Tag Archives: Transportation/Sensors

Formula Student: The Crucial Role of the IMU/GNSS

Post Syndicated from Julie Laveissiere original https://spectrum.ieee.org/transportation/sensors/formula-student-the-crucial-role-of-the-imugnss

The Formula Student is an international educational engineering competition in which teams of students from around the world design, build, and race their own formula race cars. The competition includes 3 categories: Electric, Driverless, and Combustible cars. The challenge is not only to build the fastest race car, but also to show the best behavior in endurance, acceleration, or skid pad for example.  

As an expert in Inertial Navigation Systems and partner of several teams, SBG Systems interviewed various teams of engineers using SBG Inertial Measurement Unit (IMU) combined with Global Navigation Satellite System (GNSS) to understand what the key elements to success are.

The Importance of the IMU/GNSS for Precise Car Dynamics

The IMU/GNSS provides decisive information on the car state such as position, speed, yaw rate, slip angle, acceleration and orientation to the competing teams’ cars, as stated by D. Kiesewalter, from AMZ Racing: “We required an IMU for several reasons. Primarily to determine the position state of our car. We also needed to have efficient dynamics control & a reliable and accurate determination of Euler Angles (roll, pitch, and heading).” This way, engineers of electric and combustible cars can understand what to improve by comparing the actual state to the theoretical one.

Mastering acceleration is primordial during Formula races. When the car accelerates too much, it can drift, which causes the wheels to wear out. To minimize tire wear and get the most of the engine’s power and performance, acceleration has to be checked.

Tracking the race car trajectory is essential. A circuit analysis is conducted thanks to the IMU/GNSS data, especially position, and helps determine if the car is well positioned inside the circuit or when turning.

Let’s not forget that the Formula Student is a race. One of the competition goals is to go faster on the track than the other teams. Speed is therefore a crucial factor to study, thanks to the IMU/GNSS. But it is even more important for electric race cars, as they need to track the consumed energy.

Driverless Race Cars: Taking the Best of Heading and Navigation out of the IMU/GNSS

If a single-antenna GPS based heading is enough for racing cars, driverless vehicles require a more precise heading provided by a dual-antenna GNSS/IMU. It allows faster initialization and delivers true heading even in stationary position. J. Liberal Huarte from UPC Driverless (ETSEIB) explains that heading and localization are essential for other parts of the equipment to function properly: When we operate with LiDAR technologies, the fact that you are headed 1 degree to one side or the other influences a lot the position. So, precise heading is a big requirement. And also, localization and mapping: it is very important to localize yourself in the X, Y.” Therefore, implementing a Dual GNSS/IMU in this type of race car is the best solution, as it provides true heading and position, which also helps stabilize the LiDAR.

Heading is as important as precise navigation for driverless race cars. Real Time Kinematic (RTK) allows an extremely accurate estimation of the position (1-2 cm). The more accurate the IMU/GNSS is, the more the car is able to stay in the circuit lane without drifting.

The IMU/GNSS also helps conduct a circuit analysis that determines if the car is well positioned and so optimizes the trajectory.

Less Implementation Time = More Time for the Whole Project

We have very small test time, so if it goes fast, we can go faster on the track and test more”, states A. Kopp, Vehicle Dynamics Control, TUfast Racing. Teams don’t have much time to integrate the different parts of the vehicle and to test them. As CAN and ROS framework are mainly used by automobile engineers, IMU/GNSS that can be part of such workflows can save tremendous time of development. A clean C library provided with examples is another way to help teams with their integration.

About SBG Systems IMU/GNSS

SBG Systems is an international company which develops Inertial Measurement Unit with embedded GNSS, from miniature to high accuracy ranges. Combined with cutting-edge calibration techniques and advanced embedded algorithms, SBG Systems manufactures inertial solutions for industrial & research projects such as unmanned vehicle control (land, marine, and aerial), antenna tracking, camera stabilization, and surveying applications.

  • SBG Systems supports new ways to design cars. Students are welcome to send their sponsorship application through our website.

Choosing an Optical Measurement Sensor for Non-contact Displacement, Dimension and Thickness Measurement

Post Syndicated from IEEE Spectrum Recent Content full text original https://spectrum.ieee.org/webinar/choosing_an_optical_measurement_sensor_for_non-contact_displacement_dimension_and_thickness_measurement

Learn the operating principles of optical measuring sensors for displacement, position, thickness, gap, profile and 2D/3D dimension with just one sensor

A Radar to Watch You in Your Car

Post Syndicated from Philip E. Ross original https://spectrum.ieee.org/cars-that-think/transportation/sensors/vayyar-promises-a-radar-for-inside-the-car-as-well-as-outside-it

Vayyar says there are at least four good reasons to monitor passengers with radar instead of cameras

Used to be, when we said the walls had ears, it meant there were microphones hidden in them. Now, when we say the walls have eyes, will it mean they have radar?

Maybe so, at least in your car. Vayyar Imaging, a firm based in Tel Aviv, says it has a radar chip that can form a three-dimensional view of what’s going on inside a car as well as outside of it. Right now, though, it’s concentrating on the inside, because there’s a regulatory push to having in-cabin observation in place in the early 2020s, and Vayyar thinks it has a head start.

Everyone else seems to be banking on cameras, including infrared cameras, to do this job. You can buy such a system right now: the Cadillac CT6 Super Cruise. That car can drive itself for extended periods, but it uses a camera to scrutinize the driver for signs of distraction or fatigue to make sure that, if a problem comes up that the system can’t solve, it can safely hand control back to the human.

3 Types of 3D Sensing for Smartphones and Self-Driving Cars

Post Syndicated from IEEE Spectrum Staff original https://spectrum.ieee.org/transportation/sensors/3-types-of-3d-sensing-for-smartphones-and-selfdriving-cars

3D cameras already help us make 3D emoji/animoji. Now, ams wants to use 3D sensing to help smartphones capture more accurate colors

MWC report logo, link to report landing page

Cameras that scan and render objects in 3D are now a standard feature in many smartphones, drones, robots, and automobiles. Paired with the right software, these cameras are making it possible to sense light levels, movements, and textures in more places, and at a lower cost, than was previously possible.

ams (located on the former grounds of an Austrian castle) produces the tiny lasers and low-power light sensors that many of these camera systems rely on to identify hand gestures or track eye movements in an instant. The company’s technology must produce accurate results for a wide variety of consumer and industrial devices that operate in very different environments.

ams has a team of 1,200 engineers, and as demand has grown, ams has focused its R&D resources and budget on designing components for three types of 3D sensing: structured light, time-of-flight, and active stereo vision.

Bosch to Sell Low-Cost Sensors for Flying Cars

Post Syndicated from Philip E. Ross original https://spectrum.ieee.org/cars-that-think/transportation/sensors/bosch-adapts-automotive-sensors-for-use-air-taxis

Bosch expects the first flying taxi service to take off in a major city by 2023

Bosch today said it plans to sell a universal control unit for flying cars that combines dozens of sensors that have been proven in cars on the ground. 

“The first flying taxis are set to take off in major cities starting in 2023, at the latest,” Harald Kröger, president of the Bosch Automotive Electronics division, said in a statement. “Bosch plans to play a leading role in shaping this future market.” 

Among the many sensors in the universal, plug-and-play unit are MEMS-based acceleration sensors. These include yaw-rate sensors to measure the angle of attack—that is, the plane’s angle with respect to the oncoming air. This was the quality that was mismeasured by the sensors and misinterpreted by the control unit of the Boeing 737 Max, contributing to the two crashes of that airliner.