Tag Archives: Thunder

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/756489/rss

Security updates have been issued by CentOS (procps, xmlrpc, and xmlrpc3), Debian (batik, prosody, redmine, wireshark, and zookeeper), Fedora (jasper, kernel, poppler, and xmlrpc), Mageia (git and wireshark), Red Hat (rh-java-common-xmlrpc), Slackware (git), SUSE (bzr, dpdk-thunderxdpdk, and ocaml), and Ubuntu (exempi).

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/756164/rss

Security updates have been issued by CentOS (389-ds-base, corosync, firefox, java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, librelp, libvirt, libvncserver, libvorbis, PackageKit, patch, pcs, and qemu-kvm), Fedora (asterisk, ca-certificates, gifsicle, ncurses, nodejs-base64-url, nodejs-mixin-deep, and wireshark), Mageia (thunderbird), Red Hat (procps), SUSE (curl, kvm, and libvirt), and Ubuntu (apport, haproxy, and tomcat7, tomcat8).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/756020/rss

Security updates have been issued by Arch Linux (strongswan, wireshark-cli, wireshark-common, wireshark-gtk, and wireshark-qt), CentOS (libvirt, procps-ng, and thunderbird), Debian (apache2, git, and qemu), Gentoo (beep, git, and procps), Mageia (mariadb, microcode, python, virtualbox, and webkit2), openSUSE (ceph, pdns, and perl-DBD-mysql), Red Hat (kernel), SUSE (HA kernel modules, libmikmod, ntp, and tiff), and Ubuntu (nvidia-graphics-drivers-384).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/755796/rss

Security updates have been issued by Debian (batik, cups, gitlab, ming, and xdg-utils), Fedora (dpdk, firefox, glibc, nodejs-deep-extend, strongswan, thunderbird, thunderbird-enigmail, wavpack, xdg-utils, and xen), Gentoo (ntp, rkhunter, and zsh), openSUSE (Chromium, GraphicsMagick, jasper, opencv, pdns, and wireshark), SUSE (jasper, java-1_7_1-ibm, krb5, libmodplug, and openstack-nova), and Ubuntu (thunderbird).

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/755667/rss

Security updates have been issued by Arch Linux (bind, libofx, and thunderbird), Debian (thunderbird, xdg-utils, and xen), Fedora (procps-ng), Mageia (gnupg2, mbedtls, pdns, and pdns-recursor), openSUSE (bash, GraphicsMagick, icu, and kernel), Oracle (thunderbird), Red Hat (java-1.7.1-ibm, java-1.8.0-ibm, and thunderbird), Scientific Linux (thunderbird), and Ubuntu (curl).

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/755540/rss

Security updates have been issued by Debian (imagemagick), Fedora (curl, glibc, kernel, and thunderbird-enigmail), openSUSE (enigmail, knot, and python), Oracle (procps-ng), Red Hat (librelp, procps-ng, redhat-virtualization-host, rhev-hypervisor7, and unboundid-ldapsdk), Scientific Linux (procps-ng), SUSE (bash, ceph, icu, kvm, and qemu), and Ubuntu (procps and spice, spice-protocol).

C is to low level

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/c-is-too-low-level.html

I’m in danger of contradicting myself, after previously pointing out that x86 machine code is a high-level language, but this article claiming C is a not a low level language is bunk. C certainly has some problems, but it’s still the closest language to assembly. This is obvious by the fact it’s still the fastest compiled language. What we see is a typical academic out of touch with the real world.

The author makes the (wrong) observation that we’ve been stuck emulating the PDP-11 for the past 40 years. C was written for the PDP-11, and since then CPUs have been designed to make C run faster. The author imagines a different world, such as where CPU designers instead target something like LISP as their preferred language, or Erlang. This misunderstands the state of the market. CPUs do indeed supports lots of different abstractions, and C has evolved to accommodate this.


The author criticizes things like “out-of-order” execution which has lead to the Spectre sidechannel vulnerabilities. Out-of-order execution is necessary to make C run faster. The author claims instead that those resources should be spent on having more slower CPUs, with more threads. This sacrifices single-threaded performance in exchange for a lot more threads executing in parallel. The author cites Sparc Tx CPUs as his ideal processor.

But here’s the thing, the Sparc Tx was a failure. To be fair, it’s mostly a failure because most of the time, people wanted to run old C code instead of new Erlang code. But it was still a failure at running Erlang.

Time after time, engineers keep finding that “out-of-order”, single-threaded performance is still the winner. A good example is ARM processors for both mobile phones and servers. All the theory points to in-order CPUs as being better, but all the products are out-of-order, because this theory is wrong. The custom ARM cores from Apple and Qualcomm used in most high-end phones are so deeply out-of-order they give Intel CPUs competition. The same is true on the server front with the latest Qualcomm Centriq and Cavium ThunderX2 processors, deeply out of order supporting more than 100 instructions in flight.

The Cavium is especially telling. Its ThunderX CPU had 48 simple cores which was replaced with the ThunderX2 having 32 complex, deeply out-of-order cores. The performance increase was massive, even on multithread-friendly workloads. Every competitor to Intel’s dominance in the server space has learned the lesson from Sparc Tx: many wimpy cores is a failure, you need fewer beefy cores. Yes, they don’t need to be as beefy as Intel’s processors, but they need to be close.

Even Intel’s “Xeon Phi” custom chip learned this lesson. This is their GPU-like chip, running 60 cores with 512-bit wide “vector” (sic) instructions, designed for supercomputer applications. Its first version was purely in-order. Its current version is slightly out-of-order. It supports four threads and focuses on basic number crunching, so in-order cores seems to be the right approach, but Intel found in this case that out-of-order processing still provided a benefit. Practice is different than theory.

As an academic, the author of the above article focuses on abstractions. The criticism of C is that it has the wrong abstractions which are hard to optimize, and that if we instead expressed things in the right abstractions, it would be easier to optimize.

This is an intellectually compelling argument, but so far bunk.

The reason is that while the theoretical base language has issues, everyone programs using extensions to the language, like “intrinsics” (C ‘functions’ that map to assembly instructions). Programmers write libraries using these intrinsics, which then the rest of the normal programmers use. In other words, if your criticism is that C is not itself low level enough, it still provides the best access to low level capabilities.

Given that C can access new functionality in CPUs, CPU designers add new paradigms, from SIMD to transaction processing. In other words, while in the 1980s CPUs were designed to optimize C (stacks, scaled pointers), these days CPUs are designed to optimize tasks regardless of language.

The author of that article criticizes the memory/cache hierarchy, claiming it has problems. Yes, it has problems, but only compared to how well it normally works. The author praises the many simple cores/threads idea as hiding memory latency with little caching, but misses the point that caches also dramatically increase memory bandwidth. Intel processors are optimized to read a whopping 256 bits every clock cycle from L1 cache. Main memory bandwidth is orders of magnitude slower.

The author goes onto criticize cache coherency as a problem. C uses it, but other languages like Erlang don’t need it. But that’s largely due to the problems each languages solves. Erlang solves the problem where a large number of threads work on largely independent tasks, needing to send only small messages to each other across threads. The problems C solves is when you need many threads working on a huge, common set of data.

For example, consider the “intrusion prevention system”. Any thread can process any incoming packet that corresponds to any region of memory. There’s no practical way of solving this problem without a huge coherent cache. It doesn’t matter which language or abstractions you use, it’s the fundamental constraint of the problem being solved. RDMA is an important concept that’s moved from supercomputer applications to the data center, such as with memcached. Again, we have the problem of huge quantities (terabytes worth) shared among threads rather than small quantities (kilobytes).

The fundamental issue the author of the the paper is ignoring is decreasing marginal returns. Moore’s Law has gifted us more transistors than we can usefully use. We can’t apply those additional registers to just one thing, because the useful returns we get diminish.

For example, Intel CPUs have two hardware threads per core. That’s because there are good returns by adding a single additional thread. However, the usefulness of adding a third or fourth thread decreases. That’s why many CPUs have only two threads, or sometimes four threads, but no CPU has 16 threads per core.

You can apply the same discussion to any aspect of the CPU, from register count, to SIMD width, to cache size, to out-of-order depth, and so on. Rather than focusing on one of these things and increasing it to the extreme, CPU designers make each a bit larger every process tick that adds more transistors to the chip.

The same applies to cores. It’s why the “more simpler cores” strategy fails, because more cores have their own decreasing marginal returns. Instead of adding cores tied to limited memory bandwidth, it’s better to add more cache. Such cache already increases the size of the cores, so at some point it’s more effective to add a few out-of-order features to each core rather than more cores. And so on.

The question isn’t whether we can change this paradigm and radically redesign CPUs to match some academic’s view of the perfect abstraction. Instead, the goal is to find new uses for those additional transistors. For example, “message passing” is a useful abstraction in languages like Go and Erlang that’s often more useful than sharing memory. It’s implemented with shared memory and atomic instructions, but I can’t help but think it couldn’t better be done with direct hardware support.

Of course, as soon as they do that, it’ll become an intrinsic in C, then added to languages like Go and Erlang.

Summary

Academics live in an ideal world of abstractions, the rest of us live in practical reality. The reality is that vast majority of programmers work with the C family of languages (JavaScript, Go, etc.), whereas academics love the epiphanies they learned using other languages, especially function languages. CPUs are only superficially designed to run C and “PDP-11 compatibility”. Instead, they keep adding features to support other abstractions, abstractions available to C. They are driven by decreasing marginal returns — they would love to add new abstractions to the hardware because it’s a cheap way to make use of additional transitions. Academics are wrong believing that the entire system needs to be redesigned from scratch. Instead, they just need to come up with new abstractions CPU designers can add.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/755076/rss

Security updates have been issued by Arch Linux (lib32-curl, lib32-libcurl-compat, lib32-libcurl-gnutls, libcurl-compat, and libcurl-gnutls), CentOS (firefox), Debian (imagemagick), Fedora (exiv2, LibRaw, and love), Gentoo (chromium), Mageia (kernel, librelp, and miniupnpc), openSUSE (curl, enigmail, ghostscript, libvorbis, lilypond, and thunderbird), Red Hat (Red Hat OpenStack Platform director), and Ubuntu (firefox).

Some notes on eFail

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/05/some-notes-on-efail.html

I’ve been busy trying to replicate the “eFail” PGP/SMIME bug. I thought I’d write up some notes.

PGP and S/MIME encrypt emails, so that eavesdroppers can’t read them. The bugs potentially allow eavesdroppers to take the encrypted emails they’ve captured and resend them to you, reformatted in a way that allows them to decrypt the messages.

Disable remote/external content in email

The most important defense is to disable “external” or “remote” content from being automatically loaded. This is when HTML-formatted emails attempt to load images from remote websites. This happens legitimately when they want to display images, but not fill up the email with them. But most of the time this is illegitimate, they hide images on the webpage in order to track you with unique IDs and cookies. For example, this is the code at the end of an email from politician Bernie Sanders to his supporters. Notice the long random number assigned to track me, and the width/height of this image is set to one pixel, so you don’t even see it:

Such trackers are so pernicious they are disabled by default in most email clients. This is an example of the settings in Thunderbird:

The problem is that as you read email messages, you often get frustrated by the fact the error messages and missing content, so you keep adding exceptions:

The correct defense against this eFail bug is to make sure such remote content is disabled and that you have no exceptions, or at least, no HTTP exceptions. HTTPS exceptions (those using SSL) are okay as long as they aren’t to a website the attacker controls. Unencrypted exceptions, though, the hacker can eavesdrop on, so it doesn’t matter if they control the website the requests go to. If the attacker can eavesdrop on your emails, they can probably eavesdrop on your HTTP sessions as well.

Some have recommended disabling PGP and S/MIME completely. That’s probably overkill. As long as the attacker can’t use the “remote content” in emails, you are fine. Likewise, some have recommend disabling HTML completely. That’s not even an option in any email client I’ve used — you can disable sending HTML emails, but not receiving them. It’s sufficient to just disable grabbing remote content, not the rest of HTML email rendering.

I couldn’t replicate the direct exfiltration

There rare two related bugs. One allows direct exfiltration, which appends the decrypted PGP email onto the end of an IMG tag (like one of those tracking tags), allowing the entire message to be decrypted.

An example of this is the following email. This is a standard HTML email message consisting of multiple parts. The trick is that the IMG tag in the first part starts the URL (blog.robertgraham.com/…) but doesn’t end it. It has the starting quotes in front of the URL but no ending quotes. The ending will in the next chunk.

The next chunk isn’t HTML, though, it’s PGP. The PGP extension (in my case, Enignmail) will detect this and automatically decrypt it. In this case, it’s some previous email message I’ve received the attacker captured by eavesdropping, who then pastes the contents into this email message in order to get it decrypted.

What should happen at this point is that Thunderbird will generate a request (if “remote content” is enabled) to the blog.robertgraham.com server with the decrypted contents of the PGP email appended to it. But that’s not what happens. Instead, I get this:

I am indeed getting weird stuff in the URL (the bit after the GET /), but it’s not the PGP decrypted message. Instead what’s going on is that when Thunderbird puts together a “multipart/mixed” message, it adds it’s own HTML tags consisting of lines between each part. In the email client it looks like this:

The HTML code it adds looks like:

That’s what you see in the above URL, all this code up to the first quotes. Those quotes terminate the quotes in the URL from the first multipart section, causing the rest of the content to be ignored (as far as being sent as part of the URL).

So at least for the latest version of Thunderbird, you are accidentally safe, even if you have “remote content” enabled. Though, this is only according to my tests, there may be a work around to this that hackers could exploit.

STARTTLS

In the old days, email was sent plaintext over the wire so that it could be passively eavesdropped on. Nowadays, most providers send it via “STARTTLS”, which sorta encrypts it. Attackers can still intercept such email, but they have to do so actively, using man-in-the-middle. Such active techniques can be detected if you are careful and look for them.
Some organizations don’t care. Apparently, some nation states are just blocking all STARTTLS and forcing email to be sent unencrypted. Others do care. The NSA will passively sniff all the email they can in nations like Iraq, but they won’t actively intercept STARTTLS messages, for fear of getting caught.
The consequence is that it’s much less likely that somebody has been eavesdropping on you, passively grabbing all your PGP/SMIME emails. If you fear they have been, you should look (e.g. send emails from GMail and see if they are intercepted by sniffing the wire).

You’ll know if you are getting hacked

If somebody attacks you using eFail, you’ll know. You’ll get an email message formatted this way, with multipart/mixed components, some with corrupt HTML, some encrypted via PGP. This means that for the most part, your risk is that you’ll be attacked only once — the hacker will only be able to get one message through and decrypt it before you notice that something is amiss. Though to be fair, they can probably include all the emails they want decrypted as attachments to the single email they sent you, so the risk isn’t necessarily that you’ll only get one decrypted.
As mentioned above, a lot of attackers (e.g. the NSA) won’t attack you if its so easy to get caught. Other attackers, though, like anonymous hackers, don’t care.
Somebody ought to write a plugin to Thunderbird to detect this.

Summary

It only works if attackers have already captured your emails (though, that’s why you use PGP/SMIME in the first place, to guard against that).
It only works if you’ve enabled your email client to automatically grab external/remote content.
It seems to not be easily reproducible in all cases.
Instead of disabling PGP/SMIME, you should make sure your email client hast remote/external content disabled — that’s a huge privacy violation even without this bug.

Notes: The default email client on the Mac enables remote content by default, which is bad:

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/752544/rss

Security updates have been issued by Debian (gunicorn, libreoffice, libsdl2-image, ruby1.8, and ruby1.9.1), Fedora (java-1.8.0-openjdk, jgraphx, memcached, nghttp2, perl, perl-Module-CoreList, and roundcubemail), Gentoo (clamav, librelp, mbedtls, quagga, tenshi, and unadf), Mageia (freeplane, libcdio, libtiff, thunderbird, and zsh), openSUSE (cfitsio, chromium, mbedtls, and nextcloud), and Red Hat (chromium-browser, kernel, and rh-perl524-perl).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/751947/rss

Security updates have been issued by Arch Linux (lib32-openssl and zsh), Debian (patch, perl, ruby-loofah, squirrelmail, tiff, and tiff3), Fedora (gnupg2), Gentoo (go), Mageia (firefox, flash-player-plugin, nxagent, puppet, python-paramiko, samba, and thunderbird), Red Hat (flash-plugin), Scientific Linux (python-paramiko), and Ubuntu (patch, perl, and ruby).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/751454/rss

Security updates have been issued by CentOS (libvorbis and thunderbird), Debian (pjproject), Fedora (compat-openssl10, java-1.8.0-openjdk-aarch32, libid3tag, python-pip, python3, and python3-docs), Gentoo (ZendFramework), Oracle (thunderbird), Red Hat (ansible, gcc, glibc, golang, kernel, kernel-alt, kernel-rt, krb5, kubernetes, libvncserver, libvorbis, ntp, openssh, openssl, pcs, policycoreutils, qemu-kvm, and xdg-user-dirs), SUSE (openssl and openssl1), and Ubuntu (python-crypto, ubuntu-release-upgrader, and wayland).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/751146/rss

Security updates have been issued by Debian (sharutils), Fedora (firefox, httpd, and mod_http2), openSUSE (docker-distribution, graphite2, libidn, and postgresql94), Oracle (libvorbis and thunderbird), Red Hat (libvorbis, python-paramiko, and thunderbird), Scientific Linux (libvorbis and thunderbird), SUSE (apache2), and Ubuntu (firefox, linux-lts-xenial, linux-aws, and ruby1.9.1, ruby2.0, ruby2.3).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/750759/rss

Security updates have been issued by Debian (dovecot, irssi, libevt, libvncserver, mercurial, mosquitto, openssl, python-django, remctl, rubygems, and zsh), Fedora (acpica-tools, dovecot, firefox, ImageMagick, mariadb, mosquitto, openssl, python-paramiko, rubygem-rmagick, and thunderbird), Mageia (flash-player-plugin and squirrelmail), Slackware (php), and Ubuntu (dovecot).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/750573/rss

Security updates have been issued by Debian (memcached, openssl, openssl1.0, php5, thunderbird, and xerces-c), Fedora (python-notebook, slf4j, and unboundid-ldapsdk), Mageia (kernel, libvirt, mailman, and net-snmp), openSUSE (aubio, cacti, cacti-spine, firefox, krb5, LibVNCServer, links, memcached, and tomcat), Slackware (ruby), SUSE (kernel and python-paramiko), and Ubuntu (intel-microcode).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/750432/rss

Security updates have been issued by Debian (drupal7, graphicsmagick, libdatetime-timezone-perl, thunderbird, and tzdata), Fedora (gd, libtiff, mozjs52, and nmap), Gentoo (thunderbird), Red Hat (openstack-tripleo-common, openstack-tripleo-heat-templates and sensu), SUSE (kernel, libvirt, and memcached), and Ubuntu (icu, librelp, openssl, and thunderbird).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/750207/rss

Security updates have been issued by Debian (firefox-esr, irssi, and librelp), Gentoo (busybox and plib), Mageia (exempi and jupyter-notebook), openSUSE (clamav, dhcp, nginx, python-Django, python3-Django, and thunderbird), Oracle (slf4j), Red Hat (slf4j), Scientific Linux (slf4j), Slackware (firefox), SUSE (librelp), and Ubuntu (screen-resolution-extra).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/750150/rss

Security updates have been issued by Arch Linux (bchunk, thunderbird, and xerces-c), Debian (freeplane, icu, libvirt, and net-snmp), Fedora (monitorix, php-simplesamlphp-saml2, php-simplesamlphp-saml2_1, php-simplesamlphp-saml2_3, puppet, and qt5-qtwebengine), openSUSE (curl, libmodplug, libvorbis, mailman, nginx, opera, python-paramiko, and samba, talloc, tevent), Red Hat (python-paramiko, rh-maven35-slf4j, rh-mysql56-mysql, rh-mysql57-mysql, rh-ruby22-ruby, rh-ruby23-ruby, and rh-ruby24-ruby), Slackware (thunderbird), SUSE (clamav, kernel, memcached, and php53), and Ubuntu (samba and tiff).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/746701/rss

Security updates have been issued by Debian (xen), Fedora (clamav, community-mysql, dnsmasq, flatpak, libtasn1, mupdf, p7zip, rsync, squid, thunderbird, tomcat, unbound, and zziplib), Mageia (clamav, curl, dovecot, ffmpeg, gcab, kernel, libtiff, libvpx, php-smarty, pure-ftpd, redis, and thunderbird), openSUSE (apache-commons-email), Red Hat (rh-mariadb100-mariadb), SUSE (firefox), and Ubuntu (clamav, squid3, and systemd).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/746326/rss

Security updates have been issued by CentOS (systemd and thunderbird), Debian (squid and squid3), Fedora (firefox), Mageia (java-1.8.0-openjdk and sox), openSUSE (ecryptfs-utils and libXfont), Oracle (systemd and thunderbird), Scientific Linux (thunderbird), and Ubuntu (dovecot and w3m).