Tag Archives: virgin

EC2 Instance Update – M5 Instances with Local NVMe Storage (M5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-m5-instances-with-local-nvme-storage-m5d/

Earlier this month we launched the C5 Instances with Local NVMe Storage and I told you that we would be doing the same for additional instance types in the near future!

Today we are introducing M5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for workloads that require a balance of compute and memory resources. Here are the specs:

Instance Name vCPUs RAM Local Storage EBS-Optimized Bandwidth Network Bandwidth
m5d.large 2 8 GiB 1 x 75 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.xlarge 4 16 GiB 1 x 150 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.2xlarge 8 32 GiB 1 x 300 GB NVMe SSD Up to 2.120 Gbps Up to 10 Gbps
m5d.4xlarge 16 64 GiB 1 x 600 GB NVMe SSD 2.210 Gbps Up to 10 Gbps
m5d.12xlarge 48 192 GiB 2 x 900 GB NVMe SSD 5.0 Gbps 10 Gbps
m5d.24xlarge 96 384 GiB 4 x 900 GB NVMe SSD 10.0 Gbps 25 Gbps

The M5d instances are powered by Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, including support for AVX-512.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage on the M5d instances:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
M5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent M5 instances.

Jeff;

 

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

EC2 Instance Update – C5 Instances with Local NVMe Storage (C5d)

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-instance-update-c5-instances-with-local-nvme-storage-c5d/

As you can see from my EC2 Instance History post, we add new instance types on a regular and frequent basis. Driven by increasingly powerful processors and designed to address an ever-widening set of use cases, the size and diversity of this list reflects the equally diverse group of EC2 customers!

Near the bottom of that list you will find the new compute-intensive C5 instances. With a 25% to 50% improvement in price-performance over the C4 instances, the C5 instances are designed for applications like batch and log processing, distributed and or real-time analytics, high-performance computing (HPC), ad serving, highly scalable multiplayer gaming, and video encoding. Some of these applications can benefit from access to high-speed, ultra-low latency local storage. For example, video encoding, image manipulation, and other forms of media processing often necessitates large amounts of I/O to temporary storage. While the input and output files are valuable assets and are typically stored as Amazon Simple Storage Service (S3) objects, the intermediate files are expendable. Similarly, batch and log processing runs in a race-to-idle model, flushing volatile data to disk as fast as possible in order to make full use of compute resources.

New C5d Instances with Local Storage
In order to meet this need, we are introducing C5 instances equipped with local NVMe storage. Available for immediate use in 5 regions, these instances are a great fit for the applications that I described above, as well as others that you will undoubtedly dream up! Here are the specs:

Instance Name vCPUs RAM Local Storage EBS Bandwidth Network Bandwidth
c5d.large 2 4 GiB 1 x 50 GB NVMe SSD Up to 2.25 Gbps Up to 10 Gbps
c5d.xlarge 4 8 GiB 1 x 100 GB NVMe SSD Up to 2.25 Gbps Up to 10 Gbps
c5d.2xlarge 8 16 GiB 1 x 225 GB NVMe SSD Up to 2.25 Gbps Up to 10 Gbps
c5d.4xlarge 16 32 GiB 1 x 450 GB NVMe SSD 2.25 Gbps Up to 10 Gbps
c5d.9xlarge 36 72 GiB 1 x 900 GB NVMe SSD 4.5 Gbps 10 Gbps
c5d.18xlarge 72 144 GiB 2 x 900 GB NVMe SSD 9 Gbps 25 Gbps

Other than the addition of local storage, the C5 and C5d share the same specs. Both are powered by 3.0 GHz Intel Xeon Platinum 8000-series processors, optimized for EC2 and with full control over C-states on the two largest sizes, giving you the ability to run two cores at up to 3.5 GHz using Intel Turbo Boost Technology.

You can use any AMI that includes drivers for the Elastic Network Adapter (ENA) and NVMe; this includes the latest Amazon Linux, Microsoft Windows (Server 2008 R2, Server 2012, Server 2012 R2 and Server 2016), Ubuntu, RHEL, SUSE, and CentOS AMIs.

Here are a couple of things to keep in mind about the local NVMe storage:

Naming – You don’t have to specify a block device mapping in your AMI or during the instance launch; the local storage will show up as one or more devices (/dev/nvme*1 on Linux) after the guest operating system has booted.

Encryption – Each local NVMe device is hardware encrypted using the XTS-AES-256 block cipher and a unique key. Each key is destroyed when the instance is stopped or terminated.

Lifetime – Local NVMe devices have the same lifetime as the instance they are attached to, and do not stick around after the instance has been stopped or terminated.

Available Now
C5d instances are available in On-Demand, Reserved Instance, and Spot form in the US East (N. Virginia), US West (Oregon), EU (Ireland), US East (Ohio), and Canada (Central) Regions. Prices vary by Region, and are just a bit higher than for the equivalent C5 instances.

Jeff;

PS – We will be adding local NVMe storage to other EC2 instance types in the months to come, so stay tuned!

Virginia Beach Police Want Encrypted Radios

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/virginia_beach_.html

This article says that the Virginia Beach police are looking to buy encrypted radios.

Virginia Beach police believe encryption will prevent criminals from listening to police communications. They said officer safety would increase and citizens would be better protected.

Someone should ask them if they want those radios to have a backdoor.

EC2 Price Reduction – H1 Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/ec2-price-reduction-h1-instances/

EC2’s H1 instances offer 2 to 16 terabytes of fast, dense storage for big data applications, optimized to deliver high throughput for sequential I/O. Enhanced Networking, 32 to 256 gigabytes of RAM, and Intel Xeon E5-2686 v4 processors running at a base frequency of 2.3 GHz round out the feature set.

I am happy to announce that we are reducing the On-Demand and Reserved Instance prices for H1 instances in the US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) Regions by 15%, effective immediately.

Jeff;

 

Get Started with Blockchain Using the new AWS Blockchain Templates

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/get-started-with-blockchain-using-the-new-aws-blockchain-templates/

Many of today’s discussions around blockchain technology remind me of the classic Shimmer Floor Wax skit. According to Dan Aykroyd, Shimmer is a dessert topping. Gilda Radner claims that it is a floor wax, and Chevy Chase settles the debate and reveals that it actually is both! Some of the people that I talk to see blockchains as the foundation of a new monetary system and a way to facilitate international payments. Others see blockchains as a distributed ledger and immutable data source that can be applied to logistics, supply chain, land registration, crowdfunding, and other use cases. Either way, it is clear that there are a lot of intriguing possibilities and we are working to help our customers use this technology more effectively.

We are launching AWS Blockchain Templates today. These templates will let you launch an Ethereum (either public or private) or Hyperledger Fabric (private) network in a matter of minutes and with just a few clicks. The templates create and configure all of the AWS resources needed to get you going in a robust and scalable fashion.

Launching a Private Ethereum Network
The Ethereum template offers two launch options. The ecs option creates an Amazon ECS cluster within a Virtual Private Cloud (VPC) and launches a set of Docker images in the cluster. The docker-local option also runs within a VPC, and launches the Docker images on EC2 instances. The template supports Ethereum mining, the EthStats and EthExplorer status pages, and a set of nodes that implement and respond to the Ethereum RPC protocol. Both options create and make use of a DynamoDB table for service discovery, along with Application Load Balancers for the status pages.

Here are the AWS Blockchain Templates for Ethereum:

I start by opening the CloudFormation Console in the desired region and clicking Create Stack:

I select Specify an Amazon S3 template URL, enter the URL of the template for the region, and click Next:

I give my stack a name:

Next, I enter the first set of parameters, including the network ID for the genesis block. I’ll stick with the default values for now:

I will also use the default values for the remaining network parameters:

Moving right along, I choose the container orchestration platform (ecs or docker-local, as I explained earlier) and the EC2 instance type for the container nodes:

Next, I choose my VPC and the subnets for the Ethereum network and the Application Load Balancer:

I configure my keypair, EC2 security group, IAM role, and instance profile ARN (full information on the required permissions can be found in the documentation):

The Instance Profile ARN can be found on the summary page for the role:

I confirm that I want to deploy EthStats and EthExplorer, choose the tag and version for the nested CloudFormation templates that are used by this one, and click Next to proceed:

On the next page I specify a tag for the resources that the stack will create, leave the other options as-is, and click Next:

I review all of the parameters and options, acknowledge that the stack might create IAM resources, and click Create to build my network:

The template makes use of three nested templates:

After all of the stacks have been created (mine took about 5 minutes), I can select JeffNet and click the Outputs tab to discover the links to EthStats and EthExplorer:

Here’s my EthStats:

And my EthExplorer:

If I am writing apps that make use of my private network to store and process smart contracts, I would use the EthJsonRpcUrl.

Stay Tuned
My colleagues are eager to get your feedback on these new templates and plan to add new versions of the frameworks as they become available.

Jeff;

 

AWS Certificate Manager Launches Private Certificate Authority

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-certificate-manager-launches-private-certificate-authority/

Today we’re launching a new feature for AWS Certificate Manager (ACM), Private Certificate Authority (CA). This new service allows ACM to act as a private subordinate CA. Previously, if a customer wanted to use private certificates, they needed specialized infrastructure and security expertise that could be expensive to maintain and operate. ACM Private CA builds on ACM’s existing certificate capabilities to help you easily and securely manage the lifecycle of your private certificates with pay as you go pricing. This enables developers to provision certificates in just a few simple API calls while administrators have a central CA management console and fine grained access control through granular IAM policies. ACM Private CA keys are stored securely in AWS managed hardware security modules (HSMs) that adhere to FIPS 140-2 Level 3 security standards. ACM Private CA automatically maintains certificate revocation lists (CRLs) in Amazon Simple Storage Service (S3) and lets administrators generate audit reports of certificate creation with the API or console. This service is packed full of features so let’s jump in and provision a CA.

Provisioning a Private Certificate Authority (CA)

First, I’ll navigate to the ACM console in my region and select the new Private CAs section in the sidebar. From there I’ll click Get Started to start the CA wizard. For now, I only have the option to provision a subordinate CA so we’ll select that and use my super secure desktop as the root CA and click Next. This isn’t what I would do in a production setting but it will work for testing out our private CA.

Now, I’ll configure the CA with some common details. The most important thing here is the Common Name which I’ll set as secure.internal to represent my internal domain.

Now I need to choose my key algorithm. You should choose the best algorithm for your needs but know that ACM has a limitation today that it can only manage certificates that chain up to to RSA CAs. For now, I’ll go with RSA 2048 bit and click Next.

In this next screen, I’m able to configure my certificate revocation list (CRL). CRLs are essential for notifying clients in the case that a certificate has been compromised before certificate expiration. ACM will maintain the revocation list for me and I have the option of routing my S3 bucket to a custome domain. In this case I’ll create a new S3 bucket to store my CRL in and click Next.

Finally, I’ll review all the details to make sure I didn’t make any typos and click Confirm and create.

A few seconds later and I’m greeted with a fancy screen saying I successfully provisioned a certificate authority. Hooray! I’m not done yet though. I still need to activate my CA by creating a certificate signing request (CSR) and signing that with my root CA. I’ll click Get started to begin that process.

Now I’ll copy the CSR or download it to a server or desktop that has access to my root CA (or potentially another subordinate – so long as it chains to a trusted root for my clients).

Now I can use a tool like openssl to sign my cert and generate the certificate chain.


$openssl ca -config openssl_root.cnf -extensions v3_intermediate_ca -days 3650 -notext -md sha256 -in csr/CSR.pem -out certs/subordinate_cert.pem
Using configuration from openssl_root.cnf
Enter pass phrase for /Users/randhunt/dev/amzn/ca/private/root_private_key.pem:
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
stateOrProvinceName   :ASN.1 12:'Washington'
localityName          :ASN.1 12:'Seattle'
organizationName      :ASN.1 12:'Amazon'
organizationalUnitName:ASN.1 12:'Engineering'
commonName            :ASN.1 12:'secure.internal'
Certificate is to be certified until Mar 31 06:05:30 2028 GMT (3650 days)
Sign the certificate? [y/n]:y


1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

After that I’ll copy my subordinate_cert.pem and certificate chain back into the console. and click Next.

Finally, I’ll review all the information and click Confirm and import. I should see a screen like the one below that shows my CA has been activated successfully.

Now that I have a private CA we can provision private certificates by hopping back to the ACM console and creating a new certificate. After clicking create a new certificate I’ll select the radio button Request a private certificate then I’ll click Request a certificate.

From there it’s just similar to provisioning a normal certificate in ACM.

Now I have a private certificate that I can bind to my ELBs, CloudFront Distributions, API Gateways, and more. I can also export the certificate for use on embedded devices or outside of ACM managed environments.

Available Now
ACM Private CA is a service in and of itself and it is packed full of features that won’t fit into a blog post. I strongly encourage the interested readers to go through the developer guide and familiarize themselves with certificate based security. ACM Private CA is available in in US East (N. Virginia), US East (Ohio), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), EU (Frankfurt) and EU (Ireland). Private CAs cost $400 per month (prorated) for each private CA. You are not charged for certificates created and maintained in ACM but you are charged for certificates where you have access to the private key (exported or created outside of ACM). The pricing per certificate is tiered starting at $0.75 per certificate for the first 1000 certificates and going down to $0.001 per certificate after 10,000 certificates.

I’m excited to see administrators and developers take advantage of this new service. As always please let us know what you think of this service on Twitter or in the comments below.

Randall

AWS Secrets Manager: Store, Distribute, and Rotate Credentials Securely

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-secrets-manager-store-distribute-and-rotate-credentials-securely/

Today we’re launching AWS Secrets Manager which makes it easy to store and retrieve your secrets via API or the AWS Command Line Interface (CLI) and rotate your credentials with built-in or custom AWS Lambda functions. Managing application secrets like database credentials, passwords, or API Keys is easy when you’re working locally with one machine and one application. As you grow and scale to many distributed microservices, it becomes a daunting task to securely store, distribute, rotate, and consume secrets. Previously, customers needed to provision and maintain additional infrastructure solely for secrets management which could incur costs and introduce unneeded complexity into systems.

AWS Secrets Manager

Imagine that I have an application that takes incoming tweets from Twitter and stores them in an Amazon Aurora database. Previously, I would have had to request a username and password from my database administrator and embed those credentials in environment variables or, in my race to production, even in the application itself. I would also need to have our social media manager create the Twitter API credentials and figure out how to store those. This is a fairly manual process, involving multiple people, that I have to restart every time I want to rotate these credentials. With Secrets Manager my database administrator can provide the credentials in secrets manager once and subsequently rely on a Secrets Manager provided Lambda function to automatically update and rotate those credentials. My social media manager can put the Twitter API keys in Secrets Manager which I can then access with a simple API call and I can even rotate these programmatically with a custom lambda function calling out to the Twitter API. My secrets are encrypted with the KMS key of my choice, and each of these administrators can explicitly grant access to these secrets with with granular IAM policies for individual roles or users.

Let’s take a look at how I would store a secret using the AWS Secrets Manager console. First, I’ll click Store a new secret to get to the new secrets wizard. For my RDS Aurora instance it’s straightforward to simply select the instance and provide the initial username and password to connect to the database.

Next, I’ll fill in a quick description and a name to access my secret by. You can use whatever naming scheme you want here.

Next, we’ll configure rotation to use the Secrets Manager-provided Lambda function to rotate our password every 10 days.

Finally, we’ll review all the details and check out our sample code for storing and retrieving our secret!

Finally I can review the secrets in the console.

Now, if I needed to access these secrets I’d simply call the API.

import json
import boto3
secrets = boto3.client("secretsmanager")
rds = json.dumps(secrets.get_secrets_value("prod/TwitterApp/Database")['SecretString'])
print(rds)

Which would give me the following values:


{'engine': 'mysql',
 'host': 'twitterapp2.abcdefg.us-east-1.rds.amazonaws.com',
 'password': '-)Kw>THISISAFAKEPASSWORD:lg{&sad+Canr',
 'port': 3306,
 'username': 'ranman'}

More than passwords

AWS Secrets Manager works for more than just passwords. I can store OAuth credentials, binary data, and more. Let’s look at storing my Twitter OAuth application keys.

Now, I can define the rotation for these third-party OAuth credentials with a custom AWS Lambda function that can call out to Twitter whenever we need to rotate our credentials.

Custom Rotation

One of the niftiest features of AWS Secrets Manager is custom AWS Lambda functions for credential rotation. This allows you to define completely custom workflows for credentials. Secrets Manager will call your lambda with a payload that includes a Step which specifies which step of the rotation you’re in, a SecretId which specifies which secret the rotation is for, and importantly a ClientRequestToken which is used to ensure idempotency in any changes to the underlying secret.

When you’re rotating secrets you go through a few different steps:

  1. createSecret
  2. setSecret
  3. testSecret
  4. finishSecret

The advantage of these steps is that you can add any kind of approval steps you want for each phase of the rotation. For more details on custom rotation check out the documentation.

Available Now
AWS Secrets Manager is available today in US East (N. Virginia), US East (Ohio), US West (N. California), US West (Oregon), Asia Pacific (Mumbai), Asia Pacific (Seoul), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Canada (Central), EU (Frankfurt), EU (Ireland), EU (London), and South America (São Paulo). Secrets are priced at $0.40 per month per secret and $0.05 per 10,000 API calls. I’m looking forward to seeing more users adopt rotating credentials to secure their applications!

Randall

Amazon Transcribe Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/


At AWS re:Invent 2017 we launched Amazon Transcribe in private preview. Today we’re excited to make Amazon Transcribe generally available for all developers. Amazon Transcribe is an automatic speech recognition service (ASR) that makes it easy for developers to add speech to text capabilities to their applications. We’ve iterated on customer feedback in the preview to make a number of enhancements to Amazon Transcribe.

New Amazon Transcribe Features in GA

To start off we’ve made the SampleRate parameter optional which means you only need to know the file type of your media and the input language. We’ve added two new features – the ability to differentiate multiple speakers in the audio to provide more intelligible transcripts (“who spoke when”), and a custom vocabulary to improve the accuracy of speech recognition for product names, industry-specific terminology, or names of individuals. To refresh our memories on how Amazon Transcribe works lets look at a quick example. I’ll convert this audio in my S3 bucket.

import boto3
transcribe = boto3.client("transcribe")
transcribe.start_transcription_job(
    TranscriptionJobName="TranscribeDemo",
    LanguageCode="en-US",
    MediaFormat="mp3",
    Media={"MediaFileUri": "https://s3.amazonaws.com/randhunt-transcribe-demo-us-east-1/out.mp3"}
)

This will output JSON similar to this (I’ve stripped out most of the response) with indidivudal speakers identified:

{
  "jobName": "reinvent",
  "accountId": "1234",
  "results": {
    "transcripts": [
      {
        "transcript": "Hi, everybody, i'm randall ..."
      }
    ],
    "speaker_labels": {
      "speakers": 2,
      "segments": [
        {
          "start_time": "0.000000",
          "speaker_label": "spk_0",
          "end_time": "0.010",
          "items": []
        },
        {
          "start_time": "0.010000",
          "speaker_label": "spk_1",
          "end_time": "4.990",
          "items": [
            {
              "start_time": "1.000",
              "speaker_label": "spk_1",
              "end_time": "1.190"
            },
            {
              "start_time": "1.190",
              "speaker_label": "spk_1",
              "end_time": "1.700"
            }
          ]
        }
      ]
    },
    "items": [
      {
        "start_time": "1.000",
        "end_time": "1.190",
        "alternatives": [
          {
            "confidence": "0.9971",
            "content": "Hi"
          }
        ],
        "type": "pronunciation"
      },
      {
        "alternatives": [
          {
            "content": ","
          }
        ],
        "type": "punctuation"
      },
      {
        "start_time": "1.190",
        "end_time": "1.700",
        "alternatives": [
          {
            "confidence": "1.0000",
            "content": "everybody"
          }
        ],
        "type": "pronunciation"
      }
    ]
  },
  "status": "COMPLETED"
}

Custom Vocabulary

Now if I needed to have a more complex technical discussion with a colleague I could create a custom vocabulary. A custom vocabulary is specified as an array of strings passed to the CreateVocabulary API and you can include your custom vocabulary in a transcription job by passing in the name as part of the Settings in a StartTranscriptionJob API call. An individual vocabulary can be as large as 50KB and each phrase must be less than 256 characters. If I wanted to transcribe the recordings of my highschool AP Biology class I could create a custom vocabulary in Python like this:

import boto3
transcribe = boto3.client("transcribe")
transcribe.create_vocabulary(
LanguageCode="en-US",
VocabularyName="APBiology"
Phrases=[
    "endoplasmic-reticulum",
    "organelle",
    "cisternae",
    "eukaryotic",
    "ribosomes",
    "hepatocyes",
    "cell-membrane"
]
)

I can refer to this vocabulary later on by the name APBiology and update it programatically based on any errors I may find in the transcriptions.

Available Now

Amazon Transcribe is available now in US East (N. Virginia), US West (Oregon), US East (Ohio) and EU (Ireland). Transcribe’s free tier gives you 60 minutes of transcription for free per month for the first 12 months with a pay-as-you-go model of $0.0004 per second of transcribed audio after that, with a minimum charge of 15 seconds.

When combined with other tools and services I think transcribe opens up a entirely new opportunities for application development. I’m excited to see what technologies developers build with this new service.

Randall

Amazon Translate Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-translate-now-generally-available/


Today we’re excited to make Amazon Translate generally available. Late last year at AWS re:Invent my colleague Tara Walker wrote about a preview of a new AI service, Amazon Translate. Starting today you can access Amazon Translate in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) with a 2 million character monthly free tier for the first 12 months and $15 per million characters after that. There are a number of new features available in GA: automatic source language inference, Amazon CloudWatch support, and up to 5000 characters in a single TranslateText call. Let’s take a quick look at the service in general availability.

Amazon Translate New Features

Since Tara’s post already covered the basics of the service I want to point out some of the new features of the service released today. Let’s start with a code sample:

import boto3
translate = boto3.client("translate")
resp = translate.translate_text(
    Text="🇫🇷Je suis très excité pour Amazon Traduire🇫🇷",
    SourceLanguageCode="auto",
    TargetLanguageCode="en"
)
print(resp['TranslatedText'])

Since I have specified my source language as auto, Amazon Translate will call Amazon Comprehend on my behalf to determine the source language used in this text. If you couldn’t guess it, we’re writing some French and the output is 🇫🇷I'm very excited about Amazon Translate 🇫🇷. You’ll notice that our emojis are preserved in the output text which is definitely a bonus feature for Millennials like me.

The Translate console is a great way to get started and see some sample response.

Translate is extremely easy to use in AWS Lambda functions which allows you to use it with almost any AWS service. There are a number of examples in the Translate documentation showing how to do everything from translate a web page to a Amazon DynamoDB table. Paired with other ML services like Amazon Comprehend and [transcribe] you can build everything from closed captioning to real-time chat translation to a robust text analysis pipeline for call centers transcriptions and other textual data.

New Languages Coming Soon

Today, Amazon Translate allows you to translate text to or from English, to any of the following languages: Arabic, Chinese (Simplified), French, German, Portuguese, and Spanish. We’ve announced support for additional languages coming soon: Japanese (go JAWSUG), Russian, Italian, Chinese (Traditional), Turkish, and Czech.

Amazon Translate can also be used to increase professional translator efficiency, and reduce costs and turnaround times for their clients. We’ve already partnered with a number of Language Service Providers (LSPs) to offer their customers end-to-end translation services at a lower cost by allowing Amazon Translate to produce a high-quality draft translation that’s then edited by the LSP for a guaranteed human quality result.

I’m excited to see what applications our customers are able to build with high quality machine translation just one API call away.

Randall

Amazon ECS Service Discovery

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-ecs-service-discovery/

Amazon ECS now includes integrated service discovery. This makes it possible for an ECS service to automatically register itself with a predictable and friendly DNS name in Amazon Route 53. As your services scale up or down in response to load or container health, the Route 53 hosted zone is kept up to date, allowing other services to lookup where they need to make connections based on the state of each service. You can see a demo of service discovery in an imaginary social networking app over at: https://servicediscovery.ranman.com/.

Service Discovery


Part of the transition to microservices and modern architectures involves having dynamic, autoscaling, and robust services that can respond quickly to failures and changing loads. Your services probably have complex dependency graphs of services they rely on and services they provide. A modern architectural best practice is to loosely couple these services by allowing them to specify their own dependencies, but this can be complicated in dynamic environments as your individual services are forced to find their own connection points.

Traditional approaches to service discovery like consul, etcd, or zookeeper all solve this problem well, but they require provisioning and maintaining additional infrastructure or installation of agents in your containers or on your instances. Previously, to ensure that services were able to discover and connect with each other, you had to configure and run your own service discovery system or connect every service to a load balancer. Now, you can enable service discovery for your containerized services in the ECS console, AWS CLI, or using the ECS API.

Introducing Amazon Route 53 Service Registry and Auto Naming APIs

Amazon ECS Service Discovery works by communicating with the Amazon Route 53 Service Registry and Auto Naming APIs. Since we haven’t talked about it before on this blog, I want to briefly outline how these Route 53 APIs work. First, some vocabulary:

  • Namespaces – A namespace specifies a domain name you want to route traffic to (e.g. internal, local, corp). You can think of it as a logical boundary between which services should be able to discover each other. You can create a namespace with a call to the aws servicediscovery create-private-dns-namespace command or in the ECS console. Namespaces are roughly equivalent to hosted zones in Route 53. A namespace contains services, our next vocabulary word.
  • Service – A service is a specific application or set of applications in your namespace like “auth”, “timeline”, or “worker”. A service contains service instances.
  • Service Instance – A service instance contains information about how Route 53 should respond to DNS queries for a resource.

Route 53 provides APIs to create: namespaces, A records per task IP, and SRV records per task IP + port.

When we ask Route 53 for something like: worker.corp we should get back a set of possible IPs that could fulfill that request. If the application we’re connecting to exposes dynamic ports then the calling application can easily query the SRV record to get more information.

ECS service discovery is built on top of the Route 53 APIs and manages all of the underlying API calls for you. Now that we understand how the service registry, works lets take a look at the ECS side to see service discovery in action.

Amazon ECS Service Discovery

Let’s launch an application with service discovery! First, I’ll create two task definitions: “flask-backend” and “flask-worker”. Both are simple AWS Fargate tasks with a single container serving HTTP requests. I’ll have flask-backend ask worker.corp to do some work and I’ll return the response as well as the address Route 53 returned for worker. Something like the code below:

@app.route("/")
namespace = os.getenv("namespace")
worker_host = "worker" + namespace
def backend():
    r = requests.get("http://"+worker_host)
    worker = socket.gethostbyname(worker_host)
    return "Worker Message: {]\nFrom: {}".format(r.content, worker)

 

Now, with my containers and task definitions in place, I’ll create a service in the console.

As I move to step two in the service wizard I’ll fill out the service discovery section and have ECS create a new namespace for me.

I’ll also tell ECS to monitor the health of the tasks in my service and add or remove them from Route 53 as needed. Then I’ll set a TTL of 10 seconds on the A records we’ll use.

I’ll repeat those same steps for my “worker” service and after a minute or so most of my tasks should be up and running.

Over in the Route 53 console I can see all the records for my tasks!

We can use the Route 53 service discovery APIs to list all of our available services and tasks and programmatically reach out to each one. We could easily extend to any number of services past just backend and worker. I’ve created a simple demo of an imaginary social network with services like “auth”, “feed”, “timeline”, “worker”, “user” and more here: https://servicediscovery.ranman.com/. You can see the code used to run that page on github.

Available Now
Amazon ECS service discovery is available now in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). AWS Fargate is currently only available in US East (N. Virginia). When you use ECS service discovery, you pay for the Route 53 resources that you consume, including each namespace that you create, and for the lookup queries your services make. Container level health checks are provided at no cost. For more information on pricing check out the documentation.

Please let us know what you’ll be building or refactoring with service discovery either in the comments or on Twitter!

Randall

 

P.S. Every blog post I write is made with a tremendous amount of help from numerous AWS colleagues. To everyone that helped build service discovery across all of our teams – thank you :)!

Pirate Site Admins Receive Suspended Sentences, Still Face €60m Damages Claim

Post Syndicated from Andy original https://torrentfreak.com/pirate-site-admins-receive-suspended-sentences-still-face-e60m-damages-claim-180313/

After being founded in 2009, French site Liberty Land (LL) made its home in Canada. At the time listed among France’s top 200 sites, Liberty Land carried an estimated 30,000 links to a broad range of unlicensed content.

Like many other indexes of its type, LL carried no content itself but hosted links to content hosted elsewhere, on sites like Megaupload and Rapidshare, for example. This didn’t save the operation from an investigation carried out by rightsholder groups SACEM and ALPA, which filed a complaint against Liberty Land with the French authorities in 2010.

Liberty Land

In May 2011 and alongside complaints from police that the people behind Liberty Land had taken extreme measures to hide themselves away, authorities arrested several men linked to the site in Marseille, near Le Havre, and in the Paris suburb of Montreuil.

Despite the men facing a possible five years in jail and fines of up to $700,000, the inquiry dragged on for nearly seven years. The trial of its alleged operators, now aged between 29 and 36-years-old, finally went ahead January 30 in Rennes.

The men faced charges that they unlawfully helped to distribute movies, TV series, games, software, music albums and e-books without permission from rightsholders. In court, one defended the site as being just like Google.

“For me, we had the same role as Google,” he said. “We were an SEO site. There is a difference between what we were doing and the distribution of pirated copies on the street.”

According to the prosecution, the site made considerable revenues from advertising, estimated at more than 300,000 euros between January 2009 and May 2011. The site’s two main administrators reportedly established an offshore company in the British Virgin Islands and a bank account in Latvia where they deposited between 100,000 and 150,000 euros each.

The prosecutor demanded fines for the former site admins and sentences of between six and 12 months in prison. Last week the Rennes Criminal Court rendered its decision, sentencing the four men to suspended sentences of between two and three months. More than 176,000 euros generated by the site was also confiscated by the Court.

While the men will no doubt be relieved that this extremely long case has reached a conclusion of sorts, it’s not over yet. 20minutes reports that the claims for damages filed by copyright groups including SACEM won’t be decided until September and they are significant, totaling 60 million euros.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Backblaze Cuts B2 Download Price In Half

Post Syndicated from Ahin Thomas original https://www.backblaze.com/blog/backblaze-b2-drops-download-price-in-half/

Backblaze B2 downloads now cost 50% less
Backblaze is pleased to announce that, effective immediately, we are reducing the price of Backblaze B2 Cloud Storage downloads by 50%. This means that B2 download pricing drops from $0.02 to $0.01 per GB. As always, the first gigabyte of data downloaded each day remains free.

If some of this sounds familiar, that’s because a little under a year ago, we dropped our download price from $0.05 to $0.02. While that move solidified our position as the affordability leader in the high performance cloud storage space, we continue to innovate on our platform and are excited to provide this additional value to our customers.

This price reduction applies immediately to all existing and new customers. In keeping with Backblaze’s overall approach to providing services, there are no tiers or minimums. It’s automatic and it starts today.

Why Is Backblaze Lowering What Is Already The Industry’s Lowest Price?

Because it makes cloud storage more useful for more people.

When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video. — Ian Wagner, Senior Developer, Sermon Audio

Since our founding in 2007, Backblaze’s mission has been to make storing data astonishingly easy and affordable. We have a well documented, relentless pursuit of lowering storage costs — it starts with our storage pods and runs through everything we do. Today, we have over 500 petabytes of customer data stored. B2’s storage pricing already being 14 that of Amazon’s S3 has certainly helped us get there. Today’s pricing reduction puts our download pricing 15 that of S3. The “affordable” part of our story is well established.

I’d like to take a moment to discuss the “easy” part. Our industry has historically done a poor job of putting ourselves in our customers’ shoes. When customers are faced with the decision of where to put their data, price is certainly a factor. But it’s not just the price of storage that customers must consider. There’s a cost to download your data. The business need for providers to charge for this is reasonable — downloading data requires bandwidth, and bandwidth costs money. We discussed that in a prior post on the Cost of Cloud Storage.

But there’s a difference between the costs of bandwidth and what the industry is charging today. There’s a joke that some of the storage clouds are competing to become “Hotel California” — you can check out anytime you want, but your data can never leave.1 Services that make it expensive to restore data or place time lag impediments to data access are reducing the usefulness of your data. Customers should not have to wonder if they can afford to access their own data.

When replacing LTO with StarWind VTL and cloud storage, our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig. — Max Kolomyeytsev, Director of Product Management, StarWind

Many businesses have not yet been able to back up their data to the cloud because of the costs. Many of those companies are forced to continue backing up to tape. That tape is an inefficient means for data storage is clear. Solution providers like StarWind VTL specialize in helping businesses move off of antiquated tape libraries. However, as Max Kolomyeytsev, Director of Product Management at StarWind points out, “When replacing LTO with StarWind VTL and cloud storage our customers had only one concern left: the possible cost of data retrieval. Backblaze just wiped this concern out of the way by lowering that cost to just one penny per gig.”

Customers that have already adopted the cloud often are forced to make difficult tradeoffs between data they want to access and the cost associated with that access. Surrendering the use of your own data defeats many of the benefits that “the cloud” brings in the first place. Because of B2’s download price, Ian Wagner, a Senior Developer at Sermon Audio, is able to lower his costs and expand his product offering. “When we decided to use Backblaze B2 as our cloud storage service, their download pricing at the time enabled us to offer our broadcasters unlimited audio uploads so they can upload past decades of preaching to our extensive library for streaming and downloading. With Backblaze cutting the bandwidth prices 50% to just one penny a gigabyte, we are excited about offering much higher quality video.”

Better Download Pricing Also Helps Third Party Applications Deliver Customer Solutions

Many organizations use third party applications or devices to help manage their workflows. Those applications are the hub for customers getting their data to where it needs to go. Leaders in verticals like Media Asset Management, Server & NAS Backup, and Enterprise Storage have already chosen to integrate with B2.

With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive. — Paul Tian, CEO, Morro Data

For Paul Tian, founder of Ready NAS and CEO of Morro Data, reasonable download pricing also helps his company better serve its customers. “With Backblaze lowering their download price to an amazing one penny a gigabyte, our CloudNAS is even a better fit for photographers, videographers and business owners who need to have their files at their fingertips, with an easy, reliable, low cost way to use Backblaze for unlimited primary storage and active archive.”

If you use an application that hasn’t yet integrated with B2, please ask your provider to add B2 Cloud Storage and mention the application in the comments below.

 

How Do the Major Cloud Storage Providers Compare on Pricing?

Not only is Backblaze B2 storage 14 the price of Amazon S3, Google Cloud, or Azure, but our download pricing is now 15 their price as well.

Pricing Tier Backblaze B2 Amazon S3 Microsoft Azure Google Cloud
First 1 TB $0.01 $0.09 $0.09 $0.12
Next 9 TB $0.01 $0.09 $0.09 $0.11
Next 40 TB $0.01 $0.085 $0.09 $0.08
Next 100 TB $0.01 $0.07 $0.07 $0.08
Next 350 TB+ $0.01 $0.05 $0.05 $0.08

Using the chart above, let’s compute a few examples of download costs…

Data Backblaze B2 Amazon S3 Microsoft Azure Google Cloud
1 terabyte $10 $90 $90 $120
10 terabytes $100 $900 $900 $1,200
50 terabytes $500 $4,300 $4,500 $4,310
500 terabytes $5,000 $28,800 $29,000 $40,310
Not only is Backblaze B2 pricing dramatically lower cost, it’s also simple — one price for any amount of data downloaded to anywhere. In comparison, to compute the cost of downloading 500 TB of data with S3 you start with the following formula:
(($0.09 * 10) + ($0.085 * 40) + ($0.07 * 100) + ($0.05 * 350)) * 1,000
Want to see this comparison for the amount of data you manage?
Use our cloud storage calculator.

Customers Want to Avoid Vendor Lock In

Halving the price of downloads is a crazy move — the kind of crazy our customers will be excited about. When using our Transmit 5 app on the Mac to upload their data to B2 Cloud Storage, our users can sleep soundly knowing they’ll be getting a truly affordable price when they need to restore that data. Cool beans, Backblaze. — Cabel Sasser, Co-Founder, Panic

As the cloud storage industry grows, customers are increasingly concerned with getting locked in to one vendor. No business wants to be fully dependent on one vendor for anything. In addition, customers want multiple copies of their data to mitigate against a vendor outage or other issues.

Many vendors offer the ability for customers to replicate data across “regions.” This enables customers to store data in two physical locations of the customer’s choosing. Of course, customers pay for storing both copies of the data and for the data transfer between regions.

At 1¢ per GB, transferring data out of Backblaze is more affordable than transferring data between most other vendor regions. For example, if a customer is storing data in Amazon S3’s Northern California region (US West) and wants to replicate data to S3 in Northern Virginia (US East), she will pay 2¢ per GB to simply move the data.

However, if that same customer wanted to replicate data from Backblaze B2 to S3 in Northern Virginia, she would pay 1¢ per GB to move the data. She can achieve her replication strategy while also mitigating against vendor risk — all while cutting the bandwidth bill by 50%. Of course, this is also before factoring the savings on her storage bill as B2 storage is 14 of the price of S3.

How Is Backblaze Doing This?

Simple. We just changed our pricing table and updated our website.

The longer answer is that the cost of bandwidth is a function of a few factors, including how it’s being used and the volume of usage. With another year of data for B2, over a decade of experience in the cloud storage industry, and data growth exceeding 100 PB per quarter, we know we can sustainably offer this pricing to our customers; we also know how better download pricing can make our customers and partners more effective in their work. So it is an easy call to make.

Our pricing is simple. Storage is $0.005/GB/Month, Download costs are $0.01/GB. There are no tiers or minimums and you can get started any time you wish.

Our desire is to provide a great service at a fair price. We’re proud to be the affordability leader in the Cloud Storage space and hope you’ll give us the opportunity to show you what B2 Cloud Storage can enable for you.

Enjoy the service and I’d love to hear what this price reduction does for you in the comments below…or, if you are attending NAB this year, come by to visit and tell us in person!


1 For those readers who don’t get the Eagles reference there, please click here…I promise you won’t regret the next 7 minutes of your life.

The post Backblaze Cuts B2 Download Price In Half appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.