Tag Archives: utility

Water Utility Infected by Cryptocurrency Mining Software

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/water_utility_i.html

A water utility in Europe has been infected by cryptocurrency mining software. This is a relatively new attack: hackers compromise computers and force them to mine cryptocurrency for them. This is the first time I’ve seen it infect SCADA systems, though.

It seems that this mining software is benign, and doesn’t affect the performance of the hacked computer. (A smart virus doesn’t kill its host.) But that’s not going to always be the case.

Top 8 Best Practices for High-Performance ETL Processing Using Amazon Redshift

Post Syndicated from Thiyagarajan Arumugam original https://aws.amazon.com/blogs/big-data/top-8-best-practices-for-high-performance-etl-processing-using-amazon-redshift/

An ETL (Extract, Transform, Load) process enables you to load data from source systems into your data warehouse. This is typically executed as a batch or near-real-time ingest process to keep the data warehouse current and provide up-to-date analytical data to end users.

Amazon Redshift is a fast, petabyte-scale data warehouse that enables you easily to make data-driven decisions. With Amazon Redshift, you can get insights into your big data in a cost-effective fashion using standard SQL. You can set up any type of data model, from star and snowflake schemas, to simple de-normalized tables for running any analytical queries.

To operate a robust ETL platform and deliver data to Amazon Redshift in a timely manner, design your ETL processes to take account of Amazon Redshift’s architecture. When migrating from a legacy data warehouse to Amazon Redshift, it is tempting to adopt a lift-and-shift approach, but this can result in performance and scale issues long term. This post guides you through the following best practices for ensuring optimal, consistent runtimes for your ETL processes:

  • COPY data from multiple, evenly sized files.
  • Use workload management to improve ETL runtimes.
  • Perform table maintenance regularly.
  • Perform multiple steps in a single transaction.
  • Loading data in bulk.
  • Use UNLOAD to extract large result sets.
  • Use Amazon Redshift Spectrum for ad hoc ETL processing.
  • Monitor daily ETL health using diagnostic queries.

1. COPY data from multiple, evenly sized files

Amazon Redshift is an MPP (massively parallel processing) database, where all the compute nodes divide and parallelize the work of ingesting data. Each node is further subdivided into slices, with each slice having one or more dedicated cores, equally dividing the processing capacity. The number of slices per node depends on the node type of the cluster. For example, each DS2.XLARGE compute node has two slices, whereas each DS2.8XLARGE compute node has 16 slices.

When you load data into Amazon Redshift, you should aim to have each slice do an equal amount of work. When you load the data from a single large file or from files split into uneven sizes, some slices do more work than others. As a result, the process runs only as fast as the slowest, or most heavily loaded, slice. In the example shown below, a single large file is loaded into a two-node cluster, resulting in only one of the nodes, “Compute-0”, performing all the data ingestion:

When splitting your data files, ensure that they are of approximately equal size – between 1 MB and 1 GB after compression. The number of files should be a multiple of the number of slices in your cluster. Also, I strongly recommend that you individually compress the load files using gzip, lzop, or bzip2 to efficiently load large datasets.

When loading multiple files into a single table, use a single COPY command for the table, rather than multiple COPY commands. Amazon Redshift automatically parallelizes the data ingestion. Using a single COPY command to bulk load data into a table ensures optimal use of cluster resources, and quickest possible throughput.

2. Use workload management to improve ETL runtimes

Use Amazon Redshift’s workload management (WLM) to define multiple queues dedicated to different workloads (for example, ETL versus reporting) and to manage the runtimes of queries. As you migrate more workloads into Amazon Redshift, your ETL runtimes can become inconsistent if WLM is not appropriately set up.

I recommend limiting the overall concurrency of WLM across all queues to around 15 or less. This WLM guide helps you organize and monitor the different queues for your Amazon Redshift cluster.

When managing different workloads on your Amazon Redshift cluster, consider the following for the queue setup:

  • Create a queue dedicated to your ETL processes. Configure this queue with a small number of slots (5 or fewer). Amazon Redshift is designed for analytics queries, rather than transaction processing. The cost of COMMIT is relatively high, and excessive use of COMMIT can result in queries waiting for access to the commit queue. Because ETL is a commit-intensive process, having a separate queue with a small number of slots helps mitigate this issue.
  • Claim extra memory available in a queue. When executing an ETL query, you can take advantage of the wlm_query_slot_count to claim the extra memory available in a particular queue. For example, a typical ETL process might involve COPYing raw data into a staging table so that downstream ETL jobs can run transformations that calculate daily, weekly, and monthly aggregates. To speed up the COPY process (so that the downstream tasks can start in parallel sooner), the wlm_query_slot_count can be increased for this step.
  • Create a separate queue for reporting queries. Configure query monitoring rules on this queue to further manage long-running and expensive queries.
  • Take advantage of the dynamic memory parameters. They swap the memory from your ETL to your reporting queue after the ETL job has completed.

3. Perform table maintenance regularly

Amazon Redshift is a columnar database, which enables fast transformations for aggregating data. Performing regular table maintenance ensures that transformation ETLs are predictable and performant. To get the best performance from your Amazon Redshift database, you must ensure that database tables regularly are VACUUMed and ANALYZEd. The Analyze & Vacuum schema utility helps you automate the table maintenance task and have VACUUM & ANALYZE executed in a regular fashion.

  • Use VACUUM to sort tables and remove deleted blocks

During a typical ETL refresh process, tables receive new incoming records using COPY, and unneeded data (cold data) is removed using DELETE. New rows are added to the unsorted region in a table. Deleted rows are simply marked for deletion.

DELETE does not automatically reclaim the space occupied by the deleted rows. Adding and removing large numbers of rows can therefore cause the unsorted region and the number of deleted blocks to grow. This can degrade the performance of queries executed against these tables.

After an ETL process completes, perform VACUUM to ensure that user queries execute in a consistent manner. The complete list of tables that need VACUUMing can be found using the Amazon Redshift Util’s table_info script.

Use the following approaches to ensure that VACCUM is completed in a timely manner:

  • Use wlm_query_slot_count to claim all the memory allocated in the ETL WLM queue during the VACUUM process.
  • DROP or TRUNCATE intermediate or staging tables, thereby eliminating the need to VACUUM them.
  • If your table has a compound sort key with only one sort column, try to load your data in sort key order. This helps reduce or eliminate the need to VACUUM the table.
  • Consider using time series This helps reduce the amount of data you need to VACUUM.
  • Use ANALYZE to update database statistics

Amazon Redshift uses a cost-based query planner and optimizer using statistics about tables to make good decisions about the query plan for the SQL statements. Regular statistics collection after the ETL completion ensures that user queries run fast, and that daily ETL processes are performant. The Amazon Redshift utility table_info script provides insights into the freshness of the statistics. Keeping the statistics off (pct_stats_off) less than 20% ensures effective query plans for the SQL queries.

4. Perform multiple steps in a single transaction

ETL transformation logic often spans multiple steps. Because commits in Amazon Redshift are expensive, if each ETL step performs a commit, multiple concurrent ETL processes can take a long time to execute.

To minimize the number of commits in a process, the steps in an ETL script should be surrounded by a BEGIN…END statement so that a single commit is performed only after all the transformation logic has been executed. For example, here is an example multi-step ETL script that performs one commit at the end:

Begin
CREATE temporary staging_table;
INSERT INTO staging_table SELECT .. FROM source (transformation logic);
DELETE FROM daily_table WHERE dataset_date =?;
INSERT INTO daily_table SELECT .. FROM staging_table (daily aggregate);
DELETE FROM weekly_table WHERE weekending_date=?;
INSERT INTO weekly_table SELECT .. FROM staging_table(weekly aggregate);
Commit

5. Loading data in bulk

Amazon Redshift is designed to store and query petabyte-scale datasets. Using Amazon S3 you can stage and accumulate data from multiple source systems before executing a bulk COPY operation. The following methods allow efficient and fast transfer of these bulk datasets into Amazon Redshift:

  • Use a manifest file to ingest large datasets that span multiple files. The manifest file is a JSON file that lists all the files to be loaded into Amazon Redshift. Using a manifest file ensures that Amazon Redshift has a consistent view of the data to be loaded from S3, while also ensuring that duplicate files do not result in the same data being loaded more than one time.
  • Use temporary staging tables to hold the data for transformation. These tables are automatically dropped after the ETL session is complete. Temporary tables can be created using the CREATE TEMPORARY TABLE syntax, or by issuing a SELECT … INTO #TEMP_TABLE query. Explicitly specifying the CREATE TEMPORARY TABLE statement allows you to control the DISTRIBUTION KEY, SORT KEY, and compression settings to further improve performance.
  • User ALTER table APPEND to swap data from the staging tables to the target table. Data in the source table is moved to matching columns in the target table. Column order doesn’t matter. After data is successfully appended to the target table, the source table is empty. ALTER TABLE APPEND is much faster than a similar CREATE TABLE AS or INSERT INTO operation because it doesn’t involve copying or moving data.

6. Use UNLOAD to extract large result sets

Fetching a large number of rows using SELECT is expensive and takes a long time. When a large amount of data is fetched from the Amazon Redshift cluster, the leader node has to hold the data temporarily until the fetches are complete. Further, data is streamed out sequentially, which results in longer elapsed time. As a result, the leader node can become hot, which not only affects the SELECT that is being executed, but also throttles resources for creating execution plans and managing the overall cluster resources. Here is an example of a large SELECT statement. Notice that the leader node is doing most of the work to stream out the rows:

Use UNLOAD to extract large results sets directly to S3. After it’s in S3, the data can be shared with multiple downstream systems. By default, UNLOAD writes data in parallel to multiple files according to the number of slices in the cluster. All the compute nodes participate to quickly offload the data into S3.

If you are extracting data for use with Amazon Redshift Spectrum, you should make use of the MAXFILESIZE parameter to and keep files are 150 MB. Similar to item 1 above, having many evenly sized files ensures that Redshift Spectrum can do the maximum amount of work in parallel.

7. Use Redshift Spectrum for ad hoc ETL processing

Events such as data backfill, promotional activity, and special calendar days can trigger additional data volumes that affect the data refresh times in your Amazon Redshift cluster. To help address these spikes in data volumes and throughput, I recommend staging data in S3. After data is organized in S3, Redshift Spectrum enables you to query it directly using standard SQL. In this way, you gain the benefits of additional capacity without having to resize your cluster.

For tips on getting started with and optimizing the use of Redshift Spectrum, see the previous post, 10 Best Practices for Amazon Redshift Spectrum.

8. Monitor daily ETL health using diagnostic queries

Monitoring the health of your ETL processes on a regular basis helps identify the early onset of performance issues before they have a significant impact on your cluster. The following monitoring scripts can be used to provide insights into the health of your ETL processes:

Script Use when… Solution
commit_stats.sql – Commit queue statistics from past days, showing largest queue length and queue time first DML statements such as INSERT/UPDATE/COPY/DELETE operations take several times longer to execute when multiple of these operations are in progress Set up separate WLM queues for the ETL process and limit the concurrency to < 5.
copy_performance.sql –  Copy command statistics for the past days Daily COPY operations take longer to execute • Follow the best practices for the COPY command.
• Analyze data growth with the incoming datasets and consider cluster resize to meet the expected SLA.
table_info.sql – Table skew and unsorted statistics along with storage and key information Transformation steps take longer to execute • Set up regular VACCUM jobs to address unsorted rows and claim the deleted blocks so that transformation SQL execute optimally.
• Consider a table redesign to avoid data skewness.
v_check_transaction_locks.sql – Monitor transaction locks INSERT/UPDATE/COPY/DELETE operations on particular tables do not respond back in timely manner, compared to when run after the ETL Multiple DML statements are operating on the same target table at the same moment from different transactions. Set up ETL job dependency so that they execute serially for the same target table.
v_get_schema_priv_by_user.sql – Get the schema that the user has access to Reporting users can view intermediate tables Set up separate database groups for reporting and ETL users, and grants access to objects using GRANT.
v_generate_tbl_ddl.sql – Get the table DDL You need to create an empty table with same structure as target table for data backfill Generate DDL using this script for data backfill.
v_space_used_per_tbl.sql – monitor space used by individual tables Amazon Redshift data warehouse space growth is trending upwards more than normal

Analyze the individual tables that are growing at higher rate than normal. Consider data archival using UNLOAD to S3 and Redshift Spectrum for later analysis.

Use unscanned_table_summary.sql to find unused table and archive or drop them.

top_queries.sql – Return the top 50 time consuming statements aggregated by its text ETL transformations are taking longer to execute Analyze the top transformation SQL and use EXPLAIN to find opportunities for tuning the query plan.

There are several other useful scripts available in the amazon-redshift-utils repository. The AWS Lambda Utility Runner runs a subset of these scripts on a scheduled basis, allowing you to automate much of monitoring of your ETL processes.

Example ETL process

The following ETL process reinforces some of the best practices discussed in this post. Consider the following four-step daily ETL workflow where data from an RDBMS source system is staged in S3 and then loaded into Amazon Redshift. Amazon Redshift is used to calculate daily, weekly, and monthly aggregations, which are then unloaded to S3, where they can be further processed and made available for end-user reporting using a number of different tools, including Redshift Spectrum and Amazon Athena.

Step 1:  Extract from the RDBMS source to a S3 bucket

In this ETL process, the data extract job fetches change data every 1 hour and it is staged into multiple hourly files. For example, the staged S3 folder looks like the following:

 [[email protected] ~]$ aws s3 ls s3://<<S3 Bucket>>/batch/2017/07/02/
2017-07-02 01:59:58   81900220 20170702T01.export.gz
2017-07-02 02:59:56   84926844 20170702T02.export.gz
2017-07-02 03:59:54   78990356 20170702T03.export.gz
…
2017-07-02 22:00:03   75966745 20170702T21.export.gz
2017-07-02 23:00:02   89199874 20170702T22.export.gz
2017-07-02 00:59:59   71161715 20170702T23.export.gz

Organizing the data into multiple, evenly sized files enables the COPY command to ingest this data using all available resources in the Amazon Redshift cluster. Further, the files are compressed (gzipped) to further reduce COPY times.

Step 2: Stage data to the Amazon Redshift table for cleansing

Ingesting the data can be accomplished using a JSON-based manifest file. Using the manifest file ensures that S3 eventual consistency issues can be eliminated and also provides an opportunity to dedupe any files if needed. A sample manifest20170702.json file looks like the following:

{
  "entries": [
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T01.export.gz", "mandatory":true},
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T02.export.gz", "mandatory":true},
    …
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T23.export.gz", "mandatory":true}
  ]
}

The data can be ingested using the following command:

SET wlm_query_slot_count TO <<max available concurrency in the ETL queue>>;
COPY stage_tbl FROM 's3:// <<S3 Bucket>>/batch/manifest20170702.json' iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole' manifest;

Because the downstream ETL processes depend on this COPY command to complete, the wlm_query_slot_count is used to claim all the memory available to the queue. This helps the COPY command complete as quickly as possible.

Step 3: Transform data to create daily, weekly, and monthly datasets and load into target tables

Data is staged in the “stage_tbl” from where it can be transformed into the daily, weekly, and monthly aggregates and loaded into target tables. The following job illustrates a typical weekly process:

Begin
INSERT into ETL_LOG (..) values (..);
DELETE from weekly_tbl where dataset_week = <<current week>>;
INSERT into weekly_tbl (..)
  SELECT date_trunc('week', dataset_day) AS week_begin_dataset_date, SUM(C1) AS C1, SUM(C2) AS C2
	FROM   stage_tbl
GROUP BY date_trunc('week', dataset_day);
INSERT into AUDIT_LOG values (..);
COMMIT;
End;

As shown above, multiple steps are combined into one transaction to perform a single commit, reducing contention on the commit queue.

Step 4: Unload the daily dataset to populate the S3 data lake bucket

The transformed results are now unloaded into another S3 bucket, where they can be further processed and made available for end-user reporting using a number of different tools, including Redshift Spectrum and Amazon Athena.

unload ('SELECT * FROM weekly_tbl WHERE dataset_week = <<current week>>’) TO 's3:// <<S3 Bucket>>/datalake/weekly/20170526/' iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

Summary

Amazon Redshift lets you easily operate petabyte-scale data warehouses on the cloud. This post summarized the best practices for operating scalable ETL natively within Amazon Redshift. I demonstrated efficient ways to ingest and transform data, along with close monitoring. I also demonstrated the best practices being used in a typical sample ETL workload to transform the data into Amazon Redshift.

If you have questions or suggestions, please comment below.

 


About the Author

Thiyagarajan Arumugam is a Big Data Solutions Architect at Amazon Web Services and designs customer architectures to process data at scale. Prior to AWS, he built data warehouse solutions at Amazon.com. In his free time, he enjoys all outdoor sports and practices the Indian classical drum mridangam.

 

Hijacker – Reaver For Android Wifi Hacker App

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/01/hijacker-reaver-android-wifi-hacker-app/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Hijacker – Reaver For Android Wifi Hacker App

Hijacker is a native GUI which provides Reaver for Android along with Aircrack-ng, Airodump-ng and MDK3 making it a powerful Wifi hacker app.

It offers a simple and easy UI to use these tools without typing commands in a console and copy & pasting MAC addresses.

Features of Hijacker Reaver For Android Wifi Hacker App
Information Gathering

  • View a list of access points and stations (clients) around you (even hidden ones)
  • View the activity of a specific network (by measuring beacons and data packets) and its clients
  • Statistics about access points and stations
  • See the manufacturer of a device (AP or station) from the OUI database
  • See the signal power of devices and filter the ones that are closer to you
  • Save captured packets in .cap file

Reaver for Android Wifi Cracker Attacks

  • Deauthenticate all the clients of a network (either targeting each one or without specific target)
  • Deauthenticate a specific client from the network it’s connected
  • MDK3 Beacon Flooding with custom options and SSID list
  • MDK3 Authentication DoS for a specific network or to every nearby AP
  • Capture a WPA handshake or gather IVs to crack a WEP network
  • Reaver WPS cracking (pixie-dust attack using NetHunter chroot and external adapter)

Other Wifi Hacker App Features

  • Leave the app running in the background, optionally with a notification
  • Copy commands or MAC addresses to clipboard
  • Includes the required tools, no need for manual installation
  • Includes the nexmon driver and management utility for BCM4339 devices
  • Set commands to enable and disable monitor mode automatically
  • Crack .cap files with a custom wordlist
  • Create custom actions and run them on an access point or a client easily
  • Sort and filter Access Points and Stations with many parameters
  • Export all gathered information to a file
  • Add a persistent alias to a device (by MAC) for easier identification

Requirements to Crack Wifi Password with Android

This application requires an ARM Android device with an internal wireless adapter that supports Monitor Mode.

Read the rest of Hijacker – Reaver For Android Wifi Hacker App now! Only available at Darknet.

The deal with Bitcoin

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2017/12/the-deal-with-bitcoin.html

♪ Used to have a little now I have a lot
I’m still, I’m still Jenny from the block
          chain ♪

For all that has been written about Bitcoin and its ilk, it is curious that the focus is almost solely what the cryptocurrencies are supposed to be. Technologists wax lyrical about the potential for blockchains to change almost every aspect of our lives. Libertarians and paleoconservatives ache for the return to “sound money” that can’t be conjured up at the whim of a bureaucrat. Mainstream economists wag their fingers, proclaiming that a proper currency can’t be deflationary, that it must maintain a particular velocity, or that the government must be able to nip crises of confidence in the bud. And so on.

Much of this may be true, but the proponents of cryptocurrencies should recognize that an appeal to consequences is not a guarantee of good results. The critics, on the other hand, would be best served to remember that they are drawing far-reaching conclusions about the effects of modern monetary policies based on a very short and tumultuous period in history.

In this post, my goal is to ditch most of the dogma, talk a bit about the origins of money – and then see how “crypto” fits the bill.

1. The prehistory of currencies

The emergence of money is usually explained in a very straightforward way. You know the story: a farmer raised a pig, a cobbler made a shoe. The cobbler needed to feed his family while the farmer wanted to keep his feet warm – and so they met to exchange the goods on mutually beneficial terms. But as the tale goes, the barter system had a fatal flaw: sometimes, a farmer wanted a cooking pot, a potter wanted a knife, and a blacksmith wanted a pair of pants. To facilitate increasingly complex, multi-step exchanges without requiring dozens of people to meet face to face, we came up with an abstract way to represent value – a shiny coin guaranteed to be accepted by every tradesman.

It is a nice parable, but it probably isn’t very true. It seems far more plausible that early societies relied on the concept of debt long before the advent of currencies: an informal tally or a formal ledger would be used to keep track of who owes what to whom. The concept of debt, closely associated with one’s trustworthiness and standing in the community, would have enabled a wide range of economic activities: debts could be paid back over time, transferred, renegotiated, or forgotten – all without having to engage in spot barter or to mint a single coin. In fact, such non-monetary, trust-based, reciprocal economies are still common in closely-knit communities: among families, neighbors, coworkers, or friends.

In such a setting, primitive currencies probably emerged simply as a consequence of having a system of prices: a cow being worth a particular number of chickens, a chicken being worth a particular number of beaver pelts, and so forth. Formalizing such relationships by settling on a single, widely-known unit of account – say, one chicken – would make it more convenient to transfer, combine, or split debts; or to settle them in alternative goods.

Contrary to popular belief, for communal ledgers, the unit of account probably did not have to be particularly desirable, durable, or easy to carry; it was simply an accounting tool. And indeed, we sometimes run into fairly unusual units of account even in modern times: for example, cigarettes can be the basis of a bustling prison economy even when most inmates don’t smoke and there are not that many packs to go around.

2. The age of commodity money

In the end, the development of coinage might have had relatively little to do with communal trade – and far more with the desire to exchange goods with strangers. When dealing with a unfamiliar or hostile tribe, the concept of a chicken-denominated ledger does not hold up: the other side might be disinclined to honor its obligations – and get away with it, too. To settle such problematic trades, we needed a “spot” medium of exchange that would be easy to carry and authenticate, had a well-defined value, and a near-universal appeal. Throughout much of the recorded history, precious metals – predominantly gold and silver – proved to fit the bill.

In the most basic sense, such commodities could be seen as a tool to reconcile debts across societal boundaries, without necessarily replacing any local units of account. An obligation, denominated in some local currency, would be created on buyer’s side in order to procure the metal for the trade. The proceeds of the completed transaction would in turn allow the seller to settle their own local obligations that arose from having to source the traded goods. In other words, our wondrous chicken-denominated ledgers could coexist peacefully with gold – and when commodity coinage finally took hold, it’s likely that in everyday trade, precious metals served more as a useful abstraction than a precise store of value. A “silver chicken” of sorts.

Still, the emergence of commodity money had one interesting side effect: it decoupled the unit of debt – a “claim on the society”, in a sense – from any moral judgment about its origin. A piece of silver would buy the same amount of food, whether earned through hard labor or won in a drunken bet. This disconnect remains a central theme in many of the debates about social justice and unfairly earned wealth.

3. The State enters the game

If there is one advantage of chicken ledgers over precious metals, it’s that all chickens look and cluck roughly the same – something that can’t be said of every nugget of silver or gold. To cope with this problem, we needed to shape raw commodities into pieces of a more predictable shape and weight; a trusted party could then stamp them with a mark to indicate the value and the quality of the coin.

At first, the task of standardizing coinage rested with private parties – but the responsibility was soon assumed by the State. The advantages of this transition seemed clear: a single, widely-accepted and easily-recognizable currency could be now used to settle virtually all private and official debts.

Alas, in what deserves the dubious distinction of being one of the earliest examples of monetary tomfoolery, some States succumbed to the temptation of fiddling with the coinage to accomplish anything from feeding the poor to waging wars. In particular, it would be common to stamp coins with the same face value but a progressively lower content of silver and gold. Perhaps surprisingly, the strategy worked remarkably well; at least in the times of peace, most people cared about the value stamped on the coin, not its precise composition or weight.

And so, over time, representative money was born: sooner or later, most States opted to mint coins from nearly-worthless metals, or print banknotes on paper and cloth. This radically new currency was accompanied with a simple pledge: the State offered to redeem it at any time for its nominal value in gold.

Of course, the promise was largely illusory: the State did not have enough gold to honor all the promises it had made. Still, as long as people had faith in their rulers and the redemption requests stayed low, the fundamental mechanics of this new representative currency remained roughly the same as before – and in some ways, were an improvement in that they lessened the insatiable demand for a rare commodity. Just as importantly, the new money still enabled international trade – using the underlying gold exchange rate as a reference point.

4. Fractional reserve banking and fiat money

For much of the recorded history, banking was an exceptionally dull affair, not much different from running a communal chicken
ledger of the old. But then, something truly marvelous happened in the 17th century: around that time, many European countries have witnessed
the emergence of fractional-reserve banks.

These private ventures operated according to a simple scheme: they accepted people’s coin
for safekeeping, promising to pay a premium on every deposit made. To meet these obligations and to make a profit, the banks then
used the pooled deposits to make high-interest loans to other folks. The financiers figured out that under normal circumstances
and when operating at a sufficient scale, they needed only a very modest reserve – well under 10% of all deposited money – to be
able to service the usual volume and size of withdrawals requested by their customers. The rest could be loaned out.

The very curious consequence of fractional-reserve banking was that it pulled new money out of thin air.
The funds were simultaneously accounted for in the statements shown to the depositor, evidently available for withdrawal or
transfer at any time; and given to third-party borrowers, who could spend them on just about anything. Heck, the borrowers could
deposit the proceeds in another bank, creating even more money along the way! Whatever they did, the sum of all funds in the monetary
system now appeared much higher than the value of all coins and banknotes issued by the government – let alone the amount of gold
sitting in any vault.

Of course, no new money was being created in any physical sense: all that banks were doing was engaging in a bit of creative accounting – the sort of which would probably land you in jail if you attempted it today in any other comparably vital field of enterprise. If too many depositors were to ask for their money back, or if too many loans were to go bad, the banking system would fold. Fortunes would evaporate in a puff of accounting smoke, and with the disappearance of vast quantities of quasi-fictitious (“broad”) money, the wealth of the entire nation would shrink.

In the early 20th century, the world kept witnessing just that; a series of bank runs and economic contractions forced the governments around the globe to act. At that stage, outlawing fractional-reserve banking was no longer politically or economically tenable; a simpler alternative was to let go of gold and move to fiat money – a currency implemented as an abstract social construct, with no predefined connection to the physical realm. A new breed of economists saw the role of the government not in trying to peg the value of money to an inflexible commodity, but in manipulating its supply to smooth out economic hiccups or to stimulate growth.

(Contrary to popular beliefs, such manipulation is usually not done by printing new banknotes; more sophisticated methods, such as lowering reserve requirements for bank deposits or enticing banks to invest its deposits into government-issued securities, are the preferred route.)

The obvious peril of fiat money is that in the long haul, its value is determined strictly by people’s willingness to accept a piece of paper in exchange for their trouble; that willingness, in turn, is conditioned solely on their belief that the same piece of paper would buy them something nice a week, a month, or a year from now. It follows that a simple crisis of confidence could make a currency nearly worthless overnight. A prolonged period of hyperinflation and subsequent austerity in Germany and Austria was one of the precipitating factors that led to World War II. In more recent times, dramatic episodes of hyperinflation plagued the fiat currencies of Israel (1984), Mexico (1988), Poland (1990), Yugoslavia (1994), Bulgaria (1996), Turkey (2002), Zimbabwe (2009), Venezuela (2016), and several other nations around the globe.

For the United States, the switch to fiat money came relatively late, in 1971. To stop the dollar from plunging like a rock, the Nixon administration employed a clever trick: they ordered the freeze of wages and prices for the 90 days that immediately followed the move. People went on about their lives and paid the usual for eggs or milk – and by the time the freeze ended, they were accustomed to the idea that the “new”, free-floating dollar is worth about the same as the old, gold-backed one. A robust economy and favorable geopolitics did the rest, and so far, the American adventure with fiat currency has been rather uneventful – perhaps except for the fact that the price of gold itself skyrocketed from $35 per troy ounce in 1971 to $850 in 1980 (or, from $210 to $2,500 in today’s dollars).

Well, one thing did change: now better positioned to freely tamper with the supply of money, the regulators in accord with the bankers adopted a policy of creating it at a rate that slightly outstripped the organic growth in economic activity. They did this to induce a small, steady degree of inflation, believing that doing so would discourage people from hoarding cash and force them to reinvest it for the betterment of the society. Some critics like to point out that such a policy functions as a “backdoor” tax on savings that happens to align with the regulators’ less noble interests; still, either way: in the US and most other developed nations, the purchasing power of any money kept under a mattress will drop at a rate of somewhere between 2 to 10% a year.

5. So what’s up with Bitcoin?

Well… countless tomes have been written about the nature and the optimal characteristics of government-issued fiat currencies. Some heterodox economists, notably including Murray Rothbard, have also explored the topic of privately-issued, decentralized, commodity-backed currencies. But Bitcoin is a wholly different animal.

In essence, BTC is a global, decentralized fiat currency: it has no (recoverable) intrinsic value, no central authority to issue it or define its exchange rate, and it has no anchoring to any historical reference point – a combination that until recently seemed nonsensical and escaped any serious scrutiny. It does the unthinkable by employing three clever tricks:

  1. It allows anyone to create new coins, but only by solving brute-force computational challenges that get more difficult as the time goes by,

  2. It prevents unauthorized transfer of coins by employing public key cryptography to sign off transactions, with only the authorized holder of a coin knowing the correct key,

  3. It prevents double-spending by using a distributed public ledger (“blockchain”), recording the chain of custody for coins in a tamper-proof way.

The blockchain is often described as the most important feature of Bitcoin, but in some ways, its importance is overstated. The idea of a currency that does not rely on a centralized transaction clearinghouse is what helped propel the platform into the limelight – mostly because of its novelty and the perception that it is less vulnerable to government meddling (although the government is still free to track down, tax, fine, or arrest any participants). On the flip side, the everyday mechanics of BTC would not be fundamentally different if all the transactions had to go through Bitcoin Bank, LLC.

A more striking feature of the new currency is the incentive structure surrounding the creation of new coins. The underlying design democratized the creation of new coins early on: all you had to do is leave your computer running for a while to acquire a number of tokens. The tokens had no practical value, but obtaining them involved no substantial expense or risk. Just as importantly, because the difficulty of the puzzles would only increase over time, the hope was that if Bitcoin caught on, latecomers would find it easier to purchase BTC on a secondary market than mine their own – paying with a more established currency at a mutually beneficial exchange rate.

The persistent publicity surrounding Bitcoin and other cryptocurrencies did the rest – and today, with the growing scarcity of coins and the rapidly increasing demand, the price of a single token hovers somewhere south of $15,000.

6. So… is it bad money?

Predicting is hard – especially the future. In some sense, a coin that represents a cryptographic proof of wasted CPU cycles is no better or worse than a currency that relies on cotton decorated with pictures of dead presidents. It is true that Bitcoin suffers from many implementation problems – long transaction processing times, high fees, frequent security breaches of major exchanges – but in principle, such problems can be overcome.

That said, currencies live and die by the lasting willingness of others to accept them in exchange for services or goods – and in that sense, the jury is still out. The use of Bitcoin to settle bona fide purchases is negligible, both in absolute terms and in function of the overall volume of transactions. In fact, because of the technical challenges and limited practical utility, some companies that embraced the currency early on are now backing out.

When the value of an asset is derived almost entirely from its appeal as an ever-appreciating investment vehicle, the situation has all the telltale signs of a speculative bubble. But that does not prove that the asset is destined to collapse, or that a collapse would be its end. Still, the built-in deflationary mechanism of Bitcoin – the increasing difficulty of producing new coins – is probably both a blessing and a curse.

It’s going to go one way or the other; and when it’s all said and done, we’re going to celebrate the people who made the right guess. Because future is actually pretty darn easy to predict — in retrospect.

Libertarians are against net neutrality

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/12/libertarians-are-against-net-neutrality.html

This post claims to be by a libertarian in support of net neutrality. As a libertarian, I need to debunk this. “Net neutrality” is a case of one-hand clapping, you rarely hear the competing side, and thus, that side may sound attractive. This post is about the other side, from a libertarian point of view.

That post just repeats the common, and wrong, left-wing talking points. I mean, there might be a libertarian case for some broadband regulation, but this isn’t it.

This thing they call “net neutrality” is just left-wing politics masquerading as some sort of principle. It’s no different than how people claim to be “pro-choice”, yet demand forced vaccinations. Or, it’s no different than how people claim to believe in “traditional marriage” even while they are on their third “traditional marriage”.

Properly defined, “net neutrality” means no discrimination of network traffic. But nobody wants that. A classic example is how most internet connections have faster download speeds than uploads. This discriminates against upload traffic, harming innovation in upload-centric applications like DropBox’s cloud backup or BitTorrent’s peer-to-peer file transfer. Yet activists never mention this, or other types of network traffic discrimination, because they no more care about “net neutrality” than Trump or Gingrich care about “traditional marriage”.

Instead, when people say “net neutrality”, they mean “government regulation”. It’s the same old debate between who is the best steward of consumer interest: the free-market or government.

Specifically, in the current debate, they are referring to the Obama-era FCC “Open Internet” order and reclassification of broadband under “Title II” so they can regulate it. Trump’s FCC is putting broadband back to “Title I”, which means the FCC can’t regulate most of its “Open Internet” order.

Don’t be tricked into thinking the “Open Internet” order is anything but intensely politically. The premise behind the order is the Democrat’s firm believe that it’s government who created the Internet, and all innovation, advances, and investment ultimately come from the government. It sees ISPs as inherently deceitful entities who will only serve their own interests, at the expense of consumers, unless the FCC protects consumers.

It says so right in the order itself. It starts with the premise that broadband ISPs are evil, using illegitimate “tactics” to hurt consumers, and continues with similar language throughout the order.

A good contrast to this can be seen in Tim Wu’s non-political original paper in 2003 that coined the term “net neutrality”. Whereas the FCC sees broadband ISPs as enemies of consumers, Wu saw them as allies. His concern was not that ISPs would do evil things, but that they would do stupid things, such as favoring short-term interests over long-term innovation (such as having faster downloads than uploads).

The political depravity of the FCC’s order can be seen in this comment from one of the commissioners who voted for those rules:

FCC Commissioner Jessica Rosenworcel wants to increase the minimum broadband standards far past the new 25Mbps download threshold, up to 100Mbps. “We invented the internet. We can do audacious things if we set big goals, and I think our new threshold, frankly, should be 100Mbps. I think anything short of that shortchanges our children, our future, and our new digital economy,” Commissioner Rosenworcel said.

This is indistinguishable from communist rhetoric that credits the Party for everything, as this booklet from North Korea will explain to you.

But what about monopolies? After all, while the free-market may work when there’s competition, it breaks down where there are fewer competitors, oligopolies, and monopolies.

There is some truth to this, in individual cities, there’s often only only a single credible high-speed broadband provider. But this isn’t the issue at stake here. The FCC isn’t proposing light-handed regulation to keep monopolies in check, but heavy-handed regulation that regulates every last decision.

Advocates of FCC regulation keep pointing how broadband monopolies can exploit their renting-seeking positions in order to screw the customer. They keep coming up with ever more bizarre and unlikely scenarios what monopoly power grants the ISPs.

But the never mention the most simplest: that broadband monopolies can just charge customers more money. They imagine instead that these companies will pursue a string of outrageous, evil, and less profitable behaviors to exploit their monopoly position.

The FCC’s reclassification of broadband under Title II gives it full power to regulate ISPs as utilities, including setting prices. The FCC has stepped back from this, promising it won’t go so far as to set prices, that it’s only regulating these evil conspiracy theories. This is kind of bizarre: either broadband ISPs are evilly exploiting their monopoly power or they aren’t. Why stop at regulating only half the evil?

The answer is that the claim “monopoly” power is a deception. It starts with overstating how many monopolies there are to begin with. When it issued its 2015 “Open Internet” order the FCC simultaneously redefined what they meant by “broadband”, upping the speed from 5-mbps to 25-mbps. That’s because while most consumers have multiple choices at 5-mbps, fewer consumers have multiple choices at 25-mbps. It’s a dirty political trick to convince you there is more of a problem than there is.

In any case, their rules still apply to the slower broadband providers, and equally apply to the mobile (cell phone) providers. The US has four mobile phone providers (AT&T, Verizon, T-Mobile, and Sprint) and plenty of competition between them. That it’s monopolistic power that the FCC cares about here is a lie. As their Open Internet order clearly shows, the fundamental principle that animates the document is that all corporations, monopolies or not, are treacherous and must be regulated.

“But corporations are indeed evil”, people argue, “see here’s a list of evil things they have done in the past!”

No, those things weren’t evil. They were done because they benefited the customers, not as some sort of secret rent seeking behavior.

For example, one of the more common “net neutrality abuses” that people mention is AT&T’s blocking of FaceTime. I’ve debunked this elsewhere on this blog, but the summary is this: there was no network blocking involved (not a “net neutrality” issue), and the FCC analyzed it and decided it was in the best interests of the consumer. It’s disingenuous to claim it’s an evil that justifies FCC actions when the FCC itself declared it not evil and took no action. It’s disingenuous to cite the “net neutrality” principle that all network traffic must be treated when, in fact, the network did treat all the traffic equally.

Another frequently cited abuse is Comcast’s throttling of BitTorrent.Comcast did this because Netflix users were complaining. Like all streaming video, Netflix backs off to slower speed (and poorer quality) when it experiences congestion. BitTorrent, uniquely among applications, never backs off. As most applications become slower and slower, BitTorrent just speeds up, consuming all available bandwidth. This is especially problematic when there’s limited upload bandwidth available. Thus, Comcast throttled BitTorrent during prime time TV viewing hours when the network was already overloaded by Netflix and other streams. BitTorrent users wouldn’t mind this throttling, because it often took days to download a big file anyway.

When the FCC took action, Comcast stopped the throttling and imposed bandwidth caps instead. This was a worse solution for everyone. It penalized heavy Netflix viewers, and prevented BitTorrent users from large downloads. Even though BitTorrent users were seen as the victims of this throttling, they’d vastly prefer the throttling over the bandwidth caps.

In both the FaceTime and BitTorrent cases, the issue was “network management”. AT&T had no competing video calling service, Comcast had no competing download service. They were only reacting to the fact their networks were overloaded, and did appropriate things to solve the problem.

Mobile carriers still struggle with the “network management” issue. While their networks are fast, they are still of low capacity, and quickly degrade under heavy use. They are looking for tricks in order to reduce usage while giving consumers maximum utility.

The biggest concern is video. It’s problematic because it’s designed to consume as much bandwidth as it can, throttling itself only when it experiences congestion. This is what you probably want when watching Netflix at the highest possible quality, but it’s bad when confronted with mobile bandwidth caps.

With small mobile devices, you don’t want as much quality anyway. You want the video degraded to lower quality, and lower bandwidth, all the time.

That’s the reasoning behind T-Mobile’s offerings. They offer an unlimited video plan in conjunction with the biggest video providers (Netflix, YouTube, etc.). The catch is that when congestion occurs, they’ll throttle it to lower quality. In other words, they give their bandwidth to all the other phones in your area first, then give you as much of the leftover bandwidth as you want for video.

While it sounds like T-Mobile is doing something evil, “zero-rating” certain video providers and degrading video quality, the FCC allows this, because they recognize it’s in the customer interest.

Mobile providers especially have great interest in more innovation in this area, in order to conserve precious bandwidth, but they are finding it costly. They can’t just innovate, but must ask the FCC permission first. And with the new heavy handed FCC rules, they’ve become hostile to this innovation. This attitude is highlighted by the statement from the “Open Internet” order:

And consumers must be protected, for example from mobile commercial practices masquerading as “reasonable network management.”

This is a clear declaration that free-market doesn’t work and won’t correct abuses, and that that mobile companies are treacherous and will do evil things without FCC oversight.

Conclusion

Ignoring the rhetoric for the moment, the debate comes down to simple left-wing authoritarianism and libertarian principles. The Obama administration created a regulatory regime under clear Democrat principles, and the Trump administration is rolling it back to more free-market principles. There is no principle at stake here, certainly nothing to do with a technical definition of “net neutrality”.

The 2015 “Open Internet” order is not about “treating network traffic neutrally”, because it doesn’t do that. Instead, it’s purely a left-wing document that claims corporations cannot be trusted, must be regulated, and that innovation and prosperity comes from the regulators and not the free market.

It’s not about monopolistic power. The primary targets of regulation are the mobile broadband providers, where there is plenty of competition, and who have the most “network management” issues. Even if it were just about wired broadband (like Comcast), it’s still ignoring the primary ways monopolies profit (raising prices) and instead focuses on bizarre and unlikely ways of rent seeking.

If you are a libertarian who nonetheless believes in this “net neutrality” slogan, you’ve got to do better than mindlessly repeating the arguments of the left-wing. The term itself, “net neutrality”, is just a slogan, varying from person to person, from moment to moment. You have to be more specific. If you truly believe in the “net neutrality” technical principle that all traffic should be treated equally, then you’ll want a rewrite of the “Open Internet” order.

In the end, while libertarians may still support some form of broadband regulation, it’s impossible to reconcile libertarianism with the 2015 “Open Internet”, or the vague things people mean by the slogan “net neutrality”.

How to Easily Apply Amazon Cloud Directory Schema Changes with In-Place Schema Upgrades

Post Syndicated from Mahendra Chheda original https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/

Now, Amazon Cloud Directory makes it easier for you to apply schema changes across your directories with in-place schema upgrades. Your directory now remains available while Cloud Directory applies backward-compatible schema changes such as the addition of new fields. Without migrating data between directories or applying code changes to your applications, you can upgrade your schemas. You also can view the history of your schema changes in Cloud Directory by using version identifiers, which help you track and audit schema versions across directories. If you have multiple instances of a directory with the same schema, you can view the version history of schema changes to manage your directory fleet and ensure that all directories are running with the same schema version.

In this blog post, I demonstrate how to perform an in-place schema upgrade and use schema versions in Cloud Directory. I add additional attributes to an existing facet and add a new facet to a schema. I then publish the new schema and apply it to running directories, upgrading the schema in place. I also show how to view the version history of a directory schema, which helps me to ensure my directory fleet is running the same version of the schema and has the correct history of schema changes applied to it.

Note: I share Java code examples in this post. I assume that you are familiar with the AWS SDK and can use Java-based code to build a Cloud Directory code example. You can apply the concepts I cover in this post to other programming languages such as Python and Ruby.

Cloud Directory fundamentals

I will start by covering a few Cloud Directory fundamentals. If you are already familiar with the concepts behind Cloud Directory facets, schemas, and schema lifecycles, you can skip to the next section.

Facets: Groups of attributes. You use facets to define object types. For example, you can define a device schema by adding facets such as computers, phones, and tablets. A computer facet can track attributes such as serial number, make, and model. You can then use the facets to create computer objects, phone objects, and tablet objects in the directory to which the schema applies.

Schemas: Collections of facets. Schemas define which types of objects can be created in a directory (such as users, devices, and organizations) and enforce validation of data for each object class. All data within a directory must conform to the applied schema. As a result, the schema definition is essentially a blueprint to construct a directory with an applied schema.

Schema lifecycle: The four distinct states of a schema: Development, Published, Applied, and Deleted. Schemas in the Published and Applied states have version identifiers and cannot be changed. Schemas in the Applied state are used by directories for validation as applications insert or update data. You can change schemas in the Development state as many times as you need them to. In-place schema upgrades allow you to apply schema changes to an existing Applied schema in a production directory without the need to export and import the data populated in the directory.

How to add attributes to a computer inventory application schema and perform an in-place schema upgrade

To demonstrate how to set up schema versioning and perform an in-place schema upgrade, I will use an example of a computer inventory application that uses Cloud Directory to store relationship data. Let’s say that at my company, AnyCompany, we use this computer inventory application to track all computers we give to our employees for work use. I previously created a ComputerSchema and assigned its version identifier as 1. This schema contains one facet called ComputerInfo that includes attributes for SerialNumber, Make, and Model, as shown in the following schema details.

Schema: ComputerSchema
Version: 1

Facet: ComputerInfo
Attribute: SerialNumber, type: Integer
Attribute: Make, type: String
Attribute: Model, type: String

AnyCompany has offices in Seattle, Portland, and San Francisco. I have deployed the computer inventory application for each of these three locations. As shown in the lower left part of the following diagram, ComputerSchema is in the Published state with a version of 1. The Published schema is applied to SeattleDirectory, PortlandDirectory, and SanFranciscoDirectory for AnyCompany’s three locations. Implementing separate directories for different geographic locations when you don’t have any queries that cross location boundaries is a good data partitioning strategy and gives your application better response times with lower latency.

Diagram of ComputerSchema in Published state and applied to three directories

Legend for the diagrams in this post

The following code example creates the schema in the Development state by using a JSON file, publishes the schema, and then creates directories for the Seattle, Portland, and San Francisco locations. For this example, I assume the schema has been defined in the JSON file. The createSchema API creates a schema Amazon Resource Name (ARN) with the name defined in the variable, SCHEMA_NAME. I can use the putSchemaFromJson API to add specific schema definitions from the JSON file.

// The utility method to get valid Cloud Directory schema JSON
String validJson = getJsonFile("ComputerSchema_version_1.json")

String SCHEMA_NAME = "ComputerSchema";

String developmentSchemaArn = client.createSchema(new CreateSchemaRequest()
        .withName(SCHEMA_NAME))
        .getSchemaArn();

// Put the schema document in the Development schema
PutSchemaFromJsonResult result = client.putSchemaFromJson(new PutSchemaFromJsonRequest()
        .withSchemaArn(developmentSchemaArn)
        .withDocument(validJson));

The following code example takes the schema that is currently in the Development state and publishes the schema, changing its state to Published.

String SCHEMA_VERSION = "1";
String publishedSchemaArn = client.publishSchema(
        new PublishSchemaRequest()
        .withDevelopmentSchemaArn(developmentSchemaArn)
        .withVersion(SCHEMA_VERSION))
        .getPublishedSchemaArn();

// Our Published schema ARN is as follows
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1

The following code example creates a directory named SeattleDirectory and applies the published schema. The createDirectory API call creates a directory by using the published schema provided in the API parameters. Note that Cloud Directory stores a version of the schema in the directory in the Applied state. I will use similar code to create directories for PortlandDirectory and SanFranciscoDirectory.

String DIRECTORY_NAME = "SeattleDirectory"; 

CreateDirectoryResult directory = client.createDirectory(
        new CreateDirectoryRequest()
        .withName(DIRECTORY_NAME)
        .withSchemaArn(publishedSchemaArn));

String directoryArn = directory.getDirectoryArn();
String appliedSchemaArn = directory.getAppliedSchemaArn();

// This code section can be reused to create directories for Portland and San Francisco locations with the appropriate directory names

// Our directory ARN is as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX

// Our applied schema ARN is as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1

Revising a schema

Now let’s say my company, AnyCompany, wants to add more information for computers and to track which employees have been assigned a computer for work use. I modify the schema to add two attributes to the ComputerInfo facet: Description and OSVersion (operating system version). I make Description optional because it is not important for me to track this attribute for the computer objects I create. I make OSVersion mandatory because it is critical for me to track it for all computer objects so that I can make changes such as applying security patches or making upgrades. Because I make OSVersion mandatory, I must provide a default value that Cloud Directory will apply to objects that were created before the schema revision, in order to handle backward compatibility. Note that you can replace the value in any object with a different value.

I also add a new facet to track computer assignment information, shown in the following updated schema as the ComputerAssignment facet. This facet tracks these additional attributes: Name (the name of the person to whom the computer is assigned), EMail (the email address of the assignee), Department, and department CostCenter. Note that Cloud Directory refers to the previously available version identifier as the Major Version. Because I can now add a minor version to a schema, I also denote the changed schema as Minor Version A.

Schema: ComputerSchema
Major Version: 1
Minor Version: A 

Facet: ComputerInfo
Attribute: SerialNumber, type: Integer 
Attribute: Make, type: String
Attribute: Model, type: Integer
Attribute: Description, type: String, required: NOT_REQUIRED
Attribute: OSVersion, type: String, required: REQUIRED_ALWAYS, default: "Windows 7"

Facet: ComputerAssignment
Attribute: Name, type: String
Attribute: EMail, type: String
Attribute: Department, type: String
Attribute: CostCenter, type: Integer

The following diagram shows the changes that were made when I added another facet to the schema and attributes to the existing facet. The highlighted area of the diagram (bottom left) shows that the schema changes were published.

Diagram showing that schema changes were published

The following code example revises the existing Development schema by adding the new attributes to the ComputerInfo facet and by adding the ComputerAssignment facet. I use a new JSON file for the schema revision, and for the purposes of this example, I am assuming the JSON file has the full schema including planned revisions.

// The utility method to get a valid CloudDirectory schema JSON
String schemaJson = getJsonFile("ComputerSchema_version_1_A.json")

// Put the schema document in the Development schema
PutSchemaFromJsonResult result = client.putSchemaFromJson(
        new PutSchemaFromJsonRequest()
        .withSchemaArn(developmentSchemaArn)
        .withDocument(schemaJson));

Upgrading the Published schema

The following code example performs an in-place schema upgrade of the Published schema with schema revisions (it adds new attributes to the existing facet and another facet to the schema). The upgradePublishedSchema API upgrades the Published schema with backward-compatible changes from the Development schema.

// From an earlier code example, I know the publishedSchemaArn has this value: "arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1"

// Upgrade publishedSchemaArn to minorVersion A. The Development schema must be backward compatible with 
// the existing publishedSchemaArn. 

String minorVersion = "A"

UpgradePublishedSchemaResult upgradePublishedSchemaResult = client.upgradePublishedSchema(new UpgradePublishedSchemaRequest()
        .withDevelopmentSchemaArn(developmentSchemaArn)
        .withPublishedSchemaArn(publishedSchemaArn)
        .withMinorVersion(minorVersion));

String upgradedPublishedSchemaArn = upgradePublishedSchemaResult.getUpgradedSchemaArn();

// The Published schema ARN after the upgrade shows a minor version as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1/A

Upgrading the Applied schema

The following diagram shows the in-place schema upgrade for the SeattleDirectory directory. I am performing the schema upgrade so that I can reflect the new schemas in all three directories. As a reminder, I added new attributes to the ComputerInfo facet and also added the ComputerAssignment facet. After the schema and directory upgrade, I can create objects for the ComputerInfo and ComputerAssignment facets in the SeattleDirectory. Any objects that were created with the old facet definition for ComputerInfo will now use the default values for any additional attributes defined in the new schema.

Diagram of the in-place schema upgrade for the SeattleDirectory directory

I use the following code example to perform an in-place upgrade of the SeattleDirectory to a Major Version of 1 and a Minor Version of A. Note that you should change a Major Version identifier in a schema to make backward-incompatible changes such as changing the data type of an existing attribute or dropping a mandatory attribute from your schema. Backward-incompatible changes require directory data migration from a previous version to the new version. You should change a Minor Version identifier in a schema to make backward-compatible upgrades such as adding additional attributes or adding facets, which in turn may contain one or more attributes. The upgradeAppliedSchema API lets me upgrade an existing directory with a different version of a schema.

// This upgrades ComputerSchema version 1 of the Applied schema in SeattleDirectory to Major Version 1 and Minor Version A
// The schema must be backward compatible or the API will fail with IncompatibleSchemaException

UpgradeAppliedSchemaResult upgradeAppliedSchemaResult = client.upgradeAppliedSchema(new UpgradeAppliedSchemaRequest()
        .withDirectoryArn(directoryArn)
        .withPublishedSchemaArn(upgradedPublishedSchemaArn));

String upgradedAppliedSchemaArn = upgradeAppliedSchemaResult.getUpgradedSchemaArn();

// The Applied schema ARN after the in-place schema upgrade will appear as follows
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1

// This code section can be reused to upgrade directories for the Portland and San Francisco locations with the appropriate directory ARN

Note: Cloud Directory has excluded returning the Minor Version identifier in the Applied schema ARN for backward compatibility and to enable the application to work across older and newer versions of the directory.

The following diagram shows the changes that are made when I perform an in-place schema upgrade in the two remaining directories, PortlandDirectory and SanFranciscoDirectory. I make these calls sequentially, upgrading PortlandDirectory first and then upgrading SanFranciscoDirectory. I use the same code example that I used earlier to upgrade SeattleDirectory. Now, all my directories are running the most current version of the schema. Also, I made these schema changes without having to migrate data and while maintaining my application’s high availability.

Diagram showing the changes that are made with an in-place schema upgrade in the two remaining directories

Schema revision history

I can now view the schema revision history for any of AnyCompany’s directories by using the listAppliedSchemaArns API. Cloud Directory maintains the five most recent versions of applied schema changes. Similarly, to inspect the current Minor Version that was applied to my schema, I use the getAppliedSchemaVersion API. The listAppliedSchemaArns API returns the schema ARNs based on my schema filter as defined in withSchemaArn.

I use the following code example to query an Applied schema for its version history.

// This returns the five most recent Minor Versions associated with a Major Version
ListAppliedSchemaArnsResult listAppliedSchemaArnsResult = client.listAppliedSchemaArns(new ListAppliedSchemaArnsRequest()
        .withDirectoryArn(directoryArn)
        .withSchemaArn(upgradedAppliedSchemaArn));

// Note: The listAppliedSchemaArns API without the SchemaArn filter returns all the Major Versions in a directory

The listAppliedSchemaArns API returns the two ARNs as shown in the following output.

arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1
arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1/A

The following code example queries an Applied schema for current Minor Version by using the getAppliedSchemaVersion API.

// This returns the current Applied schema's Minor Version ARN 

GetAppliedSchemaVersion getAppliedSchemaVersionResult = client.getAppliedSchemaVersion(new GetAppliedSchemaVersionRequest()
	.withSchemaArn(upgradedAppliedSchemaArn));

The getAppliedSchemaVersion API returns the current Applied schema ARN with a Minor Version, as shown in the following output.

arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1/A

If you have a lot of directories, schema revision API calls can help you audit your directory fleet and ensure that all directories are running the same version of a schema. Such auditing can help you ensure high integrity of directories across your fleet.

Summary

You can use in-place schema upgrades to make changes to your directory schema as you evolve your data set to match the needs of your application. An in-place schema upgrade allows you to maintain high availability for your directory and applications while the upgrade takes place. For more information about in-place schema upgrades, see the in-place schema upgrade documentation.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about implementing the solution in this post, start a new thread in the Directory Service forum or contact AWS Support.

– Mahendra

 

Collect Data Statistics Up to 5x Faster by Analyzing Only Predicate Columns with Amazon Redshift

Post Syndicated from George Caragea original https://aws.amazon.com/blogs/big-data/collect-data-statistics-up-to-5x-faster-by-analyzing-only-predicate-columns-with-amazon-redshift/

Amazon Redshift is a fast, fully managed, petabyte-scale data warehousing service that makes it simple and cost-effective to analyze all of your data. Many of our customers—including Boingo Wireless, Scholastic, Finra, Pinterest, and Foursquare—migrated to Amazon Redshift and achieved agility and faster time to insight, while dramatically reducing costs.

Query optimization and the need for accurate estimates

When a SQL query is submitted to Amazon Redshift, the query optimizer is in charge of generating all the possible ways to execute that query, and picking the fastest one. This can mean evaluating the cost of thousands, if not millions, of different execution plans.

The plan cost is calculated based on estimates of the data characteristics. For example, the characteristics could include the number of rows in each base table, the average width of a variable-length column, the number of distinct values in a column, and the most common values in a column. These estimates (or “statistics”) are computed in advance by running an ANALYZE command, and stored in the system catalog.

How do the query optimizer and ANALYZE work together?

An ideal scenario is to run ANALYZE after every ETL/ingestion job. This way, when running your workload, the query optimizer can use up-to-date data statistics, and choose the most optimal execution plan, given the updates.

However, running the ANALYZE command can add significant overhead to the data ingestion scripts. This can lead to customers not running ANALYZE on their data, and using default or stale estimates. The end result is usually the optimizer choosing a suboptimal execution plan that runs for longer than needed.

Analyzing predicate columns only

When you run a SQL query, the query optimizer requests statistics only on columns used in predicates in the SQL query (join predicates, filters in the WHERE clause and GROUP BY clauses). Consider the following query:

SELECT Avg(salary), 
       Min(hiredate), 
       deptname 
FROM   emp 
WHERE  state = 'CA' 
GROUP  BY deptname; 

In the query above, the optimizer requests statistics only on columns ‘state’ and ‘deptname’, but not on ‘salary’ and ‘hiredate’. If present, statistics on columns ‘salary’ and ‘hiredate’ are ignored, as they do not impact the cost of the execution plans considered.

Based on the optimizer functionality described earlier, the Amazon Redshift ANALYZE command has been updated to optionally collect information only about columns used in previous queries as part of a filter, join condition or a GROUP BY clause, and columns that are part of distribution or sort keys (predicate columns). There’s a recently introduced option for the ANALYZE command that only analyzes predicate columns:

ANALYZE <table name> PREDICATE COLUMNS;

By having Amazon Redshift collect information about predicate columns automatically, and analyzing those columns only, you’re able to reduce the time to run ANALYZE. For example, during the execution of the 99 queries in the TPC-DS workload, only 203 out of the 424 total columns are predicate columns (approximately 48%). By analyzing only the predicate columns for such a workload, the execution time for running ANALYZE can be significantly reduced.

From my experience in the data warehousing space, I have observed that about 20% of columns in a typical use case are marked predicate. In such a case, running ANALYZE PREDICATE COLUMNS can lead to a speedup of up to 5x relative to a full ANALYZE run.

If no information on predicate columns exists in the system (for example, a new table that has not been queried yet), ANALYZE PREDICATE COLUMNS collects statistics on all the columns. When queries on the table are run, Amazon Redshift collects information about predicate column usage, and subsequent runs of ANALYZE PREDICATE COLUMNS only operates on the predicate columns.

If the workload is relatively stable, and the set of predicate columns does not expand continuously over time, I recommend replacing all occurrences of the ANALYZE command with ANALYZE PREDICATE COLUMNS commands in your application and data ingestion code.

Using the Analyze/Vacuum utility

Several AWS customers are using the Analyze/Vacuum utility from the Redshift-Utils package to manage and automate their maintenance operations. By passing the –predicate-cols option to the Analyze/Vacuum utility, you can enable it to use the ANALYZE PREDICATE COLUMNS feature, providing you with the significant changes in overhead in a completely seamless manner.

Enhancements to logging for ANALYZE operations

When running ANALYZE with the PREDICATE COLUMNS option, the type of analyze run (Full vs Predicate Column), as well as information about the predicate columns encountered, is logged in the stl_analyze view:

SELECT status, 
       starttime, 
       prevtime, 
       num_predicate_cols, 
       num_new_predicate_cols 
FROM   stl_analyze;
     status   |    starttime        |   prevtime          | pred_cols | new_pred_cols
--------------+---------------------+---------------------+-----------+---------------
 Full         | 2017-11-09 01:15:47 |                     |         0 |             0
 PredicateCol | 2017-11-09 01:16:20 | 2017-11-09 01:15:47 |         2 |             2

AWS also enhanced the pg_statistic catalog table with two new pieces of information: the time stamp at which a column was marked as “predicate”, and the time stamp at which the column was last analyzed.

The Amazon Redshift documentation provides a view that allows a user to easily see which columns are marked as predicate, when they were marked as predicate, and when a column was last analyzed. For example, for the emp table used above, the output of the view could be as follows:

 SELECT col_name, 
       is_predicate, 
       first_predicate_use, 
       last_analyze 
FROM   predicate_columns 
WHERE  table_name = 'emp';

 col_name | is_predicate | first_predicate_use  |        last_analyze
----------+--------------+----------------------+----------------------------
 id       | f            |                      | 2017-11-09 01:15:47
 name     | f            |                      | 2017-11-09 01:15:47
 deptname | t            | 2017-11-09 01:16:03  | 2017-11-09 01:16:20
 age      | f            |                      | 2017-11-09 01:15:47
 salary   | f            |                      | 2017-11-09 01:15:47
 hiredate | f            |                      | 2017-11-09 01:15:47
 state    | t            | 2017-11-09 01:16:03  | 2017-11-09 01:16:20

Conclusion

After loading new data into an Amazon Redshift cluster, statistics need to be re-computed to guarantee performant query plans. By learning which column statistics are actually being used by the customer’s workload and collecting statistics only on those columns, Amazon Redshift is able to significantly reduce the amount of time needed for table maintenance during data loading workflows.


Additional Reading

Be sure to check out the Top 10 Tuning Techniques for Amazon Redshift, and the Advanced Table Design Playbook: Distribution Styles and Distribution Keys.


About the Author

George Caragea is a Senior Software Engineer with Amazon Redshift. He has been working on MPP Databases for over 6 years and is mainly interested in designing systems at scale. In his spare time, he enjoys being outdoors and on the water in the beautiful Bay Area and finishing the day exploring the rich local restaurant scene.

 

 

How AWS Managed Microsoft AD Helps to Simplify the Deployment and Improve the Security of Active Directory–Integrated .NET Applications

Post Syndicated from Peter Pereira original https://aws.amazon.com/blogs/security/how-aws-managed-microsoft-ad-helps-to-simplify-the-deployment-and-improve-the-security-of-active-directory-integrated-net-applications/

Companies using .NET applications to access sensitive user information, such as employee salary, Social Security Number, and credit card information, need an easy and secure way to manage access for users and applications.

For example, let’s say that your company has a .NET payroll application. You want your Human Resources (HR) team to manage and update the payroll data for all the employees in your company. You also want your employees to be able to see their own payroll information in the application. To meet these requirements in a user-friendly and secure way, you want to manage access to the .NET application by using your existing Microsoft Active Directory identities. This enables you to provide users with single sign-on (SSO) access to the .NET application and to manage permissions using Active Directory groups. You also want the .NET application to authenticate itself to access the database, and to limit access to the data in the database based on the identity of the application user.

Microsoft Active Directory supports these requirements through group Managed Service Accounts (gMSAs) and Kerberos constrained delegation (KCD). AWS Directory Service for Microsoft Active Directory, also known as AWS Managed Microsoft AD, enables you to manage gMSAs and KCD through your administrative account, helping you to migrate and develop .NET applications that need these native Active Directory features.

In this blog post, I give an overview of how to use AWS Managed Microsoft AD to manage gMSAs and KCD and demonstrate how you can configure a gMSA and KCD in six steps for a .NET application:

  1. Create your AWS Managed Microsoft AD.
  2. Create your Amazon RDS for SQL Server database.
  3. Create a gMSA for your .NET application.
  4. Deploy your .NET application.
  5. Configure your .NET application to use the gMSA.
  6. Configure KCD for your .NET application.

Solution overview

The following diagram shows the components of a .NET application that uses Amazon RDS for SQL Server with a gMSA and KCD. The diagram also illustrates authentication and access and is numbered to show the six key steps required to use a gMSA and KCD. To deploy this solution, the AWS Managed Microsoft AD directory must be in the same Amazon Virtual Private Cloud (VPC) as RDS for SQL Server. For this example, my company name is Example Corp., and my directory uses the domain name, example.com.

Diagram showing the components of a .NET application that uses Amazon RDS for SQL Server with a gMSA and KCD

Deploy the solution

The following six steps (numbered to correlate with the preceding diagram) walk you through configuring and using a gMSA and KCD.

1. Create your AWS Managed Microsoft AD directory

Using the Directory Service console, create your AWS Managed Microsoft AD directory in your Amazon VPC. In my example, my domain name is example.com.

Image of creating an AWS Managed Microsoft AD directory in an Amazon VPC

2. Create your Amazon RDS for SQL Server database

Using the RDS console, create your Amazon RDS for SQL Server database instance in the same Amazon VPC where your directory is running, and enable Windows Authentication. To enable Windows Authentication, select your directory in the Microsoft SQL Server Windows Authentication section in the Configure Advanced Settings step of the database creation workflow (see the following screenshot).

In my example, I create my Amazon RDS for SQL Server db-example database, and enable Windows Authentication to allow my db-example database to authenticate against my example.com directory.

Screenshot of configuring advanced settings

3. Create a gMSA for your .NET application

Now that you have deployed your directory, database, and application, you can create a gMSA for your .NET application.

To perform the next steps, you must install the Active Directory administration tools on a Windows server that is joined to your AWS Managed Microsoft AD directory domain. If you do not have a Windows server joined to your directory domain, you can deploy a new Amazon EC2 for Microsoft Windows Server instance and join it to your directory domain.

To create a gMSA for your .NET application:

  1. Log on to the instance on which you installed the Active Directory administration tools by using a user that is a member of the Admins security group or the Managed Service Accounts Admins security group in your organizational unit (OU). For my example, I use the Admin user in the example OU.

Screenshot of logging on to the instance on which you installed the Active Directory administration tools

  1. Identify which .NET application servers (hosts) will run your .NET application. Create a new security group in your OU and add your .NET application servers as members of this new group. This allows a group of application servers to use a single gMSA, instead of creating one gMSA for each server. In my example, I create a group, App_server_grp, in my example OU. I also add Appserver1, which is my .NET application server computer name, as a member of this new group.

Screenshot of creating a new security group

  1. Create a gMSA in your directory by running Windows PowerShell from the Start menu. The basic syntax to create the gMSA at the Windows PowerShell command prompt follows.
    PS C:\Users\admin> New-ADServiceAccount -name [gMSAname] -DNSHostName [domainname] -PrincipalsAllowedToRetrieveManagedPassword [AppServersSecurityGroup] -TrustedForDelegation $truedn <Enter>

    In my example, the gMSAname is gMSAexample, the DNSHostName is example.com, and the PrincipalsAllowedToRetrieveManagedPassword is the recently created security group, App_server_grp.

    PS C:\Users\admin> New-ADServiceAccount -name gMSAexample -DNSHostName example.com -PrincipalsAllowedToRetrieveManagedPassword App_server_grp -TrustedForDelegation $truedn <Enter>

    To confirm you created the gMSA, you can run the Get-ADServiceAccount command from the PowerShell command prompt.

    PS C:\Users\admin> Get-ADServiceAccount gMSAexample <Enter>
    
    DistinguishedName : CN=gMSAexample,CN=Managed Service Accounts,DC=example,DC=com
    Enabled           : True
    Name              : gMSAexample
    ObjectClass       : msDS-GroupManagedServiceAccount
    ObjectGUID        : 24d8b68d-36d5-4dc3-b0a9-edbbb5dc8a5b
    SamAccountName    : gMSAexample$
    SID               : S-1-5-21-2100421304-991410377-951759617-1603
    UserPrincipalName :

    You also can confirm you created the gMSA by opening the Active Directory Users and Computers utility located in your Administrative Tools folder, expand the domain (example.com in my case), and expand the Managed Service Accounts folder.
    Screenshot of confirming the creation of the gMSA

4. Deploy your .NET application

Deploy your .NET application on IIS on Amazon EC2 for Windows Server instances. For this step, I assume you are the application’s expert and already know how to deploy it. Make sure that all of your instances are joined to your directory.

5. Configure your .NET application to use the gMSA

You can configure your .NET application to use the gMSA to enforce strong password security policy and ensure password rotation of your service account. This helps to improve the security and simplify the management of your .NET application. Configure your .NET application in two steps:

  1. Grant to gMSA the required permissions to run your .NET application in the respective application folders. This is a critical step because when you change the application pool identity account to use gMSA, downtime can occur if the gMSA does not have the application’s required permissions. Therefore, make sure you first test the configurations in your development and test environments.
  2. Configure your application pool identity on IIS to use the gMSA as the service account. When you configure a gMSA as the service account, you include the $ at the end of the gMSA name. You do not need to provide a password because AWS Managed Microsoft AD automatically creates and rotates the password. In my example, my service account is gMSAexample$, as shown in the following screenshot.

Screenshot of configuring application pool identity

You have completed all the steps to use gMSA to create and rotate your .NET application service account password! Now, you will configure KCD for your .NET application.

6. Configure KCD for your .NET application

You now are ready to allow your .NET application to have access to other services by using the user identity’s permissions instead of the application service account’s permissions. Note that KCD and gMSA are independent features, which means you do not have to create a gMSA to use KCD. For this example, I am using both features to show how you can use them together. To configure a regular service account such as a user or local built-in account, see the Kerberos constrained delegation with ASP.NET blog post on MSDN.

In my example, my goal is to delegate to the gMSAexample account the ability to enforce the user’s permissions to my db-example SQL Server database, instead of the gMSAexample account’s permissions. For this, I have to update the msDS-AllowedToDelegateTo gMSA attribute. The value for this attribute is the service principal name (SPN) of the service instance that you are targeting, which in this case is the db-example Amazon RDS for SQL Server database.

The SPN format for the msDS-AllowedToDelegateTo attribute is a combination of the service class, the Kerberos authentication endpoint, and the port number. The Amazon RDS for SQL Server Kerberos authentication endpoint format is [database_name].[domain_name]. The value for my msDS-AllowedToDelegateTo attribute is MSSQLSvc/db-example.example.com:1433, where MSSQLSvc and 1433 are the SQL Server Database service class and port number standards, respectively.

Follow these steps to perform the msDS-AllowedToDelegateTo gMSA attribute configuration:

  1. Log on to your Active Directory management instance with a user identity that is a member of the Kerberos Delegation Admins security group. In this case, I will use admin.
  2. Open the Active Directory Users and Groups utility located in your Administrative Tools folder, choose View, and then choose Advanced Features.
  3. Expand your domain name (example.com in this example), and then choose the Managed Service Accounts security group. Right-click the gMSA account for the application pool you want to enable for Kerberos delegation, choose Properties, and choose the Attribute Editor tab.
  4. Search for the msDS-AllowedToDelegateTo attribute on the Attribute Editor tab and choose Edit.
  5. Enter the MSSQLSvc/db-example.example.com:1433 value and choose Add.
    Screenshot of entering the value of the multi-valued string
  6. Choose OK and Apply, and your KCD configuration is complete.

Congratulations! At this point, your application is using a gMSA rather than an embedded static user identity and password, and the application is able to access SQL Server using the identity of the application user. The gMSA eliminates the need for you to rotate the application’s password manually, and it allows you to better scope permissions for the application. When you use KCD, you can enforce access to your database consistently based on user identities at the database level, which prevents improper access that might otherwise occur because of an application error.

Summary

In this blog post, I demonstrated how to simplify the deployment and improve the security of your .NET application by using a group Managed Service Account and Kerberos constrained delegation with your AWS Managed Microsoft AD directory. I also outlined the main steps to get your .NET environment up and running on a managed Active Directory and SQL Server infrastructure. This approach will make it easier for you to build new .NET applications in the AWS Cloud or migrate existing ones in a more secure way.

For additional information about using group Managed Service Accounts and Kerberos constrained delegation with your AWS Managed Microsoft AD directory, see the AWS Directory Service documentation.

To learn more about AWS Directory Service, see the AWS Directory Service home page. If you have questions about this post or its solution, start a new thread on the Directory Service forum.

– Peter

Enlightenment DR 0.22.0 Release

Post Syndicated from ris original https://lwn.net/Articles/738290/rss

Enlightenment DR 0.22.0 has been released. This
version of the desktop shell features improved Wayland support,
improvements to new gadget infrastructure, a sudo/ssh askpass utility gui,
tiling policy improvements, and integrated per-window volume controls,
along with a switch to the Meson build system.

Using AWS Step Functions State Machines to Handle Workflow-Driven AWS CodePipeline Actions

Post Syndicated from Marcilio Mendonca original https://aws.amazon.com/blogs/devops/using-aws-step-functions-state-machines-to-handle-workflow-driven-aws-codepipeline-actions/

AWS CodePipeline is a continuous integration and continuous delivery service for fast and reliable application and infrastructure updates. It offers powerful integration with other AWS services, such as AWS CodeBuildAWS CodeDeployAWS CodeCommit, AWS CloudFormation and with third-party tools such as Jenkins and GitHub. These services make it possible for AWS customers to successfully automate various tasks, including infrastructure provisioning, blue/green deployments, serverless deployments, AMI baking, database provisioning, and release management.

Developers have been able to use CodePipeline to build sophisticated automation pipelines that often require a single CodePipeline action to perform multiple tasks, fork into different execution paths, and deal with asynchronous behavior. For example, to deploy a Lambda function, a CodePipeline action might first inspect the changes pushed to the code repository. If only the Lambda code has changed, the action can simply update the Lambda code package, create a new version, and point the Lambda alias to the new version. If the changes also affect infrastructure resources managed by AWS CloudFormation, the pipeline action might have to create a stack or update an existing one through the use of a change set. In addition, if an update is required, the pipeline action might enforce a safety policy to infrastructure resources that prevents the deletion and replacement of resources. You can do this by creating a change set and having the pipeline action inspect its changes before updating the stack. Change sets that do not conform to the policy are deleted.

This use case is a good illustration of workflow-driven pipeline actions. These are actions that run multiple tasks, deal with async behavior and loops, need to maintain and propagate state, and fork into different execution paths. Implementing workflow-driven actions directly in CodePipeline can lead to complex pipelines that are hard for developers to understand and maintain. Ideally, a pipeline action should perform a single task and delegate the complexity of dealing with workflow-driven behavior associated with that task to a state machine engine. This would make it possible for developers to build simpler, more intuitive pipelines and allow them to use state machine execution logs to visualize and troubleshoot their pipeline actions.

In this blog post, we discuss how AWS Step Functions state machines can be used to handle workflow-driven actions. We show how a CodePipeline action can trigger a Step Functions state machine and how the pipeline and the state machine are kept decoupled through a Lambda function. The advantages of using state machines include:

  • Simplified logic (complex tasks are broken into multiple smaller tasks).
  • Ease of handling asynchronous behavior (through state machine wait states).
  • Built-in support for choices and processing different execution paths (through state machine choices).
  • Built-in visualization and logging of the state machine execution.

The source code for the sample pipeline, pipeline actions, and state machine used in this post is available at https://github.com/awslabs/aws-codepipeline-stepfunctions.

Overview

This figure shows the components in the CodePipeline-Step Functions integration that will be described in this post. The pipeline contains two stages: a Source stage represented by a CodeCommit Git repository and a Prod stage with a single Deploy action that represents the workflow-driven action.

This action invokes a Lambda function (1) called the State Machine Trigger Lambda, which, in turn, triggers a Step Function state machine to process the request (2). The Lambda function sends a continuation token back to the pipeline (3) to continue its execution later and terminates. Seconds later, the pipeline invokes the Lambda function again (4), passing the continuation token received. The Lambda function checks the execution state of the state machine (5,6) and communicates the status to the pipeline. The process is repeated until the state machine execution is complete. Then the Lambda function notifies the pipeline that the corresponding pipeline action is complete (7). If the state machine has failed, the Lambda function will then fail the pipeline action and stop its execution (7). While running, the state machine triggers various Lambda functions to perform different tasks. The state machine and the pipeline are fully decoupled. Their interaction is handled by the Lambda function.

The Deploy State Machine

The sample state machine used in this post is a simplified version of the use case, with emphasis on infrastructure deployment. The state machine will follow distinct execution paths and thus have different outcomes, depending on:

  • The current state of the AWS CloudFormation stack.
  • The nature of the code changes made to the AWS CloudFormation template and pushed into the pipeline.

If the stack does not exist, it will be created. If the stack exists, a change set will be created and its resources inspected by the state machine. The inspection consists of parsing the change set results and detecting whether any resources will be deleted or replaced. If no resources are being deleted or replaced, the change set is allowed to be executed and the state machine completes successfully. Otherwise, the change set is deleted and the state machine completes execution with a failure as the terminal state.

Let’s dive into each of these execution paths.

Path 1: Create a Stack and Succeed Deployment

The Deploy state machine is shown here. It is triggered by the Lambda function using the following input parameters stored in an S3 bucket.

Create New Stack Execution Path

{
    "environmentName": "prod",
    "stackName": "sample-lambda-app",
    "templatePath": "infra/Lambda-template.yaml",
    "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
    "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ"
}

Note that some values used here are for the use case example only. Account-specific parameters like revisionS3Bucket and revisionS3Key will be different when you deploy this use case in your account.

These input parameters are used by various states in the state machine and passed to the corresponding Lambda functions to perform different tasks. For example, stackName is used to create a stack, check the status of stack creation, and create a change set. The environmentName represents the environment (for example, dev, test, prod) to which the code is being deployed. It is used to prefix the name of stacks and change sets.

With the exception of built-in states such as wait and choice, each state in the state machine invokes a specific Lambda function.  The results received from the Lambda invocations are appended to the state machine’s original input. When the state machine finishes its execution, several parameters will have been added to its original input.

The first stage in the state machine is “Check Stack Existence”. It checks whether a stack with the input name specified in the stackName input parameter already exists. The output of the state adds a Boolean value called doesStackExist to the original state machine input as follows:

{
  "doesStackExist": true,
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
}

The following stage, “Does Stack Exist?”, is represented by Step Functions built-in choice state. It checks the value of doesStackExist to determine whether a new stack needs to be created (doesStackExist=true) or a change set needs to be created and inspected (doesStackExist=false).

If the stack does not exist, the states illustrated in green in the preceding figure are executed. This execution path creates the stack, waits until the stack is created, checks the status of the stack’s creation, and marks the deployment successful after the stack has been created. Except for “Stack Created?” and “Wait Stack Creation,” each of these stages invokes a Lambda function. “Stack Created?” and “Wait Stack Creation” are implemented by using the built-in choice state (to decide which path to follow) and the wait state (to wait a few seconds before proceeding), respectively. Each stage adds the results of their Lambda function executions to the initial input of the state machine, allowing future stages to process them.

Path 2: Safely Update a Stack and Mark Deployment as Successful

Safely Update a Stack and Mark Deployment as Successful Execution Path

If the stack indicated by the stackName parameter already exists, a different path is executed. (See the green states in the figure.) This path will create a change set and use wait and choice states to wait until the change set is created. Afterwards, a stage in the execution path will inspect  the resources affected before the change set is executed.

The inspection procedure represented by the “Inspect Change Set Changes” stage consists of parsing the resources affected by the change set and checking whether any of the existing resources are being deleted or replaced. The following is an excerpt of the algorithm, where changeSetChanges.Changes is the object representing the change set changes:

...
var RESOURCES_BEING_DELETED_OR_REPLACED = "RESOURCES-BEING-DELETED-OR-REPLACED";
var CAN_SAFELY_UPDATE_EXISTING_STACK = "CAN-SAFELY-UPDATE-EXISTING-STACK";
for (var i = 0; i < changeSetChanges.Changes.length; i++) {
    var change = changeSetChanges.Changes[i];
    if (change.Type == "Resource") {
        if (change.ResourceChange.Action == "Delete") {
            return RESOURCES_BEING_DELETED_OR_REPLACED;
        }
        if (change.ResourceChange.Action == "Modify") {
            if (change.ResourceChange.Replacement == "True") {
                return RESOURCES_BEING_DELETED_OR_REPLACED;
            }
        }
    }
}
return CAN_SAFELY_UPDATE_EXISTING_STACK;

The algorithm returns different values to indicate whether the change set can be safely executed (CAN_SAFELY_UPDATE_EXISTING_STACK or RESOURCES_BEING_DELETED_OR_REPLACED). This value is used later by the state machine to decide whether to execute the change set and update the stack or interrupt the deployment.

The output of the “Inspect Change Set” stage is shown here.

{
  "environmentName": "prod",
  "stackName": "sample-lambda-app",
  "templatePath": "infra/lambda-template.yaml",
  "revisionS3Bucket": "codepipeline-us-east-1-418586629775",
  "revisionS3Key": "StepFunctionsDrivenD/CodeCommit/sjcmExZ",
  "doesStackExist": true,
  "changeSetName": "prod-sample-lambda-app-change-set-545",
  "changeSetCreationStatus": "complete",
  "changeSetAction": "CAN-SAFELY-UPDATE-EXISTING-STACK"
}

At this point, these parameters have been added to the state machine’s original input:

  • changeSetName, which is added by the “Create Change Set” state.
  • changeSetCreationStatus, which is added by the “Get Change Set Creation Status” state.
  • changeSetAction, which is added by the “Inspect Change Set Changes” state.

The “Safe to Update Infra?” step is a choice state (its JSON spec follows) that simply checks the value of the changeSetAction parameter. If the value is equal to “CAN-SAFELY-UPDATE-EXISTING-STACK“, meaning that no resources will be deleted or replaced, the step will execute the change set by proceeding to the “Execute Change Set” state. The deployment is successful (the state machine completes its execution successfully).

"Safe to Update Infra?": {
      "Type": "Choice",
      "Choices": [
        {
          "Variable": "$.taskParams.changeSetAction",
          "StringEquals": "CAN-SAFELY-UPDATE-EXISTING-STACK",
          "Next": "Execute Change Set"
        }
      ],
      "Default": "Deployment Failed"
 }

Path 3: Reject Stack Update and Fail Deployment

Reject Stack Update and Fail Deployment Execution Path

If the changeSetAction parameter is different from “CAN-SAFELY-UPDATE-EXISTING-STACK“, the state machine will interrupt the deployment by deleting the change set and proceeding to the “Deployment Fail” step, which is a built-in Fail state. (Its JSON spec follows.) This state causes the state machine to stop in a failed state and serves to indicate to the Lambda function that the pipeline deployment should be interrupted in a fail state as well.

 "Deployment Failed": {
      "Type": "Fail",
      "Cause": "Deployment Failed",
      "Error": "Deployment Failed"
    }

In all three scenarios, there’s a state machine’s visual representation available in the AWS Step Functions console that makes it very easy for developers to identify what tasks have been executed or why a deployment has failed. Developers can also inspect the inputs and outputs of each state and look at the state machine Lambda function’s logs for details. Meanwhile, the corresponding CodePipeline action remains very simple and intuitive for developers who only need to know whether the deployment was successful or failed.

The State Machine Trigger Lambda Function

The Trigger Lambda function is invoked directly by the Deploy action in CodePipeline. The CodePipeline action must pass a JSON structure to the trigger function through the UserParameters attribute, as follows:

{
  "s3Bucket": "codepipeline-StepFunctions-sample",
  "stateMachineFile": "state_machine_input.json"
}

The s3Bucket parameter specifies the S3 bucket location for the state machine input parameters file. The stateMachineFile parameter specifies the file holding the input parameters. By being able to specify different input parameters to the state machine, we make the Trigger Lambda function and the state machine reusable across environments. For example, the same state machine could be called from a test and prod pipeline action by specifying a different S3 bucket or state machine input file for each environment.

The Trigger Lambda function performs two main tasks: triggering the state machine and checking the execution state of the state machine. Its core logic is shown here:

exports.index = function (event, context, callback) {
    try {
        console.log("Event: " + JSON.stringify(event));
        console.log("Context: " + JSON.stringify(context));
        console.log("Environment Variables: " + JSON.stringify(process.env));
        if (Util.isContinuingPipelineTask(event)) {
            monitorStateMachineExecution(event, context, callback);
        }
        else {
            triggerStateMachine(event, context, callback);
        }
    }
    catch (err) {
        failure(Util.jobId(event), callback, context.invokeid, err.message);
    }
}

Util.isContinuingPipelineTask(event) is a utility function that checks if the Trigger Lambda function is being called for the first time (that is, no continuation token is passed by CodePipeline) or as a continuation of a previous call. In its first execution, the Lambda function will trigger the state machine and send a continuation token to CodePipeline that contains the state machine execution ARN. The state machine ARN is exposed to the Lambda function through a Lambda environment variable called stateMachineArn. Here is the code that triggers the state machine:

function triggerStateMachine(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var s3Bucket = Util.actionUserParameter(event, "s3Bucket");
    var stateMachineFile = Util.actionUserParameter(event, "stateMachineFile");
    getStateMachineInputData(s3Bucket, stateMachineFile)
        .then(function (data) {
            var initialParameters = data.Body.toString();
            var stateMachineInputJSON = createStateMachineInitialInput(initialParameters, event);
            console.log("State machine input JSON: " + JSON.stringify(stateMachineInputJSON));
            return stateMachineInputJSON;
        })
        .then(function (stateMachineInputJSON) {
            return triggerStateMachineExecution(stateMachineArn, stateMachineInputJSON);
        })
        .then(function (triggerStateMachineOutput) {
            var continuationToken = { "stateMachineExecutionArn": triggerStateMachineOutput.executionArn };
            var message = "State machine has been triggered: " + JSON.stringify(triggerStateMachineOutput) + ", continuationToken: " + JSON.stringify(continuationToken);
            return continueExecution(Util.jobId(event), continuationToken, callback, message);
        })
        .catch(function (err) {
            console.log("Error triggering state machine: " + stateMachineArn + ", Error: " + err.message);
            failure(Util.jobId(event), callback, context.invokeid, err.message);
        })
}

The Trigger Lambda function fetches the state machine input parameters from an S3 file, triggers the execution of the state machine using the input parameters and the stateMachineArn environment variable, and signals to CodePipeline that the execution should continue later by passing a continuation token that contains the state machine execution ARN. In case any of these operations fail and an exception is thrown, the Trigger Lambda function will fail the pipeline immediately by signaling a pipeline failure through the putJobFailureResult CodePipeline API.

If the Lambda function is continuing a previous execution, it will extract the state machine execution ARN from the continuation token and check the status of the state machine, as shown here.

function monitorStateMachineExecution(event, context, callback) {
    var stateMachineArn = process.env.stateMachineArn;
    var continuationToken = JSON.parse(Util.continuationToken(event));
    var stateMachineExecutionArn = continuationToken.stateMachineExecutionArn;
    getStateMachineExecutionStatus(stateMachineExecutionArn)
        .then(function (response) {
            if (response.status === "RUNNING") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " is still " + response.status;
                return continueExecution(Util.jobId(event), continuationToken, callback, message);
            }
            if (response.status === "SUCCEEDED") {
                var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
                return success(Util.jobId(event), callback, message);
            }
            // FAILED, TIMED_OUT, ABORTED
            var message = "Execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + " has: " + response.status;
            return failure(Util.jobId(event), callback, context.invokeid, message);
        })
        .catch(function (err) {
            var message = "Error monitoring execution: " + stateMachineExecutionArn + " of state machine: " + stateMachineArn + ", Error: " + err.message;
            failure(Util.jobId(event), callback, context.invokeid, message);
        });
}

If the state machine is in the RUNNING state, the Lambda function will send the continuation token back to the CodePipeline action. This will cause CodePipeline to call the Lambda function again a few seconds later. If the state machine has SUCCEEDED, then the Lambda function will notify the CodePipeline action that the action has succeeded. In any other case (FAILURE, TIMED-OUT, or ABORT), the Lambda function will fail the pipeline action.

This behavior is especially useful for developers who are building and debugging a new state machine because a bug in the state machine can potentially leave the pipeline action hanging for long periods of time until it times out. The Trigger Lambda function prevents this.

Also, by having the Trigger Lambda function as a means to decouple the pipeline and state machine, we make the state machine more reusable. It can be triggered from anywhere, not just from a CodePipeline action.

The Pipeline in CodePipeline

Our sample pipeline contains two simple stages: the Source stage represented by a CodeCommit Git repository and the Prod stage, which contains the Deploy action that invokes the Trigger Lambda function. When the state machine decides that the change set created must be rejected (because it replaces or deletes some the existing production resources), it fails the pipeline without performing any updates to the existing infrastructure. (See the failed Deploy action in red.) Otherwise, the pipeline action succeeds, indicating that the existing provisioned infrastructure was either created (first run) or updated without impacting any resources. (See the green Deploy stage in the pipeline on the left.)

The Pipeline in CodePipeline

The JSON spec for the pipeline’s Prod stage is shown here. We use the UserParameters attribute to pass the S3 bucket and state machine input file to the Lambda function. These parameters are action-specific, which means that we can reuse the state machine in another pipeline action.

{
  "name": "Prod",
  "actions": [
      {
          "inputArtifacts": [
              {
                  "name": "CodeCommitOutput"
              }
          ],
          "name": "Deploy",
          "actionTypeId": {
              "category": "Invoke",
              "owner": "AWS",
              "version": "1",
              "provider": "Lambda"
          },
          "outputArtifacts": [],
          "configuration": {
              "FunctionName": "StateMachineTriggerLambda",
              "UserParameters": "{\"s3Bucket\": \"codepipeline-StepFunctions-sample\", \"stateMachineFile\": \"state_machine_input.json\"}"
          },
          "runOrder": 1
      }
  ]
}

Conclusion

In this blog post, we discussed how state machines in AWS Step Functions can be used to handle workflow-driven actions. We showed how a Lambda function can be used to fully decouple the pipeline and the state machine and manage their interaction. The use of a state machine greatly simplified the associated CodePipeline action, allowing us to build a much simpler and cleaner pipeline while drilling down into the state machine’s execution for troubleshooting or debugging.

Here are two exercises you can complete by using the source code.

Exercise #1: Do not fail the state machine and pipeline action after inspecting a change set that deletes or replaces resources. Instead, create a stack with a different name (think of blue/green deployments). You can do this by creating a state machine transition between the “Safe to Update Infra?” and “Create Stack” stages and passing a new stack name as input to the “Create Stack” stage.

Exercise #2: Add wait logic to the state machine to wait until the change set completes its execution before allowing the state machine to proceed to the “Deployment Succeeded” stage. Use the stack creation case as an example. You’ll have to create a Lambda function (similar to the Lambda function that checks the creation status of a stack) to get the creation status of the change set.

Have fun and share your thoughts!

About the Author

Marcilio Mendonca is a Sr. Consultant in the Canadian Professional Services Team at Amazon Web Services. He has helped AWS customers design, build, and deploy best-in-class, cloud-native AWS applications using VMs, containers, and serverless architectures. Before he joined AWS, Marcilio was a Software Development Engineer at Amazon. Marcilio also holds a Ph.D. in Computer Science. In his spare time, he enjoys playing drums, riding his motorcycle in the Toronto GTA area, and spending quality time with his family.

Adafruit’s read-only Raspberry Pi

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/adafruits-read-only/

For passive projects such as point-of-sale displays, video loopers, and your upcoming Halloween builds, Adafruit have come up with a read-only solution for powering down your Raspberry Pi without endangering your SD card.

Adafruit read-only raspberry pi

Pulling the plug

At home, at a coding club, or at a Jam, you rarely need to pull the plug on your Raspberry Pi without going through the correct shutdown procedure. To ensure a long life for your SD card and its contents, you should always turn off you Pi by selecting the shutdown option from the menu. This way the Pi saves any temporary files to the card before relinquishing power.

Dramatic reconstruction

By pulling the plug while your OS is still running, you might corrupt these files, which could result in the Pi failing to boot up again. The only fix? Wipe the SD card clean and start over, waving goodbye to all files you didn’t back up.

Passive projects

But what if it’s not as easy as selecting shutdown, because your Raspberry Pi is embedded deep inside the belly of a project? Maybe you’ve hot-glued your Zero W into a pumpkin which is now screwed to the roof of your porch, or your store has a bank of Pi-powered monitors playing ads and the power is set to shut off every evening. Without the ability to shut down your Pi via the menu, you risk the SD card’s contents every time you power down your project.

Read-only

Just in time of the plethora of Halloween projects we’re looking forward to this month, the clever folk at Adafruit have designed a solution for this issue. They’ve shared a script which forces the Raspberry Pi to run in read-only mode, so that powering it down via a plug pull will not corrupt the SD card.

But how?

The script makes the Pi save temporary files to the RAM instead of the SD card. Of course, this means that no files or new software can be written to the card. However, if that’s not necessary for your Pi project, you might be happy to make the trade-off. Note that you can only use Adafruit’s script on Raspbian Lite.

Find more about the read-only Raspberry Pi solution, including the script and optional GPIO-halt utility, on the Adafruit Learn page. And be aware that making your Pi read-only is irreversible, so be sure to back up the contents of your SD card before you implement the script.

Halloween!

It’s October, and we’re now allowed to get excited about Halloween and all of the wonderful projects you plan on making for the big night.

Adafruit read-only raspberry pi

Adafruit’s animated snake eyes

We’ll be covering some of our favourite spooky build on social media throughout the month — make sure to share yours with us, either in the comments below or on Facebook, Twitter, Instagram, or G+.

The post Adafruit’s read-only Raspberry Pi appeared first on Raspberry Pi.

Backing Up WordPress

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-up-wordpress/

WordPress cloud backup
WordPress logo

WordPress is the most popular CMS (Content Management System) for websites, with almost 30% of all websites in the world using WordPress. That’s a lot of sites — over 350 million!

In this post we’ll talk about the different approaches to keeping the data on your WordPress website safe.


Stop the Presses! (Or the Internet!)

As we were getting ready to publish this post, we received news from UpdraftPlus, one of the biggest WordPress plugin developers, that they are supporting Backblaze B2 as a storage solution for their backup plugin. They shipped the update (1.13.9) this week. This is great news for Backblaze customers! UpdraftPlus is also offering a 20% discount to Backblaze customers wishing to purchase or upgrade to UpdraftPlus Premium. The complete information is below.

UpdraftPlus joins backup plugin developer XCloner — Backup and Restore in supporting Backblaze B2. A third developer, BlogVault, also announced their intent to support Backblaze B2. Contact your favorite WordPress backup plugin developer and urge them to support Backblaze B2, as well.

Now, back to our post…


Your WordPress website data is on a web server that’s most likely located in a large data center. You might wonder why it is necessary to have a backup of your website if it’s in a data center. Website data can be lost in a number of ways, including mistakes by the website owner (been there), hacking, or even domain ownership dispute (I’ve seen it happen more than once). A website backup also can provide a history of changes you’ve made to the website, which can be useful. As an overall strategy, it’s best to have a backup of any data that you can’t afford to lose for personal or business reasons.

Your web hosting company might provide backup services as part of your hosting plan. If you are using their service, you should know where and how often your data is being backed up. You don’t want to find out too late that your backup plan was not adequate.

Sites on WordPress.com are automatically backed up by VaultPress (Automattic), which also is available for self-hosted WordPress installations. If you don’t want the work or decisions involved in managing the hosting for your WordPress site, WordPress.com will handle it for you. You do, however, give up some customization abilities, such as the option to add plugins of your own choice.

Very large and active websites might consider WordPress VIP by Automattic, or another premium WordPress hosting service such as Pagely.com.

This post is about backing up self-hosted WordPress sites, so we’ll focus on those options.

WordPress Backup

Backup strategies for WordPress can be divided into broad categories depending on 1) what you back up, 2) when you back up, and 3) where the data is backed up.

With server data, such as with a WordPress installation, you should plan to have three copies of the data (the 3-2-1 backup strategy). The first is the active data on the WordPress web server, the second is a backup stored on the web server or downloaded to your local computer, and the third should be in another location, such as the cloud.

We’ll talk about the different approaches to backing up WordPress, but we recommend using a WordPress plugin to handle your backups. A backup plugin can automate the task, optimize your backup storage space, and alert you of problems with your backups or WordPress itself. We’ll cover plugins in more detail, below.

What to Back Up?

The main components of your WordPress installation are:

You should decide which of these elements you wish to back up. The database is the top priority, as it contains all your website posts and pages (exclusive of media). Your current theme is important, as it likely contains customizations you’ve made. Following those in priority are any other files you’ve customized or made changes to.

You can choose to back up the WordPress core installation and plugins, if you wish, but these files can be downloaded again if necessary from the source, so you might not wish to include them. You likely have all the media files you use on your website on your local computer (which should be backed up), so it is your choice whether to back these up from the server as well.

If you wish to be able to recreate your entire website easily in case of data loss or disaster, you might choose to back up everything, though on a large website this could be a lot of data.

Generally, you should 1) prioritize any file that you’ve customized that you can’t afford to lose, and 2) decide whether you need a copy of everything in order to get your site back up quickly. These choices will determine your backup method and the amount of storage you need.

A good backup plugin for WordPress enables you to specify which files you wish to back up, and even to create separate backups and schedules for different backup contents. That’s another good reason to use a plugin for backing up WordPress.

When to Back Up?

You can back up manually at any time by using the Export tool in WordPress. This is handy if you wish to do a quick backup of your site or parts of it. Since it is manual, however, it is not a part of a dependable backup plan that should be done regularly. If you wish to use this tool, go to Tools, Export, and select what you wish to back up. The output will be an XML file that uses the WordPress Extended RSS format, also known as WXR. You can create a WXR file that contains all of the information on your site or just portions of the site, such as posts or pages by selecting: All content, Posts, Pages, or Media.
Note: You can use WordPress’s Export tool for sites hosted on WordPress.com, as well.

Export instruction for WordPress

Many of the backup plugins we’ll be discussing later also let you do a manual backup on demand in addition to regularly scheduled or continuous backups.

Note:  Another use of the WordPress Export tool and the WXR file is to transfer or clone your website to another server. Once you have exported the WXR file from the website you wish to transfer from, you can import the WXR file from the Tools, Import menu on the new WordPress destination site. Be aware that there are file size limits depending on the settings on your web server. See the WordPress Codex entry for more information. To make this job easier, you may wish to use one of a number of WordPress plugins designed specifically for this task.

You also can manually back up the WordPress MySQL database using a number of tools or a plugin. The WordPress Codex has good information on this. All WordPress plugins will handle this for you and do it automatically. They also typically include tools for optimizing the database tables, which is just good housekeeping.

A dependable backup strategy doesn’t rely on manual backups, which means you should consider using one of the many backup plugins available either free or for purchase. We’ll talk more about them below.

Which Format To Back Up In?

In addition to the WordPress WXR format, plugins and server tools will use various file formats and compression algorithms to store and compress your backup. You may get to choose between zip, tar, tar.gz, tar.gz2, and others. See The Most Common Archive File Formats for more information on these formats.

Select a format that you know you can access and unarchive should you need access to your backup. All of these formats are standard and supported across operating systems, though you might need to download a utility to access the file.

Where To Back Up?

Once you have your data in a suitable format for backup, where do you back it up to?

We want to have multiple copies of our active website data, so we’ll choose more than one destination for our backup data. The backup plugins we’ll discuss below enable you to specify one or more possible destinations for your backup. The possible destinations for your backup include:

A backup folder on your web server
A backup folder on your web server is an OK solution if you also have a copy elsewhere. Depending on your hosting plan, the size of your site, and what you include in the backup, you may or may not have sufficient disk space on the web server. Some backup plugins allow you to configure the plugin to keep only a certain number of recent backups and delete older ones, saving you disk space on the server.
Email to you
Because email servers have size limitations, the email option is not the best one to use unless you use it to specifically back up just the database or your main theme files.
FTP, SFTP, SCP, WebDAV
FTP, SFTP, SCP, and WebDAV are all widely-supported protocols for transferring files over the internet and can be used if you have access credentials to another server or supported storage device that is suitable for storing a backup.
Sync service (Dropbox, SugarSync, Google Drive, OneDrive)
A sync service is another possible server storage location though it can be a pricier choice depending on the plan you have and how much you wish to store.
Cloud storage (Backblaze B2, Amazon S3, Google Cloud, Microsoft Azure, Rackspace)
A cloud storage service can be an inexpensive and flexible option with pay-as-you go pricing for storing backups and other data.

A good website backup strategy would be to have multiple backups of your website data: one in a backup folder on your web hosting server, one downloaded to your local computer, and one in the cloud, such as with Backblaze B2.

If I had to choose just one of these, I would choose backing up to the cloud because it is geographically separated from both your local computer and your web host, it uses fault-tolerant and redundant data storage technologies to protect your data, and it is available from anywhere if you need to restore your site.

Backup Plugins for WordPress

Probably the easiest and most common way to implement a solid backup strategy for WordPress is to use one of the many backup plugins available for WordPress. Fortunately, there are a number of good ones and are available free or in “freemium” plans in which you can use the free version and pay for more features and capabilities only if you need them. The premium options can give you more flexibility in configuring backups or have additional options for where you can store the backups.

How to Choose a WordPress Backup Plugin

screenshot of WordPress plugins search

When considering which plugin to use, you should take into account a number of factors in making your choice.

Is the plugin actively maintained and up-to-date? You can determine this from the listing in the WordPress Plugin Repository. You also can look at reviews and support comments to get an idea of user satisfaction and how well issues are resolved.

Does the plugin work with your web hosting provider? Generally, well-supported plugins do, but you might want to check to make sure there are no issues with your hosting provider.

Does it support the cloud service or protocol you wish to use? This can be determined from looking at the listing in the WordPress Plugin Repository or on the developer’s website. Developers often will add support for cloud services or other backup destinations based on user demand, so let the developer know if there is a feature or backup destination you’d like them to add to their plugin.

Other features and options to consider in choosing a backup plugin are:

  • Whether encryption of your backup data is available
  • What are the options for automatically deleting backups from the storage destination?
  • Can you globally exclude files, folders, and specific types of files from the backup?
  • Do the options for scheduling automatic backups meet your needs for frequency?
  • Can you exclude/include specific database tables (a good way to save space in your backup)?

WordPress Backup Plugins Review

Let’s review a few of the top choices for WordPress backup plugins.

UpdraftPlus

UpdraftPlus is one of the most popular backup plugins for WordPress with over one million active installations. It is available in both free and Premium versions.

UpdraftPlus just released support for Backblaze B2 Cloud Storage in their 1.13.9 update on September 25. According to the developer, support for Backblaze B2 was the most frequent request for a new storage option for their plugin. B2 support is available in their Premium plugin and as a stand-alone update to their standard product.

Note: The developers of UpdraftPlus are offering a special 20% discount to Backblaze customers on the purchase of UpdraftPlus Premium by using the coupon code backblaze20. The discount is valid until the end of Friday, October 6th, 2017.

screenshot of Backblaze B2 cloud backup for WordPress in UpdraftPlus

XCloner — Backup and Restore

XCloner — Backup and Restore is a useful open-source plugin with many options for backing up WordPress.

XCloner supports B2 Cloud Storage in their free plugin.

screenshot of XCloner WordPress Backblaze B2 backup settings

BlogVault

BlogVault describes themselves as a “complete WordPress backup solution.” They offer a free trial of their paid WordPress backup subscription service that features real-time backups of changes to your WordPress site, as well as many other features.

BlogVault has announced their intent to support Backblaze B2 Cloud Storage in a future update.

screenshot of BlogValut WordPress Backup settings

BackWPup

BackWPup is a popular and free option for backing up WordPress. It supports a number of options for storing your backup, including the cloud, FTP, email, or on your local computer.

screenshot of BackWPup WordPress backup settings

WPBackItUp

WPBackItUp has been around since 2012 and is highly rated. It has both free and paid versions.

screenshot of WPBackItUp WordPress backup settings

VaultPress

VaultPress is part of Automattic’s well-known WordPress product, JetPack. You will need a JetPack subscription plan to use VaultPress. There are different pricing plans with different sets of features.

screenshot of VaultPress backup settings

Backup by Supsystic

Backup by Supsystic supports a number of options for backup destinations, encryption, and scheduling.

screenshot of Backup by Supsystic backup settings

BackupWordPress

BackUpWordPress is an open-source project on Github that has a popular and active following and many positive reviews.

screenshot of BackupWordPress WordPress backup settings

BackupBuddy

BackupBuddy, from iThemes, is the old-timer of backup plugins, having been around since 2010. iThemes knows a lot about WordPress, as they develop plugins, themes, utilities, and provide training in WordPress.

BackupBuddy’s backup includes all WordPress files, all files in the WordPress Media library, WordPress themes, and plugins. BackupBuddy generates a downloadable zip file of the entire WordPress website. Remote storage destinations also are supported.

screenshot of BackupBuddy settings

WordPress and the Cloud

Do you use WordPress and back up to the cloud? We’d like to hear about it. We’d also like to hear whether you are interested in using B2 Cloud Storage for storing media files served by WordPress. If you are, we’ll write about it in a future post.

In the meantime, keep your eye out for new plugins supporting Backblaze B2, or better yet, urge them to support B2 if they’re not already.

The Best Backup Strategy is the One You Use

There are other approaches and tools for backing up WordPress that you might use. If you have an approach that works for you, we’d love to hear about it in the comments.

The post Backing Up WordPress appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Manage Kubernetes Clusters on AWS Using CoreOS Tectonic

Post Syndicated from Arun Gupta original https://aws.amazon.com/blogs/compute/kubernetes-clusters-aws-coreos-tectonic/

There are multiple ways to run a Kubernetes cluster on Amazon Web Services (AWS). The first post in this series explained how to manage a Kubernetes cluster on AWS using kops. This second post explains how to manage a Kubernetes cluster on AWS using CoreOS Tectonic.

Tectonic overview

Tectonic delivers the most current upstream version of Kubernetes with additional features. It is a commercial offering from CoreOS and adds the following features over the upstream:

  • Installer
    Comes with a graphical installer that installs a highly available Kubernetes cluster. Alternatively, the cluster can be installed using AWS CloudFormation templates or Terraform scripts.
  • Operators
    An operator is an application-specific controller that extends the Kubernetes API to create, configure, and manage instances of complex stateful applications on behalf of a Kubernetes user. This release includes an etcd operator for rolling upgrades and a Prometheus operator for monitoring capabilities.
  • Console
    A web console provides a full view of applications running in the cluster. It also allows you to deploy applications to the cluster and start the rolling upgrade of the cluster.
  • Monitoring
    Node CPU and memory metrics are powered by the Prometheus operator. The graphs are available in the console. A large set of preconfigured Prometheus alerts are also available.
  • Security
    Tectonic ensures that cluster is always up to date with the most recent patches/fixes. Tectonic clusters also enable role-based access control (RBAC). Different roles can be mapped to an LDAP service.
  • Support
    CoreOS provides commercial support for clusters created using Tectonic.

Tectonic can be installed on AWS using a GUI installer or Terraform scripts. The installer prompts you for the information needed to boot the Kubernetes cluster, such as AWS access and secret key, number of master and worker nodes, and instance size for the master and worker nodes. The cluster can be created after all the options are specified. Alternatively, Terraform assets can be downloaded and the cluster can be created later. This post shows using the installer.

CoreOS License and Pull Secret

Even though Tectonic is a commercial offering, a cluster for up to 10 nodes can be created by creating a free account at Get Tectonic for Kubernetes. After signup, a CoreOS License and Pull Secret files are provided on your CoreOS account page. Download these files as they are needed by the installer to boot the cluster.

IAM user permission

The IAM user to create the Kubernetes cluster must have access to the following services and features:

  • Amazon Route 53
  • Amazon EC2
  • Elastic Load Balancing
  • Amazon S3
  • Amazon VPC
  • Security groups

Use the aws-policy policy to grant the required permissions for the IAM user.

DNS configuration

A subdomain is required to create the cluster, and it must be registered as a public Route 53 hosted zone. The zone is used to host and expose the console web application. It is also used as the static namespace for the Kubernetes API server. This allows kubectl to be able to talk directly with the master.

The domain may be registered using Route 53. Alternatively, a domain may be registered at a third-party registrar. This post uses a kubernetes-aws.io domain registered at a third-party registrar and a tectonic subdomain within it.

Generate a Route 53 hosted zone using the AWS CLI. Download jq to run this command:

ID=$(uuidgen) && \
aws route53 create-hosted-zone \
--name tectonic.kubernetes-aws.io \
--caller-reference $ID \
| jq .DelegationSet.NameServers

The command shows an output such as the following:

[
  "ns-1924.awsdns-48.co.uk",
  "ns-501.awsdns-62.com",
  "ns-1259.awsdns-29.org",
  "ns-749.awsdns-29.net"
]

Create NS records for the domain with your registrar. Make sure that the NS records can be resolved using a utility like dig web interface. A sample output would look like the following:

The bottom of the screenshot shows NS records configured for the subdomain.

Download and run the Tectonic installer

Download the Tectonic installer (version 1.7.1) and extract it. The latest installer can always be found at coreos.com/tectonic. Start the installer:

./tectonic/tectonic-installer/$PLATFORM/installer

Replace $PLATFORM with either darwin or linux. The installer opens your default browser and prompts you to select the cloud provider. Choose Amazon Web Services as the platform. Choose Next Step.

Specify the Access Key ID and Secret Access Key for the IAM role that you created earlier. This allows the installer to create resources required for the Kubernetes cluster. This also gives the installer full access to your AWS account. Alternatively, to protect the integrity of your main AWS credentials, use a temporary session token to generate temporary credentials.

You also need to choose a region in which to install the cluster. For the purpose of this post, I chose a region close to where I live, Northern California. Choose Next Step.

Give your cluster a name. This name is part of the static namespace for the master and the address of the console.

To enable in-place update to the Kubernetes cluster, select the checkbox next to Automated Updates. It also enables update to the etcd and Prometheus operators. This feature may become a default in future releases.

Choose Upload “tectonic-license.txt” and upload the previously downloaded license file.

Choose Upload “config.json” and upload the previously downloaded pull secret file. Choose Next Step.

Let the installer generate a CA certificate and key. In this case, the browser may not recognize this certificate, which I discuss later in the post. Alternatively, you can provide a CA certificate and a key in PEM format issued by an authorized certificate authority. Choose Next Step.

Use the SSH key for the region specified earlier. You also have an option to generate a new key. This allows you to later connect using SSH into the Amazon EC2 instances provisioned by the cluster. Here is the command that can be used to log in:

ssh –i <key> [email protected]<ec2-instance-ip>

Choose Next Step.

Define the number and instance type of master and worker nodes. In this case, create a 6 nodes cluster. Make sure that the worker nodes have enough processing power and memory to run the containers.

An etcd cluster is used as persistent storage for all of Kubernetes API objects. This cluster is required for the Kubernetes cluster to operate. There are three ways to use the etcd cluster as part of the Tectonic installer:

  • (Default) Provision the cluster using EC2 instances. Additional EC2 instances are used in this case.
  • Use an alpha support for cluster provisioning using the etcd operator. The etcd operator is used for automated operations of the etcd master nodes for the cluster itself, in addition to for etcd instances that are created for application usage. The etcd cluster is provisioned within the Tectonic installer.
  • Bring your own pre-provisioned etcd cluster.

Use the first option in this case.

For more information about choosing the appropriate instance type, see the etcd hardware recommendation. Choose Next Step.

Specify the networking options. The installer can create a new public VPC or use a pre-existing public or private VPC. Make sure that the VPC requirements are met for an existing VPC.

Give a DNS name for the cluster. Choose the domain for which the Route 53 hosted zone was configured earlier, such as tectonic.kubernetes-aws.io. Multiple clusters may be created under a single domain. The cluster name and the DNS name would typically match each other.

To select the CIDR range, choose Show Advanced Settings. You can also choose the Availability Zones for the master and worker nodes. By default, the master and worker nodes are spread across multiple Availability Zones in the chosen region. This makes the cluster highly available.

Leave the other values as default. Choose Next Step.

Specify an email address and password to be used as credentials to log in to the console. Choose Next Step.

At any point during the installation, you can choose Save progress. This allows you to save configurations specified in the installer. This configuration file can then be used to restore progress in the installer at a later point.

To start the cluster installation, choose Submit. At another time, you can download the Terraform assets by choosing Manually boot. This allows you to boot the cluster later.

The logs from the Terraform scripts are shown in the installer. When the installation is complete, the console shows that the Terraform scripts were successfully applied, the domain name was resolved successfully, and that the console has started. The domain works successfully if the DNS resolution worked earlier, and it’s the address where the console is accessible.

Choose Download assets to download assets related to your cluster. It contains your generated CA, kubectl configuration file, and the Terraform state. This download is an important step as it allows you to delete the cluster later.

Choose Next Step for the final installation screen. It allows you to access the Tectonic console, gives you instructions about how to configure kubectl to manage this cluster, and finally deploys an application using kubectl.

Choose Go to my Tectonic Console. In our case, it is also accessible at http://cluster.tectonic.kubernetes-aws.io/.

As I mentioned earlier, the browser does not recognize the self-generated CA certificate. Choose Advanced and connect to the console. Enter the login credentials specified earlier in the installer and choose Login.

The Kubernetes upstream and console version are shown under Software Details. Cluster health shows All systems go and it means that the API server and the backend API can be reached.

To view different Kubernetes resources in the cluster choose, the resource in the left navigation bar. For example, all deployments can be seen by choosing Deployments.

By default, resources in the all namespace are shown. Other namespaces may be chosen by clicking on a menu item on the top of the screen. Different administration tasks such as managing the namespaces, getting list of the nodes and RBAC can be configured as well.

Download and run Kubectl

Kubectl is required to manage the Kubernetes cluster. The latest version of kubectl can be downloaded using the following command:

curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl

It can also be conveniently installed using the Homebrew package manager. To find and access a cluster, Kubectl needs a kubeconfig file. By default, this configuration file is at ~/.kube/config. This file is created when a Kubernetes cluster is created from your machine. However, in this case, download this file from the console.

In the console, choose admin, My Account, Download Configuration and follow the steps to download the kubectl configuration file. Move this file to ~/.kube/config. If kubectl has already been used on your machine before, then this file already exists. Make sure to take a backup of that file first.

Now you can run the commands to view the list of deployments:

~ $ kubectl get deployments --all-namespaces
NAMESPACE         NAME                                    DESIRED   CURRENT   UP-TO-DATE   AVAILABLE   AGE
kube-system       etcd-operator                           1         1         1            1           43m
kube-system       heapster                                1         1         1            1           40m
kube-system       kube-controller-manager                 3         3         3            3           43m
kube-system       kube-dns                                1         1         1            1           43m
kube-system       kube-scheduler                          3         3         3            3           43m
tectonic-system   container-linux-update-operator         1         1         1            1           40m
tectonic-system   default-http-backend                    1         1         1            1           40m
tectonic-system   kube-state-metrics                      1         1         1            1           40m
tectonic-system   kube-version-operator                   1         1         1            1           40m
tectonic-system   prometheus-operator                     1         1         1            1           40m
tectonic-system   tectonic-channel-operator               1         1         1            1           40m
tectonic-system   tectonic-console                        2         2         2            2           40m
tectonic-system   tectonic-identity                       2         2         2            2           40m
tectonic-system   tectonic-ingress-controller             1         1         1            1           40m
tectonic-system   tectonic-monitoring-auth-alertmanager   1         1         1            1           40m
tectonic-system   tectonic-monitoring-auth-prometheus     1         1         1            1           40m
tectonic-system   tectonic-prometheus-operator            1         1         1            1           40m
tectonic-system   tectonic-stats-emitter                  1         1         1            1           40m

This output is similar to the one shown in the console earlier. Now, this kubectl can be used to manage your resources.

Upgrade the Kubernetes cluster

Tectonic allows the in-place upgrade of the cluster. This is an experimental feature as of this release. The clusters can be updated either automatically, or with manual approval.

To perform the update, choose Administration, Cluster Settings. If an earlier Tectonic installer, version 1.6.2 in this case, is used to install the cluster, then this screen would look like the following:

Choose Check for Updates. If any updates are available, choose Start Upgrade. After the upgrade is completed, the screen is refreshed.

This is an experimental feature in this release and so should only be used on clusters that can be easily replaced. This feature may become a fully supported in a future release. For more information about the upgrade process, see Upgrading Tectonic & Kubernetes.

Delete the Kubernetes cluster

Typically, the Kubernetes cluster is a long-running cluster to serve your applications. After its purpose is served, you may delete it. It is important to delete the cluster as this ensures that all resources created by the cluster are appropriately cleaned up.

The easiest way to delete the cluster is using the assets downloaded in the last step of the installer. Extract the downloaded zip file. This creates a directory like <cluster-name>_TIMESTAMP. In that directory, give the following command to delete the cluster:

TERRAFORM_CONFIG=$(pwd)/.terraformrc terraform destroy --force

This destroys the cluster and all associated resources.

You may have forgotten to download the assets. There is a copy of the assets in the directory tectonic/tectonic-installer/darwin/clusters. In this directory, another directory with the name <cluster-name>_TIMESTAMP contains your assets.

Conclusion

This post explained how to manage Kubernetes clusters using the CoreOS Tectonic graphical installer.  For more details, see Graphical Installer with AWS. If the installation does not succeed, see the helpful Troubleshooting tips. After the cluster is created, see the Tectonic tutorials to learn how to deploy, scale, version, and delete an application.

Future posts in this series will explain other ways of creating and running a Kubernetes cluster on AWS.

Arun

Strategies for Backing Up Windows Computers

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/strategies-for-backing-up-windows-computers/

Windows 7, Windows 8, Windows 10 logos

There’s a little company called Apple making big announcements this week, but about 45% of you are on Windows machines, so we thought it would be a good idea to devote a blog post today to Windows users and the options they have for backing up Windows computers.

We’ll be talking about the various options for backing up Windows desktop OS’s 7, 8, and 10, and Windows servers. We’ve written previously about this topic in How to Back Up Windows, and Computer Backup Options, but we’ll be covering some new topics and ways to combine strategies in this post. So, if you’re a Windows user looking for shelter from all the Apple hoopla, welcome to our Apple Announcement Day Windows Backup Day post.

Windows laptop

First, Let’s Talk About What We Mean by Backup

This might seem to our readers like an unneeded appetizer on the way to the main course of our post, but we at Backblaze know that people often mean very different things when they use backup and related terms. Let’s start by defining what we mean when we say backup, cloud storage, sync, and archive.

Backup
A backup is an active copy of the system or files that you are using. It is distinguished from an archive, which is the storing of data that is no longer in active use. Backups fall into two main categories: file and image. File backup software will back up whichever files you designate by either letting you include files you wish backed up or by excluding files you don’t want backed up, or both. An image backup, sometimes called a disaster recovery backup or a system clone, is useful if you need to recreate your system on a new drive or computer.
The first backup generally will be a full backup of all files. After that, the backup will be incremental, meaning that only files that have been changed since the full backup will be added. Often, the software will keep changed versions of the files for some period of time, so you can maintain a number of previous revisions of your files in case you wish to return to something in an earlier version of your file.
The destination for your backup could be another drive on your computer, an attached drive, a network-attached drive (NAS), or the cloud.
Cloud Storage
Cloud storage vendors supply data storage just as a utility company supplies power, gas, or water. Cloud storage can be used for data backups, but it can also be used for data archives, application data, records, or libraries of photos, videos, and other media.
You contract with the service for storing any type of data, and the storage location is available to you via the internet. Cloud storage providers generally charge by some combination of data ingress, egress, and the amount of data stored.
Sync
File sync is useful for files that you wish to have access to from different places or computers, or for files that you wish to share with others. While sync has its uses, it has limitations for keeping files safe and how much it could cost you to store large amounts of data. As opposed to backup, which keeps revision of files, sync is designed to keep two or more locations exactly the same. Sync costs are based on how much data you sync and can get expensive for large amounts of data.
Archive
A data archive is for data that is no longer in active use but needs to be saved, and may or may not ever be retrieved again. In old-style storage parlance, it is called cold storage. An archive could be stored with a cloud storage provider, or put on a hard drive or flash drive that you disconnect and put in the closet, or mail to your brother in Idaho.

What’s the Best Strategy for Backing Up?

Now that we’ve got our terminology clear, let’s talk backup strategies for Windows.

At Backblaze, we advocate the 3-2-1 strategy for safeguarding your data, which means that you should maintain three copies of any valuable data — two copies stored locally and one stored remotely. I follow this strategy at home by working on the active data on my Windows 10 desktop computer (copy one), which is backed up to a Drobo RAID device attached via USB (copy two), and backing up the desktop to Backblaze’s Personal Backup in the cloud (copy three). I also keep an image of my primary disk on a separate drive and frequently update it using Windows 10’s image tool.

I use Dropbox for sharing specific files I am working on that I might wish to have access to when I am traveling or on another computer. Once my subscription with Dropbox expires, I’ll use the latest release of Backblaze that has individual file preview with sharing built-in.

Before you decide which backup strategy will work best for your situation, you’ll need to ask yourself a number of questions. These questions include where you wish to store your backups, whether you wish to supply your own storage media, whether the backups will be manual or automatic, and whether limited or unlimited data storage will work best for you.

Strategy 1 — Back Up to a Local or Attached Drive

The first copy of the data you are working on is often on your desktop or laptop. You can create a second copy of your data on another drive or directory on your computer, or copy the data to a drive directly attached to your computer, such as via USB.

external hard drive and RAID NAS devices

Windows has built-in tools for both file and image level backup. Depending on which version of Windows you use, these tools are called Backup and Restore, File History, or Image. These tools enable you to set a schedule for automatic backups, which ensures that it is done regularly. You also have the choice to use Windows Explorer (aka File Explorer) to manually copy files to another location. Some external disk drives and USB Flash Drives come with their own backup software, and other backup utilities are available for free or for purchase.

Windows Explorer File History screenshot

This is a supply-your-own media solution, meaning that you need to have a hard disk or other medium available of sufficient size to hold all your backup data. When a disk becomes full, you’ll need to add a disk or swap out the full disk to continue your backups.

We’ve written previously on this strategy at Should I use an external drive for backup?

Strategy 2 — Back Up to a Local Area Network (LAN)

Computers, servers, and network-attached-storage (NAS) on your local network all can be used for backing up data. Microsoft’s built-in backup tools can be used for this job, as can any utility that supports network protocols such as NFS or SMB/CIFS, which are common protocols that allow shared access to files on a network for Windows and other operatings systems. There are many third-party applications available as well that provide extensive options for managing and scheduling backups and restoring data when needed.

NAS cloud

Multiple computers can be backed up to a single network-shared computer, server, or NAS, which also could then be backed up to the cloud, which rounds out a nice backup strategy, because it covers both local and remote copies of your data. System images of multiple computers on the LAN can be included in these backups if desired.

Again, you are managing the backup media on the local network, so you’ll need to be sure you have sufficient room on the destination drives to store all your backup data.

Strategy 3 — Back Up to Detached Drive at Another Location

You may have have read our recent blog post, Getting Data Archives Out of Your Closet, in which we discuss the practice of filling hard drives and storing them in a closet. Of course, to satisfy the off-site backup guideline, these drives would need to be stored in a closet that’s in a different geographical location than your main computer. If you’re willing to do all the work of copying the data to drives and transporting them to another location, this is a viable option.

stack of hard drives

The only limitation to the amount of backup data is the number of hard drives you are willing to purchase — and maybe the size of your closet.

Strategy 4 — Back Up to the Cloud

Backing up to the cloud has become a popular option for a number of reasons. Internet speeds have made moving large amounts of data possible, and not having to worry about supplying the storage media simplifies choices for users. Additionally, cloud vendors implement features such as data protection, deduplication, and encryption as part of their services that make cloud storage reliable, secure, and efficient. Unlimited cloud storage for data from a single computer is a popular option.

A backup vendor likely will provide a software client that runs on your computer and backs up your data to the cloud in the background while you’re doing other things, such as Backblaze Personal Backup, which has clients for Windows computers, Macintosh computers, and mobile apps for both iOS and Android. For restores, Backblaze users can download one or all of their files for free from anywhere in the world. Optionally, a 128 GB flash drive or 4 TB drive can be overnighted to the customer, with a refund available if the drive is returned.

Storage Pod in the cloud

Backblaze B2 Cloud Storage is an option for those who need capabilities beyond Backblaze’s Personal Backup. B2 provides cloud storage that is priced based on the amount of data the customer uses, and is suitable for long-term data storage. B2 supports integrations with NAS devices, as well as Windows, Macintosh, and Linux computers and servers.

Services such as BackBlaze B2 are often called Cloud Object Storage or IaaS (Infrastructure as a Service), because they provide a complete solution for storing all types of data in partnership with vendors who integrate various solutions for working with B2. B2 has its own API (Application Programming Interface) and CLI (Command-line Interface) to work with B2, but B2 becomes even more powerful when paired with any one of a number of other solutions for data storage and management provided by third parties who offer both hardware and software solutions.

Backing Up Windows Servers

Windows Servers are popular workstations for some users, and provide needed network services for others. They also can be used to store backups from other computers on the network. They, in turn, can be backed up to attached drives or the cloud. While our Personal Backup client doesn’t support Windows servers, our B2 Cloud Storage has a number of integrations with vendors who supply software or hardware for storing data both locally and on B2. We’ve written a number of blog posts and articles that address these solutions, including How to Back Up your Windows Server with B2 and CloudBerry.

Sometimes the Best Strategy is to Mix and Match

The great thing about computers, software, and networks is that there is an endless number of ways to combine them. Our users and hardware and software partners are ingenious in configuring solutions that save data locally, copy it to an attached or network drive, and then store it to the cloud.

image of cloud backup

Among our B2 partners, Synology, CloudBerry Archiware, QNAP, Morro Data, and GoodSync have integrations that allow their NAS devices to store and retrieve data to and from B2 Cloud Storage. For a drag-and-drop experience on the desktop, take a look at CyberDuck, MountainDuck, and Dropshare, which provide users with an easy and interactive way to store and use data in B2.

If you’d like to explore more options for combining software, hardware, and cloud solutions, we invite you to browse the integrations for our many B2 partners.

Have Questions?

Windows versions, tools, and backup terminology all can be confusing, and we know how hard it can be to make sense of all of it. If there’s something we haven’t addressed here, or if you have a question or contribution, please let us know in the comments.

And happy Windows Backup Day! (Just don’t tell Apple.)

The post Strategies for Backing Up Windows Computers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

New Network Load Balancer – Effortless Scaling to Millions of Requests per Second

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-network-load-balancer-effortless-scaling-to-millions-of-requests-per-second/

Elastic Load Balancing (ELB)) has been an important part of AWS since 2009, when it was launched as part of a three-pack that also included Auto Scaling and Amazon CloudWatch. Since that time we have added many features, and also introduced the Application Load Balancer. Designed to support application-level, content-based routing to applications that run in containers, Application Load Balancers pair well with microservices, streaming, and real-time workloads.

Over the years, our customers have used ELB to support web sites and applications that run at almost any scale — from simple sites running on a T2 instance or two, all the way up to complex applications that run on large fleets of higher-end instances and handle massive amounts of traffic. Behind the scenes, ELB monitors traffic and automatically scales to meet demand. This process, which includes a generous buffer of headroom, has become quicker and more responsive over the years and works well even for our customers who use ELB to support live broadcasts, “flash” sales, and holidays. However, in some situations such as instantaneous fail-over between regions, or extremely spiky workloads, we have worked with our customers to pre-provision ELBs in anticipation of a traffic surge.

New Network Load Balancer
Today we are introducing the new Network Load Balancer (NLB). It is designed to handle tens of millions of requests per second while maintaining high throughput at ultra low latency, with no effort on your part. The Network Load Balancer is API-compatible with the Application Load Balancer, including full programmatic control of Target Groups and Targets. Here are some of the most important features:

Static IP Addresses – Each Network Load Balancer provides a single IP address for each VPC subnet in its purview. If you have targets in a subnet in us-west-2a and other targets in a subnet in us-west-2c, NLB will create and manage two IP addresses (one per subnet); connections to that IP address will spread traffic across the instances in the subnet. You can also specify an existing Elastic IP for each subnet for even greater control. With full control over your IP addresses, Network Load Balancer can be used in situations where IP addresses need to be hard-coded into DNS records, customer firewall rules, and so forth.

Zonality – The IP-per-subnet feature reduces latency with improved performance, improves availability through isolation and fault tolerance and makes the use of Network Load Balancers transparent to your client applications. Network Load Balancers also attempt to route a series of requests from a particular source to targets in a single subnet while still allowing automatic failover.

Source Address Preservation – With Network Load Balancer, the original source IP address and source ports for the incoming connections remain unmodified, so application software need not support X-Forwarded-For, proxy protocol, or other workarounds. This also means that normal firewall rules, including VPC Security Groups, can be used on targets.

Long-running Connections – NLB handles connections with built-in fault tolerance, and can handle connections that are open for months or years, making them a great fit for IoT, gaming, and messaging applications.

Failover – Powered by Route 53 health checks, NLB supports failover between IP addresses within and across regions.

Creating a Network Load Balancer
I can create a Network Load Balancer opening up the EC2 Console, selecting Load Balancers, and clicking on Create Load Balancer:

I choose Network Load Balancer and click on Create, then enter the details. I can choose an Elastic IP address for each subnet in the target VPC and I can tag the Network Load Balancer:

Then I click on Configure Routing and create a new target group. I enter a name, and then choose the protocol and port. I can also set up health checks that go to the traffic port or to the alternate of my choice:

Then I click on Register Targets and the EC2 instances that will receive traffic, and click on Add to registered:

I make sure that everything looks good and then click on Create:

The state of my new Load Balancer is provisioning, switching to active within a minute or so:

For testing purposes, I simply grab the DNS name of the Load Balancer from the console (in practice I would use Amazon Route 53 and a more friendly name):

Then I sent it a ton of traffic (I intended to let it run for just a second or two but got distracted and it created a huge number of processes, so this was a happy accident):

$ while true;
> do
>   wget http://nlb-1-6386cc6bf24701af.elb.us-west-2.amazonaws.com/phpinfo2.php &
> done

A more disciplined test would use a tool like Bees with Machine Guns, of course!

I took a quick break to let some traffic flow and then checked the CloudWatch metrics for my Load Balancer, finding that it was able to handle the sudden onslaught of traffic with ease:

I also looked at my EC2 instances to see how they were faring under the load (really well, it turns out):

It turns out that my colleagues did run a more disciplined test than I did. They set up a Network Load Balancer and backed it with an Auto Scaled fleet of EC2 instances. They set up a second fleet composed of hundreds of EC2 instances, each running Bees with Machine Guns and configured to generate traffic with highly variable request and response sizes. Beginning at 1.5 million requests per second, they quickly turned the dial all the way up, reaching over 3 million requests per second and 30 Gbps of aggregate bandwidth before maxing out their test resources.

Choosing a Load Balancer
As always, you should consider the needs of your application when you choose a load balancer. Here are some guidelines:

Network Load Balancer (NLB) – Ideal for load balancing of TCP traffic, NLB is capable of handling millions of requests per second while maintaining ultra-low latencies. NLB is optimized to handle sudden and volatile traffic patterns while using a single static IP address per Availability Zone.

Application Load Balancer (ALB) – Ideal for advanced load balancing of HTTP and HTTPS traffic, ALB provides advanced request routing that supports modern application architectures, including microservices and container-based applications.

Classic Load Balancer (CLB) – Ideal for applications that were built within the EC2-Classic network.

For a side-by-side feature comparison, see the Elastic Load Balancer Details table.

If you are currently using a Classic Load Balancer and would like to migrate to a Network Load Balancer, take a look at our new Load Balancer Copy Utility. This Python tool will help you to create a Network Load Balancer with the same configuration as an existing Classic Load Balancer. It can also register your existing EC2 instances with the new load balancer.

Pricing & Availability
Like the Application Load Balancer, pricing is based on Load Balancer Capacity Units, or LCUs. Billing is $0.006 per LCU, based on the highest value seen across the following dimensions:

  • Bandwidth – 1 GB per LCU.
  • New Connections – 800 per LCU.
  • Active Connections – 100,000 per LCU.

Most applications are bandwidth-bound and should see a cost reduction (for load balancing) of about 25% when compared to Application or Classic Load Balancers.

Network Load Balancers are available today in all AWS commercial regions except China (Beijing), supported by AWS CloudFormation, Auto Scaling, and Amazon ECS.

Jeff;

 

Disabling Intel Hyper-Threading Technology on Amazon EC2 Windows Instances

Post Syndicated from Brian Beach original https://aws.amazon.com/blogs/compute/disabling-intel-hyper-threading-technology-on-amazon-ec2-windows-instances/

In a prior post, Disabling Intel Hyper-Threading on Amazon Linux, I investigated how the Linux kernel enumerates CPUs. I also discussed the options to disable Intel Hyper-Threading (HT Technology) in Amazon Linux running on Amazon EC2.

In this post, I do the same for Microsoft Windows Server 2016 running on EC2 instances. I begin with a quick review of HT Technology and the reasons you might want to disable it. I also recommend that you take a moment to review the prior post for a more thorough foundation.

HT Technology

HT Technology makes a single physical processor appear as multiple logical processors. Each core in an Intel Xeon processor has two threads of execution. Most of the time, these threads can progress independently; one thread executing while the other is waiting on a relatively slow operation (for example, reading from memory) to occur. However, the two threads do share resources and occasionally one thread is forced to wait while the other is executing.

There a few unique situations where disabling HT Technology can improve performance. One example is high performance computing (HPC) workloads that rely heavily on floating point operations. In these rare cases, it can be advantageous to disable HT Technology. However, these cases are rare, and for the overwhelming majority of workloads you should leave it enabled. I recommend that you test with and without HT Technology enabled, and only disable threads if you are sure it will improve performance.

Exploring HT Technology on Microsoft Windows

Here’s how Microsoft Windows enumerates CPUs. As before, I am running these examples on an m4.2xlarge. I also chose to run Windows Server 2016, but you can walk through these exercises on any version of Windows. Remember that the m4.2xlarge has eight vCPUs, and each vCPU is a thread of an Intel Xeon core. Therefore, the m4.2xlarge has four cores, each of which run two threads, resulting in eight vCPUs.

Windows does not have a built-in utility to examine CPU configuration, but you can download the Sysinternals coreinfo utility from Microsoft’s website. This utility provides useful information about the system CPU and memory topology. For this walkthrough, you enumerate the individual CPUs, which you can do by running coreinfo -c. For example:

C:\Users\Administrator >coreinfo -c

Coreinfo v3.31 - Dump information on system CPU and memory topology
Copyright (C) 2008-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

Logical to Physical Processor Map:
**------ Physical Processor 0 (Hyperthreaded)
--**---- Physical Processor 1 (Hyperthreaded)
----**-- Physical Processor 2 (Hyperthreaded)
------** Physical Processor 3 (Hyperthreaded)

As you can see from the screenshot, the coreinfo utility displays a table where each row is a physical core and each column is a logical CPU. In other words, the two asterisks on the first line indicate that CPU 0 and CPU 1 are the two threads in the first physical core. Therefore, my m4.2xlarge has for four physical processors and each processor has two threads resulting in eight total CPUs, just as expected.

It is interesting to note that Windows Server 2016 enumerates CPUs in a different order than Linux. Remember from the prior post that Linux enumerated the first thread in each core, followed by the second thread in each core. You can see from the output earlier that Windows Server 2016, enumerates both threads in the first core, then both threads in the second core, and so on. The diagram below shows the relationship of CPUs to cores and threads in both operating systems.

In the Linux post, I disabled CPUs 4–6, leaving one thread per core, and effectively disabling HT Technology. You can see from the diagram that you must disable the odd-numbered threads (that is, 1, 3, 5, and 7) to achieve the same result in Windows. Here’s how to do that.

Disabling HT Technology on Microsoft Windows

In Linux, you can globally disable CPUs dynamically. In Windows, there is no direct equivalent that I could find, but there are a few alternatives.

First, you can disable CPUs using the msconfig.exe tool. If you choose Boot, Advanced Options, you have the option to set the number of processors. In the example below, I limit my m4.2xlarge to four CPUs. Restart for this change to take effect.

Unfortunately, Windows does not disable hyperthreaded CPUs first and then real cores, as Linux does. As you can see in the following output, coreinfo reports that my c4.2xlarge has two real cores and four hyperthreads, after rebooting. Msconfig.exe is useful for disabling cores, but it does not allow you to disable HT Technology.

Note: If you have been following along, you can re-enable all your CPUs by unselecting the Number of processors check box and rebooting your system.

 

C:\Users\Administrator >coreinfo -c

Coreinfo v3.31 - Dump information on system CPU and memory topology
Copyright (C) 2008-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

Logical to Physical Processor Map:
**-- Physical Processor 0 (Hyperthreaded)
--** Physical Processor 1 (Hyperthreaded)

While you cannot disable HT Technology systemwide, Windows does allow you to associate a particular process with one or more CPUs. Microsoft calls this, “processor affinity”. To see an example, use the following steps.

  1. Launch an instance of Notepad.
  2. Open Windows Task Manager and choose Processes.
  3. Open the context (right click) menu on notepad.exe and choose Set Affinity….

This brings up the Processor Affinity dialog box.

As you can see, all the CPUs are allowed to run this instance of notepad.exe. You can uncheck a few CPUs to exclude them. Windows is smart enough to allow any scheduled operations to continue to completion on disabled CPUs. It then saves its state at the next scheduling event, and resumes those operations on another CPU. To ensure that only one thread in each core is able to run a process, you uncheck every other core. This effectively disables HT Technology for this process. For example:

Of course, this can be tedious when you have a large number of cores. Remember that the x1.32xlarge has 128 CPUs. Luckily, you can set the affinity of a running process from PowerShell using the Get-Process cmdlet. For example:

PS C:\&gt; (Get-Process -Name 'notepad').ProcessorAffinity = 0x55;

The ProcessorAffinity attribute takes a bitmask in hexadecimal format. 0x55 in hex is equivalent to 01010101 in binary. Think of the binary encoding as 1=enabled and 0=disabled. This is slightly confusing, but we work left to right so that CPU 0 is the rightmost bit and CPU 7 is the leftmost bit. Therefore, 01010101 means that the first thread in each CPU is enabled just as it was in the diagram earlier.

The calculator built into Windows includes a “programmer view” that helps you convert from hexadecimal to binary. In addition, the ProcessorAffinity attribute is a 64-bit number. Therefore, you can only configure the processor affinity on systems up to 64 CPUs. At the moment, only the x1.32xlarge has more than 64 vCPUs.

In the preceding examples, you changed the processor affinity of a running process. Sometimes, you want to start a process with the affinity already configured. You can do this using the start command. The start command includes an affinity flag that takes a hexadecimal number like the PowerShell example earlier.

C:\Users\Administrator&gt;start /affinity 55 notepad.exe

It is interesting to note that a child process inherits the affinity from its parent. For example, the following commands create a batch file that launches Notepad, and starts the batch file with the affinity set. If you examine the instance of Notepad launched by the batch file, you see that the affinity has been applied to as well.

C:\Users\Administrator&gt;echo notepad.exe > test.bat
C:\Users\Administrator&gt;start /affinity 55 test.bat

This means that you can set the affinity of your task scheduler and any tasks that the scheduler starts inherits the affinity. So, you can disable every other thread when you launch the scheduler and effectively disable HT Technology for all of the tasks as well. Be sure to test this point, however, as some schedulers override the normal inheritance behavior and explicitly set processor affinity when starting a child process.

Conclusion

While the Windows operating system does not allow you to disable logical CPUs, you can set processor affinity on individual processes. You also learned that Windows Server 2016 enumerates CPUs in a different order than Linux. Therefore, you can effectively disable HT Technology by restricting a process to every other CPU. Finally, you learned how to set affinity of both new and running processes using Task Manager, PowerShell, and the start command.

Note: this technical approach has nothing to do with control over software licensing, or licensing rights, which are sometimes linked to the number of “CPUs” or “cores.” For licensing purposes, those are legal terms, not technical terms. This post did not cover anything about software licensing or licensing rights.

If you have questions or suggestions, please comment below.

Foxtel Targets 128 Torrent & Streaming Domains For Blocking Down Under

Post Syndicated from Andy original https://torrentfreak.com/foxtel-targets-128-torrent-streaming-domains-for-blocking-down-under-170808/

In 2015, Australia passed controversial legislation which allows ‘pirate’ sites located on servers overseas to be blocked at the ISP level.

“These offshore sites are not operated by noble spirits fighting for the freedom of the internet, they are run by criminals who profit from stealing other people’s creative endeavors,” commented then Foxtel chief executive Richard Freudenstein.

Before, during and after its introduction, Foxtel has positioned itself as a keen supporter of the resulting Section 115a of the Copyright Act. And in December 2016, with the law firmly in place, it celebrated success after obtaining a blocking injunction against The Pirate Bay, Torrentz, TorrentHound and isoHunt.

In May, Foxtel filed a new application, demanding that almost 50 local ISPs block what was believed to be a significant number of ‘pirate’ sites not covered by last year’s order.

Today the broadcasting giant was back in Federal Court, Sydney, to have this second application heard under Section 115a. It was revealed that the application contains 128 domains, each linked to movie and TV piracy.

According to ComputerWorld, the key sites targeted are as follows: YesMovies, Vumoo, LosMovies, CartoonHD, Putlocker, Watch Series 1, Watch Series 2, Project Free TV 1, Project Free TV 2, Watch Episodes, Watch Episode Series, Watch TV Series, The Dare Telly, Putlocker9.is, Putlocker9.to, Torlock and 1337x.

The Foxtel application targets both torrent and streaming sites but given the sample above, it seems that the latter is currently receiving the most attention. Streaming sites are appearing at a rapid rate and can even be automated to some extent, so this battle could become extremely drawn out.

Indeed, Justice Burley, who presided over the case this morning, described the website-blocking process (which necessarily includes targeting mirrors, proxies and replacement domains) as akin to “whack-a-mole”.

“Foxtel sees utility in orders of this nature,” counsel for Foxtel commented in response. “It’s important to block these sites.”

In presenting its application, Foxtel conducted live demonstrations of Yes Movies, Watch Series, 1337x, and Putlocker. It focused on the Australian prison drama series Wentworth, which has been running on Foxtel since 2013, but also featured tests of Game of Thrones.

Justice Burley told the court that since he’s a fan of the series, a spoiler-free piracy presentation would be appreciated. If the hearing had taken place a few days earlier, spoilers may have been possible. Last week, the latest episode of the show leaked onto the Internet from an Indian source before its official release.

Justice Burley’s decision will be handed down at a later date, but it’s unlikely there will be any serious problems with Foxtel’s application. After objecting to many aspects of blocking applications in the past, Australia’s ISPs no longer appear during these hearings. They are now paid AU$50 per domain blocked by companies such as Foxtel and play little more than a technical role in the process.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.