Tag Archives: transportation/advanced-cars

Pilot Test Begins for Tech to Connect Everyday Vehicles

Post Syndicated from Sandy Ong original https://spectrum.ieee.org/transportation/advanced-cars/pilot-test-begins-for-tech-to-connect-everyday-vehicles

Drivers can use a number of signals to communicate with other drivers: taillights, high beams, the horn. But car manufacturers envision a future where cars themselves will exchange messages about where they’re going and where they’ve been.

Connected vehicles—those fitted with technology that allows them to communicate with other drivers, pedestrians, and nearby infrastructure—are increasingly being tested around the world. In July, Columbus, Ohio, will be the latest city to launch a connected-vehicle pilot.

Connected vehicles have long been overshadowed by their more famous cousins: autonomous vehicles. Although all autonomous vehicles have aspects of connectivity, adding certain technologies to ordinary cars could prevent accidents and save lives in the near term.

The Connected Vehicle Environment project in Columbus will see up to 1,800 public and private vehicles fitted with special onboard units and dashboard-mounted head-up displays. Those cars will be able to receive messages from traffic lights at 113 intersections, including some of the city’s most dangerous crossings. The aim is to study the impacts of connectivity on safety and traffic flow. Organizers will begin recruiting drivers and installing onboard units in July, with testing to begin in November.

The technology will enable “basic safety messaging,” including warnings to reduce speed or look out for pedestrians ahead, explains Luke Stedke, who manages communications at Drive Ohio, the state’s smart-mobility center. The pilot is part of the Smart Columbus initiative, which was launched after the city won US $40 million in the U.S. Department of Transportation (DOT)’s 2015 Smart City Challenge.

Columbus joins two other cities in Ohio—Marysville and Dublin—that have recently begun testing connected vehicles. Collectively, the DOT has invested more than $45 million in such trials in Wyoming, Tampa, and New York City.

The keen interest in connecting nonautonomous vehicles comes primarily from the technology’s potential to reduce crashes and save lives, says Debra Bezzina of the University of Michigan’s Transportation Research Institute. Sensors to alert drivers to hazards in their blind spots, streetlight-mounted cameras that show a pedestrian at an upcoming intersection, and an approaching car that warns of black ice ahead are just a few examples of what may be possible.

“Connected-vehicle technology can prevent 80 percent of all unimpaired car crashes,” says Bezzina. “So it could save billions of dollars a year.”

The new technology also promises more efficient traffic management and greener commuting. Emergency vehicles could move through intersections quicker with all the lights in their favor. Motorists, using information broadcast by traffic signals about their phase and timing, could adjust their speed accordingly and save fuel.

Connected-vehicle communications can run either on a wireless technology called Dedicated Short-Range Communications (DSRC) or on a cellular-based alternative called Cellular-V2X. DSRC is scalable, offers low latency, and works well in an urban environment, says mechanical engineer Joshua Siegel from Michigan State University (MSU). But it has a limited range (roughly 1 kilometer).

C-V2X, on the other hand, has higher latency but superior range and greater bandwidth. With experts predicting that the rollout of 5G will improve latency, some countries, including China, have favored cellular networks. But the United States hasn’t given a clear edict on the issue, causing much uncertainty for automobile manufacturers.

Similar to other pilots around the country, the new Columbus trial will employ DSRC technology, which is farther up the road to being commercially available than C-V2X modules.

Many car manufacturers are keen to incorporate communications technology because it offers benefits that self-driving vehicles can’t. For one, the tech works in all weather conditions, unlike notoriously fickle radar and lidar detection systems.

Another advantage: “You can get information from infrastructure that you just cannot get with an autonomous vehicle,” says Bezzina. While autonomous-vehicle sensors might be able to inform you of a red light ahead, she says, connected-vehicle technology is capable of telling you that “there’s a light ahead, it’s located here, here’s what the geography of the intersection looks like, and that light will only remain red for the next two seconds. It’s much deeper information.”

The next step for connected-vehicle trials would be to expand testing from 1,000 vehicles to possibly 1 million, says MSU’s Siegel. “We’re not seeing the full benefits of scale in the pilots we’ve had today,” he says. With more cars connected, vehicles could platoon or travel close together on highways while remaining safe, and the timing of traffic lights could be automatically adjusted to account for vehicle load.

Large-scale trials will bring another lesson too, says Siegel: “You’ll learn a lot about the social acceptance of this.”

This article appears in the July 2020 print issue as “U.S. Cities Pilot Connected-Vehicle Tech.”

Volkswagen’s E-Car Rollout Slips on Software

Post Syndicated from Robert N. Charette original https://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/volkswagens-ecar-rollout-slips-on-software

Today Volkswagen’s European customers will be able to make binding preorders for one of the 30,000 limited 1st Edition ID.3 fully-electric compact cars. It’s the first fruit of the company’s EUR 60 billion strategy to become the world’s dominant manufacturer of all-electric and hybrid vehicles. 

Customers who opt for early delivery can expect the cars as early as September. They had expected to take delivery this summer, but software problems delayed the rollout. In replacing the multiple electric architecture VW currently uses with one new architecture, VW joins the list of old-line manufacturers that have discovered that simplified software can be hard to design

The problems came to light late last year when the German business publication Manager Magazin reported that VW was struggling to get its new vehicle software and systems architecture to operate properly. Up to 20,000 ID.3 vehicles were predicted to need software updates post-production, it reported. However, VW insisted that software problems were not going to delay the summer 2020 launch.

Problems continued into the first quarter. VW insiders told the German magazine the architecture had been developed “too hastily.” Test drivers were reporting up to 300 errors per day, and more than 10,000 technicians had been mobilized to fix them. Systems and software integration, along with proper event timing, seemed to be some of the problems’ causes. Even VW had to admit at the time that “things are not going great.”

Even now, customers who decide to take delivery of 1st Edition ID.3 vehicles in September will be missing two digital functions, the App Connect function and the distance feature in the head-up display. They’ll be updated in early 2021. 

The delayed launch of the ID.3 was one reason why VW’s board replaced Herbert Diess as chief executive of the VW brand last week. He will still be chief executive of the VW group, however.

The software problems should come as no surprise, because VW has taken a very ambitious approach. As reported in AutoNews (subscription required), VW chose to supplant its eight legacy architectures with a single architecture and an associated operating system based on three powerful computers, executing software developed in-house. The system orchestrates all things digital in the vehicle, which used to require 70 or more electronic control modules. 

Traditionally, the software for the electronic control modules had been developed mainly by VW’s suppliers. However, last year VW told them that it would be the prime software developer for all of its vehicles; it spun off an organization called Car.Software to do so. That organization is expected to hire another 5,000 or more digital experts on top of the initial 3,000 to develop and maintain the software used across all VW brands.

In addition, the software operating system needed network capable so software could be updated via VW’s automotive cloud, which the company is developing together with Microsoft. Such over-the-air updating was pioneered by Tesla, whose entire software/system architectural approach VW has made clear it is emulating.

Furthermore, VW has developed a dedicated chassis platform that it calls the modular electric drive matrix (MEB). The main point is to let VW quickly develop a wide range of electric vehicles in a short time, at an affordable cost. It should also help VW manage the increasing complexity of the software it uses to control the engine and drivetrain in internal combustion vehicles, which it must do to meet ever more stringent EU environmental regulations. 

Whether VW will navigate all the technical, managerial and organization changes this software initiative imposes remains to be seen. It’s an old-line car company trying to build the new thing—computers on wheels.  One thing is certain: It is spending a lot of money to make it happen. 

Lucid Motors’ Peter Rawlinson Talks E-Car Efficiency

Post Syndicated from Philip E. Ross original https://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/lucid-motors-says-ecar-design-all-about-efficiency

Two years ago, our own Lawrence Ulrich wrote that Lucid Motors “might just have a shot at being a viable, smaller-scale competitor to Tesla,” with series production of its fiendishly fast electric car, the Air, then slated for 2019.

Here we are in 2020, and you still can’t buy the Air. But now all systems are go, insists Peter Rawlinson, the chief executive and chief technology officer of Lucid and, in a former incarnation, the chief engineer for the Tesla Model S. He credits last year’s infusion of US $1 billion from the sovereign wealth fund of Saudi Arabia.

2020 Top 10 High Tech Cars

Post Syndicated from Lawrence Ulrich original https://spectrum.ieee.org/transportation/advanced-cars/2020-top-10-high-tech-cars

In 2019, the auto industry finally started acting like its future was electric. How do we know? Just follow the money.

General Motors just announced it was spending US $20 billion over five years to bring out a new generation of electric vehicles. Volkswagen Group has pledged $66 billion spread over five years, most of it for electric propulsion. Ford hopes to transform its lineup and image with an $11.5 billion program to develop EVs. And of course, Tesla has upstaged them all with the radical, scrapyard-from-Mars Cybertruck, a reminder that Elon Musk will remain a threat to the automotive order for the foreseeable future.

This past year, I saw the first fruit of Volkswagen Group’s massive investment: the Porsche Taycan, a German sport sedan that sets new benchmarks in performance and fast charging. It lived up to all the hype, I’m happy to say. As for Tesla and Ford, stay tuned. The controversial Tesla Cybertruck, the hotly anticipated Ford Mustang Mach-E, and the intriguing Rivian pickup and SUV (which has been boosted by $500 million in backing from Ford) are still awaiting introduction. EV fans, as ever, must be patient: The Mach-E won’t reach showrooms until late this year, and as for the Rivian and Cybertruck, who knows?

As is our habit, we focus here on cars that are already in showrooms or will be within the next few months. And we do include some good old gasoline-powered cars. Our favorite is the Corvette: It adopts a mid-engine design for the first time in its 67-year history. Yes, an electrified version is in the works.

Chevrolet Corvette Stingray C8

The middle: where no Corvette engine has gone before

Base price: US $59,995

By now, even casual car fans have heard that the Corvette has gone mid-engine. It’s a radical realignment for a car famous for big V8s nestling below long, flowing hoods since the ’Vette’s birth in 1953. Best of all, it works, and it means the Stingray will breathe down the necks of Ferraris, McLarens, and other mid-engine exotics—but at a ridiculous base price of just US $59,995.

Tadge Juechter, the Corvette’s chief engineer, says that the previous, seventh-generation model had reached the limits of front-engine physics. By rebalancing weight rearward, the new design allows the Stingray to put almost preposterous power to the pavement without sacrificing the comfort and everyday drivability that buyers demand.

I got my first taste of these new physics near the old stagecoach town of Tortilla Flat, Ariz. Despite having barely more grunt than last year’s base model—369 kilowatts (495 horsepower) from the 6.2-liter V8 rumbling just behind my right shoulder—the Corvette scorches to 60 miles per hour (97 kilometers per hour) nearly a full second quicker, at a supercar-baiting 2.9 seconds.

This Stingray should top out at around 190 mph. And there are rumors of mightier versions in the works, perhaps even an electric or hybrid ’Vette with at least 522 kW (700 hp).

With the engine out back, driver and passenger sit virtually atop the front axle, 42 centimeters (16.5 inches) closer to the action, wrapped in a fighter-jet-inspired cockpit with a clearer view over a dramatically lowered hood. Thanks to a new eight-speed, dual-clutch automated gearbox, magnetorheological shocks, and a limited-slip rear differential—all endlessly adjustable—my Corvette tamed every outlaw curve, bump, and dip in its Old West path. It’s so stable and composed that you’ll need a racetrack to approach its performance limits. It’s still fun on public roads, but you can tell that it’s barely breaking a sweat.

Yet it’s nearly luxury-car smooth and quiet when you’re not romping on throttle. And it’s thrifty. Figure on 9 to 8.4 liters per 100 kilometers (26 to 28 miles per gallon) at a steady highway cruise, including sidelining half its cylinders to save fuel. A sleek convertible model does away with the coupe’s peekaboo view of the splendid V8 through a glass cover. The upside is an ingenious roof design that folds away without hogging a cubic inch of cargo space. Unlike any other mid-engine car in the world, the Corvette will also fit two sets of golf clubs (or equivalent luggage) in a rear trunk, in addition to the generously sized “frunk” up front.

The downside to that convenience is a yacht-size rear deck that makes—how shall we put this?—the Chevy’s butt look fat.

An onboard Performance Data Recorder works like a real-life video game, capturing point-of-view video and granular data on any drive, overlaying the video with telemetry readouts, and allowing drivers to analyze lap times and performance with Cosworth racing software. The camera-and-GPS system allows any road or trip to be stored and analyzed as though it was a timed circuit—perfect for those record-setting grocery runs.

Polestar 1

This hybrid is tuned for performance

Base price: US $156,500

Consider the Polestar 1 a tech tease from Volvo. This fiendishly complex plug-in hybrid will be seen in just 1,500 copies, built over three years in a showpiece, enviro-friendly factory in Chengdu, China. Just as important, it’s the first of several planned Polestars, a Volvo sub-brand that aims to expand the company’s electric reach around the globe.

I drove mine in New Jersey, scooting from Hoboken to upstate New York, as fellow drivers craned their necks to glimpse this tuxedo-sharp, hand-built luxury GT. The body panels are formed from carbon fiber, trimming 227 kilograms (500 pounds) from what’s still a 2,345-kg (5,170-pound) ride. Front wheels are driven by a four-cylinder gas engine, whose combo of a supercharger and turbocharger generates 243 kilowatts (326 horses) from just 2.0 liters of displacement, with another 53 kW (71 hp) from an integrated starter/generator. Two 85-kW electric motors power the rear wheels, allowing some 88 kilometers (55 miles) of emissions-free range—likely a new high for a plug-in hybrid—before the gas engine kicks in. Mashing the throttle summons some 462 kW (619 hp) and 1,000 newton meters (737 pound-feet) of torque, allowing a 4.2-second dash to 60 miles per hour (97 kilometers per hour). It’s fast, but not lung-crushing fast, like Porsche’s Taycan.

Yet the Polestar’s handling is slick, thanks to those rear motors, which work independently, allowing torque vectoring—the speeding or slowing of individual wheels—to boost agility. And Öhlins shock absorbers, from the renowned racing and performance brand, combine precise body control with a creamy-smooth ride. It’s a fun drive, but Polestar’s first real test comes this summer with the Polestar 2 EV. That fastback sedan’s $63,750 base price and roughly 440-km (275-mile) range will see it square off against Tesla’s sedans. Look for it in next year’s Top 10.

Hyundai Sonata

It has the automation of a much pricier car

Base price: US $24,330

The U.S. market for family sedans has been gutted by SUVs. But rather than give up on sedans, as Ford and Fiat Chrysler have done, Hyundai has doubled down with a 2020 Sonata that’s packed with luxury-level tech and alluring design at a mainstream price.

The Sonata is packed with features that were recently found only on much costlier cars. The list includes Hyundai’s SmartSense package of forward-collision avoidance, automated emergency braking, lane-keeping assist, automatic high-beam assist, adaptive cruise control, and a drowsy-driver attention warning, and they’re all standard, even in the base model. The SEL model adds a blind-spot monitor, but with a cool tech twist: Flick a turn signal and a circle-shaped camera view of the Sonata’s blind spot appears in the digital gauge cluster in front of the driver. It helped me spot bicyclists in city traffic.

Hyundai’s latest infotainment system, with a 10-inch (26-centimeter) monitor, remains one of the industry’s most intuitive touch screens. Taking a page from much more expensive BMWs, the Hyundai’s new “smart park” feature, standard on the top-shelf Limited model, lets it pull into or out of a tight parking spot or garage with no driver aboard, controlled by the driver through the key fob.

That fob can be replaced by a digital key, which uses an Android smartphone app, Bluetooth Low Energy, and Near Field Communication to unlock and start the car. Owners can share digital-key access with up to three users, including sending codes via the Web.

Even the Sonata’s hood is festooned with fancy electronics. What first looks like typical chrome trim turns out to illuminate with increasing intensity as the strips span the fenders and merge into the headlamps. The chrome was laser-etched to allow a grid of 0.05-millimeter LED squares to shine through. Add it to the list of bright ideas from Hyundai.

Porsche Taycan

It outperforms Tesla—for a price

Base price: US $114,340

Yes, the all-electric Porsche Taycan is better than a Tesla Model S. And it had damn well better be: The Porsche is a far newer design, and it sells at up to double the Tesla’s price. What you get for all that is a four-door supercar GT, a technological marvel that starts the clock ticking on the obsolescence of fossil-fueled automobiles.

This past September I spent two days driving the Taycan Turbo S through Denmark and Germany. One high point was repeated runs to 268 kilometers per hour (167 miles per hour) on the Autobahn, faster than I’ve ever driven an EV. From a standing start, an automated launch mode summoned 560 kilowatts (750 horsepower) for a time-warping 2.6-second dash to 60 mph.

As alert readers have by now surmised, the Taycan is fast. But one of its best time trials takes place with the car parked. Thanks to the car’s groundbreaking 800-volt electrical architecture—with twice the voltage of the Tesla’s—charging is dramatically quicker. Doubling the voltage means the current needed to deliver a given level of power is of course halved. Pulling off the Autobahn during my driving test and connecting the liquid-cooled cables of a 350-kW Ionity charger, I watched the Porsche suck in enough DC to replenish its 93.4-kW battery from 8 to 80 percent in 20 minutes flat.

Based on my math, the Porsche added nearly 50 miles of range for every 5 minutes of max charging. In the time it takes to hit the bathroom and pour a coffee, owners can add about 160 kilometers (100 miles) of range toward the Taycan’s total, estimated at 411 to 450 km (256 to 280 miles) under the new Worldwide Harmonized Light Vehicle Test Procedure. But the U.S. Environmental Protection Agency (EPA) seems to have sandbagged the Porsche, pegging its range at 201 miles, even as test drivers report getting 270 miles or more. Porsche hopes to have 600 of the ultrafast DC chargers up and running in the United States by the end of this year.

That 800-volt operation brings other advantages, too. With less current to carry, the wiring is slimmer and lighter, saving 30 kilograms in the electrical harness alone. Also, less current is drawn during hard driving, which reduces heat and wear on the electric motors. Porsche says that’s key to the Taycan’s repeatable, consistent performance.

In its normal driving mode, the Turbo S version kicks out 460 kW (617 horsepower) and 1,049 newton meters (774 pound-feet) of torque. The front and back axles each have an electric motor with a robust 600-amp inverter; in other models the front gets 300 amps and the rear gets 600 amps.

The Porsche’s other big edge is its race-bred handling. Though this sedan tops 2,310 kg (5,100 pounds), its serenity at boggling speeds is unmatched. Credit the full arsenal of Porsche’s chassis technology: four-wheel-steering, active roll stabilization, and an advanced air suspension offering three levels of stiffness, based on three separate pressurized chambers. Porsche claims class-leading levels of brake-energy recuperation. It’s also Porsche’s most aerodynamic production model, with a drag coefficient of just 0.22, about as good as any mass-production car ever.

Porsche invested US $1 billion to develop the Taycan, with $800 million of that going to a new factory in Zuffenhausen, Germany. For a fairer fight with Tesla, a more-affordable 4S model arrives in U.S. showrooms this summer, with up to 420 kW (563 hp) and a base price of $103,800.

Audi RS Q8

Mild hybrid, wild ride

Base price (est.): US $120,000

I’m rocketing up a dormant volcano to the highest peak in Spain, Mt. Teide in the Canary Islands. There may be more efficient ways to test a luxury crossover SUV, but none more fun.

I’m in the Audi RS Q8, a mild-hybrid version of the Q8, introduced just last year. I’m getting a lesson in how tech magic can make a roughly 2,310-kilogram (5,100-pound) vehicle accelerate, turn, and brake like a far smaller machine.

The RS Q8’s pulsing heart is a 4-liter, 441-kilowatt (591-horsepower) twin-turbo V8. It’s augmented by a mild-hybrid system based on a 48-volt electrical architecture that sends up to 12 kW to charge a lithium-ion battery. That system also powers trick electromechanical antiroll bars to keep the body flatter than a Marine’s haircut during hard cornering. An adaptive air suspension hunkers down at speed to reduce drag and center of gravity, while Quattro all-wheel drive and four-wheel steering provide stability.

A mammoth braking system, largely shared with the Lamborghini Urus, the Audi’s corporate cousin, includes insane 10-piston calipers up front. That means 10 pressure points for the brake pads against the spinning brake discs, for brawny stopping power and improved heat management and pedal feel. Optional carbon-ceramic brakes trim 19 pounds from each corner.

Audi’s engineers fine-tuned it all in scores of trials on Germany’s fabled Nürburgring circuit, which the RS Q8 stormed in 7 minutes, 42 seconds. That’s faster than any other SUV in history.

Audi’s digital Virtual Cockpit and MMI Touch center screens are smoothly integrated in a flat panel. A navigation system analyzes past drives to nearby destinations, looking at logged data on traffic density and the time of day. And the Audi Connect, an optional Android app that can be used by up to five people, can unlock and start the Audi.

Audi quotes a conservative 3.8-second catapult from 0 to 100 kilometers per hour (62 miles per hour). We’re betting on 0 to 60 mph in 3.5 seconds, maybe less.

Mini Cooper SE

It offers all-electric sprightliness

US $30,750

I’m on a street circuit at the FIA’s Formula E race in Brooklyn, N.Y., about to take my first all-electric laps in the new Mini Cooper SE during a break in race action.

The Manhattan skyline paints a stunning backdrop across the harbor. My Red Hook apartment happens to be a short walk from this temporary circuit; so is the neighborhood Tesla showroom, and an Ikea and a Whole Foods, both equipped with EV chargers. In other words, this densely populated city is perfect for the compact, maneuverable, electric Mini, that most stylish of urban conveyances.

It’s efficient, too, as Britain’s Mini first proved 61 years ago, with the front-drive car that Sir Alec Issigonis created in response to the gasoline rationing in Britain following the 1956 Suez crisis. This Mini squeezes 32.6 kilowatt-hours worth of batteries into a T-shaped pack below its floor without impinging on cargo space. At a hair over 1,360 kilograms (3,000 pounds), this Mini adds only about 110 kg to a base gasoline Cooper.

With a 135-kilowatt (181-horsepower) electric motor under its handsome hood, the Mini sails past the Formula E grandstand, quickening my pulse with its go-kart agility and its ethereal, near-silent whir. The body sits nearly 2 centimeters higher than the gasoline version, to accommodate 12 lithium-ion battery modules, but the center of gravity drops by 3 cm (1.2 inches), a net boost to stability and handling. Because the Mini has neither an air-inhaling radiator grille nor an exhaust-exhaling pipe, it’s tuned for better aerodynamics as well.

A single-speed transmission means I never have to shift, though I do fiddle with the toggle switch that dials up two levels of regenerative braking. That BMW electric power train, with 270 newton meters (199 pound-feet) of instant-on torque, punts me from 0 to 60 miles per hour (0 to 97 kilometers per hour) in just over 7 seconds, plenty frisky for such a small car. The company claims a new wheelspin actuator reacts to traction losses notably faster, a sprightliness that’s particularly gratifying when gunning the SE around a corner.

It all reminds me of that time when the Tesla Roadster was turning heads and EVs were supposed to be as compact and light as possible to save energy. The downside is that a speck-size car can fit only so much battery. The Mini’s has less than one-third the capacity of the top Tesla Model S. That’s only enough for a mini-size range of 177 km (110 miles). That relatively tiny battery helps deliver an appealing base price of $23,250, including a $7,500 federal tax credit. And this is still a hyperefficient car: On a subsequent drive in crawling Miami traffic, the Mini is on pace for 201 km (125 miles) of range, though its battery contains the equivalent of less than 0.9 gallon of gasoline.

Following a full 4-hour charge on a basic Level 2 charger, you’ll be zipping around town again, your conscience as clear as the air around the Mini.

Vintage Fiat 124 Spider, Retooled by Electric GT

A drop-in electric-drive system gives new life to an old car—like this 1982 Spider

System base price: US $32,500

Vintage-car aficionados love to grouse about the time and money it takes to keep their babies running. Electric GT has a better idea: Skip ahead a century. The California company has developed an ingenious plug-and-play “crate motor” that transplants an electric heart into most any vintage gasoline car.

I drove an orange 1982 Fiat 124 Spider that Electric GT converted to battery drive. With a relatively potent 89 kilowatts (120 horsepower) and 235 newton meters (173 pound-feet) of torque below its hood, and 25 kilowatt-hours’ worth of repurposed Tesla batteries stuffed into its trunk area, the Fiat can cover up to 135 kilometers (85 miles) of driving range, enough for a couple hours of top-down cruising.

Best of all, the system is designed to integrate exclusively with manual-transmission cars, including the Fiat’s charming wood-topped shifter and five forward gears. This romantic, Pininfarina-designed Fiat also squirts to 60 miles per hour in about 7 seconds, about 3 seconds quicker than the original old-school dawdler.

Electric GT first got attention when it converted a 1978 Ferrari 308, best known as Tom Selleck’s chariot on the U.S. TV show “Magnum, P.I.,” to electric drive. The company’s shop, north of Los Angeles, is filled with old Porsches, Toyota FJ40s, and other cars awaiting electrification.

The crate motors even look like a gasoline engine, with what appears at first glance to be V-shaped cylinder banks and orange sparkplug wires. Systems are engineered for specific cars, and the burliest of the bunch store 100 kWh, enough to give plenty of range.

With system prices starting at US $32,500 and topping $80,000 for longer-range units, this isn’t a project for the backyard mechanic on a Pep Boys budget. Eric Hutchison, Electric GT’s cofounder, says it’s for the owner who loves a special car and wants to keep it alive but doesn’t want to provide the regular babying care that aging, finicky machines typically demand.

“It’s the guy who says, ‘I already own three Teslas. Now, how do I get my classic Jaguar electrified?’ ” says Hutchison.

Components designed for easy assembly should enable a good car hobbyist to perform the conversion in just 40 to 50 hours, the company says.

“We’re taking out all the brain work of having to be an expert in battery safety or electrical management,” Hutchison says. “You can treat it like a normal engine swap.”

Toyota RAV4 Hybrid

A redesigned hybrid system optimizes fuel economy

Base price: $29,470

The RAV4 is the best-selling vehicle in the United States that isn’t a pickup truck. What’s more, its hybrid offshoot is the most popular gas-electric SUV. No wonder: Forty-four percent of all hybrids sold in America in 2018 were Toyotas. And where many hybrids disappoint in real-world fuel economy, the RAV4 delivers. That’s why this Toyota, whose 2019 redesign came too late to make last year’s Top 10 list, is getting its due for 2020.

My own tests show 41 miles per gallon (5.7 liters per 100 kilometers) in combined city and highway driving, 1 mpg better than the EPA rating. Up front, a four-cylinder, 131-kilowatt (176-horsepower) engine mates with an 88-kW (118-hp) electric motor. A 40-kW electric motor under the cargo hold drives the rear wheels. Altogether, you get a maximum 163 kW (219 hp) in all-wheel-drive operation, with no driveshaft linking the front and rear wheels. The slimmer, redesigned hybrid system adds only about 90 kilograms (about 200 pounds) and delivers a huge 8-mile-per-gallon gain over the previous model. Toyota’s new Predictive Efficient Drive collects data on its driver’s habits and combines that with GPS route and traffic info to optimize both battery use and charging. For example, it will use more electricity while climbing hills in expectation of recapturing that juice on the downhill side. And when the RAV4 is riding on that battery, it’s as blissfully quiet as a pure EV. Toyota’s Safety Sense gear is standard, including adaptive cruise control, lane-keeping assist, and automatic emergency braking. Next year will bring the first-ever plug-in hybrid version, which Toyota says will be the most powerful RAV4 yet.

Ford Escape Hybrid

This SUV has carlike efficiency

Base price: US $29,450

Years ago, Americans began abandoning their cars for SUVs. So by now you might think those SUVs would be achieving carlike efficiencies. You’d be correct. Exhibit A: the new Ford Escape Hybrid, with its class-topping EPA rating of 5.7 liters per 100 kilometers (41 miles per gallon)in combined city and highway driving. That’s 1 mpg better than its formidable Top 10 competitor, the Toyota RAV4 Hybrid. Where the Toyota aims for a rugged-SUV look, the Ford wraps a softer, streamlined body around its own hybrid system.

That includes a 2.5-L, four-cylinder Atkinson-cycle engine, and a pair of electric motor/generators for a 150-kilowatt (200 horsepower) total. A briefcase-size battery pack, about a third the size of the old Escape Hybrid’s, tucks below the front passenger seat. The Toyota’s rear electric motor drives the rear wheels independently and thus offers only an all-wheel-drive version. The Escape forges a mechanical connection to the rear wheels, allowing both all-wheel drive and front-wheel-drive versions. The latter is lighter and more efficient when you’re not dealing with snow, ice, off-roading, or some combination of the three. The 0-to-60-mph run is dispatched in a whisper-quiet 8.7 seconds, versus 7.5 seconds for the Toyota. The Ford fires back with powerful, smartly tuned hybrid brakes that have more stopping power than either the Toyota or the gasoline-only Escapes can manage.

Tech features include a nifty automated self-parking function, evasive-steering assist, and wireless smartphone charging. A head-up display available on the Titanium—Ford’s first ever in North America—projects speed, navigation info, driver-assist status, and other data onto the windshield. FordPass Connect, a smartphone app, lets owners use a smartphone to lock, unlock, start, or locate their vehicle, and a standard 4G LTE Wi-Fi system links up to 10 mobile devices.

A plug-in hybrid version will follow later this year with what Ford says will be a minimum 30 miles of usable all-electric range. All told, it’s a winning one-two punch of efficiency and technology in an SUV that starts below $30,000.

Aston Martin Vantage AMR

High tech empowers retro tech

Base price: US $183,081

Take an Aston Martin Vantage, among the world’s most purely beautiful sports cars. Add a 375-kilowatt (503-horsepower) hand-assembled V8 from AMG, the performance arm of Mercedes-Benz. Assemble a team of engineers led by Matt Becker, Aston’s handling chief and the former maestro of Lotus’s chassis development. Does this sound like the recipe for the sports car of your dreams? Well, that dream goes over the top, with the manual transmission in the new Vantage AMR.

Burbling away from Aston’s AMR Performance Centre, tucked along the Nürburgring Nordschleife circuit in Germany, I am soon happily pressing a clutch pedal and finessing the stick shift on the Autobahn. The next thing I know, the Aston is breezing past 300 kilometers per hour (or 186 miles per hour), which is not far off its official 195-mph top speed. That’s a 7-mph improvement over the automatic version. This stick shouts defiance in a world in which the Corvette C8, the Ferrari, the Lamborghini, and the Porsche 911 have sent their manual transmissions to the great scrapyard in the sky.

But what’s impressive is how seamlessly the company has integrated this classic technology with the newest tech, including an adaptive power train and suspension. The AMR’s 1,500-kilogram (3,298-pound) curb weight is about 100 kg less than that of an automatic model.

The seven-speed manual, a once-maddening unit from Italy’s Graziano, has been transformed. An all-new gearbox was out of the question: No supplier wanted to develop one for a sports car that will have just 200 copies produced this year. So Aston had to get creative with the existing setup. Technicians reworked shift cables and precisely chamfered the gears’ “fingers”—think of the rounded teeth inside a Swiss watch—for smoother, more-precise shifts. A dual-mass flywheel was fitted to the mighty Mercedes V8 to dampen resonance in the driveline so the gearbox doesn’t rattle. The standard Vantage’s peak torque has been lowered from 681 to 625 newton meters (from 502 to 461 pound-feet) to reduce stress on transmission gears.

Aston also sweated the ideal placement of shifter and clutch pedal for the pilot. A dual-chamber clutch master cylinder, developed from a Formula One design, moves a high volume of transmission fluid quickly, but without an unreasonably heavy, thigh-killing clutch pedal. A selectable AM Shift Mode feature delivers modern, rev-matching downshifts, eliminating the need for human heel-and-toe maneuvers, with thrilling matched upshifts under full throttle.

The Graziano still takes a bit of practice: Its funky “dogleg” first gear sits off to the left, away from the familiar H pattern of shift gates. Second gear is where you’d normally find first, third replaces second, and so on. The layout originated in old-school racing, the idea being that first gear was unneeded, unless you were rolling through the pit lane. The dogleg pattern allows easier shifting from second to third and back without having to slide the shifter sideways. Once acclimated, I can’t get enough: The shifter grants me precise control over the brawny V8, and the Aston’s every balletic move. More improbably, this sweet shifter on the AMR won’t become a footnote in Aston history: It will be an option on every Vantage in 2021.

This article appears in the April 2020 print issue as “ 2020 Top 10 Tech Cars.”

Android Automotive OS Provides the Smarts for New Polestar 2 Electric Sedan

Post Syndicated from Lawrence Ulrich original https://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/android-automotive-os-news-polestar-2-electric-sedan

With global consumers tethered to their smartphones, automakers realize their cars need to deliver a similar infotainment experience—even if that means sharing the ride with Google and other tech giants. The long-awaited Android Automotive OS system debuts in a few months in the 2020 Polestar 2, and will ultimately power millions of cars from General Motors, Fiat Chrysler Automobiles, and the Renault-Nissan-Mitsubishi alliance. 

If you’re not familiar, Polestar is the new, electric and high-performance division of Sweden’s Volvo Cars and its China-based parent Geely Auto Group. And the Polestar Precept, an electric concept car unveiled online on Tuesday, after the coronavirus forced the cancellation of the Geneva International Motor Show, suggests a bright future for both Polestar design and Android OS. 

Test of Complex Autonomous Vehicle Designs

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/test-of-complex-autonomous-vehicle-designs

Autonomous vehicles (AV) combine multiple sensors, computers and communication technology to make driving safer and improve the driver’s experience. Learn about design and test of complex sensor and communication technologies being built into AVs from our white paper and posters.

Key points covered in our AV resources:

  • Comparison of dedicated short-range communications and C-V2X technologies
  • Definition of AV Levels 0 to 5
  • Snapshot of radar technology from 24 to 77 GHz

An Electric Motor That Works in Any Classic Car

Post Syndicated from Lawrence Ulrich original https://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/an-electric-motor-that-works-in-any-classic-car

Anyone who’s owned a vintage car can tell you—and boy, will they tell you—how much time, money, and maintenance is required to keep their baby running. And don’t forget the gasoline, garage oil puddles, or tailpipe pollution involved. 

A California startup may have the answer: A plug-and-play innovative motor to convert that finicky old gas-guzzler into an  electric car. Eric Hutchison and Brock Winberg first gained attention by rescuing a moldering, V-8-powered 1978 Ferrari 308—you may know it as the model that “Magnum: P.I.” drove on TV—and transforming it into an electric marvel.  Now, the co-founders of Electric GT have developed a DIY, electric “crate motor” that will let traditional gearheads or EV fans do the same.

“A lot of guys go out for a weekend in a classic car that’s 40 or 50 years old, but they get a ride home with AAA; it ends up being a one-way trip,” Hutchison says. “Here, you’re taking out 95 percent of the maintenance, which is the biggest problem with classic cars. So this is for enthusiasts who love their cars, but want a fun, reliable car that’s good for 100 or 125 miles on a weekend drive.”

Automotive Radar

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/whitepaper/automotive-radar

Download or order our beautifully designed automotive radar poster. It provides an overview of the technologies that make new cars safer and more convenient, including a snapshot of radar technology from 24 to 81 GHz.

Get into the fast lane with the latest technical resources on autonomous driving. Learn about the design and test of complex sensor and communication technologies being built into autonomous vehicles from our white paper and posters.


Not Too Hot, Not Too Cold: An Automatic Climate Control System

Post Syndicated from Michelle Hampson original https://spectrum.ieee.org/tech-talk/transportation/advanced-cars/not-too-hot-not-too-cold-an-automatic-climate-control-system

Journal Watch report logo, link to report landing page

Many drivers are familiar with the irritation of being stuck in traffic on a sweltering summer day. Two researchers at the University of Michigan are working to make uncomfortable situations like this a bit more bearable, by developing a system that will automatically control the climate within a car to optimize both the passengers’ comfort level and the efficiency of the HVAC system.

Over the past few years, Mohamed Abouelenien and Mihai Burzo have been developing approaches to analyze and detect various human behaviors, including lying, feeling stressed, remaining alert at the wheel, and expressing affection, among others. Their latest effort has been to develop a system for cars and homes that automatically detects a person’s thermal discomfort and adjusts accordingly, without any human input.