Tag Archives: things

EC2 Instance Update – M5 Instances with Local NVMe Storage (M5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-m5-instances-with-local-nvme-storage-m5d/

Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!

Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS-Optimized BandwidthNetwork Bandwidth
m5d.large28 GiB1 x 75 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.xlarge416 GiB1 x 150 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.2xlarge832 GiB1 x 300 GB NVMe SSDUp to 2.120 GbpsUp to 10 Gbps
m5d.4xlarge1664 GiB1 x 600 GB NVMe SSD2.210 GbpsUp to 10 Gbps
m5d.12xlarge48192 GiB2 x 900 GB NVMe SSD5.0 Gbps10 Gbps
m5d.24xlarge96384 GiB4 x 900 GB NVMe SSD10.0 Gbps25 Gbps

The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.

Jeff;

 

Friday Squid Blogging: Do Cephalopods Contain Alien DNA?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/friday_squid_bl_627.html

Maybe not DNA, but biological somethings.

Cause of Cambrian explosion — Terrestrial or Cosmic?“:

Abstract: We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ~500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion — life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.

Two commentaries.

This is almost certainly not true.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

Kidnapping Fraud

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/kidnapping_frau.html

Fake kidnapping fraud:

“Most commonly we have unsolicited calls to potential victims in Australia, purporting to represent the people in authority in China and suggesting to intending victims here they have been involved in some sort of offence in China or elsewhere, for which they’re being held responsible,” Commander McLean said.

The scammers threaten the students with deportation from Australia or some kind of criminal punishment.

The victims are then coerced into providing their identification details or money to get out of the supposed trouble they’re in.

Commander McLean said there are also cases where the student is told they have to hide in a hotel room, provide compromising photos of themselves and cut off all contact.

This simulates a kidnapping.

“So having tricked the victims in Australia into providing the photographs, and money and documents and other things, they then present the information back to the unknowing families in China to suggest that their children who are abroad are in trouble,” Commander McLean said.

“So quite circular in a sense…very skilled, very cunning.”

[$] Killing processes that don’t want to die

Post Syndicated from jake original https://lwn.net/Articles/754980/rss

Suppose you have a program running on your system that you don’t quite
trust. Maybe it’s a program submitted by a student to an automated
grading system. Or maybe it’s a QEMU device model running in a Xen
control domain ("domain 0" or “dom0”), and you want to make sure
that even
if an attacker from a rogue virtual machine manages to take over the QEMU
process,
they can’t do any further harm. There are many things you want to do as far
as restricting its ability
to do mischief. But one thing in particular you probably want to do
is to be able to reliably kill the process once you think it should be
done. This turns out to be quite a bit more tricky than you’d think.

Project Floofball and more: Pi pet stuff

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/project-floofball-pi-pet-stuff/

It’s a public holiday here today (yes, again). So, while we indulge in the traditional pastime of barbecuing stuff (ourselves, mainly), here’s a little trove of Pi projects that cater for our various furry friends.

Project Floofball

Nicole Horward created Project Floofball for her hamster, Harold. It’s an IoT hamster wheel that uses a Raspberry Pi and a magnetic door sensor to log how far Harold runs.

Project Floofball: an IoT hamster wheel

An IoT Hamsterwheel using a Raspberry Pi and a magnetic door sensor, to see how far my hamster runs.

You can follow Harold’s runs in real time on his ThingSpeak channel, and you’ll find photos of the build on imgur. Nicole’s Python code, as well as her template for the laser-cut enclosure that houses the wiring and LCD display, are available on the hamster wheel’s GitHub repo.

A live-streaming pet feeder

JaganK3 used to work long hours that meant he couldn’t be there to feed his dog on time. He found that he couldn’t buy an automated feeder in India without paying a lot to import one, so he made one himself. It uses a Raspberry Pi to control a motor that turns a dispensing valve in a hopper full of dry food, giving his dog a portion of food at set times.

A transparent cylindrical hopper of dry dog food, with a motor that can turn a dispensing valve at the lower end. The motor is connected to a Raspberry Pi in a plastic case. Hopper, motor, Pi, and wiring are all mounted on a board on the wall.

He also added a web cam for live video streaming, because he could. Find out more in JaganK3’s Instructable for his pet feeder.

Shark laser cat toy

Sam Storino, meanwhile, is using a Raspberry Pi to control a laser-pointer cat toy with a goshdarned SHARK (which is kind of what I’d expect from the guy who made the steampunk-looking cat feeder a few weeks ago). The idea is to keep his cats interested and active within the confines of a compact city apartment.

Raspberry Pi Automatic Cat Laser Pointer Toy

Post with 52 votes and 7004 views. Tagged with cat, shark, lasers, austin powers, raspberry pi; Shared by JeorgeLeatherly. Raspberry Pi Automatic Cat Laser Pointer Toy

If I were a cat, I would definitely be entirely happy with this. Find out more on Sam’s website.

And there’s more

Michel Parreno has written a series of articles to help you monitor and feed your pet with Raspberry Pi.

All of these makers are generous in acknowledging the tutorials and build logs that helped them with their projects. It’s lovely to see the Raspberry Pi and maker community working like this, and I bet their projects will inspire others too.

Now, if you’ll excuse me. I’m late for a barbecue.

The post Project Floofball and more: Pi pet stuff appeared first on Raspberry Pi.

Welcome Jack — Data Center Tech

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-jack-data-center-tech/

As we shoot way past 500 petabytes of data stored, we need a lot of helping hands in the data center to keep those hard drives spinning! We’ve been hiring quite a lot, and our latest addition is Jack. Lets learn a bit more about him, shall we?

What is your Backblaze Title?
Data Center Tech

Where are you originally from?
Walnut Creek, CA until 7th grade when the family moved to Durango, Colorado.

What attracted you to Backblaze?
I had heard about how cool the Backblaze community is and have always been fascinated by technology.

What do you expect to learn while being at Backblaze?
I expect to learn a lot about how our data centers run and all of the hardware behind it.

Where else have you worked?
Garrhs HVAC as an HVAC Installer and then Durango Electrical as a Low Volt Technician.

Where did you go to school?
Durango High School and then Montana State University.

What’s your dream job?
I would love to be a driver for the Audi Sport. Race cars are so much fun!

Favorite place you’ve traveled?
Iceland has definitely been my favorite so far.

Favorite hobby?
Video games.

Of what achievement are you most proud?
Getting my Eagle Scout badge was a tough, but rewarding experience that I will always cherish.

Star Trek or Star Wars?
Star Wars.

Coke or Pepsi?
Coke…I know, it’s bad.

Favorite food?
Thai food.

Why do you like certain things?
I tend to warm up to things the more time I spend around them, although I never really know until it happens.

Anything else you’d like to tell us?
I’m a friendly car guy who will always be in love with my European cars and I really enjoy the Backblaze community!

We’re happy you joined us Out West! Welcome aboard Jack!

The post Welcome Jack — Data Center Tech appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Protecting your API using Amazon API Gateway and AWS WAF — Part I

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/protecting-your-api-using-amazon-api-gateway-and-aws-waf-part-i/

This post courtesy of Thiago Morais, AWS Solutions Architect

When you build web applications or expose any data externally, you probably look for a platform where you can build highly scalable, secure, and robust REST APIs. As APIs are publicly exposed, there are a number of best practices for providing a secure mechanism to consumers using your API.

Amazon API Gateway handles all the tasks involved in accepting and processing up to hundreds of thousands of concurrent API calls, including traffic management, authorization and access control, monitoring, and API version management.

In this post, I show you how to take advantage of the regional API endpoint feature in API Gateway, so that you can create your own Amazon CloudFront distribution and secure your API using AWS WAF.

AWS WAF is a web application firewall that helps protect your web applications from common web exploits that could affect application availability, compromise security, or consume excessive resources.

As you make your APIs publicly available, you are exposed to attackers trying to exploit your services in several ways. The AWS security team published a whitepaper solution using AWS WAF, How to Mitigate OWASP’s Top 10 Web Application Vulnerabilities.

Regional API endpoints

Edge-optimized APIs are endpoints that are accessed through a CloudFront distribution created and managed by API Gateway. Before the launch of regional API endpoints, this was the default option when creating APIs using API Gateway. It primarily helped to reduce latency for API consumers that were located in different geographical locations than your API.

When API requests predominantly originate from an Amazon EC2 instance or other services within the same AWS Region as the API is deployed, a regional API endpoint typically lowers the latency of connections. It is recommended for such scenarios.

For better control around caching strategies, customers can use their own CloudFront distribution for regional APIs. They also have the ability to use AWS WAF protection, as I describe in this post.

Edge-optimized API endpoint

The following diagram is an illustrated example of the edge-optimized API endpoint where your API clients access your API through a CloudFront distribution created and managed by API Gateway.

Regional API endpoint

For the regional API endpoint, your customers access your API from the same Region in which your REST API is deployed. This helps you to reduce request latency and particularly allows you to add your own content delivery network, as needed.

Walkthrough

In this section, you implement the following steps:

  • Create a regional API using the PetStore sample API.
  • Create a CloudFront distribution for the API.
  • Test the CloudFront distribution.
  • Set up AWS WAF and create a web ACL.
  • Attach the web ACL to the CloudFront distribution.
  • Test AWS WAF protection.

Create the regional API

For this walkthrough, use an existing PetStore API. All new APIs launch by default as the regional endpoint type. To change the endpoint type for your existing API, choose the cog icon on the top right corner:

After you have created the PetStore API on your account, deploy a stage called “prod” for the PetStore API.

On the API Gateway console, select the PetStore API and choose Actions, Deploy API.

For Stage name, type prod and add a stage description.

Choose Deploy and the new API stage is created.

Use the following AWS CLI command to update your API from edge-optimized to regional:

aws apigateway update-rest-api \
--rest-api-id {rest-api-id} \
--patch-operations op=replace,path=/endpointConfiguration/types/EDGE,value=REGIONAL

A successful response looks like the following:

{
    "description": "Your first API with Amazon API Gateway. This is a sample API that integrates via HTTP with your demo Pet Store endpoints", 
    "createdDate": 1511525626, 
    "endpointConfiguration": {
        "types": [
            "REGIONAL"
        ]
    }, 
    "id": "{api-id}", 
    "name": "PetStore"
}

After you change your API endpoint to regional, you can now assign your own CloudFront distribution to this API.

Create a CloudFront distribution

To make things easier, I have provided an AWS CloudFormation template to deploy a CloudFront distribution pointing to the API that you just created. Click the button to deploy the template in the us-east-1 Region.

For Stack name, enter RegionalAPI. For APIGWEndpoint, enter your API FQDN in the following format:

{api-id}.execute-api.us-east-1.amazonaws.com

After you fill out the parameters, choose Next to continue the stack deployment. It takes a couple of minutes to finish the deployment. After it finishes, the Output tab lists the following items:

  • A CloudFront domain URL
  • An S3 bucket for CloudFront access logs
Output from CloudFormation

Output from CloudFormation

Test the CloudFront distribution

To see if the CloudFront distribution was configured correctly, use a web browser and enter the URL from your distribution, with the following parameters:

https://{your-distribution-url}.cloudfront.net/{api-stage}/pets

You should get the following output:

[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Set up AWS WAF and create a web ACL

With the new CloudFront distribution in place, you can now start setting up AWS WAF to protect your API.

For this demo, you deploy the AWS WAF Security Automations solution, which provides fine-grained control over the requests attempting to access your API.

For more information about deployment, see Automated Deployment. If you prefer, you can launch the solution directly into your account using the following button.

For CloudFront Access Log Bucket Name, add the name of the bucket created during the deployment of the CloudFormation stack for your CloudFront distribution.

The solution allows you to adjust thresholds and also choose which automations to enable to protect your API. After you finish configuring these settings, choose Next.

To start the deployment process in your account, follow the creation wizard and choose Create. It takes a few minutes do finish the deployment. You can follow the creation process through the CloudFormation console.

After the deployment finishes, you can see the new web ACL deployed on the AWS WAF console, AWSWAFSecurityAutomations.

Attach the AWS WAF web ACL to the CloudFront distribution

With the solution deployed, you can now attach the AWS WAF web ACL to the CloudFront distribution that you created earlier.

To assign the newly created AWS WAF web ACL, go back to your CloudFront distribution. After you open your distribution for editing, choose General, Edit.

Select the new AWS WAF web ACL that you created earlier, AWSWAFSecurityAutomations.

Save the changes to your CloudFront distribution and wait for the deployment to finish.

Test AWS WAF protection

To validate the AWS WAF Web ACL setup, use Artillery to load test your API and see AWS WAF in action.

To install Artillery on your machine, run the following command:

$ npm install -g artillery

After the installation completes, you can check if Artillery installed successfully by running the following command:

$ artillery -V
$ 1.6.0-12

As the time of publication, Artillery is on version 1.6.0-12.

One of the WAF web ACL rules that you have set up is a rate-based rule. By default, it is set up to block any requesters that exceed 2000 requests under 5 minutes. Try this out.

First, use cURL to query your distribution and see the API output:

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets
[
  {
    "id": 1,
    "type": "dog",
    "price": 249.99
  },
  {
    "id": 2,
    "type": "cat",
    "price": 124.99
  },
  {
    "id": 3,
    "type": "fish",
    "price": 0.99
  }
]

Based on the test above, the result looks good. But what if you max out the 2000 requests in under 5 minutes?

Run the following Artillery command:

artillery quick -n 2000 --count 10  https://{distribution-name}.cloudfront.net/prod/pets

What you are doing is firing 2000 requests to your API from 10 concurrent users. For brevity, I am not posting the Artillery output here.

After Artillery finishes its execution, try to run the cURL request again and see what happens:

 

$ curl -s https://{distribution-name}.cloudfront.net/prod/pets

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<HTML><HEAD><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=iso-8859-1">
<TITLE>ERROR: The request could not be satisfied</TITLE>
</HEAD><BODY>
<H1>ERROR</H1>
<H2>The request could not be satisfied.</H2>
<HR noshade size="1px">
Request blocked.
<BR clear="all">
<HR noshade size="1px">
<PRE>
Generated by cloudfront (CloudFront)
Request ID: [removed]
</PRE>
<ADDRESS>
</ADDRESS>
</BODY></HTML>

As you can see from the output above, the request was blocked by AWS WAF. Your IP address is removed from the blocked list after it falls below the request limit rate.

Conclusion

In this first part, you saw how to use the new API Gateway regional API endpoint together with Amazon CloudFront and AWS WAF to secure your API from a series of attacks.

In the second part, I will demonstrate some other techniques to protect your API using API keys and Amazon CloudFront custom headers.

HackSpace magazine 7: Internet of Everything

Post Syndicated from Andrew Gregory original https://www.raspberrypi.org/blog/hackspace-magazine-7-internet-of-everything/

We’re usually averse to buzzwords at HackSpace magazine, but not this month: in issue 7, we’re taking a deep dive into the Internet of Things.HackSpace magazine issue 7 cover

Internet of Things (IoT)

To many people, IoT is a shady term used by companies to sell you something you already own, but this time with WiFi; to us, it’s a way to make our builds smarter, more useful, and more connected. In HackSpace magazine #7, you can join us on a tour of the boards that power IoT projects, marvel at the ways in which other makers are using IoT, and get started with your first IoT project!

Awesome projects

DIY retro computing: this issue, we’re taking our collective hat off to Spencer Owen. He stuck his home-brew computer on Tindie thinking he might make a bit of beer money — now he’s paying the mortgage with his making skills and inviting others to build modules for his machine. And if that tickles your fancy, why not take a crack at our Z80 tutorial? Get out your breadboard, assemble your jumper wires, and prepare to build a real-life computer!

Inside HackSpace magazine issue 7

Shameless patriotism: combine Lego, Arduino, and the car of choice for 1960 gold bullion thieves, and you’ve got yourself a groovy weekend project. We proudly present to you one man’s epic quest to add LED lights (controllable via a smartphone!) to his daughter’s LEGO Mini Cooper.

Makerspaces

Patriotism intensifies: for the last 200-odd years, the Black Country has been a hotbed of making. Urban Hax, based in Walsall, is the latest makerspace to show off its riches in the coveted Space of the Month pages. Every space has its own way of doing things, but not every space has a portrait of Rob Halford on the wall. All hail!

Inside HackSpace magazine issue 7

Diversity: advice on diversity often boils down to ‘Be nice to people’, which might feel more vague than actionable. This is where we come in to help: it is truly worth making the effort to give people of all backgrounds access to your makerspace, so we take a look at why it’s nice to be nice, and at the ways in which one makerspace has put niceness into practice — with great results.

And there’s more!

We also show you how to easily calculate the size and radius of laser-cut gears, use a bank of LEDs to etch PCBs in your own mini factory, and use chemistry to mess with your lunch menu.

Inside HackSpace magazine issue 7
Helen Steer inside HackSpace magazine issue 7
Inside HackSpace magazine issue 7

All this plus much, much more waits for you in HackSpace magazine issue 7!

Get your copy of HackSpace magazine

If you like the sound of that, you can find HackSpace magazine in WHSmith, Tesco, Sainsbury’s, and independent newsagents in the UK. If you live in the US, check out your local Barnes & Noble, Fry’s, or Micro Center next week. We’re also shipping to stores in Australia, Hong Kong, Canada, Singapore, Belgium, and Brazil, so be sure to ask your local newsagent whether they’ll be getting HackSpace magazine.

And if you can’t get to the shops, fear not: you can subscribe from £4 an issue from our online shop. And if you’d rather try before you buy, you can always download the free PDF. Happy reading, and happy making!

The post HackSpace magazine 7: Internet of Everything appeared first on Raspberry Pi.

C is to low level

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/c-is-too-low-level.html

I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.

The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.


The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.

But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.

Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.

The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.

Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.

As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.

This is an intellectually compelling argument, but so far bunk.

The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.

Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.

The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.

The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.

For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).

The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.

For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.

You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.

The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.

The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.

Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.

Summary

Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.

[$] Shortening the Python release schedule

Post Syndicated from jake original https://lwn.net/Articles/755224/rss

The Python release cycle has an 18-month cadence; a new major release (e.g.
Python 3.7) is
made roughly on that schedule. But Łukasz Langa, who is the release
manager for Python 3.8 and 3.9, would like to see things move
more quickly—perhaps on a yearly cadence. In the first session after lunch
at the 2018 Python Language Summit, Langa wanted to discuss that idea.

The Benefits of Side Projects

Post Syndicated from Bozho original https://techblog.bozho.net/the-benefits-of-side-projects/

Side projects are the things you do at home, after work, for your own “entertainment”, or to satisfy your desire to learn new stuff, in case your workplace doesn’t give you that opportunity (or at least not enough of it). Side projects are also a way to build stuff that you think is valuable but not necessarily “commercialisable”. Many side projects are open-sourced sooner or later and some of them contribute to the pool of tools at other people’s disposal.

I’ve outlined one recommendation about side projects before – do them with technologies that are new to you, so that you learn important things that will keep you better positioned in the software world.

But there are more benefits than that – serendipitous benefits, for example. And I’d like to tell some personal stories about that. I’ll focus on a few examples from my list of side projects to show how, through a sort-of butterfly effect, they helped shape my career.

The computoser project, no matter how cool algorithmic music composition, didn’t manage to have much of a long term impact. But it did teach me something apart from niche musical theory – how to read a bulk of scientific papers (mostly computer science) and understand them without being formally trained in the particular field. We’ll see how that was useful later.

Then there was the “State alerts” project – a website that scraped content from public institutions in my country (legislation, legislation proposals, decisions by regulators, new tenders, etc.), made them searchable, and “subscribable” – so that you get notified when a keyword of interest is mentioned in newly proposed legislation, for example. (I obviously subscribed for “information technologies” and “electronic”).

And that project turned out to have a significant impact on the following years. First, I chose a new technology to write it with – Scala. Which turned out to be of great use when I started working at TomTom, and on the 3rd day I was transferred to a Scala project, which was way cooler and much more complex than the original one I was hired for. It was a bit ironic, as my colleagues had just read that “I don’t like Scala” a few weeks earlier, but nevertheless, that was one of the most interesting projects I’ve worked on, and it went on for two years. Had I not known Scala, I’d probably be gone from TomTom much earlier (as the other project was restructured a few times), and I would not have learned many of the scalability, architecture and AWS lessons that I did learn there.

But the very same project had an even more important follow-up. Because if its “civic hacking” flavour, I was invited to join an informal group of developers (later officiated as an NGO) who create tools that are useful for society (something like MySociety.org). That group gathered regularly, discussed both tools and policies, and at some point we put up a list of policy priorities that we wanted to lobby policy makers. One of them was open source for the government, the other one was open data. As a result of our interaction with an interim government, we donated the official open data portal of my country, functioning to this day.

As a result of that, a few months later we got a proposal from the deputy prime minister’s office to “elect” one of the group for an advisor to the cabinet. And we decided that could be me. So I went for it and became advisor to the deputy prime minister. The job has nothing to do with anything one could imagine, and it was challenging and fascinating. We managed to pass legislation, including one that requires open source for custom projects, eID and open data. And all of that would not have been possible without my little side project.

As for my latest side project, LogSentinel – it became my current startup company. And not without help from the previous two mentioned above – the computer science paper reading was of great use when I was navigating the crypto papers landscape, and from the government job I not only gained invaluable legal knowledge, but I also “got” a co-founder.

Some other side projects died without much fanfare, and that’s fine. But the ones above shaped my “story” in a way that would not have been possible otherwise.

And I agree that such serendipitous chain of events could have happened without side projects – I could’ve gotten these opportunities by meeting someone at a bar (unlikely, but who knows). But we, as software engineers, are capable of tilting chance towards us by utilizing our skills. Side projects are our “extracurricular activities”, and they often lead to unpredictable, but rather positive chains of events. They would rarely be the only factor, but they are certainly great at unlocking potential.

The post The Benefits of Side Projects appeared first on Bozho's tech blog.

Working with the Scout Association on digital skills for life

Post Syndicated from Philip Colligan original https://www.raspberrypi.org/blog/working-with-scout-association-digital-skills-for-life/

Today we’re launching a new partnership between the Scouts and the Raspberry Pi Foundation that will help tens of thousands of young people learn crucial digital skills for life. In this blog post, I want to explain what we’ve got planned, why it matters, and how you can get involved.

This is personal

First, let me tell you why this partnership matters to me. As a child growing up in North Wales in the 1980s, Scouting changed my life. My time with 2nd Rhyl provided me with countless opportunities to grow and develop new skills. It taught me about teamwork and community in ways that continue to shape my decisions today.

As my own kids (now seven and ten) have joined Scouting, I’ve seen the same opportunities opening up for them, and like so many parents, I’ve come back to the movement as a volunteer to support their local section. So this is deeply personal for me, and the same is true for many of my colleagues at the Raspberry Pi Foundation who in different ways have been part of the Scouting movement.

That shouldn’t come as a surprise. Scouting and Raspberry Pi share many of the same values. We are both community-led movements that aim to help young people develop the skills they need for life. We are both powered by an amazing army of volunteers who give their time to support that mission. We both care about inclusiveness, and pride ourselves on combining fun with learning by doing.

Raspberry Pi

Raspberry Pi started life in 2008 as a response to the problem that too many young people were growing up without the skills to create with technology. Our goal is that everyone should be able to harness the power of computing and digital technologies, for work, to solve problems that matter to them, and to express themselves creatively.

In 2012 we launched our first product, the world’s first $35 computer. Just six years on, we have sold over 20 million Raspberry Pi computers and helped kickstart a global movement for digital skills.

The Raspberry Pi Foundation now runs the world’s largest network of volunteer-led computing clubs (Code Clubs and CoderDojos), and creates free educational resources that are used by millions of young people all over the world to learn how to create with digital technologies. And lots of what we are able to achieve is because of partnerships with fantastic organisations that share our goals. For example, through our partnership with the European Space Agency, thousands of young people have written code that has run on two Raspberry Pi computers that Tim Peake took to the International Space Station as part of his Mission Principia.

Digital makers

Today we’re launching the new Digital Maker Staged Activity Badge to help tens of thousands of young people learn how to create with technology through Scouting. Over the past few months, we’ve been working with the Scouts all over the UK to develop and test the new badge requirements, along with guidance, project ideas, and resources that really make them work for Scouting. We know that we need to get two things right: relevance and accessibility.

Relevance is all about making sure that the activities and resources we provide are a really good fit for Scouting and Scouting’s mission to equip young people with skills for life. From the digital compass to nature cameras and the reinvented wide game, we’ve had a lot of fun thinking about ways we can bring to life the crucial role that digital technologies can play in the outdoors and adventure.

Compass Coding with Raspberry Pi

We are beyond excited to be launching a new partnership with the Raspberry Pi Foundation, which will help tens of thousands of young people learn digital skills for life.

We also know that there are great opportunities for Scouts to use digital technologies to solve social problems in their communities, reflecting the movement’s commitment to social action. Today we’re launching the first set of project ideas and resources, with many more to follow over the coming weeks and months.

Accessibility is about providing every Scout leader with the confidence, support, and kit to enable them to offer the Digital Maker Staged Activity Badge to their young people. A lot of work and care has gone into designing activities that require very little equipment: for example, activities at Stages 1 and 2 can be completed with a laptop without access to the internet. For the activities that do require kit, we will be working with Scout Stores and districts to make low-cost kit available to buy or loan.

We’re producing accessible instructions, worksheets, and videos to help leaders run sessions with confidence, and we’ll also be planning training for leaders. We will work with our network of Code Clubs and CoderDojos to connect them with local sections to organise joint activities, bringing both kit and expertise along with them.




Get involved

Today’s launch is just the start. We’ll be developing our partnership over the next few years, and we can’t wait for you to join us in getting more young people making things with technology.

Take a look at the brand-new Raspberry Pi resources designed especially for Scouts, to get young people making and creating right away.

The post Working with the Scout Association on digital skills for life appeared first on Raspberry Pi.

Raspberry Jam Cameroon #PiParty

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/raspberry-jam-cameroon-piparty/

Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.

The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem

Preparing for the #PiParty

One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.

Show-and-tell at Raspberry Jam Cameroon

Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.

Loïc Dessap, wearing a Raspberry Jam Big Birthday Weekend T-shirt, sits at a table with a robot arm, a laptop with a Pi sticker and other components. He is making an adjustment to his set-up.

Loïc showcases the prototype robot arm he built

There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.

A round pink-iced cake decorated with the words "Happy Birthday RBP" and six candles, on a table beside Raspberry Pi stickers, Raspberry Jam stickers and Raspberry Jam fliers

Yay, birthday cake!!

A big success

Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:

What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer

The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.

The Raspberry Jam Camer team, wearing Raspberry Jam Big Birthday Weekend T-shirts, pose with young Jam attendees outside their venue

Raspberry Jam Camer gets the thumbs-up

The Raspberry Pi community in Cameroon

In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.

Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiple languages), printable worksheets, and more.

The post Raspberry Jam Cameroon #PiParty appeared first on Raspberry Pi.

All Systems Go! 2018 CfP Open

Post Syndicated from Lennart Poettering original http://0pointer.net/blog/all-systems-go-2018-cfp-open.html

The All Systems Go! 2018 Call for Participation is Now Open!

The Call for Participation (CFP) for All Systems Go!
2018
is now open. We’d like to invite you
to submit your proposals for consideration to the CFP submission
site
.

ASG image

The CFP will close on July 30th. Notification of acceptance and
non-acceptance will go out within 7 days of the closing of the CFP.

All topics relevant to foundational open-source Linux technologies are
welcome. In particular, however, we are looking for proposals
including, but not limited to, the following topics:

  • Low-level container executors and infrastructure
  • IoT and embedded OS infrastructure
  • BPF and eBPF filtering
  • OS, container, IoT image delivery and updating
  • Building Linux devices and applications
  • Low-level desktop technologies
  • Networking
  • System and service management
  • Tracing and performance measuring
  • IPC and RPC systems
  • Security and Sandboxing

While our focus is definitely more on the user-space side of things,
talks about kernel projects are welcome, as long as they have a clear
and direct relevance for user-space.

For more information please visit our conference
website
!

masscan, macOS, and firewall

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/masscan-macos-and-firewall.html

One of the more useful features of masscan is the “–banners” check, which connects to the TCP port, sends some request, and gets a basic response back. However, since masscan has it’s own TCP stack, it’ll interfere with the operating system’s TCP stack if they are sharing the same IPv4 address. The operating system will reply with a RST packet before the TCP connection can be established.

The way to fix this is to use the built-in packet-filtering firewall to block those packets in the operating-system TCP/IP stack. The masscan program still sees everything before the packet-filter, but the operating system can’t see anything after the packet-filter.

Note that we are talking about the “packet-filter” firewall feature here. Remember that macOS, like most operating systems these days, has two separate firewalls: an application firewall and a packet-filter firewall. The application firewall is the one you see in System Settings labeled “Firewall”, and it controls things based upon the application’s identity rather than by which ports it uses. This is normally “on” by default. The packet-filter is normally “off” by default and is of little use to normal users.

Also note that macOS changed packet-filters around version 10.10.5 (“Yosemite”, October 2014). The older one is known as “ipfw“, which was the default firewall for FreeBSD (much of macOS is based on FreeBSD). The replacement is known as PF, which comes from OpenBSD. Whereas you used to use the old “ipfw” command on the command line, you now use the “pfctl” command, as well as the “/etc/pf.conf” configuration file.

What we need to filter is the source port of the packets that masscan will send, so that when replies are received, they won’t reach the operating-system stack, and just go to masscan instead. To do this, we need find a range of ports that won’t conflict with the operating system. Namely, when the operating system creates outgoing connections, it randomly chooses a source port within a certain range. We want to use masscan to use source ports in a different range.

To figure out the range macOS uses, we run the following command:

sysctl net.inet.ip.portrange.first net.inet.ip.portrange.last

On my laptop, which is probably the default for macOS, I get the following range. Sniffing with Wireshark confirms this is the range used for source ports for outgoing connections.

net.inet.ip.portrange.first: 49152
net.inet.ip.portrange.last: 65535

So this means I shouldn’t use source ports anywhere in the range 49152 to 65535. On my laptop, I’ve decided to use for masscan the ports 40000 to 41023. The range masscan uses must be a power of 2, so here I’m using 1024 (two to the tenth power).

To configure masscan, I can either type the parameter “–source-port 40000-41023” every time I run the program, or I can add the following line to /etc/masscan/masscan.conf. Remember that by default, masscan will look in that configuration file for any configuration parameters, so you don’t have to keep retyping them on the command line.

source-port = 40000-41023

Next, I need to add the following firewall rule to the bottom of /etc/pf.conf:

block in proto tcp from any to any port 40000 >< 41024

However, we aren’t done yet. By default, the packet-filter firewall is off on some versions of macOS. Therefore, every time you reboot your computer, you need to enable it. The simple way to do this is on the command line run:

pfctl -e

Or, if that doesn’t work, try:

pfctl -E

If the firewall is already running, then you’ll need to load the file explicitly (or reboot):

pfctl -f /etc/pf.conf

You can check to see if the rule is active:

pfctl -s rules

Naturebytes’ weatherproof Pi and camera case

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/naturebytes-weatherproof-pi-and-camera-case/

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.

EC2 Instance Update – C5 Instances with Local NVMe Storage (C5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-c5-instances-with-local-nvme-storage-c5d/

As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!

Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.

New C5d Instances with Local Storage
In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:

Instance NamevCPUsRAMLocal StorageEBS BandwidthNetwork Bandwidth
c5d.large24 GiB1 x 50 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.xlarge48 GiB1 x 100 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.2xlarge816 GiB1 x 225 GB NVMe SSDUp to 2.25 GbpsUp to 10 Gbps
c5d.4xlarge1632 GiB1 x 450 GB NVMe SSD2.25 GbpsUp to 10 Gbps
c5d.9xlarge3672 GiB1 x 900 GB NVMe SSD4.5 Gbps10 Gbps
c5d.18xlarge72144 GiB2 x 900 GB NVMe SSD9 Gbps25 Gbps

Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.

Jeff;

PS – We will be adding local NVMe storage to other EC2 instance types in the months to come, so stay tuned!

UK soldiers design Raspberry Pi bomb disposal robot

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/uk-soldiers-design-raspberry-pi-bomb-disposal-robot/

Three soldiers in the British Army have used a Raspberry Pi to build an autonomous robot, as part of their Foreman of Signals course.

Meet The Soldiers Revolutionising Bomb Disposal

Three soldiers from Blandford Camp have successfully designed and built an autonomous robot as part of their Foreman of Signals Course at the Dorset Garrison.

Autonomous robots

Forces Radio BFBS carried a story last week about Staff Sergeant Jolley, Sergeant Rana, and Sergeant Paddon, also known as the “Project ROVER” team. As part of their Foreman of Signals training, their task was to design an autonomous robot that can move between two specified points, take a temperature reading, and transmit the information to a remote computer. The team comments that, while semi-autonomous robots have been used as far back as 9/11 for tasks like finding people trapped under rubble, nothing like their robot and on a similar scale currently exists within the British Army.

The ROVER buggy

Their build is named ROVER, which stands for Remote Obstacle aVoiding Environment Robot. It’s a buggy that moves on caterpillar tracks, and it’s tethered; we wonder whether that might be because it doesn’t currently have an on-board power supply. A demo shows the robot moving forward, then changing its path when it encounters an obstacle. The team is using RealVNC‘s remote access software to allow ROVER to send data back to another computer.

Applications for ROVER

Dave Ball, Senior Lecturer in charge of the Foreman of Signals course, comments that the project is “a fantastic opportunity for [the team] to, even only halfway through the course, showcase some of the stuff they’ve learnt and produce something that’s really quite exciting.” The Project ROVER team explains that the possibilities for autonomous robots like this one are extensive: they include mine clearance, bomb disposal, and search-and-rescue campaigns. They point out that existing semi-autonomous hardware is not as easy to program as their build. In contrast, they say, “with the invention of the Raspberry Pi, this has allowed three very inexperienced individuals to program a robot very capable of doing these things.”

We make Raspberry Pi computers because we want building things with technology to be as accessible as possible. So it’s great to see a project like this, made by people who aren’t techy and don’t have a lot of computing experience, but who want to solve a problem and see that the Pi is an affordable and powerful tool that can help.

The post UK soldiers design Raspberry Pi bomb disposal robot appeared first on Raspberry Pi.