Tag Archives: Today

Securing Elections

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html

Elections serve two purposes. The first, and obvious, purpose is to accurately choose the winner. But the second is equally important: to convince the loser. To the extent that an election system is not transparently and auditably accurate, it fails in that second purpose. Our election systems are failing, and we need to fix them.

Today, we conduct our elections on computers. Our registration lists are in computer databases. We vote on computerized voting machines. And our tabulation and reporting is done on computers. We do this for a lot of good reasons, but a side effect is that elections now have all the insecurities inherent in computers. The only way to reliably protect elections from both malice and accident is to use something that is not hackable or unreliable at scale; the best way to do that is to back up as much of the system as possible with paper.

Recently, there have been two graphic demonstrations of how bad our computerized voting system is. In 2007, the states of California and Ohio conducted audits of their electronic voting machines. Expert review teams found exploitable vulnerabilities in almost every component they examined. The researchers were able to undetectably alter vote tallies, erase audit logs, and load malware on to the systems. Some of their attacks could be implemented by a single individual with no greater access than a normal poll worker; others could be done remotely.

Last year, the Defcon hackers’ conference sponsored a Voting Village. Organizers collected 25 pieces of voting equipment, including voting machines and electronic poll books. By the end of the weekend, conference attendees had found ways to compromise every piece of test equipment: to load malicious software, compromise vote tallies and audit logs, or cause equipment to fail.

It’s important to understand that these were not well-funded nation-state attackers. These were not even academics who had been studying the problem for weeks. These were bored hackers, with no experience with voting machines, playing around between parties one weekend.

It shouldn’t be any surprise that voting equipment, including voting machines, voter registration databases, and vote tabulation systems, are that hackable. They’re computers — often ancient computers running operating systems no longer supported by the manufacturers — and they don’t have any magical security technology that the rest of the industry isn’t privy to. If anything, they’re less secure than the computers we generally use, because their manufacturers hide any flaws behind the proprietary nature of their equipment.

We’re not just worried about altering the vote. Sometimes causing widespread failures, or even just sowing mistrust in the system, is enough. And an election whose results are not trusted or believed is a failed election.

Voting systems have another requirement that makes security even harder to achieve: the requirement for a secret ballot. Because we have to securely separate the election-roll system that determines who can vote from the system that collects and tabulates the votes, we can’t use the security systems available to banking and other high-value applications.

We can securely bank online, but can’t securely vote online. If we could do away with anonymity — if everyone could check that their vote was counted correctly — then it would be easy to secure the vote. But that would lead to other problems. Before the US had the secret ballot, voter coercion and vote-buying were widespread.

We can’t, so we need to accept that our voting systems are insecure. We need an election system that is resilient to the threats. And for many parts of the system, that means paper.

Let’s start with the voter rolls. We know they’ve already been targeted. In 2016, someone changed the party affiliation of hundreds of voters before the Republican primary. That’s just one possibility. A well-executed attack that deletes, for example, one in five voters at random — or changes their addresses — would cause chaos on election day.

Yes, we need to shore up the security of these systems. We need better computer, network, and database security for the various state voter organizations. We also need to better secure the voter registration websites, with better design and better internet security. We need better security for the companies that build and sell all this equipment.

Multiple, unchangeable backups are essential. A record of every addition, deletion, and change needs to be stored on a separate system, on write-only media like a DVD. Copies of that DVD, or — even better — a paper printout of the voter rolls, should be available at every polling place on election day. We need to be ready for anything.

Next, the voting machines themselves. Security researchers agree that the gold standard is a voter-verified paper ballot. The easiest (and cheapest) way to achieve this is through optical-scan voting. Voters mark paper ballots by hand; they are fed into a machine and counted automatically. That paper ballot is saved, and serves as a final true record in a recount in case of problems. Touch-screen machines that print a paper ballot to drop in a ballot box can also work for voters with disabilities, as long as the ballot can be easily read and verified by the voter.

Finally, the tabulation and reporting systems. Here again we need more security in the process, but we must always use those paper ballots as checks on the computers. A manual, post-election, risk-limiting audit varies the number of ballots examined according to the margin of victory. Conducting this audit after every election, before the results are certified, gives us confidence that the election outcome is correct, even if the voting machines and tabulation computers have been tampered with. Additionally, we need better coordination and communications when incidents occur.

It’s vital to agree on these procedures and policies before an election. Before the fact, when anyone can win and no one knows whose votes might be changed, it’s easy to agree on strong security. But after the vote, someone is the presumptive winner — and then everything changes. Half of the country wants the result to stand, and half wants it reversed. At that point, it’s too late to agree on anything.

The politicians running in the election shouldn’t have to argue their challenges in court. Getting elections right is in the interest of all citizens. Many countries have independent election commissions that are charged with conducting elections and ensuring their security. We don’t do that in the US.

Instead, we have representatives from each of our two parties in the room, keeping an eye on each other. That provided acceptable security against 20th-century threats, but is totally inadequate to secure our elections in the 21st century. And the belief that the diversity of voting systems in the US provides a measure of security is a dangerous myth, because few districts can be decisive and there are so few voting-machine vendors.

We can do better. In 2017, the Department of Homeland Security declared elections to be critical infrastructure, allowing the department to focus on securing them. On 23 March, Congress allocated $380m to states to upgrade election security.

These are good starts, but don’t go nearly far enough. The constitution delegates elections to the states but allows Congress to “make or alter such Regulations”. In 1845, Congress set a nationwide election day. Today, we need it to set uniform and strict election standards.

This essay originally appeared in the Guardian.

Get Started with Blockchain Using the new AWS Blockchain Templates

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/get-started-with-blockchain-using-the-new-aws-blockchain-templates/

Many of today’s discussions around blockchain technology remind me of the classic Shimmer Floor Wax skit. According to Dan Aykroyd, Shimmer is a dessert topping. Gilda Radner claims that it is a floor wax, and Chevy Chase settles the debate and reveals that it actually is both! Some of the people that I talk to see blockchains as the foundation of a new monetary system and a way to facilitate international payments. Others see blockchains as a distributed ledger and immutable data source that can be applied to logistics, supply chain, land registration, crowdfunding, and other use cases. Either way, it is clear that there are a lot of intriguing possibilities and we are working to help our customers use this technology more effectively.

We are launching AWS Blockchain Templates today. These templates will let you launch an Ethereum (either public or private) or Hyperledger Fabric (private) network in a matter of minutes and with just a few clicks. The templates create and configure all of the AWS resources needed to get you going in a robust and scalable fashion.

Launching a Private Ethereum Network
The Ethereum template offers two launch options. The ecs option creates an Amazon ECS cluster within a Virtual Private Cloud (VPC) and launches a set of Docker images in the cluster. The docker-local option also runs within a VPC, and launches the Docker images on EC2 instances. The template supports Ethereum mining, the EthStats and EthExplorer status pages, and a set of nodes that implement and respond to the Ethereum RPC protocol. Both options create and make use of a DynamoDB table for service discovery, along with Application Load Balancers for the status pages.

Here are the AWS Blockchain Templates for Ethereum:

I start by opening the CloudFormation Console in the desired region and clicking Create Stack:

I select Specify an Amazon S3 template URL, enter the URL of the template for the region, and click Next:

I give my stack a name:

Next, I enter the first set of parameters, including the network ID for the genesis block. I’ll stick with the default values for now:

I will also use the default values for the remaining network parameters:

Moving right along, I choose the container orchestration platform (ecs or docker-local, as I explained earlier) and the EC2 instance type for the container nodes:

Next, I choose my VPC and the subnets for the Ethereum network and the Application Load Balancer:

I configure my keypair, EC2 security group, IAM role, and instance profile ARN (full information on the required permissions can be found in the documentation):

The Instance Profile ARN can be found on the summary page for the role:

I confirm that I want to deploy EthStats and EthExplorer, choose the tag and version for the nested CloudFormation templates that are used by this one, and click Next to proceed:

On the next page I specify a tag for the resources that the stack will create, leave the other options as-is, and click Next:

I review all of the parameters and options, acknowledge that the stack might create IAM resources, and click Create to build my network:

The template makes use of three nested templates:

After all of the stacks have been created (mine took about 5 minutes), I can select JeffNet and click the Outputs tab to discover the links to EthStats and EthExplorer:

Here’s my EthStats:

And my EthExplorer:

If I am writing apps that make use of my private network to store and process smart contracts, I would use the EthJsonRpcUrl.

Stay Tuned
My colleagues are eager to get your feedback on these new templates and plan to add new versions of the frameworks as they become available.

Jeff;

 

Announcing Coolest Projects North America

Post Syndicated from Courtney Lentz original https://www.raspberrypi.org/blog/coolest-projects-north-america/

The Raspberry Pi Foundation loves to celebrate people who use technology to solve problems and express themselves creatively, so we’re proud to expand the incredibly successful event Coolest Projects to North America. This free event will be held on Sunday 23 September 2018 at the Discovery Cube Orange County in Santa Ana, California.

Coolest Projects North America logo Raspberry Pi CoderDojo

What is Coolest Projects?

Coolest Projects is a world-leading showcase that empowers and inspires the next generation of digital creators, innovators, changemakers, and entrepreneurs. The event is both a competition and an exhibition to give young digital makers aged 7 to 17 a platform to celebrate their successes, creativity, and ingenuity.

showcase crowd — Coolest Projects North America

In 2012, Coolest Projects was conceived as an opportunity for CoderDojo Ninjas to showcase their work and for supporters to acknowledge these achievements. Week after week, Ninjas would meet up to work diligently on their projects, hacks, and code; however, it can be difficult for them to see their long-term progress on a project when they’re concentrating on its details on a weekly basis. Coolest Projects became a dedicated time each year for Ninjas and supporters to reflect, celebrate, and share both the achievements and challenges of the maker’s journey.

three female coolest projects attendees — Coolest Projects North America

Coolest Projects North America

Not only is Coolest Projects expanding to North America, it’s also expanding its participant pool! Members of our team have met so many amazing young people creating in all areas of the world, that it simply made sense to widen our outreach to include Code Clubs, students of Raspberry Pi Certified Educators, and members of the Raspberry Jam community at large as well as CoderDojo attendees.

 a boy showing a technology project to an old man, with a girl playing on a laptop on the floor — Coolest Projects North America

Exhibit and attend Coolest Projects

Coolest Projects is a free, family- and educator-friendly event. Young people can apply to exhibit their projects, and the general public can register to attend this one-day event. Be sure to register today, because you make Coolest Projects what it is: the coolest.

The post Announcing Coolest Projects North America appeared first on Raspberry Pi.

New – Registry of Open Data on AWS (RODA)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-registry-of-open-data-on-aws-roda/

Almost a decade ago, my colleague Deepak Singh introduced the AWS Public Datasets in his post Paging Researchers, Analysts, and Developers. I’m happy to report that Deepak is still an important part of the AWS team and that the Public Datasets program is still going strong!

Today we are announcing a new take on open and public data, the Registry of Open Data on AWS, or RODA. This registry includes existing Public Datasets and allows anyone to add their own datasets so that they can be accessed and analyzed on AWS.

Inside the Registry
The home page lists all of the datasets in the registry:

Entering a search term shrinks the list so that only the matching datasets are displayed:

Each dataset has an associated detail page, including usage examples, license info, and the information needed to locate and access the dataset on AWS:

In this case, I can access the data with a simple CLI command:

I could also access it programmatically, or download data to my EC2 instance.

Adding to the Repository
If you have a dataset that is publicly available and would like to add it to RODA , you can simply send us a pull request. Head over to the open-data-registry repo, read the CONTRIBUTING document, and create a YAML file that describes your dataset, using one of the existing files in the datasets directory as a model:

We’ll review pull requests regularly; you can “star” or watch the repo in order to track additions and changes.

Impress Me
I am looking forward to an inrush of new datasets, along with some blog posts and apps that show how to to use the data in powerful and interesting ways. Let me know what you come up with.

Jeff;

 

Backblaze at NAB 2018 in Las Vegas

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backblaze-at-nab-2018-in-las-vegas/

Backblaze B2 Cloud Storage NAB Booth

Backblaze just returned from exhibiting at NAB in Las Vegas, April 9-12, where the response to our recent announcements was tremendous. In case you missed the news, Backblaze B2 Cloud Storage continues to extend its lead as the most affordable, high performance cloud on the planet.

Backblaze’s News at NAB

Backblaze at NAB 2018 in Las Vegas

The Backblaze booth just before opening

What We Were Asked at NAB

Our booth was busy from start to finish with attendees interested in learning more about Backblaze and B2 Cloud Storage. Here are the questions we were asked most often in the booth.

Q. How long has Backblaze been in business?
A. The company was founded in 2007. Today, we have over 500 petabytes of data from customers in over 150 countries.

B2 Partners at NAB 2018

Q. Where is your data stored?
A. We have data centers in California and Arizona and expect to expand to Europe by the end of the year.

Q. How can your services be so inexpensive?
A. Backblaze’s goal from the beginning was to offer cloud backup and storage that was easy to use and affordable. All the existing options were simply too expensive to be viable, so we created our own infrastructure. Our purpose-built storage system — the Backblaze’s Storage Pod — is recognized as one of the most cost efficient storage platforms available.

Q. Tell me about your hardware.
A. Backblaze’s Storage Pods hold 60 HDDs each, containing as much as 720TB data per pod, stored using Reed-Solomon error correction. Storage Pods are arranged in Tomes with twenty Storage Pods making up a Vault.

Q. Where do you fit in the data workflow?
A. People typically use B2 in for archiving completed projects. All data is readily available for download from B2, making it more convenient than off-line storage. In addition, DAM and MAM systems such as CatDV, axle ai, Cantemo, and others have integrated with B2 to store raw images behind the proxies.

Q. Who uses B2 in the M&E business?
A. KLRU-TV, the PBS station in Austin Texas, uses B2 to archive their entire 43 year catalog of Austin City Limits episodes and related materials. WunderVu, the production house for Pixvana, uses B2 to back up and archive their local storage systems on which they build virtual reality experiences for their customers.

Q. You’re the company that publishes the hard drive stats, right?
A. Yes, we are!

Backblaze Case Studies and Swag at NAB 2018 in Las Vegas

Were You at NAB?

If you were, we hope you stopped by the Backblaze booth to say hello. We’d like to hear what you saw at the show that was interesting or exciting. Please tell us in the comments.

The post Backblaze at NAB 2018 in Las Vegas appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Introducing Microsoft Azure Sphere

Post Syndicated from corbet original https://lwn.net/Articles/751994/rss

Microsoft has issued a
press release
describing the security dangers involved with the
Internet of things (“a weaponized stove, baby monitors that spy, the
contents of your refrigerator being held for ransom
“) and introducing
“Microsoft Azure Sphere” as a combination of hardware and software to
address the problem. “Unlike the RTOSes common to MCUs today, our
defense-in-depth IoT OS offers multiple layers of security. It combines
security innovations pioneered in Windows, a security monitor, and a custom
Linux kernel to create a highly-secured software environment and a
trustworthy platform for new IoT experiences.

The DMCA and its Chilling Effects on Research

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/the_dmca_and_it.html

The Center for Democracy and Technology has a good summary of the current state of the DMCA’s chilling effects on security research.

To underline the nature of chilling effects on hacking and security research, CDT has worked to describe how tinkerers, hackers, and security researchers of all types both contribute to a baseline level of security in our digital environment and, in turn, are shaped themselves by this environment, most notably when things they do upset others and result in threats, potential lawsuits, and prosecution. We’ve published two reports (sponsored by the Hewlett Foundation and MacArthur Foundation) about needed reforms to the law and the myriad of ways that security research directly improves people’s lives. To get a more complete picture, we wanted to talk to security researchers themselves and gauge the forces that shape their work; essentially, we wanted to “take the pulse” of the security research community.

Today, we are releasing a third report in service of this effort: “Taking the Pulse of Hacking: A Risk Basis for Security Research.” We report findings after having interviewed a set of 20 security researchers and hackers — half academic and half non-academic — about what considerations they take into account when starting new projects or engaging in new work, as well as to what extent they or their colleagues have faced threats in the past that chilled their work. The results in our report show that a wide variety of constraints shape the work they do, from technical constraints to ethical boundaries to legal concerns, including the DMCA and especially the CFAA.

Note: I am a signatory on the letter supporting unrestricted security research.

How Pirates Use New Technologies for Old Sharing Habits

Post Syndicated from Ernesto original https://torrentfreak.com/how-pirates-use-new-technologies-for-old-sharing-habits-180415/

While piracy today is more widespread than ever, the urge to share content online has been around for several decades.

The first generation used relatively primitive tools, such as a bulletin board systems (BBS), newsgroups or IRC. Nothing too fancy, but they worked well for those who got over the initial learning curve.

When Napster came along things started to change. More content became available and with just a few clicks anyone could get an MP3 transferred from one corner of the world to another. The same was true for Kazaa and Limewire, which further popularized online piracy.

After this initial boom of piracy applications, BitTorrent came along, shaking up the sharing landscape even further. As torrent sites are web-based, pirated media became even more public and easy to find.

At the same time, BitTorrent brought back the smaller and more organized sharing culture of the early days through private trackers.

These communities often focused on a specific type of content and put strict rules and guidelines in place. They promoted sharing and avoided the spam that plagued their public counterparts.

That was fifteen years ago.

Today the piracy landscape is more diverse than ever. Private torrent trackers are still around and so are IRC and newsgroups. However, most piracy today takes place in public. Streaming sites and devices are booming, with central hosting platforms offering the majority of the underlying content.

That said, there is still an urge for some pirates to band together and some use newer technologies to do so.

This week The Outline ran an interesting piece on the use of Telegram channels to share pirated media. These groups use the encrypted communication platform to share copies of movies, TV shows, and a wide range of other material.

Telegram allows users to upload files up to 1.5GB in size, but larger ones can be split, in common with the good old newsgroups.

These type of sharing groups are not new. On social media platforms such as Facebook and VK, there are hundreds or thousands of dedicated communities that do the same. Both public and private. And Reddit has similar groups, relying on external links.

According to an administrator of a piracy-focused Telegram channel, the appeal of the platform is that the groups are not shut down so easily. While that may be the case with hyper-private groups, Telegram will still pull the plug if it receives enough complaints about a channel.

The same is true for Discord, another application that can be used to share content in ‘private’ communities. Discord is particularly popular among gamers, but pirates have also found their way to the platform.

While smaller communities are able to thrive, once the word gets out to copyright holders, the party can soon be over. This is also what the /r/piracy subreddit community found out a few days ago when its Discord server was pulled offline.

This triggered a discussion about possible alternatives. Telegram was mentioned by some, although not everyone liked the idea of connecting their phone number to a pirate group. Others mentioned Slack, Weechat, Hexchat and Riot.im.

None of these tools are revolutionary. At least, not for the intended use by this group. Some may be harder to take down than others, but they are all means to share files, directly or through external links.

What really caught our eye, however, were several mentions of an ancient application layer protocol that, apparently, hasn’t lost its use to pirates.

“I’ll make an IRC server and host that,” one user said, with others suggesting the same.

And so we have come full circle…

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

‘Pirate’ Android App Store Operator Avoids Prison

Post Syndicated from Ernesto original https://torrentfreak.com/pirate-android-app-store-operator-avoids-prison-180413/

Assisted by police in France and the Netherlands, the FBI took down the “pirate” Android stores Appbucket, Applanet and SnappzMarket in the summer of 2012.

During the years that followed several people connected to the Android app sites were arrested and indicted, and slowly but surely these cases are reaching their conclusions.

This week the Northern District Court of Georgia announced the sentencing of one of the youngest defendants. Aaron Buckley was fifteen when he started working on Applanet, and still a teenager when armed agents raided his house.

Years passed and a lot has changed since then, Buckley’s attorney informed the court before sentencing. The former pirate, who pleaded guilty to Conspiracy to Commit Copyright Infringement and Criminal Copyright Infringement, is a completely different person today.

Similar to many people who have a run-in with the law, life wasn’t always easy on him. Computers offered a welcome escape but also dragged Buckley into trouble, something he deeply regrets now.

Following the indictment, things started to change. The Applanet operator picked up his life, away from the computer, and also got involved in community work. Among other things, he plays a leading role in a popular support community for LGBT teenagers.

Given the tough circumstances of his personal life, which we won’t elaborate on, his attorney requested a downward departure from the regular sentencing guidelines, to allow for lesser punishment.

After considering all the options, District Court Judge Timothy C. Batten agreed to a lower sentence. Unlike some other pirate app stores operators, who must spend years in prison, Buckley will not be incarcerated.

Instead, the Applanet operator, who is now in his mid-twenties, will be put on probation for three years, including a year of home confinement.

The sentence (pdf)

In addition, he has to perform 20 hours of community service and work towards passing a General Educational Development (GED) exam.

It’s tough to live with the prospect of possibly spending years in jail, especially for more than a decade. Given the circumstances, this sentence must be a huge relief.

TorrentFreak contacted Buckley, who informed us that he is happy with the outcome and ready to work on a bright future.

“I really respect the government and the judge in their sentencing and am extremely grateful that they took into account all concerns of my health and life situation in regards to possible sentences,” he tells us.

“I am just glad to have another chance to use my time and skills to hopefully contribute to society in a more positive way as much as I am capable thanks to the outcome of the case.”

Time to move on.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

AWS AppSync – Production-Ready with Six New Features

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-appsync-production-ready-with-six-new-features/

If you build (or want to build) data-driven web and mobile apps and need real-time updates and the ability to work offline, you should take a look at AWS AppSync. Announced in preview form at AWS re:Invent 2017 and described in depth here, AWS AppSync is designed for use in iOS, Android, JavaScript, and React Native apps. AWS AppSync is built around GraphQL, an open, standardized query language that makes it easy for your applications to request the precise data that they need from the cloud.

I’m happy to announce that the preview period is over and that AWS AppSync is now generally available and production-ready, with six new features that will simplify and streamline your application development process:

Console Log Access – You can now see the CloudWatch Logs entries that are created when you test your GraphQL queries, mutations, and subscriptions from within the AWS AppSync Console.

Console Testing with Mock Data – You can now create and use mock context objects in the console for testing purposes.

Subscription Resolvers – You can now create resolvers for AWS AppSync subscription requests, just as you can already do for query and mutate requests.

Batch GraphQL Operations for DynamoDB – You can now make use of DynamoDB’s batch operations (BatchGetItem and BatchWriteItem) across one or more tables. in your resolver functions.

CloudWatch Support – You can now use Amazon CloudWatch Metrics and CloudWatch Logs to monitor calls to the AWS AppSync APIs.

CloudFormation Support – You can now define your schemas, data sources, and resolvers using AWS CloudFormation templates.

A Brief AppSync Review
Before diving in to the new features, let’s review the process of creating an AWS AppSync API, starting from the console. I click Create API to begin:

I enter a name for my API and (for demo purposes) choose to use the Sample schema:

The schema defines a collection of GraphQL object types. Each object type has a set of fields, with optional arguments:

If I was creating an API of my own I would enter my schema at this point. Since I am using the sample, I don’t need to do this. Either way, I click on Create to proceed:

The GraphQL schema type defines the entry points for the operations on the data. All of the data stored on behalf of a particular schema must be accessible using a path that begins at one of these entry points. The console provides me with an endpoint and key for my API:

It also provides me with guidance and a set of fully functional sample apps that I can clone:

When I clicked Create, AWS AppSync created a pair of Amazon DynamoDB tables for me. I can click Data Sources to see them:

I can also see and modify my schema, issue queries, and modify an assortment of settings for my API.

Let’s take a quick look at each new feature…

Console Log Access
The AWS AppSync Console already allows me to issue queries and to see the results, and now provides access to relevant log entries.In order to see the entries, I must enable logs (as detailed below), open up the LOGS, and check the checkbox. Here’s a simple mutation query that adds a new event. I enter the query and click the arrow to test it:

I can click VIEW IN CLOUDWATCH for a more detailed view:

To learn more, read Test and Debug Resolvers.

Console Testing with Mock Data
You can now create a context object in the console where it will be passed to one of your resolvers for testing purposes. I’ll add a testResolver item to my schema:

Then I locate it on the right-hand side of the Schema page and click Attach:

I choose a data source (this is for testing and the actual source will not be accessed), and use the Put item mapping template:

Then I click Select test context, choose Create New Context, assign a name to my test content, and click Save (as you can see, the test context contains the arguments from the query along with values to be returned for each field of the result):

After I save the new Resolver, I click Test to see the request and the response:

Subscription Resolvers
Your AWS AppSync application can monitor changes to any data source using the @aws_subscribe GraphQL schema directive and defining a Subscription type. The AWS AppSync client SDK connects to AWS AppSync using MQTT over Websockets and the application is notified after each mutation. You can now attach resolvers (which convert GraphQL payloads into the protocol needed by the underlying storage system) to your subscription fields and perform authorization checks when clients attempt to connect. This allows you to perform the same fine grained authorization routines across queries, mutations, and subscriptions.

To learn more about this feature, read Real-Time Data.

Batch GraphQL Operations
Your resolvers can now make use of DynamoDB batch operations that span one or more tables in a region. This allows you to use a list of keys in a single query, read records multiple tables, write records in bulk to multiple tables, and conditionally write or delete related records across multiple tables.

In order to use this feature the IAM role that you use to access your tables must grant access to DynamoDB’s BatchGetItem and BatchPutItem functions.

To learn more, read the DynamoDB Batch Resolvers tutorial.

CloudWatch Logs Support
You can now tell AWS AppSync to log API requests to CloudWatch Logs. Click on Settings and Enable logs, then choose the IAM role and the log level:

CloudFormation Support
You can use the following CloudFormation resource types in your templates to define AWS AppSync resources:

AWS::AppSync::GraphQLApi – Defines an AppSync API in terms of a data source (an Amazon Elasticsearch Service domain or a DynamoDB table).

AWS::AppSync::ApiKey – Defines the access key needed to access the data source.

AWS::AppSync::GraphQLSchema – Defines a GraphQL schema.

AWS::AppSync::DataSource – Defines a data source.

AWS::AppSync::Resolver – Defines a resolver by referencing a schema and a data source, and includes a mapping template for requests.

Here’s a simple schema definition in YAML form:

  AppSyncSchema:
    Type: "AWS::AppSync::GraphQLSchema"
    DependsOn:
      - AppSyncGraphQLApi
    Properties:
      ApiId: !GetAtt AppSyncGraphQLApi.ApiId
      Definition: |
        schema {
          query: Query
          mutation: Mutation
        }
        type Query {
          singlePost(id: ID!): Post
          allPosts: [Post]
        }
        type Mutation {
          putPost(id: ID!, title: String!): Post
        }
        type Post {
          id: ID!
          title: String!
        }

Available Now
These new features are available now and you can start using them today! Here are a couple of blog posts and other resources that you might find to be of interest:

Jeff;

 

 

The answers to your questions for Eben Upton

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/eben-q-a-1/

Before Easter, we asked you to tell us your questions for a live Q & A with Raspberry Pi Trading CEO and Raspberry Pi creator Eben Upton. The variety of questions and comments you sent was wonderful, and while we couldn’t get to them all, we picked a handful of the most common to grill him on.

You can watch the video below — though due to this being the first pancake of our live Q&A videos, the sound is a bit iffy — or read Eben’s answers to the first five questions today. We’ll follow up with the rest in the next few weeks!

Live Q&A with Eben Upton, creator of the Raspberry Pi

Get your questions to us now using #AskRaspberryPi on Twitter

Any plans for 64-bit Raspbian?

Raspbian is effectively 32-bit Debian built for the ARMv6 instruction-set architecture supported by the ARM11 processor in the first-generation Raspberry Pi. So maybe the question should be: “Would we release a version of our operating environment that was built on top of 64-bit ARM Debian?”

And the answer is: “Not yet.”

When we released the Raspberry Pi 3 Model B+, we released an operating system image on the same day; the wonderful thing about that image is that it runs on every Raspberry Pi ever made. It even runs on the alpha boards from way back in 2011.

That deep backwards compatibility is really important for us, in large part because we don’t want to orphan our customers. If someone spent $35 on an older-model Raspberry Pi five or six years ago, they still spent $35, so it would be wrong for us to throw them under the bus.

So, if we were going to do a 64-bit version, we’d want to keep doing the 32-bit version, and then that would mean our efforts would be split across the two versions; and remember, we’re still a very small engineering team. Never say never, but it would be a big step for us.

For people wanting a 64-bit operating system, there are plenty of good third-party images out there, including SUSE Linux Enterprise Server.

Given that the 3B+ includes 5GHz wireless and Power over Ethernet (PoE) support, why would manufacturers continue to use the Compute Module?

It’s a form-factor thing.

Very large numbers of people are using the bigger product in an industrial context, and it’s well engineered for that: it has module certification, wireless on board, and now PoE support. But there are use cases that can’t accommodate this form factor. For example, NEC displays: we’ve had this great relationship with NEC for a couple of years now where a lot of their displays have a socket in the back that you can put a Compute Module into. That wouldn’t work with the 3B+ form factor.

Back of an NEC display with a Raspberry Pi Compute Module slotted in.

An NEC display with a Raspberry Pi Compute Module

What are some industrial uses/products Raspberry is used with?

The NEC displays are a good example of the broader trend of using Raspberry Pi in digital signage.

A Raspberry Pi running the wait time signage at The Wizarding World of Harry Potter, Universal Studios.
Image c/o thelonelyredditor1

If you see a monitor at a station, or an airport, or a recording studio, and you look behind it, it’s amazing how often you’ll find a Raspberry Pi sitting there. The original Raspberry Pi was particularly strong for multimedia use cases, so we saw uptake in signage very early on.

An array of many Raspberry Pis

Los Alamos Raspberry Pi supercomputer

Another great example is the Los Alamos National Laboratory building supercomputers out of Raspberry Pis. Many high-end supercomputers now are built using white-box hardware — just regular PCs connected together using some networking fabric — and a collection of Raspberry Pi units can serve as a scale model of that. The Raspberry Pi has less processing power, less memory, and less networking bandwidth than the PC, but it has a balanced amount of each. So if you don’t want to let your apprentice supercomputer engineers loose on your expensive supercomputer, a cluster of Raspberry Pis is a good alternative.

Why is there no power button on the Raspberry Pi?

“Once you start, where do you stop?” is a question we ask ourselves a lot.

There are a whole bunch of useful things that we haven’t included in the Raspberry Pi by default. We don’t have a power button, we don’t have a real-time clock, and we don’t have an analogue-to-digital converter — those are probably the three most common requests. And the issue with them is that they each cost a bit of money, they’re each only useful to a minority of users, and even that minority often can’t agree on exactly what they want. Some people would like a power button that is literally a physical analogue switch between the 5V input and the rest of the board, while others would like something a bit more like a PC power button, which is partway between a physical switch and a ‘shutdown’ button. There’s no consensus about what sort of power button we should add.

So the answer is: accessories. By leaving a feature off the board, we’re not taxing the majority of people who don’t want the feature. And of course, we create an opportunity for other companies in the ecosystem to create and sell accessories to those people who do want them.

Adafruit Push-button Power Switch Breakout Raspberry Pi

The Adafruit Push-button Power Switch Breakout is one of many accessories that fill in the gaps for makers.

We have this neat way of figuring out what features to include by default: we divide through the fraction of people who want it. If you have a 20 cent component that’s going to be used by a fifth of people, we treat that as if it’s a $1 component. And it has to fight its way against the $1 components that will be used by almost everybody.

Do you think that Raspberry Pi is the future of the Internet of Things?

Absolutely, Raspberry Pi is the future of the Internet of Things!

In practice, most of the viable early IoT use cases are in the commercial and industrial spaces rather than the consumer space. Maybe in ten years’ time, IoT will be about putting 10-cent chips into light switches, but right now there’s so much money to be saved by putting automation into factories that you don’t need 10-cent components to address the market. Last year, roughly 2 million $35 Raspberry Pi units went into commercial and industrial applications, and many of those are what you’d call IoT applications.

So I think we’re the future of a particular slice of IoT. And we have ten years to get our price point down to 10 cents 🙂

The post The answers to your questions for Eben Upton appeared first on Raspberry Pi.

MPAA Quietly Shut Down Its ‘Legal’ Movie Search Engine

Post Syndicated from Ernesto original https://torrentfreak.com/mpaa-quietly-shut-down-its-legal-movie-search-engine-180411/

During the fall of 2014, Hollywood launched WhereToWatch, its very own search engine for movies and TV-shows.

The site enabled people to check if and where the latest entertainment was available, hoping to steer U.S. visitors away from pirate sites.

Aside from the usual critics, the launch received a ton of favorable press. This was soon followed up by another release highlighting some of the positive responses and praise from the press.

“The initiative marks a further attempt by the MPAA to combat rampant online piracy by reminding consumers of legal means to watch movies and TV shows,” the LA Times wrote, for example.

Over the past several years, the site hasn’t appeared in the news much, but it did help thousands of people find legal sources for the latest entertainment. However, those who try to access it today will notice that WhereToWatch has been abandoned, quietly.

The MPAA pulled the plug on the service a few months ago. And where the mainstream media covered its launch in detail, the shutdown received zero mentions. So why did the site fold?

According to MPAA Vice President of Corporate Communications, Chris Ortman, it was no longer needed as there are many similar search engines out there.

“Given the many search options commercially available today, which can be found on the MPAA website, WheretoWatch.com was discontinued at the conclusion of 2017,” Ortman informs TF.

“There are more than 140 lawful online platforms in the United States for accessing film and television content, and more than 460 around the world,” he adds.

The MPAA lists several of these alternative search engines on its new website. The old WhereToWatch domain now forwards to the MPAA’s online magazine ‘The Credits,’ which features behind-the-scenes stories and industry profiles.

While the MPAA is right that there are alternative search engines, many of these were already available when WhereToWatch launched. In fact, the site used the services of the competing service GoWatchIt for its search results.

Perhaps the lack of interest from the U.S. public played a role as well. The site never really took off and according to traffic estimates from SimilarWeb and Alexa, most of the visitors came from Iran, where the site was unusable due to a geo-block.

After searching long and hard we were able to track down a former WhereToWatch user on Reddit. This person just started to get into the service and was disappointed to see it go.

“So, does anyone know of better places or simply other places where this information lives in an easily accessible place?” he or she asked.

One person responded by recommending Icefilms.info, a pirate site. This is a response the MPAA would cringe at, but luckily, most people mentioned justwatch.com as the best alternative.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

More power to your Pi

Post Syndicated from James Adams original https://www.raspberrypi.org/blog/pi-power-supply-chip/

It’s been just over three weeks since we launched the new Raspberry Pi 3 Model B+. Although the product is branded Raspberry Pi 3B+ and not Raspberry Pi 4, a serious amount of engineering was involved in creating it. The wireless networking, USB/Ethernet hub, on-board power supplies, and BCM2837 chip were all upgraded: together these represent almost all the circuitry on the board! Today, I’d like to tell you about the work that has gone into creating a custom power supply chip for our newest computer.

Raspberry Pi 3 Model B+, with custome power supply chip

The new Raspberry Pi 3B+, sporting a new, custom power supply chip (bottom left-hand corner)

Successful launch

The Raspberry Pi 3B+ has been well received, and we’ve enjoyed hearing feedback from the community as well as reading the various reviews and articles highlighting the solid improvements in wireless networking, Ethernet, CPU, and thermal performance of the new board. Gareth Halfacree’s post here has some particularly nice graphs showing the increased performance as well as how the Pi 3B+ keeps cool under load due to the new CPU package that incorporates a metal heat spreader. The Raspberry Pi production lines at the Sony UK Technology Centre are running at full speed, and it seems most people who want to get hold of the new board are able to find one in stock.

Powering your Pi

One of the most critical but often under-appreciated elements of any electronic product, particularly one such as Raspberry Pi with lots of complex on-board silicon (processor, networking, high-speed memory), is the power supply. In fact, the Raspberry Pi 3B+ has no fewer than six different voltage rails: two at 3.3V — one special ‘quiet’ one for audio, and one for everything else; 1.8V; 1.2V for the LPDDR2 memory; and 1.2V nominal for the CPU core. Note that the CPU voltage is actually raised and lowered on the fly as the speed of the CPU is increased and decreased depending on how hard the it is working. The sixth rail is 5V, which is the master supply that all the others are created from, and the output voltage for the four downstream USB ports; this is what the mains power adaptor is supplying through the micro USB power connector.

Power supply primer

There are two common classes of power supply circuits: linear regulators and switching regulators. Linear regulators work by creating a lower, regulated voltage from a higher one. In simple terms, they monitor the output voltage against an internally generated reference and continually change their own resistance to keep the output voltage constant. Switching regulators work in a different way: they ‘pump’ energy by first storing the energy coming from the source supply in a reactive component (usually an inductor, sometimes a capacitor) and then releasing it to the regulated output supply. The switches in switching regulators effect this energy transfer by first connecting the inductor (or capacitor) to store the source energy, and then switching the circuit so the energy is released to its destination.

Linear regulators produce smoother, less noisy output voltages, but they can only convert to a lower voltage, and have to dissipate energy to do so. The higher the output current and the voltage difference across them is, the more energy is lost as heat. On the other hand, switching supplies can, depending on their design, convert any voltage to any other voltage and can be much more efficient (efficiencies of 90% and above are not uncommon). However, they are more complex and generate noisier output voltages.

Designers use both types of regulators depending on the needs of the downstream circuit: for low-voltage drops, low current, or low noise, linear regulators are usually the right choice, while switching regulators are used for higher power or when efficiency of conversion is required. One of the simplest switching-mode power supply circuits is the buck converter, used to create a lower voltage from a higher one, and this is what we use on the Pi.

A history lesson

The BCM2835 processor chip (found on the original Raspberry Pi Model B and B+, as well as on the Zero products) has on-chip power supplies: one switch-mode regulator for the core voltage, as well as a linear one for the LPDDR2 memory supply. This meant that in addition to 5V, we only had to provide 3.3V and 1.8V on the board, which was relatively simple to do using cheap, off-the-shelf parts.

Pi Zero sporting a BCM2835 processor which only needs 2 external switchers (the components clustered behind the camera port)

When we moved to the BCM2836 for Raspberry Pi Model 2 (and subsequently to the BCM2837A1 and B0 for Raspberry Pi 3B and 3B+), the core supply and the on-chip LPDDR2 memory supply were not up to the job of supplying the extra processor cores and larger memory, so we removed them. (We also used the recovered chip area to help fit in the new quad-core ARM processors.) The upshot of this was that we had to supply these power rails externally for the Raspberry Pi 2 and models thereafter. Moreover, we also had to provide circuitry to sequence them correctly in order to control exactly when they power up compared to the other supplies on the board.

Power supply design is tricky (but critical)

Raspberry Pi boards take in 5V from the micro USB socket and have to generate the other required supplies from this. When 5V is first connected, each of these other supplies must ‘start up’, meaning go from ‘off’, or 0V, to their correct voltage in some short period of time. The order of the supplies starting up is often important: commonly, there are structures inside a chip that form diodes between supply rails, and bringing supplies up in the wrong order can sometimes ‘turn on’ these diodes, causing them to conduct, with undesirable consequences. Silicon chips come with a data sheet specifying what supplies (voltages and currents) are needed and whether they need to be low-noise, in what order they must power up (and in some cases down), and sometimes even the rate at which the voltages must power up and down.

A Pi3. Power supply components are clustered bottom left next to the micro USB, middle (above LPDDR2 chip which is on the bottom of the PCB) and above the A/V jack.

In designing the power chain for the Pi 2 and 3, the sequencing was fairly straightforward: power rails power up in order of voltage (5V, 3.3V, 1.8V, 1.2V). However, the supplies were all generated with individual, discrete devices. Therefore, I spent quite a lot of time designing circuitry to control the sequencing — even with some design tricks to reduce component count, quite a few sequencing components are required. More complex systems generally use a Power Management Integrated Circuit (PMIC) with multiple supplies on a single chip, and many different PMIC variants are made by various manufacturers. Since Raspberry Pi 2 days, I was looking for a suitable PMIC to simplify the Pi design, but invariably (and somewhat counter-intuitively) these were always too expensive compared to my discrete solution, usually because they came with more features than needed.

One device to rule them all

It was way back in May 2015 when I first chatted to Peter Coyle of Exar (Exar were bought by MaxLinear in 2017) about power supply products for Raspberry Pi. We didn’t find a product match then, but in June 2016 Peter, along with Tuomas Hollman and Trevor Latham, visited to pitch the possibility of building a custom power management solution for us.

I was initially sceptical that it could be made cheap enough. However, our discussion indicated that if we could tailor the solution to just what we needed, it could be cost-effective. Over the coming weeks and months, we honed a specification we agreed on from the initial sketches we’d made, and Exar thought they could build it for us at the target price.

The chip we designed would contain all the key supplies required for the Pi on one small device in a cheap QFN package, and it would also perform the required sequencing and voltage monitoring. Moreover, the chip would be flexible to allow adjustment of supply voltages from their default values via I2C; the largest supply would be capable of being adjusted quickly to perform the dynamic core voltage changes needed in order to reduce voltage to the processor when it is idling (to save power), and to boost voltage to the processor when running at maximum speed (1.4 GHz). The supplies on the chip would all be generously specified and could deliver significantly more power than those used on the Raspberry Pi 3. All in all, the chip would contain four switching-mode converters and one low-current linear regulator, this last one being low-noise for the audio circuitry.

The MXL7704 chip

The project was a great success: MaxLinear delivered working samples of first silicon at the end of May 2017 (almost exactly a year after we had kicked off the project), and followed through with production quantities in December 2017 in time for the Raspberry Pi 3B+ production ramp.

The team behind the power supply chip on the Raspberry Pi 3 Model B+ (group of six men, two of whom are holding Raspberry Pi boards)

Front row: Roger with the very first Pi 3B+ prototypes and James with a MXL7704 development board hacked to power a Pi 3. Back row left to right: Will Torgerson, Trevor Latham, Peter Coyle, Tuomas Hollman.

The MXL7704 device has been key to reducing Pi board complexity and therefore overall bill of materials cost. Furthermore, by being able to deliver more power when needed, it has also been essential to increasing the speed of the (newly packaged) BCM2837B0 processor on the 3B+ to 1.4GHz. The result is improvements to both the continuous output current to the CPU (from 3A to 4A) and to the transient performance (i.e. the chip has helped to reduce the ‘transient response’, which is the change in supply voltage due to a sudden current spike that occurs when the processor suddenly demands a large current in a few nanoseconds, as modern CPUs tend to do).

With the MXL7704, the power supply circuitry on the 3B+ is now a lot simpler than the Pi 3B design. This new supply also provides the LPDDR2 memory voltage directly from a switching regulator rather than using linear regulators like the Pi 3, thereby improving energy efficiency. This helps to somewhat offset the extra power that the faster Ethernet, wireless networking, and processor consume. A pleasing side effect of using the new chip is the symmetric board layout of the regulators — it’s easy to see the four switching-mode supplies, given away by four similar-looking blobs (three grey and one brownish), which are the inductors.

Close-up of the power supply chip on the Raspberry Pi 3 Model B+

The Pi 3B+ PMIC MXL7704 — pleasingly symmetric

Kudos

It takes a lot of effort to design a new chip from scratch and get it all the way through to production — we are very grateful to the team at MaxLinear for their hard work, dedication, and enthusiasm. We’re also proud to have created something that will not only power Raspberry Pis, but will also be useful for other product designs: it turns out when you have a low-cost and flexible device, it can be used for many things — something we’re fairly familiar with here at Raspberry Pi! For the curious, the product page (including the data sheet) for the MXL7704 chip is here. Particular thanks go to Peter Coyle, Tuomas Hollman, and Trevor Latham, and also to Jon Cronk, who has been our contact in the US and has had to get up early to attend all our conference calls!

The MXL7704 design team celebrating on Pi Day — it takes a lot of people to design a chip!

I hope you liked reading about some of the effort that has gone into creating the new Pi. It’s nice to finally have a chance to tell people about some of the (increasingly complex) technical work that makes building a $35 computer possible — we’re very pleased with the Raspberry Pi 3B+, and we hope you enjoy using it as much as we’ve enjoyed creating it!

The post More power to your Pi appeared first on Raspberry Pi.

Roku Bans Popular Social IPTV Linking Service cCloud TV

Post Syndicated from Andy original https://torrentfreak.com/roku-bans-popular-social-iptv-linking-service-ccloud-tv-180409/

Despite being one of the more popular set-top box platforms, until last year Roku managed to stay completely out of the piracy conversation.

However, due to abuse of its system by third-parties, last June the Superior Court of Justice of the City of Mexico banned the importation and distribution of Roku devices in the country.

The decision followed a complaint filed by cable TV provider Cablevision, which said that some Roku channels and their users were infringing its distribution rights.

Since then, Roku has been fighting to have the ban lifted, previously informing TF that it expressly prohibits copyright infringement of any kind. That led to several more legal processes yet last month and after considerable effort, the ban was upheld, much to Roku’s disappointment.

“It is necessary for Roku to make adjustments to its software, as other online content distribution platforms do, so that violations of copyrighted content do not take place,” Cablevision said.

Then, at the end of March, Roku suddenly banned the USTVnow channel from its platform, citing a third-party copyright complaint.

In a series of emails with TF, the company declined to offer further details but there is plenty of online speculation that the decision was a move towards the “adjustments” demanded by Cablevision. Today yet more fuel is being poured onto that same fire with Roku’s decision to ban the popular cCloud TV service from its platform.

For those unfamiliar with cCloud TV, it’s a video streaming platform that relies on users to contribute media links found on the web, whether they’re movie and TV shows or live sporting events.

“Project cCloud TV is known as the ‘Popcorn Time for Live TV’. The project started with 50 channels and has grown over time and now has over 4000 channels from all around the world,” its founder ‘Bane’ told TF back in 2016.

“The project was inspired by Popcorn Time and its simplicity for streaming torrents. The service works based on media links that can be found anywhere on the web and the cCloud project makes it easier for users to stream.”

Aside from the vast array of content cCloud offers, its versatility is almost unrivaled. In an addition to working via most modern web browsers, it’s also accessible using smartphones, tablets, Plex media server, Kodi, VLC, and (until recently at least) Roku.

But cCloud and USTVnow aren’t the only services suffering bans at Roku.

As highlighted by CordCuttersNews, other channels are also suffering similar fates, such as XTV that was previously replaced with an FBI warning.

cCloud has had problems on Kodi too. Back in September 2017, TVAddons announced that it had been forced to remove the cCloud addon from its site.

“cCloud TV has been removed from our web site due to a complaint made by Bell, Rogers, Videotron and TVA on June 12th, 2017 as part of their lawsuit against our web site,” the site announced.

“Prior to hearing of the lawsuit, we had never received a single complaint relating to the cCloud TV addon for Kodi. cCloud TV for Kodi was developed by podgod, and was basically an interface for the community-based web service that goes by the same name.”

Last week, TVAddons went on to publish an “blacklist” that lists addons that have the potential to deliver content not authorized by rightsholders. Among many others, the list contains cCloud, meaning that potential users will now have to obtain it directly from the Kodi Bae Repository on Github instead.

At the time of publication, Roku had not responded to TorrentFreak’s request for comment.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Piracy & Money Are Virtually Inseparable & People Probably Don’t Care Anymore

Post Syndicated from Andy original https://torrentfreak.com/piracy-money-are-virtually-inseparable-people-probably-dont-care-anymore-180408/

Long before peer-to-peer file-sharing networks were a twinkle in developers’ eyes, piracy of software and games flourished under the radar. Cassettes, floppy discs and CDs were the physical media of choice, while the BBS became the haunt of the need-it-now generation.

Sharing was the name of the game. When someone had game ‘X’ on tape, it was freely shared with friends and associates because when they got game ‘Y’, the favor had to be returned. The content itself became the currency and for most, the thought of asking for money didn’t figure into the equation.

Even when P2P networks first took off, money wasn’t really a major part of the equation. Sure, the people running Kazaa and the like were generating money from advertising but for millions of users, sharing content between friends and associates was still the name of the game.

Even when the torrent site scene began to gain traction, money wasn’t the driving force. Everything was so new that developers were much more concerned with getting half written/half broken tracker scripts to work than anything else. Having people care enough to simply visit the sites and share something with others was the real payoff. Ironically, it was a reward that money couldn’t buy.

But as the scene began to develop, so did the influx of minor and even major businessmen. The ratio economy of the private tracker scene meant that bandwidth could essentially be converted to cash, something which gave site operators revenue streams that had never previously existed. That was both good and bad for the scene.

The fact is that running a torrent site costs money and if time is factored in too, that becomes lots of money. If site admins have to fund everything themselves, a tipping point is eventually reached. If the site becomes unaffordable, it closes, meaning that everyone loses. So, by taking in some donations or offering users other perks in exchange for financial assistance, the whole thing remains viable.

Counter-intuitively, the success of such a venture then becomes the problem, at least as far as maintaining the old “sharing is caring” philosophy goes. A well-run private site, with enthusiastic donors, has the potential to bring in quite a bit of cash. Initially, the excess can be saved away for that rainy day when things aren’t so good. Having a few thousand in the bank when chaos rains down is rarely a bad thing.

But what happens when a site does really well and is making money hand over fist? What happens when advertisers on public sites begin to queue up, offering lots of cash to get involved? Is a site operator really expected to turn down the donations and tell the advertisers to go away? Amazingly, some do. Less amazingly, most don’t.

Although there are some notable exceptions, particularly in the niche private tracker scene, these days most ‘pirate’ sites are in it for the money.

In the current legal climate, some probably consider this their well-earned ‘danger money’ yet others are so far away from the sharing ethos it hurts. Quite often, these sites are incapable of taking in a new member due to alleged capacity issues yet a sizeable ‘donation’ miraculously solves the problem and gets the user in. It’s like magic.

As it happens, two threads on Reddit this week sparked this little rant. Both discuss whether someone should consider paying $20 and 37 euros respectively to get invitations to a pair of torrent sites.

Ask a purist and the answer is always ‘NO’, whether that’s buying an invitation from the operator of a torrent site or from someone selling invites for profit.

Aside from the fact that no one on these sites has paid content owners a dime, sites that demand cash for entry are doing so for one reason and one reason only – profit. Ridiculous when it’s the users of those sites that are paying to distribute the content.

On the other hand, others see no wrong in it.

They argue that paying a relatively small amount to access huge libraries of content is preferable to spending hundreds of dollars on a legitimate service that doesn’t carry all the content they need. Others don’t bother making any excuses at all, spending sizable sums with pirate IPTV/VOD services that dispose of sharing morals by engaging in a different business model altogether.

But the bottom line, whether we like it or not, is that money and Internet piracy have become so intertwined, so enmeshed in each other’s existence, that it’s become virtually impossible to separate them.

Even those running the handful of non-profit sites still around today would be forced to reconsider if they had to start all over again in today’s climate. The risk model is entirely different and quite often, only money tips those scales.

The same holds true for the people putting together the next big streaming portals. These days it’s about getting as many eyeballs on content as possible, making the money, and getting out the other end unscathed.

This is not what most early pirates envisioned. This is certainly not what the early sharing masses wanted. Yet arguably, through the influx of business people and the desire to generate profit among the general population, the pirating masses have never had it so good.

As revealed in a recent study, volumes of piracy are on the up and it is now possible – still possible – to access almost any item of content on pirate sites, despite the so-called “follow the money” approach championed by the authorities.

While ‘Sharing is Caring’ still lives today, it’s slowly being drowned out and at this point, there’s probably no way back. The big question is whether anyone cares anymore and the answer to that is “probably not”.

So, if the driving force isn’t sharing or love, it’ll probably have to be money. And that works everywhere else, doesn’t it?

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

New – Machine Learning Inference at the Edge Using AWS Greengrass

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-machine-learning-inference-at-the-edge-using-aws-greengrass/

What happens when you combine the Internet of Things, Machine Learning, and Edge Computing? Before I tell you, let’s review each one and discuss what AWS has to offer.

Internet of Things (IoT) – Devices that connect the physical world and the digital one. The devices, often equipped with one or more types of sensors, can be found in factories, vehicles, mines, fields, homes, and so forth. Important AWS services include AWS IoT Core, AWS IoT Analytics, AWS IoT Device Management, and Amazon FreeRTOS, along with others that you can find on the AWS IoT page.

Machine Learning (ML) – Systems that can be trained using an at-scale dataset and statistical algorithms, and used to make inferences from fresh data. At Amazon we use machine learning to drive the recommendations that you see when you shop, to optimize the paths in our fulfillment centers, fly drones, and much more. We support leading open source machine learning frameworks such as TensorFlow and MXNet, and make ML accessible and easy to use through Amazon SageMaker. We also provide Amazon Rekognition for images and for video, Amazon Lex for chatbots, and a wide array of language services for text analysis, translation, speech recognition, and text to speech.

Edge Computing – The power to have compute resources and decision-making capabilities in disparate locations, often with intermittent or no connectivity to the cloud. AWS Greengrass builds on AWS IoT, giving you the ability to run Lambda functions and keep device state in sync even when not connected to the Internet.

ML Inference at the Edge
Today I would like to toss all three of these important new technologies into a blender! You can now perform Machine Learning inference at the edge using AWS Greengrass. This allows you to use the power of the AWS cloud (including fast, powerful instances equipped with GPUs) to build, train, and test your ML models before deploying them to small, low-powered, intermittently-connected IoT devices running in those factories, vehicles, mines, fields, and homes that I mentioned.

Here are a few of the many ways that you can put Greengrass ML Inference to use:

Precision Farming – With an ever-growing world population and unpredictable weather that can affect crop yields, the opportunity to use technology to increase yields is immense. Intelligent devices that are literally in the field can process images of soil, plants, pests, and crops, taking local corrective action and sending status reports to the cloud.

Physical Security – Smart devices (including the AWS DeepLens) can process images and scenes locally, looking for objects, watching for changes, and even detecting faces. When something of interest or concern arises, the device can pass the image or the video to the cloud and use Amazon Rekognition to take a closer look.

Industrial Maintenance – Smart, local monitoring can increase operational efficiency and reduce unplanned downtime. The monitors can run inference operations on power consumption, noise levels, and vibration to flag anomalies, predict failures, detect faulty equipment.

Greengrass ML Inference Overview
There are several different aspects to this new AWS feature. Let’s take a look at each one:

Machine Learning ModelsPrecompiled TensorFlow and MXNet libraries, optimized for production use on the NVIDIA Jetson TX2 and Intel Atom devices, and development use on 32-bit Raspberry Pi devices. The optimized libraries can take advantage of GPU and FPGA hardware accelerators at the edge in order to provide fast, local inferences.

Model Building and Training – The ability to use Amazon SageMaker and other cloud-based ML tools to build, train, and test your models before deploying them to your IoT devices. To learn more about SageMaker, read Amazon SageMaker – Accelerated Machine Learning.

Model Deployment – SageMaker models can (if you give them the proper IAM permissions) be referenced directly from your Greengrass groups. You can also make use of models stored in S3 buckets. You can add a new machine learning resource to a group with a couple of clicks:

These new features are available now and you can start using them today! To learn more read Perform Machine Learning Inference.

Jeff;

 

New – Encryption of Data in Transit for Amazon EFS

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-encryption-of-data-in-transit-for-amazon-efs/

Amazon Elastic File System was designed to be the file system of choice for cloud-native applications that require shared access to file-based storage. We launched EFS in mid-2016 and have added several important features since then including on-premises access via Direct Connect and encryption of data at rest. We have also made EFS available in additional AWS Regions, most recently US West (Northern California). As was the case with EFS itself, these enhancements were made in response to customer feedback, and reflect our desire to serve an ever-widening customer base.

Encryption in Transit
Today we are making EFS even more useful with the addition of support for encryption of data in transit. When used in conjunction with the existing support for encryption of data at rest, you now have the ability to protect your stored files using a defense-in-depth security strategy.

In order to make it easy for you to implement encryption in transit, we are also releasing an EFS mount helper. The helper (available in source code and RPM form) takes care of setting up a TLS tunnel to EFS, and also allows you to mount file systems by ID. The two features are independent; you can use the helper to mount file systems by ID even if you don’t make use of encryption in transit. The helper also supplies a recommended set of default options to the actual mount command.

Setting up Encryption
I start by installing the EFS mount helper on my Amazon Linux instance:

$ sudo yum install -y amazon-efs-utils

Next, I visit the EFS Console and capture the file system ID:

Then I specify the ID (and the TLS option) to mount the file system:

$ sudo mount -t efs fs-92758f7b -o tls /mnt/efs

And that’s it! The encryption is transparent and has an almost negligible impact on data transfer speed.

Available Now
You can start using encryption in transit today in all AWS Regions where EFS is available.

The mount helper is available for Amazon Linux. If you are running another distribution of Linux you will need to clone the GitHub repo and build your own RPM, as described in the README.

Jeff;

AWS Certificate Manager Launches Private Certificate Authority

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-certificate-manager-launches-private-certificate-authority/

Today we’re launching a new feature for AWS Certificate Manager (ACM), Private Certificate Authority (CA). This new service allows ACM to act as a private subordinate CA. Previously, if a customer wanted to use private certificates, they needed specialized infrastructure and security expertise that could be expensive to maintain and operate. ACM Private CA builds on ACM’s existing certificate capabilities to help you easily and securely manage the lifecycle of your private certificates with pay as you go pricing. This enables developers to provision certificates in just a few simple API calls while administrators have a central CA management console and fine grained access control through granular IAM policies. ACM Private CA keys are stored securely in AWS managed hardware security modules (HSMs) that adhere to FIPS 140-2 Level 3 security standards. ACM Private CA automatically maintains certificate revocation lists (CRLs) in Amazon Simple Storage Service (S3) and lets administrators generate audit reports of certificate creation with the API or console. This service is packed full of features so let’s jump in and provision a CA.

Provisioning a Private Certificate Authority (CA)

First, I’ll navigate to the ACM console in my region and select the new Private CAs section in the sidebar. From there I’ll click Get Started to start the CA wizard. For now, I only have the option to provision a subordinate CA so we’ll select that and use my super secure desktop as the root CA and click Next. This isn’t what I would do in a production setting but it will work for testing out our private CA.

Now, I’ll configure the CA with some common details. The most important thing here is the Common Name which I’ll set as secure.internal to represent my internal domain.

Now I need to choose my key algorithm. You should choose the best algorithm for your needs but know that ACM has a limitation today that it can only manage certificates that chain up to to RSA CAs. For now, I’ll go with RSA 2048 bit and click Next.

In this next screen, I’m able to configure my certificate revocation list (CRL). CRLs are essential for notifying clients in the case that a certificate has been compromised before certificate expiration. ACM will maintain the revocation list for me and I have the option of routing my S3 bucket to a custome domain. In this case I’ll create a new S3 bucket to store my CRL in and click Next.

Finally, I’ll review all the details to make sure I didn’t make any typos and click Confirm and create.

A few seconds later and I’m greeted with a fancy screen saying I successfully provisioned a certificate authority. Hooray! I’m not done yet though. I still need to activate my CA by creating a certificate signing request (CSR) and signing that with my root CA. I’ll click Get started to begin that process.

Now I’ll copy the CSR or download it to a server or desktop that has access to my root CA (or potentially another subordinate – so long as it chains to a trusted root for my clients).

Now I can use a tool like openssl to sign my cert and generate the certificate chain.


$openssl ca -config openssl_root.cnf -extensions v3_intermediate_ca -days 3650 -notext -md sha256 -in csr/CSR.pem -out certs/subordinate_cert.pem
Using configuration from openssl_root.cnf
Enter pass phrase for /Users/randhunt/dev/amzn/ca/private/root_private_key.pem:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
stateOrProvinceName   :ASN.1 12:'Washington'
localityName          :ASN.1 12:'Seattle'
organizationName      :ASN.1 12:'Amazon'
organizationalUnitName:ASN.1 12:'Engineering'
commonName            :ASN.1 12:'secure.internal'
Certificate is to be certified until Mar 31 06:05:30 2028 GMT (3650 days)
Sign the certificate? [y/n]:y


1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

After that I’ll copy my subordinate_cert.pem and certificate chain back into the console. and click Next.

Finally, I’ll review all the information and click Confirm and import. I should see a screen like the one below that shows my CA has been activated successfully.

Now that I have a private CA we can provision private certificates by hopping back to the ACM console and creating a new certificate. After clicking create a new certificate I’ll select the radio button Request a private certificate then I’ll click Request a certificate.

From there it’s just similar to provisioning a normal certificate in ACM.

Now I have a private certificate that I can bind to my ELBs, CloudFront Distributions, API Gateways, and more. I can also export the certificate for use on embedded devices or outside of ACM managed environments.

Available Now
ACM Private CA is a service in and of itself and it is packed full of features that won’t fit into a blog post. I strongly encourage the interested readers to go through the developer guide and familiarize themselves with certificate based security. ACM Private CA is available in in US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), EU (Frankfurt) and EU (Ireland). Private CAs cost $400 per month (prorated) for each private CA. You are not charged for certificates created and maintained in ACM but you are charged for certificates where you have access to the private key (exported or created outside of ACM). The pricing per certificate is tiered starting at $0.75 per certificate for the first 1000 certificates and going down to $0.001 per certificate after 10,000 certificates.

I’m excited to see administrators and developers take advantage of this new service. As always please let us know what you think of this service on Twitter or in the comments below.

Randall