Tag Archives: touch

Treasure Trove of AACS 2.0 UHD Blu-Ray Keys Leak Online

Post Syndicated from Ernesto original https://torrentfreak.com/treasure-trove-of-aacs-2-0-uhd-blu-ray-keys-leak-online-171211/

Nowadays, movie buffs and videophiles find it hard to imagine a good viewing experience without UHD content, but disc rippers and pirates have remained on the sidelines for a long time.

Protected with strong AACS 2.0 encryption, UHD Blu-ray discs have long been one of the last bastions movie pirates had yet to breach.

This year there have been some major developments on this front, as full copies of UHD discs started to leak online. While it remained unclear how these were ripped, it was a definite milestone.

Just a few months ago another breakthrough came when a Russian company released a Windows tool called DeUHD that could rip UHD Blu-ray discs. Again, the method for obtaining the keys was not revealed.

Now there’s another setback for AACS LA, the licensing outfit founded by Warner Bros, Disney, Microsoft, Intel, and others. On various platforms around the Internet, copies of 72 AACS 2.0 keys are being shared.

The first mention we can find was posted a few days ago in a ten-year-old forum thread in the Doom9 forums. Since then it has been replicated a few times, without much fanfare.

The keys

The keys in question are confirmed to work and allow people to rip UHD Blu-ray discs of movies with freely available software such as MakeMKV. They are also different from the DeUHD list, so there are more people who know how to get them.

The full list of leaked keys includes movies such as Deadpool, Hancock, Passengers, Star Trek: Into Darkness, and The Martian. Some movies have multiple keys, likely as a result of different disc releases.

The leaked keys are also relevant for another reason. Ten years ago, a hacker leaked the AACS cryptographic key “09 F9” online which prompted the MPAA and AACS LA to issue DMCA takedown requests to sites where it surfaced.

This escalated into a censorship debate when Digg started removing articles that referenced the leak, triggering a massive backlash.

Thus fas the response to the AACS 2.0 leaks has been pretty tame, but it’s still early days. A user who posted the leaked keys on MyCe has already removed them due to possible copyright problems, so it’s definitely still a touchy subject.

The question that remains now is how the hacker managed to secure the keys, and if AACS 2.0 has been permanently breached.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Sean Hodgins’ video-playing Christmas ornament

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/sean-hodgins-ornament/

Standard Christmas tree ornaments are just so boring, always hanging there doing nothing. Yawn! Lucky for us, Sean Hodgins has created an ornament that plays classic nineties Christmas adverts, because of nostalgia.

YouTube Christmas Ornament! – Raspberry Pi Project

This Christmas ornament will really take you back…

Ingredients

Sean first 3D printed a small CRT-shaped ornament resembling the family television set in The Simpsons. He then got to work on the rest of the components.

Pi Zero and electronic components — Sean Hodgins Raspberry Pi Christmas ornament

All images featured in this blog post are c/o Sean Hodgins. Thanks, Sean!

The ornament uses a Raspberry Pi Zero W, 2.2″ TFT LCD screen, Mono Amp, LiPo battery, and speaker, plus the usual peripherals. Sean purposely assembled it with jumper wires and tape, so that he can reuse the components for another project after the festive season.

Clip of PowerBoost 1000 LiPo charger — Sean Hodgins Raspberry Pi Christmas ornament

By adding header pins to a PowerBoost 1000 LiPo charger, Sean was able to connect a switch to control the Pi’s power usage. This method is handy if you want to seal your Pi in a casing that blocks access to the power leads. From there, jumper wires connect the audio amplifier, LCD screen, and PowerBoost to the Zero W.

Code

Then, with Raspbian installed to an SD card and SSH enabled on the Zero W, Sean got the screen to work. The type of screen he used has both SPI and FBTFT enabled. And his next step was to set up the audio functionality with the help of an Adafruit tutorial.

Clip demoing Sean Hodgins Raspberry Pi Christmas ornament

For video playback, Sean installed mplayer before writing a program to extract video content from YouTube*. Once extracted, the video files are saved to the Raspberry Pi, allowing for seamless playback on the screen.

Construct

When fully assembled, the entire build fit snugly within the 3D-printed television set. And as a final touch, Sean added the cut-out lens of a rectangular magnifying glass to give the display the look of a curved CRT screen.

Clip of completed Sean Hodgins Raspberry Pi Christmas ornament in a tree

Then finally, the ornament hangs perfectly on the Christmas tree, up and running and spreading nostalgic warmth.

For more information on the build, check out the Instructables tutorial. And to see all of Sean’s builds, subscribe to his YouTube channel.

Make

If you’re looking for similar projects, have a look at this tutorial by Cabe Atwell for building a Pi-powered ornament that receives and displays text messages.

Have you created Raspberry Pi tree ornaments? Maybe you’ve 3D printed some of our own? We’d love to see what you’re doing with a Raspberry Pi this festive season, so make sure to share your projects with us, either in the comments below or via our social media channels.

 

*At this point, I should note that we don’t support the extraction of  video content from YouTube for your own use if you do not have the right permissions. However, since Sean’s device can play back any video, we think it would look great on your tree showing your own family videos from previous years. So, y’know, be good, be legal, and be festive.

The post Sean Hodgins’ video-playing Christmas ornament appeared first on Raspberry Pi.

The Raspberry Pi Christmas shopping list 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/christmas-shopping-list-2017/

Looking for the perfect Christmas gift for a beloved maker in your life? Maybe you’d like to give a relative or friend a taste of the world of coding and Raspberry Pi? Whatever you’re looking for, the Raspberry Pi Christmas shopping list will point you in the right direction.

An ice-skating Raspberry Pi - The Raspberry Pi Christmas Shopping List 2017

For those getting started

Thinking about introducing someone special to the wonders of Raspberry Pi during the holidays? Although you can set up your Pi with peripherals from around your home, such as a mobile phone charger, your PC’s keyboard, and the old mouse dwelling in an office drawer, a starter kit is a nice all-in-one package for the budding coder.



Check out the starter kits from Raspberry Pi Approved Resellers such as Pimoroni, The Pi Hut, ModMyPi, Adafruit, CanaKit…the list is pretty long. Our products page will direct you to your closest reseller, or you can head to element14 to pick up the official Raspberry Pi Starter Kit.



You can also buy the Raspberry Pi Press’s brand-new Raspberry Pi Beginners Book, which includes a Raspberry Pi Zero W, a case, a ready-made SD card, and adapter cables.

Once you’ve presented a lucky person with their first Raspberry Pi, it’s time for them to spread their maker wings and learn some new skills.

MagPi Essentials books - The Raspberry Pi Christmas Shopping List 2017

To help them along, you could pick your favourite from among the Official Projects Book volume 3, The MagPi Essentials guides, and the brand-new third edition of Carrie Anne Philbin’s Adventures in Raspberry Pi. (She is super excited about this new edition!)

And you can always add a link to our free resources on the gift tag.

For the maker in your life

If you’re looking for something for a confident digital maker, you can’t go wrong with adding to their arsenal of electric and electronic bits and bobs that are no doubt cluttering drawers and boxes throughout their house.



Components such as servomotors, displays, and sensors are staples of the maker world. And when it comes to jumper wires, buttons, and LEDs, one can never have enough.



You could also consider getting your person a soldering iron, some helpings hands, or small tools such as a Dremel or screwdriver set.

And to make their life a little less messy, pop it all inside a Really Useful Box…because they’re really useful.



For kit makers

While some people like to dive into making head-first and to build whatever comes to mind, others enjoy working with kits.



The Naturebytes kit allows you to record the animal visitors of your garden with the help of a camera and a motion sensor. Footage of your local badgers, birds, deer, and more will be saved to an SD card, or tweeted or emailed to you if it’s in range of WiFi.

Cortec Tiny 4WD - The Raspberry Pi Christmas Shopping List 2017

Coretec’s Tiny 4WD is a kit for assembling a Pi Zero–powered remote-controlled robot at home. Not only is the robot adorable, building it also a great introduction to motors and wireless control.



Bare Conductive’s Touch Board Pro Kit offers everything you need to create interactive electronics projects using conductive paint.

Pi Hut Arcade Kit - The Raspberry Pi Christmas Shopping List 2017

Finally, why not help your favourite maker create their own gaming arcade using the Arcade Building Kit from The Pi Hut?

For the reader

For those who like to curl up with a good read, or spend too much of their day on public transport, a book or magazine subscription is the perfect treat.

For makers, hackers, and those interested in new technologies, our brand-new HackSpace magazine and the ever popular community magazine The MagPi are ideal. Both are available via a physical or digital subscription, and new subscribers to The MagPi also receive a free Raspberry Pi Zero W plus case.

Cover of CoderDojo Nano Make your own game

Marc Scott Beginner's Guide to Coding Book

You can also check out other publications from the Raspberry Pi family, including CoderDojo’s new CoderDojo Nano: Make Your Own Game, Eben Upton and Gareth Halfacree’s Raspberry Pi User Guide, and Marc Scott’s A Beginner’s Guide to Coding. And have I mentioned Carrie Anne’s Adventures in Raspberry Pi yet?

Stocking fillers for everyone

Looking for something small to keep your loved ones occupied on Christmas morning? Or do you have to buy a Secret Santa gift for the office tech? Here are some wonderful stocking fillers to fill your boots with this season.

Pi Hut 3D Christmas Tree - The Raspberry Pi Christmas Shopping List 2017

The Pi Hut 3D Xmas Tree: available as both a pre-soldered and a DIY version, this gadget will work with any 40-pin Raspberry Pi and allows you to create your own mini light show.



Google AIY Voice kit: build your own home assistant using a Raspberry Pi, the MagPi Essentials guide, and this brand-new kit. “Google, play Mariah Carey again…”



Pimoroni’s Raspberry Pi Zero W Project Kits offer everything you need, including the Pi, to make your own time-lapse cameras, music players, and more.



The official Raspberry Pi Sense HAT, Camera Module, and cases for the Pi 3 and Pi Zero will complete the collection of any Raspberry Pi owner, while also opening up exciting project opportunities.

STEAM gifts that everyone will love

Awesome Astronauts | Building LEGO’s Women of NASA!

LEGO Idea’s bought out this amazing ‘Women of NASA’ set, and I thought it would be fun to build, play and learn from these inspiring women! First up, let’s discover a little more about Sally Ride and Mae Jemison, two AWESOME ASTRONAUTS!

Treat the kids, and big kids, in your life to the newest LEGO Ideas set, the Women of NASA — starring Nancy Grace Roman, Margaret Hamilton, Sally Ride, and Mae Jemison!



Explore the world of wearables with Pimoroni’s sewable, hackable, wearable, adorable Bearables kits.



Add lights and motors to paper creations with the Activating Origami Kit, available from The Pi Hut.




We all loved Hidden Figures, and the STEAM enthusiast you know will do too. The film’s available on DVD, and you can also buy the original book, along with other fascinating non-fiction such as Rebecca Skloot’s The Immortal Life of Henrietta Lacks, Rachel Ignotofsky’s Women in Science, and Sydney Padua’s (mostly true) The Thrilling Adventures of Lovelace and Babbage.

Have we missed anything?

With so many amazing kits, HATs, and books available from members of the Raspberry Pi community, it’s hard to only pick a few. Have you found something splendid for the maker in your life? Maybe you’ve created your own kit that uses the Raspberry Pi? Share your favourites with us in the comments below or via our social media accounts.

The post The Raspberry Pi Christmas shopping list 2017 appeared first on Raspberry Pi.

Game night 1: Lisa, Lisa, MOOP

Post Syndicated from Eevee original https://eev.ee/blog/2017/12/05/game-night-1-lisa-lisa-moop/

For the last few weeks, glip (my partner) and I have spent a couple hours most nights playing indie games together. We started out intending to play a short list of games that had been recommended to glip, but this turns out to be a nice way to wind down, so we’ve been keeping it up and clicking on whatever looks interesting in the itch app.

Most of the games are small and made by one or two people, so they tend to be pretty tightly scoped and focus on a few particular kinds of details. I’ve found myself having brain thoughts about all that, so I thought I’d write some of them down.

I also know that some people (cough) tend not to play games they’ve never heard of, even if they want something new to play. If that’s you, feel free to play some of these, now that you’ve heard of them!

Also, I’m still figuring the format out here, so let me know if this is interesting or if you hope I never do it again!

First up:

  • Lisa: The Painful
  • Lisa: The Joyful
  • MOOP

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Lisa: The Painful

long · classic rpg · dec 2014 · lin/mac/win · $10 on itch or steam · website

(cw: basically everything??)

Lisa: The Painful is true to its name. I hesitate to describe it as fun, exactly, but I’m glad we played it.

Everything about the game is dark. It’s a (somewhat loose) sequel to another game called Lisa, whose titular character ultimately commits suicide; her body hanging from a noose is the title screen for this game.

Ah, but don’t worry, it gets worse. This game takes place in a post-apocalyptic wasteland, where every female human — women, children, babies — is dead. You play as Brad (Lisa’s brother), who has discovered the lone exception: a baby girl he names Buddy and raises like a daughter. Now, Buddy has been kidnapped, and you have to go rescue her, presumably from being raped.

Ah, but don’t worry, it gets worse.


I’ve had a hard time putting my thoughts in order here, because so much of what stuck with me is the way the game entangles the plot with the mechanics.

I love that kind of thing, but it’s so hard to do well. I can’t really explain why, but I feel like most attempts to do it fall flat — they have a glimmer of an idea, but they don’t integrate it well enough, or they don’t run nearly as far as they could have. I often get the same feeling as, say, a hyped-up big moral choice that turns out to be picking “yes” or “no” from a menu. The idea is there, but the execution is so flimsy that it leaves no impact on me at all.

An obvious recent success here is Undertale, where the entire story is about violence and whether you choose to engage or avoid it (and whether you can do that). If you choose to eschew violence, not only does the game become more difficult, it arguably becomes a different game entirely. Granted, the contrast is lost if you (like me) tried to play as a pacifist from the very beginning. I do feel that you could go further with the idea than Undertale, but Undertale itself doesn’t feel incomplete.

Christ, I’m not even talking about the right game any more.

Okay, so: this game is a “classic” RPG, by which I mean, it was made with RPG Maker. (It’s kinda funny that RPG Maker was designed to emulate a very popular battle style, and now the only games that use that style are… made with RPG Maker.) The main loop, on the surface, is standard RPG fare: you walk around various places, talk to people, solve puzzles, recruit party members, and get into turn-based fights.

Now, Brad is addicted to a drug called Joy. He will regularly go into withdrawal, which manifests in the game as a status effect that cuts his stats (even his max HP!) dramatically.

It is really, really, incredibly inconvenient. And therein lies the genius here. The game could have simply told me that Brad is an addict, and I don’t think I would’ve cared too much. An addiction to a fantasy drug in a wasteland doesn’t mean anything to me, especially about this tiny sprite man I just met, so I would’ve filed this away as a sterile fact and forgotten about it. By making his addiction affect me, I’m now invested in it. I wish Brad weren’t addicted, even if only because it’s annoying. I found a party member once who turned out to have the same addiction, and I felt dread just from seeing the icon for the status effect. I’ve been looped into the events of this story through the medium I use to interact with it: the game.

It’s a really good use of games as a medium. Even before I’m invested in the characters, I’m invested in what’s happening to them, because it impacts the game!

Incidentally, you can get Joy as an item, which will temporarily cure your withdrawal… but you mostly find it by looting the corpses of grotesque mutant flesh horrors you encounter. I don’t think the game would have the player abruptly mutate out of nowhere, but I wasn’t about to find out, either. We never took any.


Virtually every staple of the RPG genre has been played with in some way to tie it into the theme/setting. I love it, and I think it works so well precisely because it plays with expectations of how RPGs usually work.

Most obviously, the game is a sidescroller, not top-down. You can’t jump freely, but you can hop onto one-tile-high boxes and climb ropes. You can also drop off off ledges… but your entire party will take fall damage, which gets rapidly more severe the further you fall.

This wouldn’t be too much of a problem, except that healing is hard to come by for most of the game. Several hub areas have campfires you can sleep next to to restore all your health and MP, but when you wake up, something will have happened to you. Maybe just a weird cutscene, or maybe one of your party members has decided to leave permanently.

Okay, so use healing items instead? Good luck; money is also hard to come by, and honestly so are shops, and many of the healing items are woefully underpowered.

Grind for money? Good luck there, too! While the game has plenty of battles, virtually every enemy is a unique overworld human who only appears once, and then is dead, because you killed him. Only a handful of places have unlimited random encounters, and grinding is not especially pleasant.

The “best” way to get a reliable heal is to savescum — save the game, sleep by the campfire, and reload if you don’t like what you wake up to.

In a similar vein, there’s a part of the game where you’re forced to play Russian Roulette. You choose a party member; he and an opponent will take turns shooting themselves in the head until someone finds a loaded chamber. If your party member loses, he is dead. And you have to keep playing until you win three times, so there’s no upper limit on how many people you might lose. I couldn’t find any way to influence who won, so I just had to savescum for a good half hour until I made it through with minimal losses.

It was maddening, but also a really good idea. Games don’t often incorporate the existence of saves into the gameplay, and when they do, they usually break the fourth wall and get all meta about it. Saves are never acknowledged in-universe here (aside from the existence of save points), but surely these parts of the game were designed knowing that the best way through them is by reloading. It’s rarely done, it can easily feel unfair, and it drove me up the wall — but it was certainly painful, as intended, and I kinda love that.

(Naturally, I’m told there’s a hard mode, where you can only use each save point once.)

The game also drives home the finality of death much better than most. It’s not hard to overlook the death of a redshirt, a character with a bit part who simply doesn’t appear any more. This game permanently kills your party members. Russian Roulette isn’t even the only way you can lose them! Multiple cutscenes force you to choose between losing a life or some other drastic consequence. (Even better, you can try to fight the person forcing this choice on you, and he will decimate you.) As the game progresses, you start to encounter enemies who can simply one-shot murder your party members.

It’s such a great angle. Just like with Brad’s withdrawal, you don’t want to avoid their deaths because it’d be emotional — there are dozens of party members you can recruit (though we only found a fraction of them), and most of them you only know a paragraph about — but because it would inconvenience you personally. Chances are, you have your strongest dudes in your party at any given time, so losing one of them sucks. And with few random encounters, you can’t just grind someone else up to an appropriate level; it feels like there’s a finite amount of XP in the game, and if someone high-level dies, you’ve lost all the XP that went into them.


The battles themselves are fairly straightforward. You can attack normally or use a special move that costs MP. SP? Some kind of points.

Two things in particular stand out. One I mentioned above: the vast majority of the encounters are one-time affairs against distinct named NPCs, who you then never see again, because they are dead, because you killed them.

The other is the somewhat unusual set of status effects. The staples like poison and sleep are here, but don’t show up all that often; more frequent are statuses like weird, drunk, stink, or cool. If you do take Joy (which also cures depression), you become joyed for a short time.

The game plays with these in a few neat ways, besides just Brad’s withdrawal. Some party members have a status like stink or cool permanently. Some battles are against people who don’t want to fight at all — and so they’ll spend most of the battle crying, purely for flavor impact. Seeing that for the first time hit me pretty hard; until then we’d only seen crying as a mechanical side effect of having sand kicked in one’s face.


The game does drag on a bit. I think we poured 10 in-game hours into it, which doesn’t count time spent reloading. It doesn’t help that you walk not super fast.

My biggest problem was with getting my bearings; I’m sure we spent a lot of that time wandering around accomplishing nothing. Most of the world is focused around one of a few hub areas, and once you’ve completed one hub, you can move onto the next one. That’s fine. Trouble is, you can go any of a dozen different directions from each hub, and most of those directions will lead you to very similar-looking hills built out of the same tiny handful of tiles. The connections between places are mostly cave entrances, which also largely look the same. Combine that with needing to backtrack for puzzle or progression reasons, and it’s incredibly difficult to keep track of where you’ve been, what you’ve done, and where you need to go next.

I don’t know that the game is wrong here; the aesthetic and world layout are fantastic at conveying a desolate wasteland. I wouldn’t even be surprised if the navigation were deliberately designed this way. (On the other hand, assuming every annoyance in a despair-ridden game is deliberate might be giving it too much credit.) But damn it’s still frustrating.

I felt a little lost in the battle system, too. Towards the end of the game, Brad in particular had over a dozen skills he could use, but I still couldn’t confidently tell you which were the strongest. New skills sometimes appear in the middle of the list or cost less than previous skills, and the game doesn’t outright tell you how much damage any of them do. I know this is the “classic RPG” style, and I don’t think it was hugely inconvenient, but it feels weird to barely know how my own skills work. I think this puts me off getting into new RPGs, just generally; there’s a whole new set of things I have to learn about, and games in this style often won’t just tell me anything, so there’s this whole separate meta-puzzle to figure out before I can play the actual game effectively.

Also, the sound could use a little bit of… mastering? Some music and sound effects are significantly louder and screechier than others. Painful, you could say.


The world is full of side characters with their own stuff going on, which is also something I love seeing in games; too often, the whole world feels like an obstacle course specifically designed for you.

Also, many of those characters are, well, not great people. Really, most of the game is kinda fucked up. Consider: the weird status effect is most commonly inflicted by the “Grope” skill. It makes you feel weird, you see. Oh, and the currency is porn magazines.

And then there are the gangs, the various spins on sex clubs, the forceful drug kingpins, and the overall violence that permeates everything (you stumble upon an alarming number of corpses). The game neither condones nor condemns any of this; it simply offers some ideas of how people might behave at the end of the world. It’s certainly the grittiest interpretation I’ve seen.

I don’t usually like post-apocalypses, because they try to have these very hopeful stories, but then at the end the world is still a blighted hellscape so what was the point of any of that? I like this game much better for being a blighted hellscape throughout. The story is worth following to see where it goes, not just because you expect everything wrapped up neatly at the end.

…I realize I’ve made this game sound monumentally depressing throughout, but it manages to pack in a lot of funny moments as well, from the subtle to the overt. In retrospect, it’s actually really good at balancing the mood so it doesn’t get too depressing. If nothing else, it’s hilarious to watch this gruff, solemn, battle-scarred, middle-aged man pedal around on a kid’s bike he found.


An obvious theme of the game is despair, but the more I think about it, the more I wonder if ambiguity is a theme as well. It certainly fits the confusing geography.

Even the premise is a little ambiguous. Is/was Olathe a city, a country, a whole planet? Did the apocalypse affect only Olathe, or the whole world? Does it matter in an RPG, where the only world that exists is the one mapped out within the game?

Towards the end of the game, you catch up with Buddy, but she rejects you, apparently resentful that you kept her hidden away for her entire life. Brad presses on anyway, insisting on protecting her.

At that point I wasn’t sure I was still on Brad’s side. But he’s not wrong, either. Is he? Maybe it depends on how old Buddy is — but the game never tells us. Her sprite is a bit smaller than the men’s, but it’s hard to gauge much from small exaggerated sprites, and she might just be shorter. In the beginning of the game, she was doing kid-like drawings, but we don’t know how much time passed after that. Everyone seems to take for granted that she’s capable of bearing children, and she talks like an adult. So is she old enough to be making this decision, or young enough for parent figure Brad to overrule her? What is the appropriate age of agency, anyway, when you’re the last girl/woman left more than a decade after the end of the world?

Can you repopulate a species with only one woman, anyway?


Well, that went on a bit longer than I intended. This game has a lot of small touches that stood out to me, and they all wove together very well.

Should you play it? I have absolutely no idea.

FINAL SCORE: 1 out of 6 chambers

Lisa: The Joyful

fairly short · classic rpg · aug 2015 · lin/mac/win · $5 on itch or steam

Surprise! There’s a third game to round out this trilogy.

Lisa: The Joyful is much shorter, maybe three hours long — enough to be played in a night rather than over the better part of a week.

This one picks up immediately after the end of Painful, with you now playing as Buddy. It takes a drastic turn early on: Buddy decides that, rather than hide from the world, she must conquer it. She sets out to murder all the big bosses and become queen.

The battle system has been inherited from the previous game, but battles are much more straightforward this time around. You can’t recruit any party members; for much of the game, it’s just you and a sword.

There is a catch! Of course.

The catch is that you do not have enough health to survive most boss battles without healing. With no party members, you cannot heal via skills. I don’t think you could buy healing items anywhere, either. You have a few when the game begins, but once you run out, that’s it.

Except… you also have… some Joy. Which restores you to full health and also makes you crit with every hit. And drops off of several enemies.

We didn’t even recognize Joy as a healing item at first, since we never used it in Painful; it’s description simply says that it makes you feel nothing, and we’d assumed the whole point of it was to stave off withdrawal, which Buddy doesn’t experience. Luckily, the game provided a hint in the form of an NPC who offers to switch on easy mode:

What’s that? Bad guys too tough? Not enough jerky? You don’t want to take Joy!? Say no more, you’ve come to the right place!

So the game is aware that it’s unfairly difficult, and it’s deliberately forcing you to take Joy, and it is in fact entirely constructed around this concept. I guess the title is a pretty good hint, too.

I don’t feel quite as strongly about Joyful as I do about Painful. (Admittedly, I was really tired and starting to doze off towards the end of Joyful.) Once you get that the gimmick is to force you to use Joy, the game basically reduces to a moderate-difficulty boss rush. Other than that, the only thing that stood out to me mechanically was that Buddy learns a skill where she lifts her shirt to inflict flustered as a status effect — kind of a lingering echo of how outrageous the previous game could be.

You do get a healthy serving of plot, which is nice and ties a few things together. I wouldn’t say it exactly wraps up the story, but it doesn’t feel like it’s missing anything either; it’s exactly as murky as you’d expect.

I think it’s worth playing Joyful if you’ve played Painful. It just didn’t have the same impact on me. It probably doesn’t help that I don’t like Buddy as a person. She seems cold, violent, and cruel. Appropriate for the world and a product of her environment, I suppose.

FINAL SCORE: 300 Mags

MOOP

fairly short · inventory game · nov 2017 · win · free on itch

Finally, as something of a palate cleanser, we have MOOP: a delightful and charming little inventory game.

I don’t think “inventory game” is a real genre, but I mean the kind of game where you go around collecting items and using them in the right place. Puzzle-driven, but with “puzzles” that can largely be solved by simply trying everything everywhere. I’d put a lot of point and click adventures in the same category, despite having a radically different interface. Is that fair? Yes, because it’s my blog.

MOOP was almost certainly also made in RPG Maker, but it breaks the mold in a very different way by not being an RPG. There are no battles whatsoever, only interactions on the overworld; you progress solely via dialogue and puzzle-solving. Examining something gives you a short menu of verbs — use, talk, get — reminiscent of interactive fiction, or perhaps the graphical “adventure” games that took inspiration from interactive fiction. (God, “adventure game” is the worst phrase. Every game is an adventure! It doesn’t mean anything!)

Everything about the game is extremely chill. I love the monochrome aesthetic combined with a large screen resolution; it feels like I’m peeking into an alternate universe where the Game Boy got bigger but never gained color. I played halfway through the game before realizing that the protagonist (Moop) doesn’t have a walk animation; they simply slide around. Somehow, it works.

The puzzles are a little clever, yet low-pressure; the world is small enough that you can examine everything again if you get stuck, and there’s no way to lose or be set back. The music is lovely, too. It just feels good to wander around in a world that manages to make sepia look very pretty.

The story manages to pack a lot into a very short time. It’s… gosh, I don’t know. It has a very distinct texture to it that I’m not sure I’ve seen before. The plot weaves through several major events that each have very different moods, and it moves very quickly — but it’s well-written and doesn’t feel rushed or disjoint. It’s lighthearted, but takes itself seriously enough for me to get invested. It’s fucking witchcraft.

I think there was even a non-binary character! Just kinda nonchalantly in there. Awesome.

What a happy, charming game. Play if you would like to be happy and charmed.

FINAL SCORE: 1 waxing moon

Glenn’s Take on re:Invent Part 2

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-part-2/

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We’ve got a lot of exciting announcements this week. I’m going to check in to the Architecture blog with my take on what’s interesting about some of the announcements from an cloud architectural perspective. My first post can be found here.

The Media and Entertainment industry has been a rapid adopter of AWS due to the scale, reliability, and low costs of our services. This has enabled customers to create new, online, digital experiences for their viewers ranging from broadcast to streaming to Over-the-Top (OTT) services that can be a combination of live, scheduled, or ad-hoc viewing, while supporting devices ranging from high-def TVs to mobile devices. Creating an end-to-end video service requires many different components often sourced from different vendors with different licensing models, which creates a complex architecture and a complex environment to support operationally.

AWS Media Services
Based on customer feedback, we have developed AWS Media Services to help simplify distribution of video content. AWS Media Services is comprised of five individual services that can either be used together to provide an end-to-end service or individually to work within existing deployments: AWS Elemental MediaConvert, AWS Elemental MediaLive, AWS Elemental MediaPackage, AWS Elemental MediaStore and AWS Elemental MediaTailor. These services can help you with everything from storing content safely and durably to setting up a live-streaming event in minutes without having to be concerned about the underlying infrastructure and scalability of the stream itself.

In my role, I participate in many AWS and industry events and often work with the production and event teams that put these shows together. With all the logistical tasks they have to deal with, the biggest question is often: “Will the live stream work?” Compounding this fear is the reality that, as users, we are also quick to jump on social media and make noise when a live stream drops while we are following along remotely. Worse is when I see event organizers actively selecting not to live stream content because of the risk of failure and and exposure — leading them to decide to take the safe option and not stream at all.

With AWS Media Services addressing many of the issues around putting together a high-quality media service, live streaming, and providing access to a library of content through a variety of mechanisms, I can’t wait to see more event teams use live streaming without the concern and worry I’ve seen in the past. I am excited for what this also means for non-media companies, as video becomes an increasingly common way of sharing information and adding a more personalized touch to internally- and externally-facing content.

AWS Media Services will allow you to focus more on the content and not worry about the platform. Awesome!

Amazon Neptune
As a civilization, we have been developing new ways to record and store information and model the relationships between sets of information for more than a thousand years. Government census data, tax records, births, deaths, and marriages were all recorded on medium ranging from knotted cords in the Inca civilization, clay tablets in ancient Babylon, to written texts in Western Europe during the late Middle Ages.

One of the first challenges of computing was figuring out how to store and work with vast amounts of information in a programmatic way, especially as the volume of information was increasing at a faster rate than ever before. We have seen different generations of how to organize this information in some form of database, ranging from flat files to the Information Management System (IMS) used in the 1960s for the Apollo space program, to the rise of the relational database management system (RDBMS) in the 1970s. These innovations drove a lot of subsequent innovations in information management and application development as we were able to move from thousands of records to millions and billions.

Today, as architects and developers, we have a vast variety of database technologies to select from, which have different characteristics that are optimized for different use cases:

  • Relational databases are well understood after decades of use in the majority of companies who required a database to store information. Amazon Relational Database (Amazon RDS) supports many popular relational database engines such as MySQL, Microsoft SQL Server, PostgreSQL, MariaDB, and Oracle. We have even brought the traditional RDBMS into the cloud world through Amazon Aurora, which provides MySQL and PostgreSQL support with the performance and reliability of commercial-grade databases at 1/10th the cost.
  • Non-relational databases (NoSQL) provided a simpler method of storing and retrieving information that was often faster and more scalable than traditional RDBMS technology. The concept of non-relational databases has existed since the 1960s but really took off in the early 2000s with the rise of web-based applications that required performance and scalability that relational databases struggled with at the time. AWS published this Dynamo whitepaper in 2007, with DynamoDB launching as a service in 2012. DynamoDB has quickly become one of the critical design elements for many of our customers who are building highly-scalable applications on AWS. We continue to innovate with DynamoDB, and this week launched global tables and on-demand backup at re:Invent 2017. DynamoDB excels in a variety of use cases, such as tracking of session information for popular websites, shopping cart information on e-commerce sites, and keeping track of gamers’ high scores in mobile gaming applications, for example.
  • Graph databases focus on the relationship between data items in the store. With a graph database, we work with nodes, edges, and properties to represent data, relationships, and information. Graph databases are designed to make it easy and fast to traverse and retrieve complex hierarchical data models. Graph databases share some concepts from the NoSQL family of databases such as key-value pairs (properties) and the use of a non-SQL query language such as Gremlin. Graph databases are commonly used for social networking, recommendation engines, fraud detection, and knowledge graphs. We released Amazon Neptune to help simplify the provisioning and management of graph databases as we believe that graph databases are going to enable the next generation of smart applications.

A common use case I am hearing every week as I talk to customers is how to incorporate chatbots within their organizations. Amazon Lex and Amazon Polly have made it easy for customers to experiment and build chatbots for a wide range of scenarios, but one of the missing pieces of the puzzle was how to model decision trees and and knowledge graphs so the chatbot could guide the conversation in an intelligent manner.

Graph databases are ideal for this particular use case, and having Amazon Neptune simplifies the deployment of a graph database while providing high performance, scalability, availability, and durability as a managed service. Security of your graph database is critical. To help ensure this, you can store your encrypted data by running AWS in Amazon Neptune within your Amazon Virtual Private Cloud (Amazon VPC) and using encryption at rest integrated with AWS Key Management Service (AWS KMS). Neptune also supports Amazon VPC and AWS Identity and Access Management (AWS IAM) to help further protect and restrict access.

Our customers now have the choice of many different database technologies to ensure that they can optimize each application and service for their specific needs. Just as DynamoDB has unlocked and enabled many new workloads that weren’t possible in relational databases, I can’t wait to see what new innovations and capabilities are enabled from graph databases as they become easier to use through Amazon Neptune.

Look for more on DynamoDB and Amazon S3 from me on Monday.

 

Glenn at Tour de Mont Blanc

 

 

Stretch for PCs and Macs, and a Raspbian update

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/stretch-pcs-macs-raspbian-update/

Today, we are launching the first Debian Stretch release of the Raspberry Pi Desktop for PCs and Macs, and we’re also releasing the latest version of Raspbian Stretch for your Pi.

Raspberry Pi Desktop Stretch splash screen

For PCs and Macs

When we released our custom desktop environment on Debian for PCs and Macs last year, we were slightly taken aback by how popular it turned out to be. We really only created it as a result of one of those “Wouldn’t it be cool if…” conversations we sometimes have in the office, so we were delighted by the Pi community’s reaction.

Seeing how keen people were on the x86 version, we decided that we were going to try to keep releasing it alongside Raspbian, with the ultimate aim being to make simultaneous releases of both. This proved to be tricky, particularly with the move from the Jessie version of Debian to the Stretch version this year. However, we have now finished the job of porting all the custom code in Raspbian Stretch to Debian, and so the first Debian Stretch release of the Raspberry Pi Desktop for your PC or Mac is available from today.

The new Stretch releases

As with the Jessie release, you can either run this as a live image from a DVD, USB stick, or SD card or install it as the native operating system on the hard drive of an old laptop or desktop computer. Please note that installing this software will erase anything else on the hard drive — do not install this over a machine running Windows or macOS that you still need to use for its original purpose! It is, however, safe to boot a live image on such a machine, since your hard drive will not be touched by this.

We’re also pleased to announce that we are releasing the latest version of Raspbian Stretch for your Pi today. The Pi and PC versions are largely identical: as before, there are a few applications (such as Mathematica) which are exclusive to the Pi, but the user interface, desktop, and most applications will be exactly the same.

For Raspbian, this new release is mostly bug fixes and tweaks over the previous Stretch release, but there are one or two changes you might notice.

File manager

The file manager included as part of the LXDE desktop (on which our desktop is based) is a program called PCManFM, and it’s very feature-rich; there’s not much you can’t do in it. However, having used it for a few years, we felt that it was perhaps more complex than it needed to be — the sheer number of menu options and choices made some common operations more awkward than they needed to be. So to try to make file management easier, we have implemented a cut-down mode for the file manager.

Raspberry Pi Desktop Stretch - file manager

Most of the changes are to do with the menus. We’ve removed a lot of options that most people are unlikely to change, and moved some other options into the Preferences screen rather than the menus. The two most common settings people tend to change — how icons are displayed and sorted — are now options on the toolbar and in a top-level menu rather than hidden away in submenus.

The sidebar now only shows a single hierarchical view of the file system, and we’ve tidied the toolbar and updated the icons to make them match our house style. We’ve removed the option for a tabbed interface, and we’ve stomped a few bugs as well.

One final change was to make it possible to rename a file just by clicking on its icon to highlight it, and then clicking on its name. This is the way renaming works on both Windows and macOS, and it’s always seemed slightly awkward that Unix desktop environments tend not to support it.

As with most of the other changes we’ve made to the desktop over the last few years, the intention is to make it simpler to use, and to ease the transition from non-Unix environments. But if you really don’t like what we’ve done and long for the old file manager, just untick the box for Display simplified user interface and menus in the Layout page of Preferences, and everything will be back the way it was!

Raspberry Pi Desktop Stretch - preferences GUI

Battery indicator for laptops

One important feature missing from the previous release was an indication of the amount of battery life. Eben runs our desktop on his Mac, and he was becoming slightly irritated by having to keep rebooting into macOS just to check whether his battery was about to die — so fixing this was a priority!

We’ve added a battery status icon to the taskbar; this shows current percentage charge, along with whether the battery is charging, discharging, or connected to the mains. When you hover over the icon with the mouse pointer, a tooltip with more details appears, including the time remaining if the battery can provide this information.

Raspberry Pi Desktop Stretch - battery indicator

While this battery monitor is mainly intended for the PC version, it also supports the first-generation pi-top — to see it, you’ll only need to make sure that I2C is enabled in Configuration. A future release will support the new second-generation pi-top.

New PC applications

We have included a couple of new applications in the PC version. One is called PiServer — this allows you to set up an operating system, such as Raspbian, on the PC which can then be shared by a number of Pi clients networked to it. It is intended to make it easy for classrooms to have multiple Pis all running exactly the same software, and for the teacher to have control over how the software is installed and used. PiServer is quite a clever piece of software, and it’ll be covered in more detail in another blog post in December.

We’ve also added an application which allows you to easily use the GPIO pins of a Pi Zero connected via USB to a PC in applications using Scratch or Python. This makes it possible to run the same physical computing projects on the PC as you do on a Pi! Again, we’ll tell you more in a separate blog post this month.

Both of these applications are included as standard on the PC image, but not on the Raspbian image. You can run them on a Pi if you want — both can be installed from apt.

How to get the new versions

New images for both Raspbian and Debian versions are available from the Downloads page.

It is possible to update existing installations of both Raspbian and Debian versions. For Raspbian, this is easy: just open a terminal window and enter

sudo apt-get update
sudo apt-get dist-upgrade

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi. Download Raspbian here: More information on the latest version of Raspbian: Buy a Raspberry Pi:

It is slightly more complex for the PC version, as the previous release was based around Debian Jessie. You will need to edit the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list, using sudo to do so. In both files, change every occurrence of the word “jessie” to “stretch”. When that’s done, do the following:

sudo apt-get update 
sudo dpkg --force-depends -r libwebkitgtk-3.0-common
sudo apt-get -f install
sudo apt-get dist-upgrade
sudo apt-get install python3-thonny
sudo apt-get install sonic-pi=2.10.0~repack-rpt1+2
sudo apt-get install piserver
sudo apt-get install usbbootgui

At several points during the upgrade process, you will be asked if you want to keep the current version of a configuration file or to install the package maintainer’s version. In every case, keep the existing version, which is the default option. The update may take an hour or so, depending on your network connection.

As with all software updates, there is the possibility that something may go wrong during the process, which could lead to your operating system becoming corrupted. Therefore, we always recommend making a backup first.

Enjoy the new versions, and do let us know any feedback you have in the comments or on the forums!

The post Stretch for PCs and Macs, and a Raspbian update appeared first on Raspberry Pi.

GDPR – A Practical Guide For Developers

Post Syndicated from Bozho original https://techblog.bozho.net/gdpr-practical-guide-developers/

You’ve probably heard about GDPR. The new European data protection regulation that applies practically to everyone. Especially if you are working in a big company, it’s most likely that there’s already a process for gettign your systems in compliance with the regulation.

The regulation is basically a law that must be followed in all European countries (but also applies to non-EU companies that have users in the EU). In this particular case, it applies to companies that are not registered in Europe, but are having European customers. So that’s most companies. I will not go into yet another “12 facts about GDPR” or “7 myths about GDPR” posts/whitepapers, as they are often aimed at managers or legal people. Instead, I’ll focus on what GDPR means for developers.

Why am I qualified to do that? A few reasons – I was advisor to the deputy prime minister of a EU country, and because of that I’ve been both exposed and myself wrote some legislation. I’m familiar with the “legalese” and how the regulatory framework operates in general. I’m also a privacy advocate and I’ve been writing about GDPR-related stuff in the past, i.e. “before it was cool” (protecting sensitive data, the right to be forgotten). And finally, I’m currently working on a project that (among other things) aims to help with covering some GDPR aspects.

I’ll try to be a bit more comprehensive this time and cover as many aspects of the regulation that concern developers as I can. And while developers will mostly be concerned about how the systems they are working on have to change, it’s not unlikely that a less informed manager storms in in late spring, realizing GDPR is going to be in force tomorrow, asking “what should we do to get our system/website compliant”.

The rights of the user/client (referred to as “data subject” in the regulation) that I think are relevant for developers are: the right to erasure (the right to be forgotten/deleted from the system), right to restriction of processing (you still keep the data, but mark it as “restricted” and don’t touch it without further consent by the user), the right to data portability (the ability to export one’s data), the right to rectification (the ability to get personal data fixed), the right to be informed (getting human-readable information, rather than long terms and conditions), the right of access (the user should be able to see all the data you have about them), the right to data portability (the user should be able to get a machine-readable dump of their data).

Additionally, the relevant basic principles are: data minimization (one should not collect more data than necessary), integrity and confidentiality (all security measures to protect data that you can think of + measures to guarantee that the data has not been inappropriately modified).

Even further, the regulation requires certain processes to be in place within an organization (of more than 250 employees or if a significant amount of data is processed), and those include keeping a record of all types of processing activities carried out, including transfers to processors (3rd parties), which includes cloud service providers. None of the other requirements of the regulation have an exception depending on the organization size, so “I’m small, GDPR does not concern me” is a myth.

It is important to know what “personal data” is. Basically, it’s every piece of data that can be used to uniquely identify a person or data that is about an already identified person. It’s data that the user has explicitly provided, but also data that you have collected about them from either 3rd parties or based on their activities on the site (what they’ve been looking at, what they’ve purchased, etc.)

Having said that, I’ll list a number of features that will have to be implemented and some hints on how to do that, followed by some do’s and don’t’s.

  • “Forget me” – you should have a method that takes a userId and deletes all personal data about that user (in case they have been collected on the basis of consent, and not due to contract enforcement or legal obligation). It is actually useful for integration tests to have that feature (to cleanup after the test), but it may be hard to implement depending on the data model. In a regular data model, deleting a record may be easy, but some foreign keys may be violated. That means you have two options – either make sure you allow nullable foreign keys (for example an order usually has a reference to the user that made it, but when the user requests his data be deleted, you can set the userId to null), or make sure you delete all related data (e.g. via cascades). This may not be desirable, e.g. if the order is used to track available quantities or for accounting purposes. It’s a bit trickier for event-sourcing data models, or in extreme cases, ones that include some sort of blcokchain/hash chain/tamper-evident data structure. With event sourcing you should be able to remove a past event and re-generate intermediate snapshots. For blockchain-like structures – be careful what you put in there and avoid putting personal data of users. There is an option to use a chameleon hash function, but that’s suboptimal. Overall, you must constantly think of how you can delete the personal data. And “our data model doesn’t allow it” isn’t an excuse.
  • Notify 3rd parties for erasure – deleting things from your system may be one thing, but you are also obligated to inform all third parties that you have pushed that data to. So if you have sent personal data to, say, Salesforce, Hubspot, twitter, or any cloud service provider, you should call an API of theirs that allows for the deletion of personal data. If you are such a provider, obviously, your “forget me” endpoint should be exposed. Calling the 3rd party APIs to remove data is not the full story, though. You also have to make sure the information does not appear in search results. Now, that’s tricky, as Google doesn’t have an API for removal, only a manual process. Fortunately, it’s only about public profile pages that are crawlable by Google (and other search engines, okay…), but you still have to take measures. Ideally, you should make the personal data page return a 404 HTTP status, so that it can be removed.
  • Restrict processing – in your admin panel where there’s a list of users, there should be a button “restrict processing”. The user settings page should also have that button. When clicked (after reading the appropriate information), it should mark the profile as restricted. That means it should no longer be visible to the backoffice staff, or publicly. You can implement that with a simple “restricted” flag in the users table and a few if-clasues here and there.
  • Export data – there should be another button – “export data”. When clicked, the user should receive all the data that you hold about them. What exactly is that data – depends on the particular usecase. Usually it’s at least the data that you delete with the “forget me” functionality, but may include additional data (e.g. the orders the user has made may not be delete, but should be included in the dump). The structure of the dump is not strictly defined, but my recommendation would be to reuse schema.org definitions as much as possible, for either JSON or XML. If the data is simple enough, a CSV/XLS export would also be fine. Sometimes data export can take a long time, so the button can trigger a background process, which would then notify the user via email when his data is ready (twitter, for example, does that already – you can request all your tweets and you get them after a while).
  • Allow users to edit their profile – this seems an obvious rule, but it isn’t always followed. Users must be able to fix all data about them, including data that you have collected from other sources (e.g. using a “login with facebook” you may have fetched their name and address). Rule of thumb – all the fields in your “users” table should be editable via the UI. Technically, rectification can be done via a manual support process, but that’s normally more expensive for a business than just having the form to do it. There is one other scenario, however, when you’ve obtained the data from other sources (i.e. the user hasn’t provided their details to you directly). In that case there should still be a page where they can identify somehow (via email and/or sms confirmation) and get access to the data about them.
  • Consent checkboxes – this is in my opinion the biggest change that the regulation brings. “I accept the terms and conditions” would no longer be sufficient to claim that the user has given their consent for processing their data. So, for each particular processing activity there should be a separate checkbox on the registration (or user profile) screen. You should keep these consent checkboxes in separate columns in the database, and let the users withdraw their consent (by unchecking these checkboxes from their profile page – see the previous point). Ideally, these checkboxes should come directly from the register of processing activities (if you keep one). Note that the checkboxes should not be preselected, as this does not count as “consent”.
  • Re-request consent – if the consent users have given was not clear (e.g. if they simply agreed to terms & conditions), you’d have to re-obtain that consent. So prepare a functionality for mass-emailing your users to ask them to go to their profile page and check all the checkboxes for the personal data processing activities that you have.
  • “See all my data” – this is very similar to the “Export” button, except data should be displayed in the regular UI of the application rather than an XML/JSON format. For example, Google Maps shows you your location history – all the places that you’ve been to. It is a good implementation of the right to access. (Though Google is very far from perfect when privacy is concerned)
  • Age checks – you should ask for the user’s age, and if the user is a child (below 16), you should ask for parent permission. There’s no clear way how to do that, but my suggestion is to introduce a flow, where the child should specify the email of a parent, who can then confirm. Obviosuly, children will just cheat with their birthdate, or provide a fake parent email, but you will most likely have done your job according to the regulation (this is one of the “wishful thinking” aspects of the regulation).

Now some “do’s”, which are mostly about the technical measures needed to protect personal data. They may be more “ops” than “dev”, but often the application also has to be extended to support them. I’ve listed most of what I could think of in a previous post.

  • Encrypt the data in transit. That means that communication between your application layer and your database (or your message queue, or whatever component you have) should be over TLS. The certificates could be self-signed (and possibly pinned), or you could have an internal CA. Different databases have different configurations, just google “X encrypted connections. Some databases need gossiping among the nodes – that should also be configured to use encryption
  • Encrypt the data at rest – this again depends on the database (some offer table-level encryption), but can also be done on machine-level. E.g. using LUKS. The private key can be stored in your infrastructure, or in some cloud service like AWS KMS.
  • Encrypt your backups – kind of obvious
  • Implement pseudonymisation – the most obvious use-case is when you want to use production data for the test/staging servers. You should change the personal data to some “pseudonym”, so that the people cannot be identified. When you push data for machine learning purposes (to third parties or not), you can also do that. Technically, that could mean that your User object can have a “pseudonymize” method which applies hash+salt/bcrypt/PBKDF2 for some of the data that can be used to identify a person
  • Protect data integrity – this is a very broad thing, and could simply mean “have authentication mechanisms for modifying data”. But you can do something more, even as simple as a checksum, or a more complicated solution (like the one I’m working on). It depends on the stakes, on the way data is accessed, on the particular system, etc. The checksum can be in the form of a hash of all the data in a given database record, which should be updated each time the record is updated through the application. It isn’t a strong guarantee, but it is at least something.
  • Have your GDPR register of processing activities in something other than Excel – Article 30 says that you should keep a record of all the types of activities that you use personal data for. That sounds like bureaucracy, but it may be useful – you will be able to link certain aspects of your application with that register (e.g. the consent checkboxes, or your audit trail records). It wouldn’t take much time to implement a simple register, but the business requirements for that should come from whoever is responsible for the GDPR compliance. But you can advise them that having it in Excel won’t make it easy for you as a developer (imagine having to fetch the excel file internally, so that you can parse it and implement a feature). Such a register could be a microservice/small application deployed separately in your infrastructure.
  • Log access to personal data – every read operation on a personal data record should be logged, so that you know who accessed what and for what purpose
  • Register all API consumers – you shouldn’t allow anonymous API access to personal data. I’d say you should request the organization name and contact person for each API user upon registration, and add those to the data processing register. Note: some have treated article 30 as a requirement to keep an audit log. I don’t think it is saying that – instead it requires 250+ companies to keep a register of the types of processing activities (i.e. what you use the data for). There are other articles in the regulation that imply that keeping an audit log is a best practice (for protecting the integrity of the data as well as to make sure it hasn’t been processed without a valid reason)

Finally, some “don’t’s”.

  • Don’t use data for purposes that the user hasn’t agreed with – that’s supposed to be the spirit of the regulation. If you want to expose a new API to a new type of clients, or you want to use the data for some machine learning, or you decide to add ads to your site based on users’ behaviour, or sell your database to a 3rd party – think twice. I would imagine your register of processing activities could have a button to send notification emails to users to ask them for permission when a new processing activity is added (or if you use a 3rd party register, it should probably give you an API). So upon adding a new processing activity (and adding that to your register), mass email all users from whom you’d like consent.
  • Don’t log personal data – getting rid of the personal data from log files (especially if they are shipped to a 3rd party service) can be tedious or even impossible. So log just identifiers if needed. And make sure old logs files are cleaned up, just in case
  • Don’t put fields on the registration/profile form that you don’t need – it’s always tempting to just throw as many fields as the usability person/designer agrees on, but unless you absolutely need the data for delivering your service, you shouldn’t collect it. Names you should probably always collect, but unless you are delivering something, a home address or phone is unnecessary.
  • Don’t assume 3rd parties are compliant – you are responsible if there’s a data breach in one of the 3rd parties (e.g. “processors”) to which you send personal data. So before you send data via an API to another service, make sure they have at least a basic level of data protection. If they don’t, raise a flag with management.
  • Don’t assume having ISO XXX makes you compliant – information security standards and even personal data standards are a good start and they will probably 70% of what the regulation requires, but they are not sufficient – most of the things listed above are not covered in any of those standards

Overall, the purpose of the regulation is to make you take conscious decisions when processing personal data. It imposes best practices in a legal way. If you follow the above advice and design your data model, storage, data flow , API calls with data protection in mind, then you shouldn’t worry about the huge fines that the regulation prescribes – they are for extreme cases, like Equifax for example. Regulators (data protection authorities) will most likely have some checklists into which you’d have to somehow fit, but if you follow best practices, that shouldn’t be an issue.

I think all of the above features can be implemented in a few weeks by a small team. Be suspicious when a big vendor offers you a generic plug-and-play “GDPR compliance” solution. GDPR is not just about the technical aspects listed above – it does have organizational/process implications. But also be suspicious if a consultant claims GDPR is complicated. It’s not – it relies on a few basic principles that are in fact best practices anyway. Just don’t ignore them.

The post GDPR – A Practical Guide For Developers appeared first on Bozho's tech blog.

Object models

Post Syndicated from Eevee original https://eev.ee/blog/2017/11/28/object-models/

Anonymous asks, with dollars:

More about programming languages!

Well then!

I’ve written before about what I think objects are: state and behavior, which in practice mostly means method calls.

I suspect that the popular impression of what objects are, and also how they should work, comes from whatever C++ and Java happen to do. From that point of view, the whole post above is probably nonsense. If the baseline notion of “object” is a rigid definition woven tightly into the design of two massively popular languages, then it doesn’t even make sense to talk about what “object” should mean — it does mean the features of those languages, and cannot possibly mean anything else.

I think that’s a shame! It piles a lot of baggage onto a fairly simple idea. Polymorphism, for example, has nothing to do with objects — it’s an escape hatch for static type systems. Inheritance isn’t the only way to reuse code between objects, but it’s the easiest and fastest one, so it’s what we get. Frankly, it’s much closer to a speed tradeoff than a fundamental part of the concept.

We could do with more experimentation around how objects work, but that’s impossible in the languages most commonly thought of as object-oriented.

Here, then, is a (very) brief run through the inner workings of objects in four very dynamic languages. I don’t think I really appreciated objects until I’d spent some time with Python, and I hope this can help someone else whet their own appetite.

Python 3

Of the four languages I’m going to touch on, Python will look the most familiar to the Java and C++ crowd. For starters, it actually has a class construct.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __neg__(self):
        return Vector(-self.x, -self.y)

    def __div__(self, denom):
        return Vector(self.x / denom, self.y / denom)

    @property
    def magnitude(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5

    def normalized(self):
        return self / self.magnitude

The __init__ method is an initializer, which is like a constructor but named differently (because the object already exists in a usable form by the time the initializer is called). Operator overloading is done by implementing methods with other special __dunder__ names. Properties can be created with @property, where the @ is syntax for applying a wrapper function to a function as it’s defined. You can do inheritance, even multiply:

1
2
3
4
class Foo(A, B, C):
    def bar(self, x, y, z):
        # do some stuff
        super().bar(x, y, z)

Cool, a very traditional object model.

Except… for some details.

Some details

For one, Python objects don’t have a fixed layout. Code both inside and outside the class can add or remove whatever attributes they want from whatever object they want. The underlying storage is just a dict, Python’s mapping type. (Or, rather, something like one. Also, it’s possible to change, which will probably be the case for everything I say here.)

If you create some attributes at the class level, you’ll start to get a peek behind the curtains:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Foo:
    values = []

    def add_value(self, value):
        self.values.append(value)

a = Foo()
b = Foo()
a.add_value('a')
print(a.values)  # ['a']
b.add_value('b')
print(b.values)  # ['a', 'b']

The [] assigned to values isn’t a default assigned to each object. In fact, the individual objects don’t know about it at all! You can use vars(a) to get at the underlying storage dict, and you won’t see a values entry in there anywhere.

Instead, values lives on the class, which is a value (and thus an object) in its own right. When Python is asked for self.values, it checks to see if self has a values attribute; in this case, it doesn’t, so Python keeps going and asks the class for one.

Python’s object model is secretly prototypical — a class acts as a prototype, as a shared set of fallback values, for its objects.

In fact, this is also how method calls work! They aren’t syntactically special at all, which you can see by separating the attribute lookup from the call.

1
2
3
print("abc".startswith("a"))  # True
meth = "abc".startswith
print(meth("a"))  # True

Reading obj.method looks for a method attribute; if there isn’t one on obj, Python checks the class. Here, it finds one: it’s a function from the class body.

Ah, but wait! In the code I just showed, meth seems to “know” the object it came from, so it can’t just be a plain function. If you inspect the resulting value, it claims to be a “bound method” or “built-in method” rather than a function, too. Something funny is going on here, and that funny something is the descriptor protocol.

Descriptors

Python allows attributes to implement their own custom behavior when read from or written to. Such an attribute is called a descriptor. I’ve written about them before, but here’s a quick overview.

If Python looks up an attribute, finds it in a class, and the value it gets has a __get__ method… then instead of using that value, Python will use the return value of its __get__ method.

The @property decorator works this way. The magnitude property in my original example was shorthand for doing this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class MagnitudeDescriptor:
    def __get__(self, instance, owner):
        if instance is None:
            return self
        return (instance.x ** 2 + instance.y ** 2) ** 0.5

class Vector:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    magnitude = MagnitudeDescriptor()

When you ask for somevec.magnitude, Python checks somevec but doesn’t find magnitude, so it consults the class instead. The class does have a magnitude, and it’s a value with a __get__ method, so Python calls that method and somevec.magnitude evaluates to its return value. (The instance is None check is because __get__ is called even if you get the descriptor directly from the class via Vector.magnitude. A descriptor intended to work on instances can’t do anything useful in that case, so the convention is to return the descriptor itself.)

You can also intercept attempts to write to or delete an attribute, and do absolutely whatever you want instead. But note that, similar to operating overloading in Python, the descriptor must be on a class; you can’t just slap one on an arbitrary object and have it work.

This brings me right around to how “bound methods” actually work. Functions are descriptors! The function type implements __get__, and when a function is retrieved from a class via an instance, that __get__ bundles the function and the instance together into a tiny bound method object. It’s essentially:

1
2
3
4
5
class FunctionType:
    def __get__(self, instance, owner):
        if instance is None:
            return self
        return functools.partial(self, instance)

The self passed as the first argument to methods is not special or magical in any way. It’s built out of a few simple pieces that are also readily accessible to Python code.

Note also that because obj.method() is just an attribute lookup and a call, Python doesn’t actually care whether method is a method on the class or just some callable thing on the object. You won’t get the auto-self behavior if it’s on the object, but otherwise there’s no difference.

More attribute access, and the interesting part

Descriptors are one of several ways to customize attribute access. Classes can implement __getattr__ to intervene when an attribute isn’t found on an object; __setattr__ and __delattr__ to intervene when any attribute is set or deleted; and __getattribute__ to implement unconditional attribute access. (That last one is a fantastic way to create accidental recursion, since any attribute access you do within __getattribute__ will of course call __getattribute__ again.)

Here’s what I really love about Python. It might seem like a magical special case that descriptors only work on classes, but it really isn’t. You could implement exactly the same behavior yourself, in pure Python, using only the things I’ve just told you about. Classes are themselves objects, remember, and they are instances of type, so the reason descriptors only work on classes is that type effectively does this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class type:
    def __getattribute__(self, name):
        value = super().__getattribute__(name)
        # like all op overloads, __get__ must be on the type, not the instance
        ty = type(value)
        if hasattr(ty, '__get__'):
            # it's a descriptor!  this is a class access so there is no instance
            return ty.__get__(value, None, self)
        else:
            return value

You can even trivially prove to yourself that this is what’s going on by skipping over types behavior:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Descriptor:
    def __get__(self, instance, owner):
        print('called!')

class Foo:
    bar = Descriptor()

Foo.bar  # called!
type.__getattribute__(Foo, 'bar')  # called!
object.__getattribute__(Foo, 'bar')  # ...

And that’s not all! The mysterious super function, used to exhaustively traverse superclass method calls even in the face of diamond inheritance, can also be expressed in pure Python using these primitives. You could write your own superclass calling convention and use it exactly the same way as super.

This is one of the things I really like about Python. Very little of it is truly magical; virtually everything about the object model exists in the types rather than the language, which means virtually everything can be customized in pure Python.

Class creation and metaclasses

A very brief word on all of this stuff, since I could talk forever about Python and I have three other languages to get to.

The class block itself is fairly interesting. It looks like this:

1
2
class Name(*bases, **kwargs):
    # code

I’ve said several times that classes are objects, and in fact the class block is one big pile of syntactic sugar for calling type(...) with some arguments to create a new type object.

The Python documentation has a remarkably detailed description of this process, but the gist is:

  • Python determines the type of the new class — the metaclass — by looking for a metaclass keyword argument. If there isn’t one, Python uses the “lowest” type among the provided base classes. (If you’re not doing anything special, that’ll just be type, since every class inherits from object and object is an instance of type.)

  • Python executes the class body. It gets its own local scope, and any assignments or method definitions go into that scope.

  • Python now calls type(name, bases, attrs, **kwargs). The name is whatever was right after class; the bases are position arguments; and attrs is the class body’s local scope. (This is how methods and other class attributes end up on the class.) The brand new type is then assigned to Name.

Of course, you can mess with most of this. You can implement __prepare__ on a metaclass, for example, to use a custom mapping as storage for the local scope — including any reads, which allows for some interesting shenanigans. The only part you can’t really implement in pure Python is the scoping bit, which has a couple extra rules that make sense for classes. (In particular, functions defined within a class block don’t close over the class body; that would be nonsense.)

Object creation

Finally, there’s what actually happens when you create an object — including a class, which remember is just an invocation of type(...).

Calling Foo(...) is implemented as, well, a call. Any type can implement calls with the __call__ special method, and you’ll find that type itself does so. It looks something like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
# oh, a fun wrinkle that's hard to express in pure python: type is a class, so
# it's an instance of itself
class type:
    def __call__(self, *args, **kwargs):
        # remember, here 'self' is a CLASS, an instance of type.
        # __new__ is a true constructor: object.__new__ allocates storage
        # for a new blank object
        instance = self.__new__(self, *args, **kwargs)
        # you can return whatever you want from __new__ (!), and __init__
        # is only called on it if it's of the right type
        if isinstance(instance, self):
            instance.__init__(*args, **kwargs)
        return instance

Again, you can trivially confirm this by asking any type for its __call__ method. Assuming that type doesn’t implement __call__ itself, you’ll get back a bound version of types implementation.

1
2
>>> list.__call__
<method-wrapper '__call__' of type object at 0x7fafb831a400>

You can thus implement __call__ in your own metaclass to completely change how subclasses are created — including skipping the creation altogether, if you like.

And… there’s a bunch of stuff I haven’t even touched on.

The Python philosophy

Python offers something that, on the surface, looks like a “traditional” class/object model. Under the hood, it acts more like a prototypical system, where failed attribute lookups simply defer to a superclass or metaclass.

The language also goes to almost superhuman lengths to expose all of its moving parts. Even the prototypical behavior is an implementation of __getattribute__ somewhere, which you are free to completely replace in your own types. Proxying and delegation are easy.

Also very nice is that these features “bundle” well, by which I mean a library author can do all manner of convoluted hijinks, and a consumer of that library doesn’t have to see any of it or understand how it works. You only need to inherit from a particular class (which has a metaclass), or use some descriptor as a decorator, or even learn any new syntax.

This meshes well with Python culture, which is pretty big on the principle of least surprise. These super-advanced features tend to be tightly confined to single simple features (like “makes a weak attribute“) or cordoned with DSLs (e.g., defining a form/struct/database table with a class body). In particular, I’ve never seen a metaclass in the wild implement its own __call__.

I have mixed feelings about that. It’s probably a good thing overall that the Python world shows such restraint, but I wonder if there are some very interesting possibilities we’re missing out on. I implemented a metaclass __call__ myself, just once, in an entity/component system that strove to minimize fuss when communicating between components. It never saw the light of day, but I enjoyed seeing some new things Python could do with the same relatively simple syntax. I wouldn’t mind seeing, say, an object model based on composition (with no inheritance) built atop Python’s primitives.

Lua

Lua doesn’t have an object model. Instead, it gives you a handful of very small primitives for building your own object model. This is pretty typical of Lua — it’s a very powerful language, but has been carefully constructed to be very small at the same time. I’ve never encountered anything else quite like it, and “but it starts indexing at 1!” really doesn’t do it justice.

The best way to demonstrate how objects work in Lua is to build some from scratch. We need two key features. The first is metatables, which bear a passing resemblance to Python’s metaclasses.

Tables and metatables

The table is Lua’s mapping type and its primary data structure. Keys can be any value other than nil. Lists are implemented as tables whose keys are consecutive integers starting from 1. Nothing terribly surprising. The dot operator is sugar for indexing with a string key.

1
2
3
4
5
local t = { a = 1, b = 2 }
print(t['a'])  -- 1
print(t.b)  -- 2
t.c = 3
print(t['c'])  -- 3

A metatable is a table that can be associated with another value (usually another table) to change its behavior. For example, operator overloading is implemented by assigning a function to a special key in a metatable.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local t = { a = 1, b = 2 }
--print(t + 0)  -- error: attempt to perform arithmetic on a table value

local mt = {
    __add = function(left, right)
        return 12
    end,
}
setmetatable(t, mt)
print(t + 0)  -- 12

Now, the interesting part: one of the special keys is __index, which is consulted when the base table is indexed by a key it doesn’t contain. Here’s a table that claims every key maps to itself.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local t = {}
local mt = {
    __index = function(table, key)
        return key
    end,
}
setmetatable(t, mt)
print(t.foo)  -- foo
print(t.bar)  -- bar
print(t[3])  -- 3

__index doesn’t have to be a function, either. It can be yet another table, in which case that table is simply indexed with the key. If the key still doesn’t exist and that table has a metatable with an __index, the process repeats.

With this, it’s easy to have several unrelated tables that act as a single table. Call the base table an object, fill the __index table with functions and call it a class, and you have half of an object system. You can even get prototypical inheritance by chaining __indexes together.

At this point things are a little confusing, since we have at least three tables going on, so here’s a diagram. Keep in mind that Lua doesn’t actually have anything called an “object”, “class”, or “method” — those are just convenient nicknames for a particular structure we might build with Lua’s primitives.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
                    ╔═══════════╗        ...
                    ║ metatable ║         ║
                    ╟───────────╢   ┌─────╨───────────────────────┐
                    ║ __index   ╫───┤ lookup table ("superclass") │
                    ╚═══╦═══════╝   ├─────────────────────────────┤
  ╔═══════════╗         ║           │ some other method           ┼─── function() ... end
  ║ metatable ║         ║           └─────────────────────────────┘
  ╟───────────╢   ┌─────╨──────────────────┐
  ║ __index   ╫───┤ lookup table ("class") │
  ╚═══╦═══════╝   ├────────────────────────┤
      ║           │ some method            ┼─── function() ... end
      ║           └────────────────────────┘
┌─────╨─────────────────┐
│ base table ("object") │
└───────────────────────┘

Note that a metatable is not the same as a class; it defines behavior, not methods. Conversely, if you try to use a class directly as a metatable, it will probably not do much. (This is pretty different from e.g. Python, where operator overloads are just methods with funny names. One nice thing about the Lua approach is that you can keep interface-like functionality separate from methods, and avoid clogging up arbitrary objects’ namespaces. You could even use a dummy table as a key and completely avoid name collisions.)

Anyway, code!

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
local class = {
    foo = function(a)
        print("foo got", a)
    end,
}
local mt = { __index = class }
-- setmetatable returns its first argument, so this is nice shorthand
local obj1 = setmetatable({}, mt)
local obj2 = setmetatable({}, mt)
obj1.foo(7)  -- foo got 7
obj2.foo(9)  -- foo got 9

Wait, wait, hang on. Didn’t I call these methods? How do they get at the object? Maybe Lua has a magical this variable?

Methods, sort of

Not quite, but this is where the other key feature comes in: method-call syntax. It’s the lightest touch of sugar, just enough to have method invocation.

1
2
3
4
5
6
7
8
9
-- note the colon!
a:b(c, d, ...)

-- exactly equivalent to this
-- (except that `a` is only evaluated once)
a.b(a, c, d, ...)

-- which of course is really this
a["b"](a, c, d, ...)

Now we can write methods that actually do something.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
local class = {
    bar = function(self)
        print("our score is", self.score)
    end,
}
local mt = { __index = class }
local obj1 = setmetatable({ score = 13 }, mt)
local obj2 = setmetatable({ score = 25 }, mt)
obj1:bar()  -- our score is 13
obj2:bar()  -- our score is 25

And that’s all you need. Much like Python, methods and data live in the same namespace, and Lua doesn’t care whether obj:method() finds a function on obj or gets one from the metatable’s __index. Unlike Python, the function will be passed self either way, because self comes from the use of : rather than from the lookup behavior.

(Aside: strictly speaking, any Lua value can have a metatable — and if you try to index a non-table, Lua will always consult the metatable’s __index. Strings all have the string library as a metatable, so you can call methods on them: try ("%s %s"):format(1, 2). I don’t think Lua lets user code set the metatable for non-tables, so this isn’t that interesting, but if you’re writing Lua bindings from C then you can wrap your pointers in metatables to give them methods implemented in C.)

Bringing it all together

Of course, writing all this stuff every time is a little tedious and error-prone, so instead you might want to wrap it all up inside a little function. No problem.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
local function make_object(body)
    -- create a metatable
    local mt = { __index = body }
    -- create a base table to serve as the object itself
    local obj = setmetatable({}, mt)
    -- and, done
    return obj
end

-- you can leave off parens if you're only passing in 
local Dog = {
    -- this acts as a "default" value; if obj.barks is missing, __index will
    -- kick in and find this value on the class.  but if obj.barks is assigned
    -- to, it'll go in the object and shadow the value here.
    barks = 0,

    bark = function(self)
        self.barks = self.barks + 1
        print("woof!")
    end,
}

local mydog = make_object(Dog)
mydog:bark()  -- woof!
mydog:bark()  -- woof!
mydog:bark()  -- woof!
print(mydog.barks)  -- 3
print(Dog.barks)  -- 0

It works, but it’s fairly barebones. The nice thing is that you can extend it pretty much however you want. I won’t reproduce an entire serious object system here — lord knows there are enough of them floating around — but the implementation I have for my LÖVE games lets me do this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
local Animal = Object:extend{
    cries = 0,
}

-- called automatically by Object
function Animal:init()
    print("whoops i couldn't think of anything interesting to put here")
end

-- this is just nice syntax for adding a first argument called 'self', then
-- assigning this function to Animal.cry
function Animal:cry()
    self.cries = self.cries + 1
end

local Cat = Animal:extend{}

function Cat:cry()
    print("meow!")
    Cat.__super.cry(self)
end

local cat = Cat()
cat:cry()  -- meow!
cat:cry()  -- meow!
print(cat.cries)  -- 2

When I say you can extend it however you want, I mean that. I could’ve implemented Python (2)-style super(Cat, self):cry() syntax; I just never got around to it. I could even make it work with multiple inheritance if I really wanted to — or I could go the complete opposite direction and only implement composition. I could implement descriptors, customizing the behavior of individual table keys. I could add pretty decent syntax for composition/proxying. I am trying very hard to end this section now.

The Lua philosophy

Lua’s philosophy is to… not have a philosophy? It gives you the bare minimum to make objects work, and you can do absolutely whatever you want from there. Lua does have something resembling prototypical inheritance, but it’s not so much a first-class feature as an emergent property of some very simple tools. And since you can make __index be a function, you could avoid the prototypical behavior and do something different entirely.

The very severe downside, of course, is that you have to find or build your own object system — which can get pretty confusing very quickly, what with the multiple small moving parts. Third-party code may also have its own object system with subtly different behavior. (Though, in my experience, third-party code tries very hard to avoid needing an object system at all.)

It’s hard to say what the Lua “culture” is like, since Lua is an embedded language that’s often a little different in each environment. I imagine it has a thousand millicultures, instead. I can say that the tedium of building my own object model has led me into something very “traditional”, with prototypical inheritance and whatnot. It’s partly what I’m used to, but it’s also just really dang easy to get working.

Likewise, while I love properties in Python and use them all the dang time, I’ve yet to use a single one in Lua. They wouldn’t be particularly hard to add to my object model, but having to add them myself (or shop around for an object model with them and also port all my code to use it) adds a huge amount of friction. I’ve thought about designing an interesting ECS with custom object behavior, too, but… is it really worth the effort? For all the power and flexibility Lua offers, the cost is that by the time I have something working at all, I’m too exhausted to actually use any of it.

JavaScript

JavaScript is notable for being preposterously heavily used, yet not having a class block.

Well. Okay. Yes. It has one now. It didn’t for a very long time, and even the one it has now is sugar.

Here’s a vector class again:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Vector {
    constructor(x, y) {
        this.x = x;
        this.y = y;
    }

    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    }

    dot(other) {
        return this.x * other.x + this.y * other.y;
    }
}

In “classic” JavaScript, this would be written as:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function Vector(x, y) {
    this.x = x;
    this.y = y;
}

Object.defineProperty(Vector.prototype, 'magnitude', {
    configurable: true,
    enumerable: true,
    get: function() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
});


Vector.prototype.dot = function(other) {
    return this.x * other.x + this.y * other.y;
};

Hm, yes. I can see why they added class.

The JavaScript model

In JavaScript, a new type is defined in terms of a function, which is its constructor.

Right away we get into trouble here. There is a very big difference between these two invocations, which I actually completely forgot about just now after spending four hours writing about Python and Lua:

1
2
let vec = Vector(3, 4);
let vec = new Vector(3, 4);

The first calls the function Vector. It assigns some properties to this, which here is going to be window, so now you have a global x and y. It then returns nothing, so vec is undefined.

The second calls Vector with this set to a new empty object, then evaluates to that object. The result is what you’d actually expect.

(You can detect this situation with the strange new.target expression, but I have never once remembered to do so.)

From here, we have true, honest-to-god, first-class prototypical inheritance. The word “prototype” is even right there. When you write this:

1
vec.dot(vec2)

JavaScript will look for dot on vec and (presumably) not find it. It then consults vecs prototype, an object you can see for yourself by using Object.getPrototypeOf(). Since vec is a Vector, its prototype is Vector.prototype.

I stress that Vector.prototype is not the prototype for Vector. It’s the prototype for instances of Vector.

(I say “instance”, but the true type of vec here is still just object. If you want to find Vector, it’s automatically assigned to the constructor property of its own prototype, so it’s available as vec.constructor.)

Of course, Vector.prototype can itself have a prototype, in which case the process would continue if dot were not found. A common (and, arguably, very bad) way to simulate single inheritance is to set Class.prototype to an instance of a superclass to get the prototype right, then tack on the methods for Class. Nowadays we can do Object.create(Superclass.prototype).

Now that I’ve been through Python and Lua, though, this isn’t particularly surprising. I kinda spoiled it.

I suppose one difference in JavaScript is that you can tack arbitrary attributes directly onto Vector all you like, and they will remain invisible to instances since they aren’t in the prototype chain. This is kind of backwards from Lua, where you can squirrel stuff away in the metatable.

Another difference is that every single object in JavaScript has a bunch of properties already tacked on — the ones in Object.prototype. Every object (and by “object” I mean any mapping) has a prototype, and that prototype defaults to Object.prototype, and it has a bunch of ancient junk like isPrototypeOf.

(Nit: it’s possible to explicitly create an object with no prototype via Object.create(null).)

Like Lua, and unlike Python, JavaScript doesn’t distinguish between keys found on an object and keys found via a prototype. Properties can be defined on prototypes with Object.defineProperty(), but that works just as well directly on an object, too. JavaScript doesn’t have a lot of operator overloading, but some things like Symbol.iterator also work on both objects and prototypes.

About this

You may, at this point, be wondering what this is. Unlike Lua and Python (and the last language below), this is a special built-in value — a context value, invisibly passed for every function call.

It’s determined by where the function came from. If the function was the result of an attribute lookup, then this is set to the object containing that attribute. Otherwise, this is set to the global object, window. (You can also set this to whatever you want via the call method on functions.)

This decision is made lexically, i.e. from the literal source code as written. There are no Python-style bound methods. In other words:

1
2
3
4
5
// this = obj
obj.method()
// this = window
let meth = obj.method
meth()

Also, because this is reassigned on every function call, it cannot be meaningfully closed over, which makes using closures within methods incredibly annoying. The old approach was to assign this to some other regular name like self (which got syntax highlighting since it’s also a built-in name in browsers); then we got Function.bind, which produced a callable thing with a fixed context value, which was kind of nice; and now finally we have arrow functions, which explicitly close over the current this when they’re defined and don’t change it when called. Phew.

Class syntax

I already showed class syntax, and it’s really just one big macro for doing all the prototype stuff The Right Way. It even prevents you from calling the type without new. The underlying model is exactly the same, and you can inspect all the parts.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Vector { ... }

console.log(Vector.prototype);  // { dot: ..., magnitude: ..., ... }
let vec = new Vector(3, 4);
console.log(Object.getPrototypeOf(vec));  // same as Vector.prototype

// i don't know why you would subclass vector but let's roll with it
class Vectest extends Vector { ... }

console.log(Vectest.prototype);  // { ... }
console.log(Object.getPrototypeOf(Vectest.prototype))  // same as Vector.prototype

Alas, class syntax has a couple shortcomings. You can’t use the class block to assign arbitrary data to either the type object or the prototype — apparently it was deemed too confusing that mutations would be shared among instances. Which… is… how prototypes work. How Python works. How JavaScript itself, one of the most popular languages of all time, has worked for twenty-two years. Argh.

You can still do whatever assignment you want outside of the class block, of course. It’s just a little ugly, and not something I’d think to look for with a sugary class.

A more subtle result of this behavior is that a class block isn’t quite the same syntax as an object literal. The check for data isn’t a runtime thing; class Foo { x: 3 } fails to parse. So JavaScript now has two largely but not entirely identical styles of key/value block.

Attribute access

Here’s where things start to come apart at the seams, just a little bit.

JavaScript doesn’t really have an attribute protocol. Instead, it has two… extension points, I suppose.

One is Object.defineProperty, seen above. For common cases, there’s also the get syntax inside a property literal, which does the same thing. But unlike Python’s @property, these aren’t wrappers around some simple primitives; they are the primitives. JavaScript is the only language of these four to have “property that runs code on access” as a completely separate first-class concept.

If you want to intercept arbitrary attribute access (and some kinds of operators), there’s a completely different primitive: the Proxy type. It doesn’t let you intercept attribute access or operators; instead, it produces a wrapper object that supports interception and defers to the wrapped object by default.

It’s cool to see composition used in this way, but also, extremely weird. If you want to make your own type that overloads in or calling, you have to return a Proxy that wraps your own type, rather than actually returning your own type. And (unlike the other three languages in this post) you can’t return a different type from a constructor, so you have to throw that away and produce objects only from a factory. And instanceof would be broken, but you can at least fix that with Symbol.hasInstance — which is really operator overloading, implement yet another completely different way.

I know the design here is a result of legacy and speed — if any object could intercept all attribute access, then all attribute access would be slowed down everywhere. Fair enough. It still leaves the surface area of the language a bit… bumpy?

The JavaScript philosophy

It’s a little hard to tell. The original idea of prototypes was interesting, but it was hidden behind some very awkward syntax. Since then, we’ve gotten a bunch of extra features awkwardly bolted on to reflect the wildly varied things the built-in types and DOM API were already doing. We have class syntax, but it’s been explicitly designed to avoid exposing the prototype parts of the model.

I admit I don’t do a lot of heavy JavaScript, so I might just be overlooking it, but I’ve seen virtually no code that makes use of any of the recent advances in object capabilities. Forget about custom iterators or overloading call; I can’t remember seeing any JavaScript in the wild that even uses properties yet. I don’t know if everyone’s waiting for sufficient browser support, nobody knows about them, or nobody cares.

The model has advanced recently, but I suspect JavaScript is still shackled to its legacy of “something about prototypes, I don’t really get it, just copy the other code that’s there” as an object model. Alas! Prototypes are so good. Hopefully class syntax will make it a bit more accessible, as it has in Python.

Perl 5

Perl 5 also doesn’t have an object system and expects you to build your own. But where Lua gives you two simple, powerful tools for building one, Perl 5 feels more like a puzzle with half the pieces missing. Clearly they were going for something, but they only gave you half of it.

In brief, a Perl object is a reference that has been blessed with a package.

I need to explain a few things. Honestly, one of the biggest problems with the original Perl object setup was how many strange corners and unique jargon you had to understand just to get off the ground.

(If you want to try running any of this code, you should stick a use v5.26; as the first line. Perl is very big on backwards compatibility, so you need to opt into breaking changes, and even the mundane say builtin is behind a feature gate.)

References

A reference in Perl is sort of like a pointer, but its main use is very different. See, Perl has the strange property that its data structures try very hard to spill their contents all over the place. Despite having dedicated syntax for arrays — @foo is an array variable, distinct from the single scalar variable $foo — it’s actually impossible to nest arrays.

1
2
3
my @foo = (1, 2, 3, 4);
my @bar = (@foo, @foo);
# @bar is now a flat list of eight items: 1, 2, 3, 4, 1, 2, 3, 4

The idea, I guess, is that an array is not one thing. It’s not a container, which happens to hold multiple things; it is multiple things. Anywhere that expects a single value, such as an array element, cannot contain an array, because an array fundamentally is not a single value.

And so we have “references”, which are a form of indirection, but also have the nice property that they’re single values. They add containment around arrays, and in general they make working with most of Perl’s primitive types much more sensible. A reference to a variable can be taken with the \ operator, or you can use [ ... ] and { ... } to directly create references to anonymous arrays or hashes.

1
2
3
my @foo = (1, 2, 3, 4);
my @bar = (\@foo, \@foo);
# @bar is now a nested list of two items: [1, 2, 3, 4], [1, 2, 3, 4]

(Incidentally, this is the sole reason I initially abandoned Perl for Python. Non-trivial software kinda requires nesting a lot of data structures, so you end up with references everywhere, and the syntax for going back and forth between a reference and its contents is tedious and ugly.)

A Perl object must be a reference. Perl doesn’t care what kind of reference — it’s usually a hash reference, since hashes are a convenient place to store arbitrary properties, but it could just as well be a reference to an array, a scalar, or even a sub (i.e. function) or filehandle.

I’m getting a little ahead of myself. First, the other half: blessing and packages.

Packages and blessing

Perl packages are just namespaces. A package looks like this:

1
2
3
4
5
6
7
package Foo::Bar;

sub quux {
    say "hi from quux!";
}

# now Foo::Bar::quux() can be called from anywhere

Nothing shocking, right? It’s just a named container. A lot of the details are kind of weird, like how a package exists in some liminal quasi-value space, but the basic idea is a Bag Of Stuff.

The final piece is “blessing,” which is Perl’s funny name for binding a package to a reference. A very basic class might look like this:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
package Vector;

# the name 'new' is convention, not special
sub new {
    # perl argument passing is weird, don't ask
    my ($class, $x, $y) = @_;

    # create the object itself -- here, unusually, an array reference makes sense
    my $self = [ $x, $y ];

    # associate the package with that reference
    # note that $class here is just the regular string, 'Vector'
    bless $self, $class;

    return $self;
}

sub x {
    my ($self) = @_;
    return $self->[0];
}

sub y {
    my ($self) = @_;
    return $self->[1];
}

sub magnitude {
    my ($self) = @_;
    return sqrt($self->x ** 2 + $self->y ** 2);
}

# switch back to the "default" package
package main;

# -> is method call syntax, which passes the invocant as the first argument;
# for a package, that's just the package name
my $vec = Vector->new(3, 4);
say $vec->magnitude;  # 5

A few things of note here. First, $self->[0] has nothing to do with objects; it’s normal syntax for getting the value of a index 0 out of an array reference called $self. (Most classes are based on hashrefs and would use $self->{value} instead.) A blessed reference is still a reference and can be treated like one.

In general, -> is Perl’s dereferencey operator, but its exact behavior depends on what follows. If it’s followed by brackets, then it’ll apply the brackets to the thing in the reference: ->{} to index a hash reference, ->[] to index an array reference, and ->() to call a function reference.

But if -> is followed by an identifier, then it’s a method call. For packages, that means calling a function in the package and passing the package name as the first argument. For objects — blessed references — that means calling a function in the associated package and passing the object as the first argument.

This is a little weird! A blessed reference is a superposition of two things: its normal reference behavior, and some completely orthogonal object behavior. Also, object behavior has no notion of methods vs data; it only knows about methods. Perl lets you omit parentheses in a lot of places, including when calling a method with no arguments, so $vec->magnitude is really $vec->magnitude().

Perl’s blessing bears some similarities to Lua’s metatables, but ultimately Perl is much closer to Ruby’s “message passing” approach than the above three languages’ approaches of “get me something and maybe it’ll be callable”. (But this is no surprise — Ruby is a spiritual successor to Perl 5.)

All of this leads to one little wrinkle: how do you actually expose data? Above, I had to write x and y methods. Am I supposed to do that for every single attribute on my type?

Yes! But don’t worry, there are third-party modules to help with this incredibly fundamental task. Take Class::Accessor::Fast, so named because it’s faster than Class::Accessor:

1
2
3
package Foo;
use base qw(Class::Accessor::Fast);
__PACKAGE__->mk_accessors(qw(fred wilma barney));

(__PACKAGE__ is the lexical name of the current package; qw(...) is a list literal that splits its contents on whitespace.)

This assumes you’re using a hashref with keys of the same names as the attributes. $obj->fred will return the fred key from your hashref, and $obj->fred(4) will change it to 4.

You also, somewhat bizarrely, have to inherit from Class::Accessor::Fast. Speaking of which,

Inheritance

Inheritance is done by populating the package-global @ISA array with some number of (string) names of parent packages. Most code instead opts to write use base ...;, which does the same thing. Or, more commonly, use parent ...;, which… also… does the same thing.

Every package implicitly inherits from UNIVERSAL, which can be freely modified by Perl code.

A method can call its superclass method with the SUPER:: pseudo-package:

1
2
3
4
sub foo {
    my ($self) = @_;
    $self->SUPER::foo;
}

However, this does a depth-first search, which means it almost certainly does the wrong thing when faced with multiple inheritance. For a while the accepted solution involved a third-party module, but Perl eventually grew an alternative you have to opt into: C3, which may be more familiar to you as the order Python uses.

1
2
3
4
5
6
use mro 'c3';

sub foo {
    my ($self) = @_;
    $self->next::method;
}

Offhand, I’m not actually sure how next::method works, seeing as it was originally implemented in pure Perl code. I suspect it involves peeking at the caller’s stack frame. If so, then this is a very different style of customizability from e.g. Python — the MRO was never intended to be pluggable, and the use of a special pseudo-package means it isn’t really, but someone was determined enough to make it happen anyway.

Operator overloading and whatnot

Operator overloading looks a little weird, though really it’s pretty standard Perl.

1
2
3
4
5
6
7
8
package MyClass;

use overload '+' => \&_add;

sub _add {
    my ($self, $other, $swap) = @_;
    ...
}

use overload here is a pragma, where “pragma” means “regular-ass module that does some wizardry when imported”.

\&_add is how you get a reference to the _add sub so you can pass it to the overload module. If you just said &_add or _add, that would call it.

And that’s it; you just pass a map of operators to functions to this built-in module. No worry about name clashes or pollution, which is pretty nice. You don’t even have to give references to functions that live in the package, if you don’t want them to clog your namespace; you could put them in another package, or even inline them anonymously.

One especially interesting thing is that Perl lets you overload every operator. Perl has a lot of operators. It considers some math builtins like sqrt and trig functions to be operators, or at least operator-y enough that you can overload them. You can also overload the “file text” operators, such as -e $path to test whether a file exists. You can overload conversions, including implicit conversion to a regex. And most fascinating to me, you can overload dereferencing — that is, the thing Perl does when you say $hashref->{key} to get at the underlying hash. So a single object could pretend to be references of multiple different types, including a subref to implement callability. Neat.

Somewhat related: you can overload basic operators (indexing, etc.) on basic types (not references!) with the tie function, which is designed completely differently and looks for methods with fixed names. Go figure.

You can intercept calls to nonexistent methods by implementing a function called AUTOLOAD, within which the $AUTOLOAD global will contain the name of the method being called. Originally this feature was, I think, intended for loading binary components or large libraries on-the-fly only when needed, hence the name. Offhand I’m not sure I ever saw it used the way __getattr__ is used in Python.

Is there a way to intercept all method calls? I don’t think so, but it is Perl, so I must be forgetting something.

Actually no one does this any more

Like a decade ago, a council of elder sages sat down and put together a whole whizbang system that covers all of it: Moose.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
package Vector;
use Moose;

has x => (is => 'rw', isa => 'Int');
has y => (is => 'rw', isa => 'Int');

sub magnitude {
    my ($self) = @_;
    return sqrt($self->x ** 2 + $self->y ** 2);
}

Moose has its own way to do pretty much everything, and it’s all built on the same primitives. Moose also adds metaclasses, somehow, despite that the underlying model doesn’t actually support them? I’m not entirely sure how they managed that, but I do remember doing some class introspection with Moose and it was much nicer than the built-in way.

(If you’re wondering, the built-in way begins with looking at the hash called %Vector::. No, that’s not a typo.)

I really cannot stress enough just how much stuff Moose does, but I don’t want to delve into it here since Moose itself is not actually the language model.

The Perl philosophy

I hope you can see what I meant with what I first said about Perl, now. It has multiple inheritance with an MRO, but uses the wrong one by default. It has extensive operator overloading, which looks nothing like how inheritance works, and also some of it uses a totally different mechanism with special method names instead. It only understands methods, not data, leaving you to figure out accessors by hand.

There’s 70% of an object system here with a clear general design it was gunning for, but none of the pieces really look anything like each other. It’s weird, in a distinctly Perl way.

The result is certainly flexible, at least! It’s especially cool that you can use whatever kind of reference you want for storage, though even as I say that, I acknowledge it’s no different from simply subclassing list or something in Python. It feels different in Perl, but maybe only because it looks so different.

I haven’t written much Perl in a long time, so I don’t know what the community is like any more. Moose was already ubiquitous when I left, which you’d think would let me say “the community mostly focuses on the stuff Moose can do” — but even a decade ago, Moose could already do far more than I had ever seen done by hand in Perl. It’s always made a big deal out of roles (read: interfaces), for instance, despite that I’d never seen anyone care about them in Perl before Moose came along. Maybe their presence in Moose has made them more popular? Who knows.

Also, I wrote Perl seriously, but in the intervening years I’ve only encountered people who only ever used Perl for one-offs. Maybe it’ll come as a surprise to a lot of readers that Perl has an object model at all.

End

Well, that was fun! I hope any of that made sense.

Special mention goes to Rust, which doesn’t have an object model you can fiddle with at runtime, but does do things a little differently.

It’s been really interesting thinking about how tiny differences make a huge impact on what people do in practice. Take the choice of storage in Perl versus Python. Perl’s massively common URI class uses a string as the storage, nothing else; I haven’t seen anything like that in Python aside from markupsafe, which is specifically designed as a string type. I would guess this is partly because Perl makes you choose — using a hashref is an obvious default, but you have to make that choice one way or the other. In Python (especially 3), inheriting from object and getting dict-based storage is the obvious thing to do; the ability to use another type isn’t quite so obvious, and doing it “right” involves a tiny bit of extra work.

Or, consider that Lua could have descriptors, but the extra bit of work (especially design work) has been enough of an impediment that I’ve never implemented them. I don’t think the object implementations I’ve looked at have included them, either. Super weird!

In that light, it’s only natural that objects would be so strongly associated with the features Java and C++ attach to them. I think that makes it all the more important to play around! Look at what Moose has done. No, really, you should bear in mind my description of how Perl does stuff and flip through the Moose documentation. It’s amazing what they’ve built.

Swiss Copyright Law Proposals: Good News for Pirates, Bad For Pirate Sites

Post Syndicated from Andy original https://torrentfreak.com/swiss-copyright-law-proposals-good-news-for-pirates-bad-for-pirate-sites-171124/

While Switzerland sits geographically in the heart of Europe, the country is not part of the European Union, meaning that its copyright laws are often out of touch with those of the countries encircling it.

For years this has meant heavy criticism from the United States, whose trade representative has put Switzerland on the Watch List, citing weaknesses in the country’s ability to curb online copyright infringement.

“The decision to place Switzerland on the Watch List this year is premised on U.S. concerns regarding specific difficulties in Switzerland’s system of online copyright protection and enforcement,” the USTR wrote in 2016.

Things didn’t improve in 2017. Referencing the so-called Logistep Decision, which found that collecting infringers’ IP addresses is unlawful, the USTR said that Switzerland had effectively deprived copyright holders of the means to enforce their rights online.

All of this criticism hasn’t fallen on deaf ears. For the past several years, Switzerland has been deeply involved in consultations that aim to shape future copyright law. Negotiations have been prolonged, however, with the Federal Council aiming to improve the situation for creators without impairing the position of consumers.

A new draft compromise tabled Wednesday is somewhat of a mixed bag, one that is unlikely to please the United States overall but could prove reasonably acceptable to the public.

First of all, people will still be able to ‘pirate’ as much copyrighted material as they like, as long as that content is consumed privately and does not include videogames or software, which are excluded. Any supposed losses accrued by the entertainment industries will be compensated via a compulsory tax of 13 Swiss francs ($13), levied on media playback devices including phones and tablets.

This freedom only applies to downloading and streaming, meaning that any uploading (distribution) is explicitly ruled out. So, while grabbing some streaming content via a ‘pirate’ Kodi addon is just fine, using BitTorrent to achieve the same is ruled out.

Indeed, rightsholders will be able to capture IP addresses of suspected infringers in order to file a criminal complaint with authorities. That being said, there will no system of warning notices targeting file-sharers.

But while the authorization of unlicensed downloads will only frustrate an already irritated United States, the other half of the deal is likely to be welcomed.

Under the recommendations, Internet services will not only be required to remove infringing content from their platforms, they’ll also be compelled to prevent that same content from reappearing. Failure to comply will result in prosecution. It’s a standard that copyright holders everywhere are keen for governments to adopt.

Additionally, the spotlight will fall on datacenters and webhosts that have a reputation for being popular with pirate sites. It’s envisioned that such providers will be prevented from offering services to known pirate sites, with the government clearly stating that services with piracy at the heart of their business models will be ripe for action.

But where there’s a plus for copyright holders, the Swiss have another minus. Previously it was proposed that in serious cases authorities should be able to order the ISP blocking of “obviously illegal content or sources.” That proposal has now been dropped, meaning no site-blocking will be allowed.

Other changes in the draft envision an extension of the copyright term from 50 to 70 years and improved protection for photographic works. The proposals also feature increased freedoms for researchers and libraries, who will be able to use copyrighted works without obtaining permission from rightsholders.

Overall the proposals are a pretty mixed bag but as Minister of Justice Simonetta Sommaruga said Wednesday, if no one is prepared to compromise, no one will get anything.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

A Thanksgiving Carol: How Those Smart Engineers at Twitter Screwed Me

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/a-thanksgiving-carol-how-those-smart.html

Thanksgiving Holiday is a time for family and cheer. Well, a time for family. It’s the holiday where we ask our doctor relatives to look at that weird skin growth, and for our geek relatives to fix our computers. This tale is of such computer support, and how the “smart” engineers at Twitter have ruined this for life.

My mom is smart, but not a good computer user. I get my enthusiasm for science and math from my mother, and she has no problem understanding the science of computers. She keeps up when I explain Bitcoin. But she has difficulty using computers. She has this emotional, irrational belief that computers are out to get her.

This makes helping her difficult. Every problem is described in terms of what the computer did to her, not what she did to her computer. It’s the computer that needs to be fixed, instead of the user. When I showed her the “haveibeenpwned.com” website (part of my tips for securing computers), it showed her Tumblr password had been hacked. She swore she never created a Tumblr account — that somebody or something must have done it for her. Except, I was there five years ago and watched her create it.

Another example is how GMail is deleting her emails for no reason, corrupting them, and changing the spelling of her words. She emails the way an impatient teenager texts — all of us in the family know the misspellings are not GMail’s fault. But I can’t help her with this because she keeps her GMail inbox clean, deleting all her messages, leaving no evidence behind. She has only a vague description of the problem that I can’t make sense of.

This last March, I tried something to resolve this. I configured her GMail to send a copy of all incoming messages to a new, duplicate account on my own email server. With evidence in hand, I would then be able solve what’s going on with her GMail. I’d be able to show her which steps she took, which buttons she clicked on, and what caused the weirdness she’s seeing.

Today, while the family was in a state of turkey-induced torpor, my mom brought up a problem with Twitter. She doesn’t use Twitter, she doesn’t have an account, but they keep sending tweets to her phone, about topics like Denzel Washington. And she said something about “peaches” I didn’t understand.

This is how the problem descriptions always start, chaotic, with mutually exclusive possibilities. If you don’t use Twitter, you don’t have the Twitter app installed, so how are you getting Tweets? Over much gnashing of teeth, it comes out that she’s getting emails from Twitter, not tweets, about Denzel Washington — to someone named “Peaches Graham”. Naturally, she can only describe these emails, because she’s already deleted them.

“Ah ha!”, I think. I’ve got the evidence! I’ll just log onto my duplicate email server, and grab the copies to prove to her it was something she did.

I find she is indeed receiving such emails, called “Moments”, about topics trending on Twitter. They are signed with “DKIM”, proving they are legitimate rather than from a hacker or spammer. The only way that can happen is if my mother signed up for Twitter, despite her protestations that she didn’t.

I look further back and find that there were also confirmation messages involved. Back in August, she got a typical Twitter account signup message. I am now seeing a little bit more of the story unfold with this “Peaches Graham” name on the account. It wasn’t my mother who initially signed up for Twitter, but Peaches, who misspelled the email address. It’s one of the reasons why the confirmation process exists, to make sure you spelled your email address correctly.

It’s now obvious my mom accidentally clicked on the [Confirm] button. I don’t have any proof she did, but it’s the only reasonable explanation. Otherwise, she wouldn’t have gotten the “Moments” messages. My mom disputed this, emphatically insisting she never clicked on the emails.

It’s at this point that I made a great mistake, saying:

“This sort of thing just doesn’t happen. Twitter has very smart engineers. What’s the chance they made the mistake here, or…”.

I recognized condescension of words as they came out of my mouth, but dug myself deeper with:

“…or that the user made the error?”

This was wrong to say even if I were right. I have no excuse. I mean, maybe I could argue that it’s really her fault, for not raising me right, but no, this is only on me.

Regardless of what caused the Twitter emails, the problem needs to be fixed. The solution is to take control of the Twitter account by using the password reset feature. I went to the Twitter login page, clicked on “Lost Password”, got the password reset message, and reset the password. I then reconfigured the account to never send anything to my mom again.

But when I logged in I got an error saying the account had not yet been confirmed. I paused. The family dog eyed me in wise silence. My mom hadn’t clicked on the [Confirm] button — the proof was right there. Moreover, it hadn’t been confirmed for a long time, since the account was created in 2011.

I interrogated my mother some more. It appears that this has been going on for years. She’s just been deleting the emails without opening them, both the “Confirmations” and the “Moments”. She made it clear she does it this way because her son (that would be me) instructs her to never open emails she knows are bad. That’s how she could be so certain she never clicked on the [Confirm] button — she never even opens the emails to see the contents.

My mom is a prolific email user. In the last eight months, I’ve received over 10,000 emails in the duplicate mailbox on my server. That’s a lot. She’s technically retired, but she volunteers for several charities, goes to community college classes, and is joining an anti-Trump protest group. She has a daily routine for triaging and processing all the emails that flow through her inbox.

So here’s the thing, and there’s no getting around it: my mom was right, on all particulars. She had done nothing, the computer had done it to her. It’s Twitter who is at fault, having continued to resend that confirmation email every couple months for six years. When Twitter added their controversial “Moments” feature a couple years back, somehow they turned on Notifications for accounts that technically didn’t fully exist yet.

Being right this time means she might be right the next time the computer does something to her without her touching anything. My attempts at making computers seem rational has failed. That they are driven by untrustworthy spirits is now a reasonable alternative.

Those “smart” engineers at Twitter screwed me. Continuing to send confirmation emails for six years is stupid. Sending Notifications to unconfirmed accounts is stupid. Yes, I know at the bottom of the message it gives a “Not my account” selection that she could have clicked on, but it’s small and easily missed. In any case, my mom never saw that option, because she’s been deleting the messages without opening them — for six years.

Twitter can fix their problem, but it’s not going to help mine. Forever more, I’ll be unable to convince my mom that the majority of her problems are because of user error, and not because the computer people are out to get her.

What We’re Thankful For

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/what-were-thankful-for/

All of us at Backblaze hope you have a wonderful Thanksgiving, and that you can enjoy it with family and friends. We asked everyone at Backblaze to express what they are thankful for. Here are their responses.

Fall leaves

What We’re Thankful For

Aside from friends, family, hobbies, health, etc. I’m thankful for my home. It’s not much, but it’s mine, and allows me to indulge in everything listed above. Or not, if I so choose. And coffee.

— Tony

I’m thankful for my wife Jen, and my other friends. I’m thankful that I like my coworkers and can call them friends too. I’m thankful for my health. I’m thankful that I was born into a middle class family in the US and that I have been very, very lucky because of that.

— Adam

Besides the most important things which are being thankful for my family, my health and my friends, I am very thankful for Backblaze. This is the first job I’ve ever had where I truly feel like I have a great work/life balance. With having 3 kids ages 8, 6 and 4, a husband that works crazy hours and my tennis career on the rise (kidding but I am on 4 teams) it’s really nice to feel like I have balance in my life. So cheers to Backblaze – where a girl can have it all!

— Shelby

I am thankful to work at a high-tech company that recognizes the contributions of engineers in their 40s and 50s.

— Jeannine

I am thankful for the music, the songs I’m singing. Thankful for all the joy they’re bringing. Who can live without it, I ask in all honesty? What would life be? Without a song or a dance what are we? So I say thank you for the music. For giving it to me!

— Yev

I’m thankful that I don’t look anything like the portrait my son draws of me…seriously.

— Natalie

I am thankful to work for a company that puts its people and product ahead of profits.

— James

I am thankful that even in the middle of disasters, turmoil, and violence, there are always people who commit amazing acts of generosity, courage, and kindness that restore my faith in mankind.

— Roderick

The future.

— Ahin

The Future

I am thankful for the current state of modern inexpensive broadband networking that allows me to stay in touch with friends and family that are far away, allows Backblaze to exist and pay my salary so I can live comfortably, and allows me to watch cat videos for free. The internet makes this an amazing time to be alive.

— Brian

Other than being thankful for family & good health, I’m quite thankful through the years I’ve avoided losing any of my 12+TB photo archive. 20 years of photoshoots, family photos and cell phone photos kept safe through changing storage media (floppy drives, flopticals, ZIP, JAZ, DVD-RAM, CD, DVD and hard drives), not to mention various technology/software solutions. It’s a data minefield out there, especially in the long run with changing media formats.

— Jim

I am thankful for non-profit organizations and their volunteers, such as IMAlive. Possibly the greatest gift you can give someone is empowerment, and an opportunity for them to recognize their own resilience and strength.

— Emily

I am thankful for my loving family, friends who make me laugh, a cool company to work for, talented co-workers who make me a better engineer, and beautiful Fall days in Wisconsin!

— Marjorie

Marjorie Wisconsin

I’m thankful for preschool drawings about thankfulness.

— Adam

I am thankful for new friends and working for a company that allows us to be ourselves.

— Annalisa

I’m thankful for my dog as I always find a reason to smile at him everyday. Yes, he still smells from his skunkin’ last week and he tracks mud in my house, but he came from the San Quentin puppy-prisoner program and I’m thankful I found him and that he found me! My vet is thankful as well.

— Terry

I’m thankful that my colleagues are also my friends outside of the office and that the rain season has started in California.

— Aaron

I’m thankful for family, friends, and beer. Mostly for family and friends, but beer is really nice too!

— Ken

There are so many amazing blessings that make up my daily life that I thank God for, so here I go – my basic needs of food, water and shelter, my husband and 2 daughters and the rest of the family (here and abroad) — their love, support, health, and safety, waking up to a new day every day, friends, music, my job, funny things, hugs and more hugs (who does not like hugs?).

— Cecilia

I am thankful to be blessed with a close-knit extended family, and for everything they do for my new, growing family. With a toddler and a second child on the way, it helps having so many extra sets of hands around to help with the kids!

— Zack

I’m thankful for family and friends, the opportunities my parents gave me by moving the U.S., and that all of us together at Backblaze have built a place to be proud of.

— Gleb

Aside for being thankful for family and friends, I am also thankful I live in a place with such natural beauty. Being so close to mountains and the ocean, and everything in between, is something that I don’t take for granted!

— Sona

I’m thankful for my wonderful wife, family, friends, and co-workers. I’m thankful for having a happy and healthy son, and the chance to watch him grow on a daily basis.

— Ariel

I am thankful for a dog-friendly workplace.

— LeAnn

I’m thankful for my amazing new wife and that she’s as much of a nerd as I am.

— Troy

I am thankful for every reunion with my siblings and families.

— Cecilia

I am thankful for my funny, strong-willed, happy daughter, my awesome husband, my family, and amazing friends. I am also thankful for the USA and all the opportunities that come with living here. Finally, I am thankful for Backblaze, a truly great place to work and for all of my co-workers/friends here.

— Natasha

I am thankful that I do not need to hunt and gather everyday to put food on the table but at the same time I feel that I don’t appreciate the food the sits before me as much as I should. So I use Thanksgiving to think about the people and the animals that put food on my family’s table.

— KC

I am thankful for my cat, Catnip. She’s been with me for 18 years and seen me through so many ups and downs. She’s been along my side through two long-term relationships, several moves, and one marriage. I know we don’t have much time together and feel blessed every day she’s here.

— JC

I am thankful for imperfection and misshapen candies. The imperceptible romance of sunsets through bus windows. The dream that family, friends, co-workers, and strangers are connected by love. I am thankful to my ancestors for enduring so much hardship so that I could be here enjoying Bay Area burritos.

— Damon

Autumn leaves

The post What We’re Thankful For appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Kodi Addon Dev Says “Show of Force” Will Be Met With Defiance

Post Syndicated from Andy original https://torrentfreak.com/kodi-addon-dev-says-show-force-will-met-defiance-171119/

For many years, the members of the MPAA have flexed their muscles all around the globe, working to prevent people from engaging in online piracy. If the last 17 years ‘progress’ is anything to go by, it’s a war that will go on indefinitely.

With Columbia, Disney, Paramount, Twentieth Century Fox, Universal, and Warner on board, the MPAA has historically relied on sheer power to intimidate opponents. That has certainly worked in many large piracy cases but for many peripheral smaller-scale pirates, their presence is largely ignored.

This week, however, several players in the Kodi scene discovered that these giants – and more besides – have the ability to literally turn up at their front door. As reported Thursday, UK-based Kodi addon developer The_Alpha received a hand-delivered cease-and-desist letter from all of the above, accompanied by new faces Netflix, Amazon and Sky TV.

These companies are part of the Alliance for Creativity and Entertainment (ACE), a massive and recently-formed anti-piracy coalition comprised of 30 global entertainment brands. TorrentFreak reached out to The_Alpha for his thoughts on coming under such a dazzling spotlight but perhaps understandably he didn’t want to comment.

The leader of the Ares Project was willing to go on the record, however, after he too received a hand-delivered threat during the week. His decision was to immediately comply and shutdown but TF is informed that others might not be so willing to follow suit.

A Kodi addon developer living in the UK who spoke to us on condition of anonymity told us that most people operating in the scene expected some kind of trouble – just not on this scale.

“Did you see the [company logos] across the top of Alpha’s letter? That’s some serious shit right there. The film companies are no surprise but Amazon delivers my groceries so I don’t expect this shit from them,” he said.

When the ACE partnership was formed earlier this year, it seemed pretty clear that the main drive was towards the pooling of anti-piracy resources to be more effective and efficient. However, it can’t have escaped ACE that such a broad and powerful alliance could also have a profound psychological effect on its adversaries.

“There’s no doubt in my mind that they’re turning up mob-handed to put the shits up people like Alpha and the rest of us,” the developer said. “It’s hardly a fair dust-up is it? What have we got to fight back with, a giro [state benefits]? It’s a show of force, ‘look how important we are’!”

Interestingly, however, the dev told us that it isn’t necessarily the size of the coalition that has him most concerned. What caught his eye was the inclusion of two influential UK-based companies in the alliance.

“Having Sly [a local derogatory nickname for Sky TV] and the Premier League on the letter makes it much more serious to me than seeing Warner or whatever,” he commented.

“I don’t get involved in footie but Sly is everywhere round here and I think it’s something the Brit dev scene might take notice of, even if most say ‘fuck it’ and carry on anyway.”

When questioned whether that’s likely, our source said that while ACE might be able to tackle some of the bigger targets like Ares Project or Colossus, they fundamentally misunderstand how the Kodi scene works.

“If you want a good example of a scattered pirate scene, I give you Kodi. They can bomb the base or whatever but nobody lives there,” he explained.

“There’s some older blokes like me who can do without the stress but a lot of younger coders, builders and YouTubers who thrive on it. They’re used to running around council estates with real-life problems. A faffy letter from some toff in a suit means literally nothing. Like I said, all they have to lose is a giro.”

Whether this is just bravado will remain to be seen, but our earlier discussions with others in the scene indicate a particular weakness in the UK, with many players vulnerable to being found after failing to hide their identities in the past. To a point, our source agrees that this is a problem.

“People are saying that Alpha was found after trying to raise some charity money related to his disabled son but I don’t know for sure and nor does anybody else. What strikes me is that none of us really thought things would get this on top here because all you ever hear about is America this, Canada that, whatever. Does this means that more of us are getting done in England? You tell me,” he said.

Only time will tell but stamping out the pirate Kodi scene is going to be hard work.

Within hours of several projects disappearing Wednesday and Thursday, YouTube and myriad blogs were being flooded with guides detailing immediate replacements. This ad-hoc network of enthusiasts makes the exchange of information happen at an alarming rate and it’s hard to see how any company – no matter how powerful – will ever be able to keep up.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

timeShift(GrafanaBuzz, 1w) Issue 22

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/17/timeshiftgrafanabuzz-1w-issue-22/

Welome to TimeShift

We hope you liked our recent article with videos and slides from the events we’ve participated in recently. With Thanksgiving right around the corner, we’re getting a breather from work-related travel, but only a short one. We have some events in the coming weeks, and of course are busy filling in the details for GrafanaCon EU.

This week we have a lot of articles, videos and presentations to share, as well as some important plugin updates. Enjoy!


Latest Release

Grafana 4.6.2 is now available and includes some bug fixes:

  • Prometheus: Fixes bug with new Prometheus alerts in Grafana. Make sure to download this version if your using Prometheus for alerting. More details in the issue. #9777
  • Color picker: Bug after using textbox input field to change/paste color string #9769
  • Cloudwatch: build using golang 1.9.2 #9667, thanks @mtanda
  • Heatmap: Fixed tooltip for “time series buckets” mode #9332
  • InfluxDB: Fixed query editor issue when using > or < operators in WHERE clause #9871

Download Grafana 4.6.2 Now


From the Blogosphere

Cloud Tech 10 – 13th November 2017 – Grafana, Linux FUSE Adapter, Azure Stack and more!: Mark Whitby is a Cloud Solution Architect at Microsoft UK. Each week he prodcues a video reviewing new developments with Microsoft Azure. This week Mark covers the new Azure Monitoring Plugin we recently announced. He also shows you how to get up and running with Grafana quickly using the Azure Marketplace.

Using Prometheus and Grafana to Monitor WebLogic Server on Kubernetes: Oracle published an article on monitoring WebLogic server on Kubernetes. To do this, you’ll use the WebLogic Monitoring Exporter to scrape the server metrics and feed them to Prometheus, then visualize the data in Grafana. Marina goes into a lot of detail and provides sample files and configs to help you get going.

Getting Started with Prometheus: Will Robinson has started a new series on monitoring with Prometheus from someone who has never touched it before. Part 1 introduces a number of monitoring tools and concepts, and helps define a number of monitoring terms. Part 2 teaches you how to spin up Prometheus in a Docker container, and takes a look at writing queries. Looking forward to the third post, when he dives into the visualization aspect.

Monitoring with Prometheus: Alexander Schwartz has made the slides from his most recent presentation from the Continuous Lifcycle Conference in Germany available. In his talk, he discussed getting started with Prometheus, how it differs from other monitoring concepts, and provides examples of how to monitor and alert. We’ll link to the video of the talk when it’s available.

Using Grafana with SiriDB: Jeroen van der Heijden has written an in-depth tutorial to help you visualize data from the open source TSDB, SiriDB in Grafana. This tutorial will get you familiar with setting up SiriDB and provides a sample dashboard to help you get started.

Real-Time Monitoring with Grafana, StatsD and InfluxDB – Artur Caliendo Prado: This is a video from a talk at The Conf, held in Brazil. Artur’s presentation focuses on the experiences they had building a monitoring stack at Youse, how their monitoring became more complex as they scaled, and the platform they built to make sense of their data.

Using Grafana & Inlfuxdb to view XIV Host Performance Metrics – Part 4 Array Stats: This is the fourth part in a series of posts about host performance metrics. This post dives in to array stats to identify workloads and maintain balance across ports. Check out part 1, part 2 and part 3.


GrafanaCon Tickets are Going Fast

Tickets are going fast for GrafanaCon EU, but we still have a seat reserved for you. Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

Plugin authors are often adding new features and fixing bugs, which will make your plugin perform better – so it’s important to keep your plugins up to date. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you’re using Hosted Grafana.

UPDATED PLUGIN

Hawkular data source – There is an important change in this release – as this datasource is now able to fetch not only Hawkular Metrics but also Hawkular Alerts, the server URL in the datasource configuration must be updated: http://myserver:123/hawkular/metrics must be changed to http://myserver:123/hawkular

Some of the changes (see the release notes) for more details):

  • Allow per-query tenant configuration
  • Annotations can now be configured out of Availability metrics and Hawkular Alerts events in addition to string metrics
  • allows dot character in tag names

Update

UPDATED PLUGIN

Diagram Panel – This is the first release in a while for the popular Diagram Panel plugin.

In addition to these changes, there are also a number of bug fixes:

Update

UPDATED PLUGIN

Influx Admin Panel – received a number of improvements:

  • Fix issue always showing query results
  • When there is only one row, swap rows/cols (ie: SHOW DIAGNOSTICS)
  • Improved auto-refresh behavior
  • Fix query time sorting
  • show ‘status’ field (killed, etc)

Update


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks and events coming soon. Hope to see you at one of these!

How to Use Open Source Projects for Performance Monitoring | Webinar
Nov. 29, 1pm EST
:
Check out how you can use popular open source projects, for performance monitoring of your Infrastructure, Application, and Cloud faster, easier, and to scale. In this webinar, Daniel Lee from Grafana Labs, and Chris Churilo from InfluxData, will provide you with step by step instruction from download & configure, to collecting metrics and building dashboards and alerts.

RSVP

KubeCon | Austin, TX – Dec. 6-8, 2017: We’re sponsoring KubeCon 2017! This is the must-attend conference for cloud native computing professionals. KubeCon + CloudNativeCon brings together leading contributors in:

  • Cloud native applications and computing
  • Containers
  • Microservices
  • Central orchestration processing
  • And more

Buy Tickets

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and the CFP is now open. There is no need to register; all are welcome. If you’re interested in speaking at FOSDEM, submit your talk now!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

We were glad to be a part of InfluxDays this year, and looking forward to seeing the InfluxData team in NYC in February.


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

I enjoy writing these weekly roudups, but am curious how I can improve them. Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

The Decision on Transparency

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/transparency-in-business/

Backblaze transparency

This post by Backblaze’s CEO and co-founder Gleb Budman is the seventh in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants
  7. The Decision on Transparency

Use the Join button above to receive notification of new posts in this series.

“Are you crazy?” “Why would you do that?!” “You shouldn’t share that!”

These are just a few of the common questions and comments we heard after posting some of the information we have shared over the years. So was it crazy? Misguided? Should you do it?

With that background I’d like to dig into the decision to become so transparent, from releasing stats on hard drive failures, to storage pod specs, to publishing our cloud storage costs, and open sourcing the Reed-Solomon code. What was the thought process behind becoming so transparent when most companies work so hard to hide their inner workings, especially information such as the Storage Pod specs that would normally be considered a proprietary advantage? Most importantly I’d like to explore the positives and negatives of being so transparent.

Sharing Intellectual Property

The first “transparency” that garnered a flurry of “why would you share that?!” came as a result of us deciding to open source our Storage Pod design: publishing the specs, parts, prices, and how to build it yourself. The Storage Pod was a key component of our infrastructure, gave us a cost (and thus competitive) advantage, took significant effort to develop, and had a fair bit of intellectual property: the “IP.”

The negatives of sharing this are obvious: it allows our competitors to use the design to reduce our cost advantage, and it gives away the IP, which could be patentable or have value as a trade secret.

The positives were certainly less obvious, and at the time we couldn’t have guessed how massive they would be.

We wrestled with the decision: prospective users and others online didn’t believe we could offer our service for such a low price, thinking that we would burn through some cash hoard and then go out of business. We wanted to reassure them, but how?

This is how our response evolved:

We’ve built a lower cost storage platform.
But why would anyone believe us?
Because, we’ve designed our own servers and they’re less expensive.
But why would anyone believe they were so low cost and efficient?
Because here’s how much they cost versus others.
But why would anyone believe they cost that little and still enabled us to efficiently store data?
Because here are all the components they’re made of, this is how to build them, and this is how they work.
Ok, you can’t argue with that.

Great — so that would reassure people. But should we do this? Is it worth it?

This was 2009, we were a tiny company of seven people working from our co-founder’s one-bedroom apartment. We decided that the risk of not having potential customers trust us was more impactful than the risk of our competitors possibly deciding to use our server architecture. The former might kill the company in short order; the latter might make it harder for us to compete in the future. Moreover, we figured that most competitors were established on their own platforms and were unlikely to switch to ours, even if it were better.

Takeaway: Build your brand today. There are no assurances you will make it to tomorrow if you can’t make people believe in you today.

A Sharing Success Story — The Backblaze Storage Pod

So with that, we decided to publish everything about the Storage Pod. As for deciding to actually open source it? That was a ‘thank you’ to the open source community upon whose shoulders we stood as we used software such as Linux, Tomcat, etc.

With eight years of hindsight, here’s what happened:

As best as I can tell, none of our direct competitors ever used our Storage Pod design, opting instead to continue paying more for commercial solutions.

  • Hundreds of press articles have been written about Backblaze as a direct result of sharing the Storage Pod design.
  • Millions of people have read press articles or our blog posts about the Storage Pods.
  • Backblaze was established as a storage tech thought leader, and a resource for those looking for information in the space.
  • Our blog became viewed as a resource, not a corporate mouthpiece.
  • Recruiting has been made easier through the awareness of Backblaze, the appreciation for us taking on challenging tech problems in interesting ways, and for our openness.
  • Sourcing for our Storage Pods has become easier because we can point potential vendors to our blog posts and say, “here’s what we need.”

And those are just the direct benefits for us. One of the things that warms my heart is that doing this has helped others:

  • Several companies have started selling servers based on our Storage Pod designs.
  • Netflix credits Backblaze with being the inspiration behind their CDN servers.
  • Many schools, labs, and others have shared that they’ve been able to do what they didn’t think was possible because using our Storage Pod designs provided lower-cost storage.
  • And I want to believe that in general we pushed forward the development of low-cost storage servers in the industry.

So overall, the decision on being transparent and sharing our Storage Pod designs was a clear win.

Takeaway: Never underestimate the value of goodwill. It can help build new markets that fuel your future growth and create new ecosystems.

Sharing An “Almost Acquisition”

Acquisition announcements are par for the course. No company, however, talks about the acquisition that fell through. If rumors appear in the press, the company’s response is always, “no comment.” But in 2010, when Backblaze was almost, but not acquired, we wrote about it in detail. Crazy?

The negatives of sharing this are slightly less obvious, but the two issues most people worried about were, 1) the fact that the company could be acquired would spook customers, and 2) the fact that it wasn’t would signal to potential acquirers that something was wrong.

So, why share this at all? No one was asking “did you almost get acquired?”

First, we had established a culture of transparency and this was a significant event that occurred for us, thus we defaulted to assuming we would share. Second, we learned that acquisitions fall through all the time, not just during the early fishing stage, but even after term sheets are signed, diligence is done, and all the paperwork is complete. I felt we had learned some things about the process that would be valuable to others that were going through it.

As it turned out, we received emails from startup founders saying they saved the post for the future, and from lawyers, VCs, and advisors saying they shared them with their portfolio companies. Among the most touching emails I received was from a founder who said that after an acquisition fell through she felt so alone that she became incredibly depressed, and that reading our post helped her see that this happens and that things could be OK after. Being transparent about almost getting acquired was worth it just to help that one founder.

And what about the concerns? As for spooking customers, maybe some were — but our sign-ups went up, not down, afterward. Any company can be acquired, and many of the world’s largest have been. That we were being both thoughtful about where to go with it, and open about it, I believe gave customers a sense that we would do the right thing if it happened. And as for signaling to potential acquirers? The ones I’ve spoken with all knew this happens regularly enough that it’s not a factor.

Takeaway: Being open and transparent is also a form of giving back to others.

Sharing Strategic Data

For years people have been desperate to know how reliable are hard drives. They could go to Amazon for individual reviews, but someone saying “this drive died for me” doesn’t provide statistical insight. Google published a study that showed annualized drive failure rates, but didn’t break down the results by manufacturer or model. Since Backblaze has deployed about 100,000 hard drives to store customer data, we have been able to collect a wealth of data on the reliability of the drives by make, model, and size. Was Backblaze the only one with this data? Of course not — Google, Amazon, Microsoft, and any other cloud-scale storage provider tracked it. Yet none would publish. Should Backblaze?

Again, starting with the main negatives: 1) sharing which drives we liked could increase demand for them, thus reducing availability or increasing prices, and 2) publishing the data might make the drive vendors unhappy with us, thereby making it difficult for us to buy drives.

But we felt that the largest drive purchasers (Amazon, Google, etc.) already had their own stats and would buy the drives they chose, and if individuals or smaller companies used our stats, they wouldn’t sufficiently move the overall market demand. Also, we hoped that the drive companies would see that we were being fair in our analysis and, if anything, would leverage our data to make drives even better.

Again, publishing the data resulted in tremendous value for Backblaze, with millions of people having read the analysis that we put out quarterly. Also, becoming known as the place to go for drive reliability information is a natural fit with being a backup and storage provider. In addition, in a twist from many people’s expectations, some of the drive companies actually started working closer with us, seeing that we could be a good source of data for them as feedback. We’ve also seen many individuals and companies make more data-based decisions on which drives to buy, and researchers have used the data for a variety of analyses.

traffic spike from hard drive reliability post

Backblaze blog analytics showing spike in readership after a hard drive stats post

Takeaway: Being open and transparent is rarely as risky as it seems.

Sharing Revenue (And Other Metrics)

Journalists always want to publish company revenue and other metrics, and private companies always shy away from sharing. For a long time we did, too. Then, we opened up about that, as well.

The negatives of sharing these numbers are: 1) external parties may otherwise perceive you’re doing better than you are, 2) if you share numbers often, you may show that growth has slowed or worse, 3) it gives your competitors info to compare their own business too.

We decided that, while some may have perceived we were bigger, our scale was plenty significant. Since we choose what we share and when, it’s up to us whether to disclose at any point. And if our competitors compare, what will they actually change that would affect us?

I did wait to share revenue until I felt I had the right person to write about it. At one point a journalist said she wouldn’t write about us unless I disclosed revenue. I suggested we had a lot to offer for the story, but didn’t want to share revenue yet. She refused to budge and I walked away from the article. Several year later, I reached out to a journalist who had covered Backblaze before and I felt understood our business and offered to share revenue with him. He wrote a deep-dive about the company, with revenue being one of the components of the story.

Sharing these metrics showed that we were at scale and running a real business, one with positive unit economics and margins, but not one where we were gouging customers.

Takeaway: Being open with the press about items typically not shared can be uncomfortable, but the press can amplify your story.

Should You Share?

For Backblaze, I believe the results of transparency have been staggering. However, it’s not for everyone. Apple has, clearly, been wildly successful taking secrecy to the extreme. In their case, early disclosure combined with the long cycle of hardware releases could significantly impact sales of current products.

“For Backblaze, I believe the results of transparency have been staggering.” — Gleb Budman

I will argue, however, that for most startups transparency wins. Most startups need to establish credibility and trust, build awareness and a fan base, show that they understand what their customers need and be useful to them, and show the soul and passion behind the company. Some startup companies try to buy these virtues with investor money, and sometimes amplifying your brand via paid marketing helps. But, authentic transparency can build awareness and trust not only less expensively, but more deeply than money can buy.

Backblaze was open from the beginning. With no outside investors, as founders we were able to express ourselves and make our decisions. And it’s easier to be a company that shares if you do it from the start, but for any company, here are a few suggestions:

  1. Ask about sharing: If something significant happens — good or bad — ask “should we share this?” If you made a tough decision, ask “should we share the thinking behind the decision and why it was tough?”
  2. Default to yes: It’s often scary to share, but look for the reasons to say ‘yes,’ not the reasons to say ‘no.’ That doesn’t mean you won’t sometimes decide not to, but make that the high bar.
  3. Minimize reviews: Press releases tend to be sanitized and boring because they’ve been endlessly wordsmithed by committee. Establish the few things you don’t want shared, but minimize the number of people that have to see anything else before it can go out. Teach, then trust.
  4. Engage: Sharing will result in comments on your blog, social, articles, etc. Reply to people’s questions and engage. It’ll make the readers more engaged and give you a better understanding of what they’re looking for.
  5. Accept mistakes: Things will become public that aren’t perfectly sanitized. Accept that and don’t punish people for oversharing.

Building a culture of a company that is open to sharing takes time, but continuous practice will build that, and over time the company will navigate its voice and approach to sharing.

The post The Decision on Transparency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Community Profile: Matthew Timmons-Brown

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/community-profile-matthew-timmons-brown/

This column is from The MagPi issue 57. You can download a PDF of the full issue for free, or subscribe to receive the print edition in your mailbox or the digital edition on your tablet. All proceeds from the print and digital editions help the Raspberry Pi Foundation achieve its charitable goals.

“I first set up my YouTube channel because I noticed a massive lack of video tutorials for the Raspberry Pi,” explains Matthew Timmons-Brown, known to many as The Raspberry Pi Guy. At 18 years old, the Cambridge-based student has more than 60 000 subscribers to his channel, making his account the most successful Raspberry Pi–specific YouTube account to date.

Matthew Timmons-Brown

Matt gives a talk at the Raspberry Pi 5th Birthday weekend event

The Raspberry Pi Guy

If you’ve attended a Raspberry Pi event, there’s a good chance you’ve already met Matt. And if not, you’ll have no doubt come across one or more of his tutorials and builds online. On more than one occasion, his work has featured on the Raspberry Pi blog, with his yearly Raspberry Pi roundup videos being a staple of the birthday celebrations.

Matthew Timmons-Brown

With his website, Matt aimed to collect together “the many strands of The Raspberry Pi Guy” into one, neat, cohesive resource — and it works. From newcomers to the credit card-sized computer to hardened Pi veterans, The Raspberry Pi Guy offers aid and inspiration for many. Looking for a review of the Raspberry Pi Zero W? He’s filmed one. Looking for a step-by-step guide to building a Pi-powered Amazon Alexa? No problem, there’s one of those too.

Make your Raspberry Pi artificially intelligent! – Amazon Alexa Personal Assistant Tutorial

Artificial Intelligence. A hefty topic that has dominated the field since computers were first conceived. What if I told you that you could put an artificial intelligence service on your own $30 computer?! That’s right! In this tutorial I will show you how to create your own artificially intelligent personal assistant, using Amazon’s Alexa voice recognition and information service!

Raspberry Pi electric skateboard

Last summer, Matt introduced the world to his Raspberry Pi-controlled electric skateboard, soon finding himself plastered over local press as well as the BBC and tech sites like Adafruit and geek.com. And there’s no question as to why the build was so popular. With YouTubers such as Casey Neistat increasing the demand for electric skateboards on a near-daily basis, the call for a cheaper, home-brew version has quickly grown.

DIY 30KM/H ELECTRIC SKATEBOARD – RASPBERRY PI/WIIMOTE POWERED

Over the summer, I made my own electric skateboard using a £4 Raspberry Pi Zero. Controlled with a Nintendo Wiimote, capable of going 30km/h, and with a range of over 10km, this project has been pretty darn fun. In this video, you see me racing around Cambridge and I explain the ins and outs of this project.

Using a Raspberry Pi Zero, a Nintendo Wii Remote, and a little help from members of the Cambridge Makespace community, Matt built a board capable of reaching 30km/h, with a battery range of 10km per charge. Alongside Neistat, Matt attributes the project inspiration to Australian student Tim Maier, whose build we previously covered in The MagPi.

Matthew Timmons-Brown and Eben Upton standing in a car park looking at a smartphone

LiDAR

Despite the success and the fun of the electric skateboard (including convincing Raspberry Pi Trading CEO Eben Upton to have a go for local television news coverage), the project Matt is most proud of is his wireless LiDAR system for theoretical use on the Mars rovers.

Matthew Timmons-Brown's LiDAR project for scanning terrains with lasers

Using a tablet app to define the angles, Matt’s A Level coursework LiDAR build scans the surrounding area, returning the results to the touchscreen, where they can be manipulated by the user. With his passion for the cosmos and the International Space Station, it’s no wonder that this is Matt’s proudest build.

Built for his A Level Computer Science coursework, the build demonstrates Matt’s passion for space and physics. Used as a means of surveying terrain, LiDAR uses laser light to measure distance, allowing users to create 3D-scanned, high-resolution maps of a specific area. It is a perfect technology for exploring unknown worlds.

Matthew Timmons-Brown and two other young people at a reception in the Houses of Parliament

Matt was invited to St James’s Palace and the Houses of Parliament as part of the Raspberry Pi community celebrations in 2016

Joining the community

In a recent interview at Hills Road Sixth Form College, where he is studying mathematics, further mathematics, physics, and computer science, Matt revealed where his love of electronics and computer science started. “I originally became interested in computer science in 2012, when I read a tiny magazine article about a computer that I would be able to buy with pocket money. This was a pretty exciting thing for a 12-year-old! Your own computer… for less than £30?!” He went on to explain how it became his mission to learn all he could on the subject and how, months later, his YouTube channel came to life, cementing him firmly into the Raspberry Pi community

The post Community Profile: Matthew Timmons-Brown appeared first on Raspberry Pi.

Build a Flick-controlled marble maze

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/flick-marble-maze/

Wiggle your fingers to guide a ball through a 3D-printed marble maze using the Pi Supply Flick board for Raspberry Pi!

Wiggle, wiggle, wiggle, wiggle, yeah

Using the Flick, previously seen in last week’s Hacker House’s gesture-controlled holographic visualiser, South Africa–based Tom Van den Bon has created a touch-free marble maze. He was motivated by, if his Twitter is any indication, his love for game-making and 3D printing.

Tom Van den Bon on Twitter

Day 172 of #3dprint365. #3dprinted Raspberry PI Controlled Maze Thingie Part 3 #3dprint #3dprinter #thingiverse #raspberrypi #pisupply

All non-electronic parts of this build are 3D printed. The marble maze sits atop a motorised structure which moves along two axes thanks to servo motors. Tom controls the movement using gestures which are picked up by the Flick Zero, a Pi Zero–sized 3D-tracking board that can detect movement up to 15cm away.

Find the code for the maze, which takes advantage of the Flick library, on Tom’s GitHub account.

Make your own games

Our free resources are a treasure trove of fun home-brew games that you can build with your friends and family.

If you like physical games such as Tom’s gesture-controlled maze, you should definitely check out our Python quick reaction game! In it, players are pitted against each other to react as quickly as possible to a randomly lighting up LED.

raspberry pi marble maze

You can also play solo with our Lights out game, where it’s you against four erratic lights eager to remain lit.

For games you can build on your computer with no need for any extra tech, Scratch games such as our button-smashing Olympic weightlifter and Hurdler projects are perfect — you can play them just using a keyboard and browser!

raspberry pi marble maze

And if you’d like to really get stuck into learning about game development, then you’re in luck! CoderDojo’s Make your own game book guides you through all the steps of building a game in JavaScript, from creating the world to designing characters.

Cover of CoderDojo Nano Make your own game

And because I just found this while searching for image content for today’s blog, here is a photo of Eben’s and Liz’s cat Mooncake with a Raspberry Pi on her head. Enjoy!

A cat with a Raspberry Pi pin on its head — raspberry pi marble maze

Ras-purry Pi?

The post Build a Flick-controlled marble maze appeared first on Raspberry Pi.

Me on the Equifax Breach

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/me_on_the_equif.html

Testimony and Statement for the Record of Bruce Schneier
Fellow and Lecturer, Belfer Center for Science and International Affairs, Harvard Kennedy School
Fellow, Berkman Center for Internet and Society at Harvard Law School

Hearing on “Securing Consumers’ Credit Data in the Age of Digital Commerce”

Before the

Subcommittee on Digital Commerce and Consumer Protection
Committee on Energy and Commerce
United States House of Representatives

1 November 2017
2125 Rayburn House Office Building
Washington, DC 20515

Mister Chairman and Members of the Committee, thank you for the opportunity to testify today concerning the security of credit data. My name is Bruce Schneier, and I am a security technologist. For over 30 years I have studied the technologies of security and privacy. I have authored 13 books on these subjects, including Data and Goliath: The Hidden Battles to Collect Your Data and Control Your World (Norton, 2015). My popular newsletter CryptoGram and my blog Schneier on Security are read by over 250,000 people.

Additionally, I am a Fellow and Lecturer at the Harvard Kennedy School of Government –where I teach Internet security policy — and a Fellow at the Berkman-Klein Center for Internet and Society at Harvard Law School. I am a board member of the Electronic Frontier Foundation, AccessNow, and the Tor Project; and an advisory board member of Electronic Privacy Information Center and VerifiedVoting.org. I am also a special advisor to IBM Security and the Chief Technology Officer of IBM Resilient.

I am here representing none of those organizations, and speak only for myself based on my own expertise and experience.

I have eleven main points:

1. The Equifax breach was a serious security breach that puts millions of Americans at risk.

Equifax reported that 145.5 million US customers, about 44% of the population, were impacted by the breach. (That’s the original 143 million plus the additional 2.5 million disclosed a month later.) The attackers got access to full names, Social Security numbers, birth dates, addresses, and driver’s license numbers.

This is exactly the sort of information criminals can use to impersonate victims to banks, credit card companies, insurance companies, cell phone companies and other businesses vulnerable to fraud. As a result, all 143 million US victims are at greater risk of identity theft, and will remain at risk for years to come. And those who suffer identify theft will have problems for months, if not years, as they work to clean up their name and credit rating.

2. Equifax was solely at fault.

This was not a sophisticated attack. The security breach was a result of a vulnerability in the software for their websites: a program called Apache Struts. The particular vulnerability was fixed by Apache in a security patch that was made available on March 6, 2017. This was not a minor vulnerability; the computer press at the time called it “critical.” Within days, it was being used by attackers to break into web servers. Equifax was notified by Apache, US CERT, and the Department of Homeland Security about the vulnerability, and was provided instructions to make the fix.

Two months later, Equifax had still failed to patch its systems. It eventually got around to it on July 29. The attackers used the vulnerability to access the company’s databases and steal consumer information on May 13, over two months after Equifax should have patched the vulnerability.

The company’s incident response after the breach was similarly damaging. It waited nearly six weeks before informing victims that their personal information had been stolen and they were at increased risk of identity theft. Equifax opened a website to help aid customers, but the poor security around that — the site was at a domain separate from the Equifax domain — invited fraudulent imitators and even more damage to victims. At one point, the official Equifax communications even directed people to that fraudulent site.

This is not the first time Equifax failed to take computer security seriously. It confessed to another data leak in January 2017. In May 2016, one of its websites was hacked, resulting in 430,000 people having their personal information stolen. Also in 2016, a security researcher found and reported a basic security vulnerability in its main website. And in 2014, the company reported yet another security breach of consumer information. There are more.

3. There are thousands of data brokers with similarly intimate information, similarly at risk.

Equifax is more than a credit reporting agency. It’s a data broker. It collects information about all of us, analyzes it all, and then sells those insights. It might be one of the biggest, but there are 2,500 to 4,000 other data brokers that are collecting, storing, and selling information about us — almost all of them companies you’ve never heard of and have no business relationship with.

The breadth and depth of information that data brokers have is astonishing. Data brokers collect and store billions of data elements covering nearly every US consumer. Just one of the data brokers studied holds information on more than 1.4 billion consumer transactions and 700 billion data elements, and another adds more than 3 billion new data points to its database each month.

These brokers collect demographic information: names, addresses, telephone numbers, e-mail addresses, gender, age, marital status, presence and ages of children in household, education level, profession, income level, political affiliation, cars driven, and information about homes and other property. They collect lists of things we’ve purchased, when we’ve purchased them, and how we paid for them. They keep track of deaths, divorces, and diseases in our families. They collect everything about what we do on the Internet.

4. These data brokers deliberately hide their actions, and make it difficult for consumers to learn about or control their data.

If there were a dozen people who stood behind us and took notes of everything we purchased, read, searched for, or said, we would be alarmed at the privacy invasion. But because these companies operate in secret, inside our browsers and financial transactions, we don’t see them and we don’t know they’re there.

Regarding Equifax, few consumers have any idea what the company knows about them, who they sell personal data to or why. If anyone knows about them at all, it’s about their business as a credit bureau, not their business as a data broker. Their website lists 57 different offerings for business: products for industries like automotive, education, health care, insurance, and restaurants.

In general, options to “opt-out” don’t work with data brokers. It’s a confusing process, and doesn’t result in your data being deleted. Data brokers will still collect data about consumers who opt out. It will still be in those companies’ databases, and will still be vulnerable. It just don’t be included individually when they sell data to their customers.

5. The existing regulatory structure is inadequate.

Right now, there is no way for consumers to protect themselves. Their data has been harvested and analyzed by these companies without their knowledge or consent. They cannot improve the security of their personal data, and have no control over how vulnerable it is. They only learn about data breaches when the companies announce them — which can be months after the breaches occur — and at that point the onus is on them to obtain credit monitoring services or credit freezes. And even those only protect consumers from some of the harms, and only those suffered after Equifax admitted to the breach.

Right now, the press is reporting “dozens” of lawsuits against Equifax from shareholders, consumers, and banks. Massachusetts has sued Equifax for violating state consumer protection and privacy laws. Other states may follow suit.

If any of these plaintiffs win in the court, it will be a rare victory for victims of privacy breaches against the companies that have our personal information. Current law is too narrowly focused on people who have suffered financial losses directly traceable to a specific breach. Proving this is difficult. If you are the victim of identity theft in the next month, is it because of Equifax or does the blame belong to another of the thousands of companies who have your personal data? As long as one can’t prove it one way or the other, data brokers remain blameless and liability free.

Additionally, much of this market in our personal data falls outside the protections of the Fair Credit Reporting Act. And in order for the Federal Trade Commission to levy a fine against Equifax, it needs to have a consent order and then a subsequent violation. Any fines will be limited to credit information, which is a small portion of the enormous amount of information these companies know about us. In reality, this is not an effective enforcement regime.

Although the FTC is investigating Equifax, it is unclear if it has a viable case.

6. The market cannot fix this because we are not the customers of data brokers.

The customers of these companies are people and organizations who want to buy information: banks looking to lend you money, landlords deciding whether to rent you an apartment, employers deciding whether to hire you, companies trying to figure out whether you’d be a profitable customer — everyone who wants to sell you something, even governments.

Markets work because buyers choose from a choice of sellers, and sellers compete for buyers. None of us are Equifax’s customers. None of us are the customers of any of these data brokers. We can’t refuse to do business with the companies. We can’t remove our data from their databases. With few limited exceptions, we can’t even see what data these companies have about us or correct any mistakes.

We are the product that these companies sell to their customers: those who want to use our personal information to understand us, categorize us, make decisions about us, and persuade us.

Worse, the financial markets reward bad security. Given the choice between increasing their cybersecurity budget by 5%, or saving that money and taking the chance, a rational CEO chooses to save the money. Wall Street rewards those whose balance sheets look good, not those who are secure. And if senior management gets unlucky and the a public breach happens, they end up okay. Equifax’s CEO didn’t get his $5.2 million severance pay, but he did keep his $18.4 million pension. Any company that spends more on security than absolutely necessary is immediately penalized by shareholders when its profits decrease.

Even the negative PR that Equifax is currently suffering will fade. Unless we expect data brokers to put public interest ahead of profits, the security of this industry will never improve without government regulation.

7. We need effective regulation of data brokers.

In 2014, the Federal Trade Commission recommended that Congress require data brokers be more transparent and give consumers more control over their personal information. That report contains good suggestions on how to regulate this industry.

First, Congress should help plaintiffs in data breach cases by authorizing and funding empirical research on the harm individuals receive from these breaches.

Specifically, Congress should move forward legislative proposals that establish a nationwide “credit freeze” — which is better described as changing the default for disclosure from opt-out to opt-in — and free lifetime credit monitoring services. By this I do not mean giving customers free credit-freeze options, a proposal by Senators Warren and Schatz, but that the default should be a credit freeze.

The credit card industry routinely notifies consumers when there are suspicious charges. It is obvious that credit reporting agencies should have a similar obligation to notify consumers when there is suspicious activity concerning their credit report.

On the technology side, more could be done to limit the amount of personal data companies are allowed to collect. Increasingly, privacy safeguards impose “data minimization” requirements to ensure that only the data that is actually needed is collected. On the other hand, Congress should not create a new national identifier to replace the Social Security Numbers. That would make the system of identification even more brittle. Better is to reduce dependence on systems of identification and to create contextual identification where necessary.

Finally, Congress needs to give the Federal Trade Commission the authority to set minimum security standards for data brokers and to give consumers more control over their personal information. This is essential as long as consumers are these companies’ products and not their customers.

8. Resist complaints from the industry that this is “too hard.”

The credit bureaus and data brokers, and their lobbyists and trade-association representatives, will claim that many of these measures are too hard. They’re not telling you the truth.

Take one example: credit freezes. This is an effective security measure that protects consumers, but the process of getting one and of temporarily unfreezing credit is made deliberately onerous by the credit bureaus. Why isn’t there a smartphone app that alerts me when someone wants to access my credit rating, and lets me freeze and unfreeze my credit at the touch of the screen? Too hard? Today, you can have an app on your phone that does something similar if you try to log into a computer network, or if someone tries to use your credit card at a physical location different from where you are.

Moreover, any credit bureau or data broker operating in Europe is already obligated to follow the more rigorous EU privacy laws. The EU General Data Protection Regulation will come into force, requiring even more security and privacy controls for companies collecting storing the personal data of EU citizens. Those companies have already demonstrated that they can comply with those more stringent regulations.

Credit bureaus, and data brokers in general, are deliberately not implementing these 21st-century security solutions, because they want their services to be as easy and useful as possible for their actual customers: those who are buying your information. Similarly, companies that use this personal information to open accounts are not implementing more stringent security because they want their services to be as easy-to-use and convenient as possible.

9. This has foreign trade implications.

The Canadian Broadcast Corporation reported that 100,000 Canadians had their data stolen in the Equifax breach. The British Broadcasting Corporation originally reported that 400,000 UK consumers were affected; Equifax has since revised that to 15.2 million.

Many American Internet companies have significant numbers of European users and customers, and rely on negotiated safe harbor agreements to legally collect and store personal data of EU citizens.

The European Union is in the middle of a massive regulatory shift in its privacy laws, and those agreements are coming under renewed scrutiny. Breaches such as Equifax give these European regulators a powerful argument that US privacy regulations are inadequate to protect their citizens’ data, and that they should require that data to remain in Europe. This could significantly harm American Internet companies.

10. This has national security implications.

Although it is still unknown who compromised the Equifax database, it could easily have been a foreign adversary that routinely attacks the servers of US companies and US federal agencies with the goal of exploiting security vulnerabilities and obtaining personal data.

When the Fair Credit Reporting Act was passed in 1970, the concern was that the credit bureaus might misuse our data. That is still a concern, but the world has changed since then. Credit bureaus and data brokers have far more intimate data about all of us. And it is valuable not only to companies wanting to advertise to us, but foreign governments as well. In 2015, the Chinese breached the database of the Office of Personal Management and stole the detailed security clearance information of 21 million Americans. North Korea routinely engages in cybercrime as way to fund its other activities. In a world where foreign governments use cyber capabilities to attack US assets, requiring data brokers to limit collection of personal data, securely store the data they collect, and delete data about consumers when it is no longer needed is a matter of national security.

11. We need to do something about it.

Yes, this breach is a huge black eye and a temporary stock dip for Equifax — this month. Soon, another company will have suffered a massive data breach and few will remember Equifax’s problem. Does anyone remember last year when Yahoo admitted that it exposed personal information of a billion users in 2013 and another half billion in 2014?

Unless Congress acts to protect consumer information in the digital age, these breaches will continue.

Thank you for the opportunity to testify today. I will be pleased to answer your questions.

Russian Site-Blocking Chiefs Under Investigation For Fraud

Post Syndicated from Andy original https://torrentfreak.com/russian-site-blocking-chiefs-under-investigation-for-fraud-171024/

Over the past several years, Rozcomnadzor has become a highly controversial government body in Russia. With responsibility for ordering web-blockades against sites the country deems disruptive, it’s effectively Russia’s online censorship engine.

In total, Rozcomnadzor has ordered the blocking of more than 82,000 sites. Within that total, at least 4,000 have been rendered inaccessible on copyright grounds, with an additional 41,000 innocent platforms blocked as collateral damage.

This massive over-blocking has been widely criticized in Russia but until now, Rozcomnadzor has appeared pretty much untouchable. However, a scandal is now engulfing the organization after at least four key officials were charged with fraud offenses.

News that something was potentially amiss began leaking out two weeks ago, when Russian publication Vedomosti reported on a court process in which the initials of the defendants appeared to coincide with officials at Rozcomnadzor.

The publication suspected that three men were involved; Roskomnadzor spokesman Vadim Ampelonsky, head of the legal department Boris Yedidin, and Alexander Veselchakov, who acts as an advisor to the head of the department monitoring radio frequencies.

The prosecution’s case indicated that the defendants were involved in “fraud committed by an organized group either on an especially large scale or entailing the deprivation of citizen’s rights.” Indeed, no further details were made available, with the head of Rozcomnadzor Alexander Zharov claiming he knew nothing about a criminal case and refusing to answer questions.

It later transpired that four employees had been charged with fraud, including Anastasiya Zvyagintseva, who acts as the general director of CRFC, an agency under the control of Rozcomnadzor.

According to Kommersant, Zvyagintseva’s involvement is at the core of the matter. She claims to have been forced to put “ghost employees” on the payroll, whose salaries were then paid to existing employees in order to increase their salaries.

The investigation into the scandal certainly runs deep. It’s reported that FSB officers have been spying on Rozcomnadzor officials for six months, listening to their phone conversations, monitoring their bank accounts, and even watching the ATM machines they used.

Local media reports indicate that the illegal salary scheme ran from 2012 until February 2017 and involved some 20 million rubles ($347,000) of illegal payments. These were allegedly used to retain ‘valuable’ employees when their regular salaries were not lucrative enough to keep them at the site-blocking body.

While Zvyagintseva has been released pending trial, Ampelonsky, Yedidin, and Veselchakov have been placed under house arrest by the Chertanovsky Court of Moscow until November 7.

Rozcomnadzor’s website is currently inaccessible.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.