered an 800 number for customer support and from their physical premises, they ran “training classes every Tuesday and Thursdays at 11:00” for people to better understand their products.

The location of that building isn’t mentioned in local media but a WHOIS on the company’s FreeTVForLife domain yields a confirmed address. It’s one that’s also been complained about in the past by an unhappy customer.

“Free TV for LIFE [redacted]..(next to K-Mart) Hudson, Fl.. 34667. We bought the Little black box costing $277.00. The pictures were not clear,” Rita S. wrote.

“The screen froze up on us all the time, even after hooking straight into the router. When we took the unit back they kept $80 of our money….were very rude, using the ************* word and we will not get the remainder of our money for 14-28 days according to the employee at the store. Buyers beware and I am telling everyone!!!”

While this customer was clearly unhappy, NBEETV claimed to be a “movement which is spreading across the country.” Unfortunately, that movement reached the eyes of the police, who didn’t think that the content being offered on the devices should have been presented for free.

“We saw [the boxes] had Black Panther, The Shape Of Water, Jumanji was on there as well,” said Detective Darren Hill.

“This is someone blatantly on the side of the road just selling them, with signage, a store front; advertising on the internet with a website.”

Detective Hill worked on the case with the MPAA but even from TorrentFreak’s limited investigations this week, the couple were incredibly easy to identify.

Aside from providing accurate and non-hidden address data in WHOIS records, Mickael Cantrell (also known as Michael Cantrell) put in his real name too. The listed email address is also easily traced back to a company called Nanny Bees Corporation which was operated by Cantrell and partner Nancy Major, who was also arrested in the NBEETV case.

Unfortunately for the couple, the blundering didn’t stop there. Their company YouTube channel, which is packed with tutorials, is also in Cantrell’s real name. Indeed, the photograph supplied to YouTube even matches the mugshot published by ABC Action News.

The publication reports that the Sheriff’s Office found the couple with around 50 ‘pirate’ boxes. The store operated by the couple has also been shutdown.

Finally, another curious aspect of NBEETV’s self-promotion comes via a blog post/press release dated August 2017 in which Cantrell suddenly ups the ante by becoming Michael W. Cantrell, Ph. D alongside some bold and unusual claims.

“Dr. Cantrell unleashes his latest innovation, a Smart TV Box that literally updates every ten minutes. Not only does the content (what you can view) but the whole platform updates automatically. If the Company changes an icon you receive the change in real time,” the release reads.

“Thanks to the Overlay Processor that Dr. Cantrell created, this processor named B-D.A.D (Binary Data Acceleration Dump) which enhances an Android unit’s operating power 5 times than the original bench test, has set a new industry standard around the world.”

Sounds epic….perhaps it powered the following video clip.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

MPAA Aims to Prevent Piracy Leaks With New Security Program

Post Syndicated from Andy original https://torrentfreak.com/mpaa-aims-to-prevent-piracy-leaks-with-new-security-program-180403/

When movies and TV shows leak onto the Internet in advance of their intended release dates, it’s generally a time of celebration for pirates.

Grabbing a workprint or DVD screener of an Oscar nominee or a yet to be aired on TV show makes the Internet bubble with excitement. But for the studios and companies behind the products, it presents their worst nightmare.

Despite all the takedown efforts known to man, once content appears, there’s no putting the genie back into the bottle.

With this in mind, the solution doesn’t lie with reactionary efforts such as Internet disconnections, site-blocking and similar measures, but better hygiene while content is still in production or being prepared for distribution. It’s something the MPAA hopes to address with a brand new program designed to bring the security of third-party vendors up to scratch.

The Trusted Partner Network (TPN) is the brainchild of the MPAA and the Content Delivery & Security Association (CDSA), a worldwide forum advocating the innovative and responsible delivery and storage of entertainment content.

TPN is being touted as a global industry-wide film and television content protection initiative which will help companies prevent leaks, breaches, and hacks of their customers’ movies and television shows prior to their intended release.

“Content is now created by a growing ecosystem of third-party vendors, who collaborate with varying degrees of security,” TPN explains.

“This has escalated the security threat to the entertainment industry’s most prized asset, its content. The TPN program seeks to raise security awareness, preparedness, and capabilities within our industry.”

The TPN will establish a “single benchmark of minimum security preparedness” for vendors whose details will be available via centralized and global “trusted partner” database. The TPN will replace security assessments programs already in place at the MPAA and CDSA.

While content owners and vendors are still able to conduct their own security assessments on an “as-needed” basis, the aim is for the TPN to reduce the number of assessments carried out while assisting in identifying vulnerabilities. The pool of “trusted partners” is designed to help all involved understand and meet the challenges of leaks, whether that’s movie, TV show, or associated content.

While joining the TPN program is voluntary, there’s a strong suggestion that becoming involved in the program is in vendors’ best interests. Being able to carry the TPN logo will be an asset to doing business with others involved in the scheme, it’s suggested.

Once in, vendors will need to hire a TPN-approved assessor to carry out an initial audit of their supply chain and best practices, which in turn will need to be guided by the MPAA’s existing content security guidelines.

“Vendors will hire a Qualified Assessor from the TPN database and will schedule their assessment and manage the process via the secure online platform,” TPN says, noting that vendors will cover their own costs unless an assessment is carried out at the request of a content owner.

The TPN explains that members of the scheme aren’t passed or failed in respect of their security preparedness. However, there’s an expectation they will be expected to come up to scratch and prove that with a subsequent positive report from a TPN approved assessor. Assessors themselves will also be assessed via the TPN Qualified Assessor Program.

By imposing MPAA best practices upon partner companies, it’s hoped that some if not all of the major leaks that have plagued the industry over the past several years will be prevented in future. Whether that’s the usual DVD screener leaks, workprints, scripts or other content, it’s believed the TPN should be able to help in some way, although the former might be a more difficult nut to crack.

There’s no doubting that the problem TPN aims to address is serious. In 2017 alone, hackers and other individuals obtained and then leaked episodes of Orange is the New Black, unreleased ABC content, an episode of Game of Thrones sourced from India and scripts from the same show. Even blundering efforts managed to make their mark.

“Creating the films and television shows enjoyed by audiences around the world increasingly requires a network of specialized vendors and technicians,” says MPAA chairman and CEO Charles Rivkin.

“That’s why maintaining high security standards for all third-party operations — from script to screen — is such an important part of preventing the theft of creative works and ultimately protects jobs and the health of our vibrant creative economy.”

According to TPN, the first class of TPN Assessors was recruited and tested last month while beta-testing of key vendors will begin in April. The full program will roll out in June 2018.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Alex’s quick and easy digital making Easter egg hunt

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/alexs-easter-egg-hunt/

Looking to incorporate some digital making into your Easter weekend? You’ve come to the right place! With a Raspberry Pi, a few wires, and some simple code, you can take your festivities to the next level — here’s how!

Easter Egg Hunt using Raspberry Pi

If you logged in to watch our Instagram live-stream yesterday, you’ll have seen me put together a simple egg carton and some wires to create circuits. These circuits, when closed by way of a foil-wrapped chocolate egg, instruct a Raspberry Pi to reveal the whereabouts of a larger chocolate egg!

Make it

You’ll need an egg carton, two male-to-female jumper wire, and two crocodile leads for each egg you use.

Easter Egg Hunt using Raspberry Pi

Connect your leads together in pairs: one end of a crocodile lead to the male end of one jumper wire. Attach the free crocodile clips of two leads to each corner of the egg carton (as shown up top). Then hook up the female ends to GPIO pins: one numbered pin and one ground pin per egg. I recommend pins 3, 4, 18 and 24, as they all have adjacent GND pins.

Easter Egg Hunt using Raspberry Pi

Your foil-wrapped Easter egg will complete the circuit — make sure it’s touching both the GPIO- and GND-connected clips when resting in the carton.

Easter Egg Hunt using Raspberry Pi

Wrap it

For your convenience (and our sweet tooth), we tested several foil-wrapped eggs (Easter and otherwise) to see which are conductive.

Raspberry Pi on Twitter

We’re egg-sperimenting with Easter deliciousness to find which treat is the most conductive. Why? All will be revealed in our Instagram Easter live-stream tomorrow.

The result? None of them are! But if you unwrap an egg and rewrap it with the non-decorative foil side outward, this tends to work. You could also use aluminium foil or copper tape to create a conductive layer.

Code it

Next, you’ll need to create the code for your hunt. The script below contains the bare bones needed to make the project work — you can embellish it however you wish using GUIs, flashing LEDs, music, etc.

Open Thonny or IDLE on Raspbian and create a new file called egghunt.py. Then enter the following code:

We’re using ButtonBoard from the gpiozero library. This allows us to link several buttons together as an object and set an action for when any number of the buttons are pressed. Here, the script waits for all four circuits to be completed before printing the location of the prize in the Python shell.

Your turn

And that’s it! Now you just need to hide your small foil eggs around the house and challenge your kids/friends/neighbours to find them. Then, once every circuit is completed with an egg, the great prize will be revealed.

Give it a go this weekend! And if you do, be sure to let us know on social media.

(Thank you to Lauren Hyams for suggesting we “do something for Easter” and Ben ‘gpiozero’ Nuttall for introducing me to ButtonBoard.)

The post Alex’s quick and easy digital making Easter egg hunt appeared first on Raspberry Pi.

AWS Achieves Spain’s ENS High Certification Across 29 Services

Post Syndicated from Oliver Bell original https://aws.amazon.com/blogs/security/aws-achieves-spains-ens-high-certification-across-29-services/

AWS has achieved Spain’s Esquema Nacional de Seguridad (ENS) High certification across 29 services. To successfully achieve the ENS High Standard, BDO España conducted an independent audit and attested that AWS meets confidentiality, integrity, and availability standards. This provides the assurance needed by Spanish Public Sector organizations wanting to build secure applications and services on AWS.

The National Security Framework, regulated under Royal Decree 3/2010, was developed through close collaboration between ENAC (Entidad Nacional de Acreditación), the Ministry of Finance and Public Administration and the CCN (National Cryptologic Centre), and other administrative bodies.

The following AWS Services are ENS High accredited across our Dublin and Frankfurt Regions:

  • Amazon API Gateway
  • Amazon DynamoDB
  • Amazon Elastic Container Service
  • Amazon Elastic Block Store
  • Amazon Elastic Compute Cloud
  • Amazon Elastic File System
  • Amazon Elastic MapReduce
  • Amazon ElastiCache
  • Amazon Glacier
  • Amazon Redshift
  • Amazon Relational Database Service
  • Amazon Simple Queue Service
  • Amazon Simple Storage Service
  • Amazon Simple Workflow Service
  • Amazon Virtual Private Cloud
  • Amazon WorkSpaces
  • AWS CloudFormation
  • AWS CloudTrail
  • AWS Config
  • AWS Database Migration Service
  • AWS Direct Connect
  • AWS Directory Service
  • AWS Elastic Beanstalk
  • AWS Key Management Service
  • AWS Lambda
  • AWS Snowball
  • AWS Storage Gateway
  • Elastic Load Balancing
  • VM Import/Export

AWS Key Management Service now offers FIPS 140-2 validated cryptographic modules enabling easier adoption of the service for regulated workloads

Post Syndicated from Sreekumar Pisharody original https://aws.amazon.com/blogs/security/aws-key-management-service-now-offers-fips-140-2-validated-cryptographic-modules-enabling-easier-adoption-of-the-service-for-regulated-workloads/

AWS Key Management Service (KMS) now uses FIPS 140-2 validated hardware security modules (HSM) and supports FIPS 140-2 validated endpoints, which provide independent assurances about the confidentiality and integrity of your keys. Having additional third-party assurances about the keys you manage in AWS KMS can make it easier to use the service for regulated workloads.

The process of gaining FIPS 140-2 validation is rigorous. First, AWS KMS HSMs were tested by an independent lab; those results were further reviewed by the Cryptographic Module Validation Program run by NIST. You can view the FIPS 140-2 certificate of the AWS Key Management Service HSM to get more details.

AWS KMS HSMs are designed so that no one, not even AWS employees, can retrieve your plaintext keys. The service uses the FIPS 140-2 validated HSMs to protect your keys when you request the service to create keys on your behalf or when you import them. Your plaintext keys are never written to disk and are only used in volatile memory of the HSMs while performing your requested cryptographic operation. Furthermore, AWS KMS keys are never transmitted outside the AWS Regions they were created. And HSM firmware updates are controlled by multi-party access that is audited and reviewed by an independent group within AWS.

AWS KMS HSMs are validated at level 2 overall and at level 3 in the following areas:

  • Cryptographic Module Specification
  • Roles, Services, and Authentication
  • Physical Security
  • Design Assurance

You can also make AWS KMS requests to API endpoints that terminate TLS sessions using a FIPS 140-2 validated cryptographic software module. To do so, connect to the unique FIPS 140-2 validated HTTPS endpoints in the AWS KMS requests made from your applications. AWS KMS FIPS 140-2 validated HTTPS endpoints are powered by the OpenSSL FIPS Object Module. FIPS 140-2 validated API endpoints are available in all commercial regions where AWS KMS is available.

Founder of Fan-Made Subtitle Site Lose Copyright Infringement Appeal

Post Syndicated from Andy original https://torrentfreak.com/founder-of-fan-made-subtitle-site-lose-copyright-infringement-appeal-180318/

For millions of people around the world, subtitles are the only way to enjoy media in languages other than that in the original production. For the deaf and hard of hearing, they are absolutely essential.

Movie and TV show companies tend to be quiet good at providing subtitles eventually but in line with other restrictive practices associated with their industry, it can often mean a long wait for the consumer, particularly in overseas territories.

For this reason, fan-made subtitles have become somewhat of a cottage industry in recent years. Where companies fail to provide subtitles quickly enough, fans step in and create them by hand. This has led to the rise of a number of subtitling platforms, including the now widely recognized Undertexter.se in Sweden.

The platform had its roots back in 2003 but first hit the headlines in 2013 when Swedish police caused an uproar by raiding the site and seizing its servers.

“The people who work on the site don’t consider their own interpretation of dialog to be something illegal, especially when we’re handing out these interpretations for free,” site founder Eugen Archy said at the time.

Vowing to never give up in the face of pressure from the authorities, anti-piracy outfit Rättighetsalliansen (Rights Alliance), and companies including Nordisk Film, Paramount, Universal, Sony and Warner, Archy said that the battle over what began as a high school project would continue.

“No Hollywood, you played the wrong card here. We will never give up, we live in a free country and Swedish people have every right to publish their own interpretations of a movie or TV show,” he said.

It took four more years but in 2017 the Undertexter founder was prosecuted for distributing copyright-infringing subtitles while facing a potential prison sentence.

Things didn’t go well and last September the Attunda District Court found him guilty and sentenced the then 32-year-old operator to probation. In addition, he was told to pay 217,000 Swedish krona ($26,400) to be taken from advertising and donation revenues collected through the site.

Eugen Archy took the case to appeal, arguing that the Svea Hovrätt (Svea Court of Appeal) should acquit him of all the charges and dismiss or at least reduce the amount he was ordered to pay by the lower court. Needless to say, this was challenged by the prosecution.

On appeal, Archy agreed that he was the person behind Undertexter but disputed that the subtitle files uploaded to his site infringed on the plaintiffs’ copyrights, arguing they were creative works in their own right.

While to an extent that may have been the case, the Court found that the translations themselves depended on the rights connected to the original work, which were entirely held by the relevant copyright holders. While paraphrasing and parody might be allowed, pure translations are completely covered by the rights in the original and cannot be seen as new and independent works, the Court found.

The Svea Hovrätt also found that Archy acted intentionally, noting that in addition to administering the site and doing some translating work himself, it was “inconceivable” that he did not know that the subtitles made available related to copyrighted dialog found in movies.

In conclusion, the Court of Appeal upheld Archy’s copyright infringement conviction (pdf, Swedish) and sentenced him to probation, as previously determined by the Attunda District Court.

Last year, the legal status of user-created subtitles was also tested in the Netherlands. In response to local anti-piracy outfit BREIN forcing several subtitling groups into retreat, a group of fansubbers decided to fight back.

After raising their own funds, in 2016 the “Free Subtitles Foundation” (Stichting Laat Ondertitels Vrij – SLOV) took the decision to sue BREIN with the hope of obtaining a favorable legal ruling.

In 2017 it all fell apart when the Amsterdam District Court handed down its decision and sided with BREIN on each count.

The Court found that subtitles can only be created and distributed after permission has been obtained from copyright holders. Doing so outside these parameters amounts to copyright infringement.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Message Filtering Operators for Numeric Matching, Prefix Matching, and Blacklisting in Amazon SNS

Post Syndicated from Christie Gifrin original https://aws.amazon.com/blogs/compute/message-filtering-operators-for-numeric-matching-prefix-matching-and-blacklisting-in-amazon-sns/

This blog was contributed by Otavio Ferreira, Software Development Manager for Amazon SNS

Message filtering simplifies the overall pub/sub messaging architecture by offloading message filtering logic from subscribers, as well as message routing logic from publishers. The initial launch of message filtering provided a basic operator that was based on exact string comparison. For more information, see Simplify Your Pub/Sub Messaging with Amazon SNS Message Filtering.

Today, AWS is announcing an additional set of filtering operators that bring even more power and flexibility to your pub/sub messaging use cases.

Message filtering operators

Amazon SNS now supports both numeric and string matching. Specifically, string matching operators allow for exact, prefix, and “anything-but” comparisons, while numeric matching operators allow for exact and range comparisons, as outlined below. Numeric matching operators work for values between -10e9 and +10e9 inclusive, with five digits of accuracy right of the decimal point.

  • Exact matching on string values (Whitelisting): Subscription filter policy   {"sport": ["rugby"]} matches message attribute {"sport": "rugby"} only.
  • Anything-but matching on string values (Blacklisting): Subscription filter policy {"sport": [{"anything-but": "rugby"}]} matches message attributes such as {"sport": "baseball"} and {"sport": "basketball"} and {"sport": "football"} but not {"sport": "rugby"}
  • Prefix matching on string values: Subscription filter policy {"sport": [{"prefix": "bas"}]} matches message attributes such as {"sport": "baseball"} and {"sport": "basketball"}
  • Exact matching on numeric values: Subscription filter policy {"balance": [{"numeric": ["=", 301.5]}]} matches message attributes {"balance": 301.500} and {"balance": 3.015e2}
  • Range matching on numeric values: Subscription filter policy {"balance": [{"numeric": ["<", 0]}]} matches negative numbers only, and {"balance": [{"numeric": [">", 0, "<=", 150]}]} matches any positive number up to 150.

As usual, you may apply the “AND” logic by appending multiple keys in the subscription filter policy, and the “OR” logic by appending multiple values for the same key, as follows:

  • AND logic: Subscription filter policy {"sport": ["rugby"], "language": ["English"]} matches only messages that carry both attributes {"sport": "rugby"} and {"language": "English"}
  • OR logic: Subscription filter policy {"sport": ["rugby", "football"]} matches messages that carry either the attribute {"sport": "rugby"} or {"sport": "football"}

Message filtering operators in action

Here’s how this new set of filtering operators works. The following example is based on a pharmaceutical company that develops, produces, and markets a variety of prescription drugs, with research labs located in Asia Pacific and Europe. The company built an internal procurement system to manage the purchasing of lab supplies (for example, chemicals and utensils), office supplies (for example, paper, folders, and markers) and tech supplies (for example, laptops, monitors, and printers) from global suppliers.

This distributed system is composed of the four following subsystems:

  • A requisition system that presents the catalog of products from suppliers, and takes orders from buyers
  • An approval system for orders targeted to Asia Pacific labs
  • Another approval system for orders targeted to European labs
  • A fulfillment system that integrates with shipping partners

As shown in the following diagram, the company leverages AWS messaging services to integrate these distributed systems.

  • Firstly, an SNS topic named “Orders” was created to take all orders placed by buyers on the requisition system.
  • Secondly, two Amazon SQS queues, named “Lab-Orders-AP” and “Lab-Orders-EU” (for Asia Pacific and Europe respectively), were created to backlog orders that are up for review on the approval systems.
  • Lastly, an SQS queue named “Common-Orders” was created to backlog orders that aren’t related to lab supplies, which can already be picked up by shipping partners on the fulfillment system.

The company also uses AWS Lambda functions to automatically process lab supply orders that don’t require approval or which are invalid.

In this example, because different types of orders have been published to the SNS topic, the subscribing endpoints have had to set advanced filter policies on their SNS subscriptions, to have SNS automatically filter out orders they can’t deal with.

As depicted in the above diagram, the following five filter policies have been created:

  • The SNS subscription that points to the SQS queue “Lab-Orders-AP” sets a filter policy that matches lab supply orders, with a total value greater than $1,000, and that target Asia Pacific labs only. These more expensive transactions require an approver to review orders placed by buyers.
  • The SNS subscription that points to the SQS queue “Lab-Orders-EU” sets a filter policy that matches lab supply orders, also with a total value greater than $1,000, but that target European labs instead.
  • The SNS subscription that points to the Lambda function “Lab-Preapproved” sets a filter policy that only matches lab supply orders that aren’t as expensive, up to $1,000, regardless of their target lab location. These orders simply don’t require approval and can be automatically processed.
  • The SNS subscription that points to the Lambda function “Lab-Cancelled” sets a filter policy that only matches lab supply orders with total value of $0 (zero), regardless of their target lab location. These orders carry no actual items, obviously need neither approval nor fulfillment, and as such can be automatically canceled.
  • The SNS subscription that points to the SQS queue “Common-Orders” sets a filter policy that blacklists lab supply orders. Hence, this policy matches only office and tech supply orders, which have a more streamlined fulfillment process, and require no approval, regardless of price or target location.

After the company finished building this advanced pub/sub architecture, they were then able to launch their internal procurement system and allow buyers to begin placing orders. The diagram above shows six example orders published to the SNS topic. Each order contains message attributes that describe the order, and cause them to be filtered in a different manner, as follows:

  • Message #1 is a lab supply order, with a total value of $15,700 and targeting a research lab in Singapore. Because the value is greater than $1,000, and the location “Asia-Pacific-Southeast” matches the prefix “Asia-Pacific-“, this message matches the first SNS subscription and is delivered to SQS queue “Lab-Orders-AP”.
  • Message #2 is a lab supply order, with a total value of $1,833 and targeting a research lab in Ireland. Because the value is greater than $1,000, and the location “Europe-West” matches the prefix “Europe-“, this message matches the second SNS subscription and is delivered to SQS queue “Lab-Orders-EU”.
  • Message #3 is a lab supply order, with a total value of $415. Because the value is greater than $0 and less than $1,000, this message matches the third SNS subscription and is delivered to Lambda function “Lab-Preapproved”.
  • Message #4 is a lab supply order, but with a total value of $0. Therefore, it only matches the fourth SNS subscription, and is delivered to Lambda function “Lab-Cancelled”.
  • Messages #5 and #6 aren’t lab supply orders actually; one is an office supply order, and the other is a tech supply order. Therefore, they only match the fifth SNS subscription, and are both delivered to SQS queue “Common-Orders”.

Although each message only matched a single subscription, each was tested against the filter policy of every subscription in the topic. Hence, depending on which attributes are set on the incoming message, the message might actually match multiple subscriptions, and multiple deliveries will take place. Also, it is important to bear in mind that subscriptions with no filter policies catch every single message published to the topic, as a blank filter policy equates to a catch-all behavior.

Summary

Amazon SNS allows for both string and numeric filtering operators. As explained in this post, string operators allow for exact, prefix, and “anything-but” comparisons, while numeric operators allow for exact and range comparisons. These advanced filtering operators bring even more power and flexibility to your pub/sub messaging functionality and also allow you to simplify your architecture further by removing even more logic from your subscribers.

Message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). SNS filtering operators for numeric matching, prefix matching, and blacklisting are available now in all AWS Regions, for no extra charge.

To experiment with these new filtering operators yourself, and continue learning, try the 10-minute Tutorial Filter Messages Published to Topics. For more information, see Filtering Messages with Amazon SNS in the SNS documentation.

[$] LinuxBoot: Linux as firmware

Post Syndicated from jake original https://lwn.net/Articles/748586/rss

Both the free-software and security communities have recently been
focusing on the elements of our computers that run below
the operating system. These proprietary firmware components are usually
difficult or impossible to extend and it has long been suspected (and
proven in several cases) that there are significant security concerns with
them. The
LinuxBoot Project is working to
replace this complex, proprietary, and largely unknown firmware with a
Linux kernel. That has the added benefit of replacing the existing drivers
in the firmware with well-tested drivers from Linux.

Getting product security engineering right

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2018/02/getting-product-security-engineering.html

Product security is an interesting animal: it is a uniquely cross-disciplinary endeavor that spans policy, consulting,
process automation, in-depth software engineering, and cutting-edge vulnerability research. And in contrast to many
other specializations in our field of expertise – say, incident response or network security – we have virtually no
time-tested and coherent frameworks for setting it up within a company of any size.

In my previous post, I shared some thoughts
on nurturing technical organizations and cultivating the right kind of leadership within. Today, I figured it would
be fitting to follow up with several notes on what I learned about structuring product security work – and about actually
making the effort count.

The “comfort zone” trap

For security engineers, knowing your limits is a sought-after quality: there is nothing more dangerous than a security
expert who goes off script and starts dispensing authoritatively-sounding but bogus advice on a topic they know very
little about. But that same quality can be destructive when it prevents us from growing beyond our most familiar role: that of
a critic who pokes holes in other people’s designs.

The role of a resident security critic lends itself all too easily to a sense of supremacy: the mistaken
belief that our cognitive skills exceed the capabilities of the engineers and product managers who come to us for help
– and that the cool bugs we file are the ultimate proof of our special gift. We start taking pride in the mere act
of breaking somebody else’s software – and then write scathing but ineffectual critiques addressed to executives,
demanding that they either put a stop to a project or sign off on a risk. And hey, in the latter case, they better
brace for our triumphant “I told you so” at some later date.

Of course, escalations of this type have their place, but they need to be a very rare sight; when practiced routinely, they are a telltale
sign of a dysfunctional team. We might be failing to think up viable alternatives that are in tune with business or engineering needs; we might
be very unpersuasive, failing to communicate with other rational people in a language they understand; or it might be that our tolerance for risk
is badly out of whack with the rest of the company. Whatever the cause, I’ve seen high-level escalations where the security team
spoke of valiant efforts to resist inexplicably awful design decisions or data sharing setups; and where product leads in turn talked about
pressing business needs randomly blocked by obstinate security folks. Sometimes, simply having them compare their notes would be enough to arrive
at a technical solution – such as sharing a less sensitive subset of the data at hand.

To be effective, any product security program must be rooted in a partnership with the rest of the company, focused on helping them get stuff done
while eliminating or reducing security risks. To combat the toxic us-versus-them mentality, I found it helpful to have some team members with
software engineering backgrounds, even if it’s the ownership of a small open-source project or so. This can broaden our horizons, helping us see
that we all make the same mistakes – and that not every solution that sounds good on paper is usable once we code it up.

Getting off the treadmill

All security programs involve a good chunk of operational work. For product security, this can be a combination of product launch reviews, design consulting requests, incoming bug reports, or compliance-driven assessments of some sort. And curiously, such reactive work also has the property of gradually expanding to consume all the available resources on a team: next year is bound to bring even more review requests, even more regulatory hurdles, and even more incoming bugs to triage and fix.

Being more tractable, such routine tasks are also more readily enshrined in SDLs, SLAs, and all kinds of other official documents that are often mistaken for a mission statement that justifies the existence of our teams. Soon, instead of explaining to a developer why they should fix a particular problem right away, we end up pointing them to page 17 in our severity classification guideline, which defines that “severity 2” vulnerabilities need to be resolved within a month. Meanwhile, another policy may be telling them that they need to run a fuzzer or a web application scanner for a particular number of CPU-hours – no matter whether it makes sense or whether the job is set up right.

To run a product security program that scales sublinearly, stays abreast of future threats, and doesn’t erect bureaucratic speed bumps just for the sake of it, we need to recognize this inherent tendency for operational work to take over – and we need to reign it in. No matter what the last year’s policy says, we usually don’t need to be doing security reviews with a particular cadence or to a particular depth; if we need to scale them back 10% to staff a two-quarter project that fixes an important API and squashes an entire class of bugs, it’s a short-term risk we should feel empowered to take.

As noted in my earlier post, I find contingency planning to be a valuable tool in this regard: why not ask ourselves how the team would cope if the workload went up another 30%, but bad financial results precluded any team growth? It’s actually fun to think about such hypotheticals ahead of the time – and hey, if the ideas sound good, why not try them out today?

Living for a cause

It can be difficult to understand if our security efforts are structured and prioritized right; when faced with such uncertainty, it is natural to stick to the safe fundamentals – investing most of our resources into the very same things that everybody else in our industry appears to be focusing on today.

I think it’s important to combat this mindset – and if so, we might as well tackle it head on. Rather than focusing on tactical objectives and policy documents, try to write down a concise mission statement explaining why you are a team in the first place, what specific business outcomes you are aiming for, how do you prioritize it, and how you want it all to change in a year or two. It should be a fluid narrative that reads right and that everybody on your team can take pride in; my favorite way of starting the conversation is telling folks that we could always have a new VP tomorrow – and that the VP’s first order of business could be asking, “why do you have so many people here and how do I know they are doing the right thing?”. It’s a playful but realistic framing device that motivates people to get it done.

In general, a comprehensive product security program should probably start with the assumption that no matter how many resources we have at our disposal, we will never be able to stay in the loop on everything that’s happening across the company – and even if we did, we’re not going to be able to catch every single bug. It follows that one of our top priorities for the team should be making sure that bugs don’t happen very often; a scalable way of getting there is equipping engineers with intuitive and usable tools that make it easy to perform common tasks without having to worry about security at all. Examples include standardized, managed containers for production jobs; safe-by-default APIs, such as strict contextual autoescaping for XSS or type safety for SQL; security-conscious style guidelines; or plug-and-play libraries that take care of common crypto or ACL enforcement tasks.

Of course, not all problems can be addressed on framework level, and not every engineer will always reach for the right tools. Because of this, the next principle that I found to be worth focusing on is containment and mitigation: making sure that bugs are difficult to exploit when they happen, or that the damage is kept in check. The solutions in this space can range from low-level enhancements (say, hardened allocators or seccomp-bpf sandboxes) to client-facing features such as browser origin isolation or Content Security Policy.

The usual consulting, review, and outreach tasks are an important facet of a product security program, but probably shouldn’t be the sole focus of your team. It’s also best to avoid undue emphasis on vulnerability showmanship: while valuable in some contexts, it creates a hypercompetitive environment that may be hostile to less experienced team members – not to mention, squashing individual bugs offers very limited value if the same issue is likely to be reintroduced into the codebase the next day. I like to think of security reviews as a teaching opportunity instead: it’s a way to raise awareness, form partnerships with engineers, and help them develop lasting habits that reduce the incidence of bugs. Metrics to understand the impact of your work are important, too; if your engagements are seen mostly as a yet another layer of red tape, product teams will stop reaching out to you for advice.

The other tenet of a healthy product security effort requires us to recognize at a scale and given enough time, every defense mechanism is bound to fail – and so, we need ways to prevent bugs from turning into incidents. The efforts in this space may range from developing product-specific signals for the incident response and monitoring teams; to offering meaningful vulnerability reward programs and nourishing a healthy and respectful relationship with the research community; to organizing regular offensive exercises in hopes of spotting bugs before anybody else does.

Oh, one final note: an important feature of a healthy security program is the existence of multiple feedback loops that help you spot problems without the need to micromanage the organization and without being deathly afraid of taking chances. For example, the data coming from bug bounty programs, if analyzed correctly, offers a wonderful way to alert you to systemic problems in your codebase – and later on, to measure the impact of any remediation and hardening work.