Tag Archives: vulnerability

Getting product security engineering right

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2018/02/getting-product-security-engineering.html

Product security is an interesting animal: it is a uniquely cross-disciplinary endeavor that spans policy, consulting,
process automation, in-depth software engineering, and cutting-edge vulnerability research. And in contrast to many
other specializations in our field of expertise – say, incident response or network security – we have virtually no
time-tested and coherent frameworks for setting it up within a company of any size.

In my previous post, I shared some thoughts
on nurturing technical organizations and cultivating the right kind of leadership within. Today, I figured it would
be fitting to follow up with several notes on what I learned about structuring product security work – and about actually
making the effort count.

The “comfort zone” trap

For security engineers, knowing your limits is a sought-after quality: there is nothing more dangerous than a security
expert who goes off script and starts dispensing authoritatively-sounding but bogus advice on a topic they know very
little about. But that same quality can be destructive when it prevents us from growing beyond our most familiar role: that of
a critic who pokes holes in other people’s designs.

The role of a resident security critic lends itself all too easily to a sense of supremacy: the mistaken
belief that our cognitive skills exceed the capabilities of the engineers and product managers who come to us for help
– and that the cool bugs we file are the ultimate proof of our special gift. We start taking pride in the mere act
of breaking somebody else’s software – and then write scathing but ineffectual critiques addressed to executives,
demanding that they either put a stop to a project or sign off on a risk. And hey, in the latter case, they better
brace for our triumphant “I told you so” at some later date.

Of course, escalations of this type have their place, but they need to be a very rare sight; when practiced routinely, they are a telltale
sign of a dysfunctional team. We might be failing to think up viable alternatives that are in tune with business or engineering needs; we might
be very unpersuasive, failing to communicate with other rational people in a language they understand; or it might be that our tolerance for risk
is badly out of whack with the rest of the company. Whatever the cause, I’ve seen high-level escalations where the security team
spoke of valiant efforts to resist inexplicably awful design decisions or data sharing setups; and where product leads in turn talked about
pressing business needs randomly blocked by obstinate security folks. Sometimes, simply having them compare their notes would be enough to arrive
at a technical solution – such as sharing a less sensitive subset of the data at hand.

To be effective, any product security program must be rooted in a partnership with the rest of the company, focused on helping them get stuff done
while eliminating or reducing security risks. To combat the toxic us-versus-them mentality, I found it helpful to have some team members with
software engineering backgrounds, even if it’s the ownership of a small open-source project or so. This can broaden our horizons, helping us see
that we all make the same mistakes – and that not every solution that sounds good on paper is usable once we code it up.

Getting off the treadmill

All security programs involve a good chunk of operational work. For product security, this can be a combination of product launch reviews, design consulting requests, incoming bug reports, or compliance-driven assessments of some sort. And curiously, such reactive work also has the property of gradually expanding to consume all the available resources on a team: next year is bound to bring even more review requests, even more regulatory hurdles, and even more incoming bugs to triage and fix.

Being more tractable, such routine tasks are also more readily enshrined in SDLs, SLAs, and all kinds of other official documents that are often mistaken for a mission statement that justifies the existence of our teams. Soon, instead of explaining to a developer why they should fix a particular problem right away, we end up pointing them to page 17 in our severity classification guideline, which defines that “severity 2” vulnerabilities need to be resolved within a month. Meanwhile, another policy may be telling them that they need to run a fuzzer or a web application scanner for a particular number of CPU-hours – no matter whether it makes sense or whether the job is set up right.

To run a product security program that scales sublinearly, stays abreast of future threats, and doesn’t erect bureaucratic speed bumps just for the sake of it, we need to recognize this inherent tendency for operational work to take over – and we need to reign it in. No matter what the last year’s policy says, we usually don’t need to be doing security reviews with a particular cadence or to a particular depth; if we need to scale them back 10% to staff a two-quarter project that fixes an important API and squashes an entire class of bugs, it’s a short-term risk we should feel empowered to take.

As noted in my earlier post, I find contingency planning to be a valuable tool in this regard: why not ask ourselves how the team would cope if the workload went up another 30%, but bad financial results precluded any team growth? It’s actually fun to think about such hypotheticals ahead of the time – and hey, if the ideas sound good, why not try them out today?

Living for a cause

It can be difficult to understand if our security efforts are structured and prioritized right; when faced with such uncertainty, it is natural to stick to the safe fundamentals – investing most of our resources into the very same things that everybody else in our industry appears to be focusing on today.

I think it’s important to combat this mindset – and if so, we might as well tackle it head on. Rather than focusing on tactical objectives and policy documents, try to write down a concise mission statement explaining why you are a team in the first place, what specific business outcomes you are aiming for, how do you prioritize it, and how you want it all to change in a year or two. It should be a fluid narrative that reads right and that everybody on your team can take pride in; my favorite way of starting the conversation is telling folks that we could always have a new VP tomorrow – and that the VP’s first order of business could be asking, “why do you have so many people here and how do I know they are doing the right thing?”. It’s a playful but realistic framing device that motivates people to get it done.

In general, a comprehensive product security program should probably start with the assumption that no matter how many resources we have at our disposal, we will never be able to stay in the loop on everything that’s happening across the company – and even if we did, we’re not going to be able to catch every single bug. It follows that one of our top priorities for the team should be making sure that bugs don’t happen very often; a scalable way of getting there is equipping engineers with intuitive and usable tools that make it easy to perform common tasks without having to worry about security at all. Examples include standardized, managed containers for production jobs; safe-by-default APIs, such as strict contextual autoescaping for XSS or type safety for SQL; security-conscious style guidelines; or plug-and-play libraries that take care of common crypto or ACL enforcement tasks.

Of course, not all problems can be addressed on framework level, and not every engineer will always reach for the right tools. Because of this, the next principle that I found to be worth focusing on is containment and mitigation: making sure that bugs are difficult to exploit when they happen, or that the damage is kept in check. The solutions in this space can range from low-level enhancements (say, hardened allocators or seccomp-bpf sandboxes) to client-facing features such as browser origin isolation or Content Security Policy.

The usual consulting, review, and outreach tasks are an important facet of a product security program, but probably shouldn’t be the sole focus of your team. It’s also best to avoid undue emphasis on vulnerability showmanship: while valuable in some contexts, it creates a hypercompetitive environment that may be hostile to less experienced team members – not to mention, squashing individual bugs offers very limited value if the same issue is likely to be reintroduced into the codebase the next day. I like to think of security reviews as a teaching opportunity instead: it’s a way to raise awareness, form partnerships with engineers, and help them develop lasting habits that reduce the incidence of bugs. Metrics to understand the impact of your work are important, too; if your engagements are seen mostly as a yet another layer of red tape, product teams will stop reaching out to you for advice.

The other tenet of a healthy product security effort requires us to recognize at a scale and given enough time, every defense mechanism is bound to fail – and so, we need ways to prevent bugs from turning into incidents. The efforts in this space may range from developing product-specific signals for the incident response and monitoring teams; to offering meaningful vulnerability reward programs and nourishing a healthy and respectful relationship with the research community; to organizing regular offensive exercises in hopes of spotting bugs before anybody else does.

Oh, one final note: an important feature of a healthy security program is the existence of multiple feedback loops that help you spot problems without the need to micromanage the organization and without being deathly afraid of taking chances. For example, the data coming from bug bounty programs, if analyzed correctly, offers a wonderful way to alert you to systemic problems in your codebase – and later on, to measure the impact of any remediation and hardening work.

New uTorrent Web Streams and Downloads Torrents in Your Browser

Post Syndicated from Ernesto original https://torrentfreak.com/new-utorrent-web-streams-and-downloads-torrents-in-your-browser-180223/

While dozens of millions of people use uTorrent as their default BitTorrent client, the software has seen few feature updates in recent years.

That doesn’t mean that the development team has been sitting still. Instead of drastically expanding the current software, they have started a new ambitious project: uTorrent Web.

This new piece of software, which launched rather quietly, allows users to download and stream torrents directly in their default web browsers, such as Chrome or Firefox.

The way it works is pretty straightforward. After installing the client, which is Windows-only at the moment, torrent and magnet links are automatically opened by uTorrent Web in a browser window.

People can use their regular torrent sites to find torrents or use the app’s search box, which redirects them to Google.

Let’s start…

TorrentFreak took the application for a spin and it works quite well. Videos may take a short while to load, depending on the download speed, but then they play just fine. As in most modern video players, subtitles are also supported, if they’re included.

The streaming functionality supports both audio and video, with the option to choose a specific file, if a torrent contains more than one.

Applications and other files can also be downloaded, but these are obviously not streamed.

uTorrent Web in action

The current Beta release comes with several basic preferences settings and users can change things such as the download location and upload speed. It’s likely that more options will follow as development matures, however.

While the quiet release comes as a surprise, BitTorrent founder Bram Cohen previously told us that the browser version was coming. In the long run, this version could even replace the “original” client, he seemed to suggest.

“We’re very, very sensitive. We know people have been using uTorrent for a very long time and love it. So we’re very, very sensitive to that and gonna be sure to make sure that people feel that it’s an upgrade that’s happening. Not that we’ve just destroyed the experience,” Bram said.

“We’re going to roll it out and get feedback and make sure that people are happy with it before we roll it out to everybody.”

For now, however, it appears that BitTorrent is offering both products side-by-side.

It’s been a turbulent week for BitTorrent Inc., thus far. The company had to deal with a serious vulnerability in its flagship software uTorrent. This same issue also affected uTorrent Web, but the most recent version is fully patched, we were told, as is the stable release.

We reached out to BitTorrent Inc. to find out more about this release, but we haven’t heard back for several days. Perhaps we’ll get an opportunity to find out more in the near future.

Until then, people are free to take uTorrent Web for a spin here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Election Security

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/election_securi_2.html

I joined a letter supporting the Secure Elections Act (S. 2261):

The Secure Elections Act strikes a careful balance between state and federal action to secure American voting systems. The measure authorizes appropriation of grants to the states to take important and time-sensitive actions, including:

  • Replacing insecure paperless voting systems with new equipment that will process a paper ballot;
  • Implementing post-election audits of paper ballots or records to verify electronic tallies;

  • Conducting “cyber hygiene” scans and “risk and vulnerability” assessments and supporting state efforts to remediate identified vulnerabilities.

    The legislation would also create needed transparency and accountability in elections systems by establishing clear protocols for state and federal officials to communicate regarding security breaches and emerging threats.

BitTorrent Client uTorrent Suffers Security Vulnerability

Post Syndicated from Ernesto original https://torrentfreak.com/bittorrent-client-utorrent-suffers-security-vulnerability-180220/

With dozens of millions of active users a day, uTorrent has long been the most used torrent client.

The software has been around for well over a decade and it’s still used to shift petabytes of data day after day. While there haven’t been many feature updates recently, parent company BitTorrent Inc. was alerted to a serious security vulnerability recently.

The security flaw in question was reported by Google vulnerability researcher Tavis Ormandy, who first reached out to BitTorrent in November last year. Google’s Project Zero allows developers a 90-day window to address security flaws but with this deadline creeping up, BitTorrent had remained quiet.

Late last month Ormandy again reached out to BitTorrent Inc’s Bram Cohen, fearing that the company might not fix the vulnerability in time.

“I don’t think bittorrent are going to make a 90 day disclosure deadline, do you have any direct contacts who could help? I’m not convinced they understand the severity or urgency,” Ormandy wrote on Twitter.

Nudge

While Google’s security researcher might have expected a more swift response, the issue wasn’t ignored.

BitTorrent Inc has yet to fix the problem in the stable release, but a patch was deployed in the Beta version last week. BitTorrent’s Vice President of Engineering David Rees informed us that this will be promoted to the regular release this week, if all goes well.

While no specific details about the vulnerability have yet to be released, it is likely to be a remote execution flaw. Ormandy previously exposed a similar vulnerability in Transmission, which he said was the “first of a few remote code execution flaws in various popular torrent clients.”

BitTorrent Inc. told us that they have shared their patch with Ormandy, who confirmed that this fixes the security issues.

uTorrent Beta release notes

“We have also sent the build to Tavis and he has confirmed that it addresses all the security issues he reported,” Rees told us. “Since we have not promoted this build to stable, I will reserve reporting on the details of the security issue and its fix for now.”

BitTorrent Inc. plans to release more details about the issue when all clients are patched. Then it will also recommend users to upgrade their clients, so they are no longer at risk, and further information will also be available on Google’s Project Zero site.

Of course, people who are concerned about the issue can already upgrade to the latest uTorrent Beta release right away. Or, assuming that it’s related to the client’s remote control functionality, disable that for now.

Note: uTorrent’s Beta changelog states that the fixes were applied on January 15, but we believe that this should read February 15 instead.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

How to Patch Linux Workloads on AWS

Post Syndicated from Koen van Blijderveen original https://aws.amazon.com/blogs/security/how-to-patch-linux-workloads-on-aws/

Most malware tries to compromise your systems by using a known vulnerability that the operating system maker has already patched. As best practices to help prevent malware from affecting your systems, you should apply all operating system patches and actively monitor your systems for missing patches.

In this blog post, I show you how to patch Linux workloads using AWS Systems Manager. To accomplish this, I will show you how to use the AWS Command Line Interface (AWS CLI) to:

  1. Launch an Amazon EC2 instance for use with Systems Manager.
  2. Configure Systems Manager to patch your Amazon EC2 Linux instances.

In two previous blog posts (Part 1 and Part 2), I showed how to use the AWS Management Console to perform the necessary steps to patch, inspect, and protect Microsoft Windows workloads. You can implement those same processes for your Linux instances running in AWS by changing the instance tags and types shown in the previous blog posts.

Because most Linux system administrators are more familiar with using a command line, I show how to patch Linux workloads by using the AWS CLI in this blog post. The steps to use the Amazon EBS Snapshot Scheduler and Amazon Inspector are identical for both Microsoft Windows and Linux.

What you should know first

To follow along with the solution in this post, you need one or more Amazon EC2 instances. You may use existing instances or create new instances. For this post, I assume this is an Amazon EC2 for Amazon Linux instance installed from Amazon Machine Images (AMIs).

Systems Manager is a collection of capabilities that helps you automate management tasks for AWS-hosted instances on Amazon EC2 and your on-premises servers. In this post, I use Systems Manager for two purposes: to run remote commands and apply operating system patches. To learn about the full capabilities of Systems Manager, see What Is AWS Systems Manager?

As of Amazon Linux 2017.09, the AMI comes preinstalled with the Systems Manager agent. Systems Manager Patch Manager also supports Red Hat and Ubuntu. To install the agent on these Linux distributions or an older version of Amazon Linux, see Installing and Configuring SSM Agent on Linux Instances.

If you are not familiar with how to launch an Amazon EC2 instance, see Launching an Instance. I also assume you launched or will launch your instance in a private subnet. You must make sure that the Amazon EC2 instance can connect to the internet using a network address translation (NAT) instance or NAT gateway to communicate with Systems Manager. The following diagram shows how you should structure your VPC.

Diagram showing how to structure your VPC

Later in this post, you will assign tasks to a maintenance window to patch your instances with Systems Manager. To do this, the IAM user you are using for this post must have the iam:PassRole permission. This permission allows the IAM user assigning tasks to pass his own IAM permissions to the AWS service. In this example, when you assign a task to a maintenance window, IAM passes your credentials to Systems Manager. You also should authorize your IAM user to use Amazon EC2 and Systems Manager. As mentioned before, you will be using the AWS CLI for most of the steps in this blog post. Our documentation shows you how to get started with the AWS CLI. Make sure you have the AWS CLI installed and configured with an AWS access key and secret access key that belong to an IAM user that have the following AWS managed policies attached to the IAM user you are using for this example: AmazonEC2FullAccess and AmazonSSMFullAccess.

Step 1: Launch an Amazon EC2 Linux instance

In this section, I show you how to launch an Amazon EC2 instance so that you can use Systems Manager with the instance. This step requires you to do three things:

  1. Create an IAM role for Systems Manager before launching your Amazon EC2 instance.
  2. Launch your Amazon EC2 instance with Amazon EBS and the IAM role for Systems Manager.
  3. Add tags to the instances so that you can add your instances to a Systems Manager maintenance window based on tags.

A. Create an IAM role for Systems Manager

Before launching an Amazon EC2 instance, I recommend that you first create an IAM role for Systems Manager, which you will use to update the Amazon EC2 instance. AWS already provides a preconfigured policy that you can use for the new role and it is called AmazonEC2RoleforSSM.

  1. Create a JSON file named trustpolicy-ec2ssm.json that contains the following trust policy. This policy describes which principal (an entity that can take action on an AWS resource) is allowed to assume the role we are going to create. In this example, the principal is the Amazon EC2 service.
    {
      "Version": "2012-10-17",
      "Statement": {
        "Effect": "Allow",
        "Principal": {"Service": "ec2.amazonaws.com"},
        "Action": "sts:AssumeRole"
      }
    }

  1. Use the following command to create a role named EC2SSM that has the AWS managed policy AmazonEC2RoleforSSM attached to it. This generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name EC2SSM --assume-role-policy-document file://trustpolicy-ec2ssm.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name EC2SSM --policy-arn arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforSSM

  1. Use the following commands to create the IAM instance profile and add the role to the instance profile. The instance profile is needed to attach the role we created earlier to your Amazon EC2 instance.
    $ aws iam create-instance-profile --instance-profile-name EC2SSM-IP
    $ aws iam add-role-to-instance-profile --instance-profile-name EC2SSM-IP --role-name EC2SSM

B. Launch your Amazon EC2 instance

To follow along, you need an Amazon EC2 instance that is running Amazon Linux. You can use any existing instance you may have or create a new instance.

When launching a new Amazon EC2 instance, be sure that:

  1. Use the following command to launch a new Amazon EC2 instance using an Amazon Linux AMI available in the US East (N. Virginia) Region (also known as us-east-1). Replace YourKeyPair and YourSubnetId with your information. For more information about creating a key pair, see the create-key-pair documentation. Write down the InstanceId that is in the output because you will need it later in this post.
    $ aws ec2 run-instances --image-id ami-cb9ec1b1 --instance-type t2.micro --key-name YourKeyPair --subnet-id YourSubnetId --iam-instance-profile Name=EC2SSM-IP

  1. If you are using an existing Amazon EC2 instance, you can use the following command to attach the instance profile you created earlier to your instance.
    $ aws ec2 associate-iam-instance-profile --instance-id YourInstanceId --iam-instance-profile Name=EC2SSM-IP

C. Add tags

The final step of configuring your Amazon EC2 instances is to add tags. You will use these tags to configure Systems Manager in Step 2 of this post. For this example, I add a tag named Patch Group and set the value to Linux Servers. I could have other groups of Amazon EC2 instances that I treat differently by having the same tag name but a different tag value. For example, I might have a collection of other servers with the tag name Patch Group with a value of Web Servers.

  • Use the following command to add the Patch Group tag to your Amazon EC2 instance.
    $ aws ec2 create-tags --resources YourInstanceId --tags --tags Key="Patch Group",Value="Linux Servers"

Note: You must wait a few minutes until the Amazon EC2 instance is available before you can proceed to the next section. To make sure your Amazon EC2 instance is online and ready, you can use the following AWS CLI command:

$ aws ec2 describe-instance-status --instance-ids YourInstanceId

At this point, you now have at least one Amazon EC2 instance you can use to configure Systems Manager.

Step 2: Configure Systems Manager

In this section, I show you how to configure and use Systems Manager to apply operating system patches to your Amazon EC2 instances, and how to manage patch compliance.

To start, I provide some background information about Systems Manager. Then, I cover how to:

  1. Create the Systems Manager IAM role so that Systems Manager is able to perform patch operations.
  2. Create a Systems Manager patch baseline and associate it with your instance to define which patches Systems Manager should apply.
  3. Define a maintenance window to make sure Systems Manager patches your instance when you tell it to.
  4. Monitor patch compliance to verify the patch state of your instances.

You must meet two prerequisites to use Systems Manager to apply operating system patches. First, you must attach the IAM role you created in the previous section, EC2SSM, to your Amazon EC2 instance. Second, you must install the Systems Manager agent on your Amazon EC2 instance. If you have used a recent Amazon Linux AMI, Amazon has already installed the Systems Manager agent on your Amazon EC2 instance. You can confirm this by logging in to an Amazon EC2 instance and checking the Systems Manager agent log files that are located at /var/log/amazon/ssm/.

To install the Systems Manager agent on an instance that does not have the agent preinstalled or if you want to use the Systems Manager agent on your on-premises servers, see Installing and Configuring the Systems Manager Agent on Linux Instances. If you forgot to attach the newly created role when launching your Amazon EC2 instance or if you want to attach the role to already running Amazon EC2 instances, see Attach an AWS IAM Role to an Existing Amazon EC2 Instance by Using the AWS CLI or use the AWS Management Console.

A. Create the Systems Manager IAM role

For a maintenance window to be able to run any tasks, you must create a new role for Systems Manager. This role is a different kind of role than the one you created earlier: this role will be used by Systems Manager instead of Amazon EC2. Earlier, you created the role, EC2SSM, with the policy, AmazonEC2RoleforSSM, which allowed the Systems Manager agent on your instance to communicate with Systems Manager. In this section, you need a new role with the policy, AmazonSSMMaintenanceWindowRole, so that the Systems Manager service can execute commands on your instance.

To create the new IAM role for Systems Manager:

  1. Create a JSON file named trustpolicy-maintenancewindowrole.json that contains the following trust policy. This policy describes which principal is allowed to assume the role you are going to create. This trust policy allows not only Amazon EC2 to assume this role, but also Systems Manager.
    {
       "Version":"2012-10-17",
       "Statement":[
          {
             "Sid":"",
             "Effect":"Allow",
             "Principal":{
                "Service":[
                   "ec2.amazonaws.com",
                   "ssm.amazonaws.com"
               ]
             },
             "Action":"sts:AssumeRole"
          }
       ]
    }

  1. Use the following command to create a role named MaintenanceWindowRole that has the AWS managed policy, AmazonSSMMaintenanceWindowRole, attached to it. This command generates JSON-based output that describes the role and its parameters, if the command is successful.
    $ aws iam create-role --role-name MaintenanceWindowRole --assume-role-policy-document file://trustpolicy-maintenancewindowrole.json

  1. Use the following command to attach the AWS managed IAM policy (AmazonEC2RoleforSSM) to your newly created role.
    $ aws iam attach-role-policy --role-name MaintenanceWindowRole --policy-arn arn:aws:iam::aws:policy/service-role/AmazonSSMMaintenanceWindowRole

B. Create a Systems Manager patch baseline and associate it with your instance

Next, you will create a Systems Manager patch baseline and associate it with your Amazon EC2 instance. A patch baseline defines which patches Systems Manager should apply to your instance. Before you can associate the patch baseline with your instance, though, you must determine if Systems Manager recognizes your Amazon EC2 instance. Use the following command to list all instances managed by Systems Manager. The --filters option ensures you look only for your newly created Amazon EC2 instance.

$ aws ssm describe-instance-information --filters Key=InstanceIds,Values= YourInstanceId

{
    "InstanceInformationList": [
        {
            "IsLatestVersion": true,
            "ComputerName": "ip-10-50-2-245",
            "PingStatus": "Online",
            "InstanceId": "YourInstanceId",
            "IPAddress": "10.50.2.245",
            "ResourceType": "EC2Instance",
            "AgentVersion": "2.2.120.0",
            "PlatformVersion": "2017.09",
            "PlatformName": "Amazon Linux AMI",
            "PlatformType": "Linux",
            "LastPingDateTime": 1515759143.826
        }
    ]
}

If your instance is missing from the list, verify that:

  1. Your instance is running.
  2. You attached the Systems Manager IAM role, EC2SSM.
  3. You deployed a NAT gateway in your public subnet to ensure your VPC reflects the diagram shown earlier in this post so that the Systems Manager agent can connect to the Systems Manager internet endpoint.
  4. The Systems Manager agent logs don’t include any unaddressed errors.

Now that you have checked that Systems Manager can manage your Amazon EC2 instance, it is time to create a patch baseline. With a patch baseline, you define which patches are approved to be installed on all Amazon EC2 instances associated with the patch baseline. The Patch Group resource tag you defined earlier will determine to which patch group an instance belongs. If you do not specifically define a patch baseline, the default AWS-managed patch baseline is used.

To create a patch baseline:

  1. Use the following command to create a patch baseline named AmazonLinuxServers. With approval rules, you can determine the approved patches that will be included in your patch baseline. In this example, you add all Critical severity patches to the patch baseline as soon as they are released, by setting the Auto approval delay to 0 days. By setting the Auto approval delay to 2 days, you add to this patch baseline the Important, Medium, and Low severity patches two days after they are released.
    $ aws ssm create-patch-baseline --name "AmazonLinuxServers" --description "Baseline containing all updates for Amazon Linux" --operating-system AMAZON_LINUX --approval-rules "PatchRules=[{PatchFilterGroup={PatchFilters=[{Values=[Critical],Key=SEVERITY}]},ApproveAfterDays=0,ComplianceLevel=CRITICAL},{PatchFilterGroup={PatchFilters=[{Values=[Important,Medium,Low],Key=SEVERITY}]},ApproveAfterDays=2,ComplianceLevel=HIGH}]"
    
    {
        "BaselineId": "YourBaselineId"
    }

  1. Use the following command to register the patch baseline you created with your instance. To do so, you use the Patch Group tag that you added to your Amazon EC2 instance.
    $ aws ssm register-patch-baseline-for-patch-group --baseline-id YourPatchBaselineId --patch-group "Linux Servers"
    
    {
        "PatchGroup": "Linux Servers",
        "BaselineId": "YourBaselineId"
    }

C.  Define a maintenance window

Now that you have successfully set up a role, created a patch baseline, and registered your Amazon EC2 instance with your patch baseline, you will define a maintenance window so that you can control when your Amazon EC2 instances will receive patches. By creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

To define a maintenance window:

  1. Use the following command to define a maintenance window. In this example command, the maintenance window will start every Saturday at 10:00 P.M. UTC. It will have a duration of 4 hours and will not start any new tasks 1 hour before the end of the maintenance window.
    $ aws ssm create-maintenance-window --name SaturdayNight --schedule "cron(0 0 22 ? * SAT *)" --duration 4 --cutoff 1 --allow-unassociated-targets
    
    {
        "WindowId": "YourMaintenanceWindowId"
    }

For more information about defining a cron-based schedule for maintenance windows, see Cron and Rate Expressions for Maintenance Windows.

  1. After defining the maintenance window, you must register the Amazon EC2 instance with the maintenance window so that Systems Manager knows which Amazon EC2 instance it should patch in this maintenance window. You can register the instance by using the same Patch Group tag you used to associate the Amazon EC2 instance with the AWS-provided patch baseline, as shown in the following command.
    $ aws ssm register-target-with-maintenance-window --window-id YourMaintenanceWindowId --resource-type INSTANCE --targets "Key=tag:Patch Group,Values=Linux Servers"
    
    {
        "WindowTargetId": "YourWindowTargetId"
    }

  1. Assign a task to the maintenance window that will install the operating system patches on your Amazon EC2 instance. The following command includes the following options.
    1. name is the name of your task and is optional. I named mine Patching.
    2. task-arn is the name of the task document you want to run.
    3. max-concurrency allows you to specify how many of your Amazon EC2 instances Systems Manager should patch at the same time. max-errors determines when Systems Manager should abort the task. For patching, this number should not be too low, because you do not want your entire patch task to stop on all instances if one instance fails. You can set this, for example, to 20%.
    4. service-role-arn is the Amazon Resource Name (ARN) of the AmazonSSMMaintenanceWindowRole role you created earlier in this blog post.
    5. task-invocation-parameters defines the parameters that are specific to the AWS-RunPatchBaseline task document and tells Systems Manager that you want to install patches with a timeout of 600 seconds (10 minutes).
      $ aws ssm register-task-with-maintenance-window --name "Patching" --window-id "YourMaintenanceWindowId" --targets "Key=WindowTargetIds,Values=YourWindowTargetId" --task-arn AWS-RunPatchBaseline --service-role-arn "arn:aws:iam::123456789012:role/MaintenanceWindowRole" --task-type "RUN_COMMAND" --task-invocation-parameters "RunCommand={Comment=,TimeoutSeconds=600,Parameters={SnapshotId=[''],Operation=[Install]}}" --max-concurrency "500" --max-errors "20%"
      
      {
          "WindowTaskId": "YourWindowTaskId"
      }

Now, you must wait for the maintenance window to run at least once according to the schedule you defined earlier. If your maintenance window has expired, you can check the status of any maintenance tasks Systems Manager has performed by using the following command.

$ aws ssm describe-maintenance-window-executions --window-id "YourMaintenanceWindowId"

{
    "WindowExecutions": [
        {
            "Status": "SUCCESS",
            "WindowId": "YourMaintenanceWindowId",
            "WindowExecutionId": "b594984b-430e-4ffa-a44c-a2e171de9dd3",
            "EndTime": 1515766467.487,
            "StartTime": 1515766457.691
        }
    ]
}

D.  Monitor patch compliance

You also can see the overall patch compliance of all Amazon EC2 instances using the following command in the AWS CLI.

$ aws ssm list-compliance-summaries

This command shows you the number of instances that are compliant with each category and the number of instances that are not in JSON format.

You also can see overall patch compliance by choosing Compliance under Insights in the navigation pane of the Systems Manager console. You will see a visual representation of how many Amazon EC2 instances are up to date, how many Amazon EC2 instances are noncompliant, and how many Amazon EC2 instances are compliant in relation to the earlier defined patch baseline.

Screenshot of the Compliance page of the Systems Manager console

In this section, you have set everything up for patch management on your instance. Now you know how to patch your Amazon EC2 instance in a controlled manner and how to check if your Amazon EC2 instance is compliant with the patch baseline you have defined. Of course, I recommend that you apply these steps to all Amazon EC2 instances you manage.

Summary

In this blog post, I showed how to use Systems Manager to create a patch baseline and maintenance window to keep your Amazon EC2 Linux instances up to date with the latest security patches. Remember that by creating multiple maintenance windows and assigning them to different patch groups, you can make sure your Amazon EC2 instances do not all reboot at the same time.

If you have comments about this post, submit them in the “Comments” section below. If you have questions about or issues implementing any part of this solution, start a new thread on the Amazon EC2 forum or contact AWS Support.

– Koen

Pirate Streaming Search Engine Exploits Crunchyroll Vulnerability

Post Syndicated from Ernesto original https://torrentfreak.com/pirate-streaming-search-engine-exploits-crunchyroll-vulnerability-180213/

With 20 million members around the world, Crunchyroll is one of the largest on-demand streaming platforms for anime and manga content.

Much like Hollywood, the site has competition from pirate streaming sites which offer their content without permission. These usually stream pirated videos which are hosted on external sites.

However, this week Crunchyroll is facing a more direct attack. The people behind the new streaming meta-search engine StreamCR say they’ve found a way to stream the site’s content from its own servers, without paying.

“This works due to a vulnerability in the Crunchyroll system,” StreamCR’s operators tell TorrentFreak.

Simply put, StreamCR uses an active Crunchyroll account to locate the video streams and embeds this on its own website. This allows people to access Crunchyroll videos in the best quality without paying.

“This gives access to the full library in the region of our server, retrieving it as long as we’re not bound by the regular regional restriction. For this, we pick a US server as American Crunchyroll has the most library of content.

Stream in various qualities

The exploit was developed in-house, the StreamCR team informs us. While it works fine at the moment the team realizes that this may not last forever, as Crunchyroll might eventually patch the vulnerability.

However, the meta-search engine will have made its point by then.

“We expect them to fix this, Why wouldn’t they? In the meantime, this can demonstrate how vulnerable Crunchyroll is at the moment,” they tell us.

The site’s ultimate plan is to become the go-to search engine for people looking to stream all kinds of pirated videos. In addition to Crunchyroll, StreamCR also indexes various pirate sites, including YesMovies, Gomovies, and 9anime.

“StreamCR’s goal is to let people access streams with ease from a universal site, we’re trying to have a Google-like experience for finding online streams,” they say.

TorrentFreak reached out to Crunchyroll asking for a comment on the issue, but at the time of publication, we have yet to hear back.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

0-Day Flash Vulnerability Exploited In The Wild

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/02/0-day-flash-vulnerability-exploited-in-the-wild/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

0-Day Flash Vulnerability Exploited In The Wild

So another 0-Day Flash Vulnerability is being exploited in the Wild, a previously unknown flaw which has been labelled CVE-2018-4878 and it affects 28.0.0.137 and earlier versions for both Windows and Mac (the desktop runtime) and for basically everything in the Chrome Flash Player (Windows, Mac, Linux and Chrome OS).

The full Adobe Security Advisory can be found here:

– Security Advisory for Flash Player | APSA18-01

Adobe warned on Thursday that attackers are exploiting a previously unknown security hole in its Flash Player software to break into Microsoft Windows computers.

Read the rest of 0-Day Flash Vulnerability Exploited In The Wild now! Only available at Darknet.

Progressing from tech to leadership

Post Syndicated from Michal Zalewski original http://lcamtuf.blogspot.com/2018/02/on-leadership.html

I’ve been a technical person all my life. I started doing vulnerability research in the late 1990s – and even today, when I’m not fiddling with CNC-machined robots or making furniture, I’m probably clobbering together a fuzzer or writing a book about browser protocols and APIs. In other words, I’m a geek at heart.

My career is a different story. Over the past two decades and a change, I went from writing CGI scripts and setting up WAN routers for a chain of shopping malls, to doing pentests for institutional customers, to designing a series of network monitoring platforms and handling incident response for a big telco, to building and running the product security org for one of the largest companies in the world. It’s been an interesting ride – and now that I’m on the hook for the well-being of about 100 folks across more than a dozen subteams around the world, I’ve been thinking a bit about the lessons learned along the way.

Of course, I’m a bit hesitant to write such a post: sometimes, your efforts pan out not because of your approach, but despite it – and it’s possible to draw precisely the wrong conclusions from such anecdotes. Still, I’m very proud of the culture we’ve created and the caliber of folks working on our team. It happened through the work of quite a few talented tech leads and managers even before my time, but it did not happen by accident – so I figured that my observations may be useful for some, as long as they are taken with a grain of salt.

But first, let me start on a somewhat somber note: what nobody tells you is that one’s level on the leadership ladder tends to be inversely correlated with several measures of happiness. The reason is fairly simple: as you get more senior, a growing number of people will come to you expecting you to solve increasingly fuzzy and challenging problems – and you will no longer be patted on the back for doing so. This should not scare you away from such opportunities, but it definitely calls for a particular mindset: your motivation must come from within. Look beyond the fight-of-the-day; find satisfaction in seeing how far your teams have come over the years.

With that out of the way, here’s a collection of notes, loosely organized into three major themes.

The curse of a techie leader

Perhaps the most interesting observation I have is that for a person coming from a technical background, building a healthy team is first and foremost about the subtle art of letting go.

There is a natural urge to stay involved in any project you’ve started or helped improve; after all, it’s your baby: you’re familiar with all the nuts and bolts, and nobody else can do this job as well as you. But as your sphere of influence grows, this becomes a choke point: there are only so many things you could be doing at once. Just as importantly, the project-hoarding behavior robs more junior folks of the ability to take on new responsibilities and bring their own ideas to life. In other words, when done properly, delegation is not just about freeing up your plate; it’s also about empowerment and about signalling trust.

Of course, when you hand your project over to somebody else, the new owner will initially be slower and more clumsy than you; but if you pick the new leads wisely, give them the right tools and the right incentives, and don’t make them deathly afraid of messing up, they will soon excel at their new jobs – and be grateful for the opportunity.

A related affliction of many accomplished techies is the conviction that they know the answers to every question even tangentially related to their domain of expertise; that belief is coupled with a burning desire to have the last word in every debate. When practiced in moderation, this behavior is fine among peers – but for a leader, one of the most important skills to learn is knowing when to keep your mouth shut: people learn a lot better by experimenting and making small mistakes than by being schooled by their boss, and they often try to read into your passing remarks. Don’t run an authoritarian camp focused on total risk aversion or perfectly efficient resource management; just set reasonable boundaries and exit conditions for experiments so that they don’t spiral out of control – and be amazed by the results every now and then.

Death by planning

When nothing is on fire, it’s easy to get preoccupied with maintaining the status quo. If your current headcount or budget request lists all the same projects as last year’s, or if you ever find yourself ending an argument by deferring to a policy or a process document, it’s probably a sign that you’re getting complacent. In security, complacency usually ends in tears – and when it doesn’t, it leads to burnout or boredom.

In my experience, your goal should be to develop a cadre of managers or tech leads capable of coming up with clever ideas, prioritizing them among themselves, and seeing them to completion without your day-to-day involvement. In your spare time, make it your mission to challenge them to stay ahead of the curve. Ask your vendor security lead how they’d streamline their work if they had a 40% jump in the number of vendors but no extra headcount; ask your product security folks what’s the second line of defense or containment should your primary defenses fail. Help them get good ideas off the ground; set some mental success and failure criteria to be able to cut your losses if something does not pan out.

Of course, malfunctions happen even in the best-run teams; to spot trouble early on, instead of overzealous project tracking, I found it useful to encourage folks to run a data-driven org. I’d usually ask them to imagine that a brand new VP shows up in our office and, as his first order of business, asks “why do you have so many people here and how do I know they are doing the right things?”. Not everything in security can be quantified, but hard data can validate many of your assumptions – and will alert you to unseen issues early on.

When focusing on data, it’s important not to treat pie charts and spreadsheets as an art unto itself; if you run a security review process for your company, your CSAT scores are going to reach 100% if you just rubberstamp every launch request within ten minutes of receiving it. Make sure you’re asking the right questions; instead of “how satisfied are you with our process”, try “is your product better as a consequence of talking to us?”

Whenever things are not progressing as expected, it is a natural instinct to fall back to micromanagement, but it seldom truly cures the ill. It’s probable that your team disagrees with your vision or its feasibility – and that you’re either not listening to their feedback, or they don’t think you’d care. It’s good to assume that most of your employees are as smart or smarter than you; barking your orders at them more loudly or more frequently does not lead anyplace good. It’s good to listen to them and either present new facts or work with them on a plan you can all get behind.

In some circumstances, all that’s needed is honesty about the business trade-offs, so that your team feels like your “partner in crime”, not a victim of circumstance. For example, we’d tell our folks that by not falling behind on basic, unglamorous work, we earn the trust of our VPs and SVPs – and that this translates into the independence and the resources we need to pursue more ambitious ideas without being told what to do; it’s how we game the system, so to speak. Oh: leading by example is a pretty powerful tool at your disposal, too.

The human factor

I’ve come to appreciate that hiring decent folks who can get along with others is far more important than trying to recruit conference-circuit superstars. In fact, hiring superstars is a decidedly hit-and-miss affair: while certainly not a rule, there is a proportion of folks who put the maintenance of their celebrity status ahead of job responsibilities or the well-being of their peers.

For teams, one of the most powerful demotivators is a sense of unfairness and disempowerment. This is where tech-originating leaders can shine, because their teams usually feel that their bosses understand and can evaluate the merits of the work. But it also means you need to be decisive and actually solve problems for them, rather than just letting them vent. You will need to make unpopular decisions every now and then; in such cases, I think it’s important to move quickly, rather than prolonging the uncertainty – but it’s also important to sincerely listen to concerns, explain your reasoning, and be frank about the risks and trade-offs.

Whenever you see a clash of personalities on your team, you probably need to respond swiftly and decisively; being right should not justify being a bully. If you don’t react to repeated scuffles, your best people will probably start looking for other opportunities: it’s draining to put up with constant pie fights, no matter if the pies are thrown straight at you or if you just need to duck one every now and then.

More broadly, personality differences seem to be a much better predictor of conflict than any technical aspects underpinning a debate. As a boss, you need to identify such differences early on and come up with creative solutions. Sometimes, all you need is taking some badly-delivered but valid feedback and having a conversation with the other person, asking some questions that can help them reach the same conclusions without feeling that their worldview is under attack. Other times, the only path forward is making sure that some folks simply don’t run into each for a while.

Finally, dealing with low performers is a notoriously hard but important part of the game. Especially within large companies, there is always the temptation to just let it slide: sideline a struggling person and wait for them to either get over their issues or leave. But this sends an awful message to the rest of the team; for better or worse, fairness is important to most. Simply firing the low performers is seldom the best solution, though; successful recovery cases are what sets great managers apart from the average ones.

Oh, one more thought: people in leadership roles have their allegiance divided between the company and the people who depend on them. The obligation to the company is more formal, but the impact you have on your team is longer-lasting and more intimate. When the obligations to the employer and to your team collide in some way, make sure you can make the right call; it might be one of the the most consequential decisions you’ll ever make.

dorkbot – Command-Line Tool For Google Dorking

Post Syndicated from Darknet original https://www.darknet.org.uk/2018/02/dorkbot-command-line-tool-for-google-dorking/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

dorkbot – Command-Line Tool For Google Dorking

dorkbot is a modular command-line tool for Google dorking, which is performing vulnerability scans against a set of web pages returned by Google search queries in a given Google Custom Search Engine.

How dorkbot works

It is broken up into two sets of modules:

  • Indexers – modules that issue a search query and return the results as targets
  • Scanners – modules that perform a vulnerability scan against each target

Targets are stored in a local database file upon being indexed.

Read the rest of dorkbot – Command-Line Tool For Google Dorking now! Only available at Darknet.

Task Networking in AWS Fargate

Post Syndicated from Nathan Peck original https://aws.amazon.com/blogs/compute/task-networking-in-aws-fargate/

AWS Fargate is a technology that allows you to focus on running your application without needing to provision, monitor, or manage the underlying compute infrastructure. You package your application into a Docker container that you can then launch using your container orchestration tool of choice.

Fargate allows you to use containers without being responsible for Amazon EC2 instances, similar to how EC2 allows you to run VMs without managing physical infrastructure. Currently, Fargate provides support for Amazon Elastic Container Service (Amazon ECS). Support for Amazon Elastic Container Service for Kubernetes (Amazon EKS) will be made available in the near future.

Despite offloading the responsibility for the underlying instances, Fargate still gives you deep control over configuration of network placement and policies. This includes the ability to use many networking fundamentals such as Amazon VPC and security groups.

This post covers how to take advantage of the different ways of networking your containers in Fargate when using ECS as your orchestration platform, with a focus on how to do networking securely.

The first step to running any application in Fargate is defining an ECS task for Fargate to launch. A task is a logical group of one or more Docker containers that are deployed with specified settings. When running a task in Fargate, there are two different forms of networking to consider:

  • Container (local) networking
  • External networking

Container Networking

Container networking is often used for tightly coupled application components. Perhaps your application has a web tier that is responsible for serving static content as well as generating some dynamic HTML pages. To generate these dynamic pages, it has to fetch information from another application component that has an HTTP API.

One potential architecture for such an application is to deploy the web tier and the API tier together as a pair and use local networking so the web tier can fetch information from the API tier.

If you are running these two components as two processes on a single EC2 instance, the web tier application process could communicate with the API process on the same machine by using the local loopback interface. The local loopback interface has a special IP address of 127.0.0.1 and hostname of localhost.

By making a networking request to this local interface, it bypasses the network interface hardware and instead the operating system just routes network calls from one process to the other directly. This gives the web tier a fast and efficient way to fetch information from the API tier with almost no networking latency.

In Fargate, when you launch multiple containers as part of a single task, they can also communicate with each other over the local loopback interface. Fargate uses a special container networking mode called awsvpc, which gives all the containers in a task a shared elastic network interface to use for communication.

If you specify a port mapping for each container in the task, then the containers can communicate with each other on that port. For example the following task definition could be used to deploy the web tier and the API tier:

{
  "family": "myapp"
  "containerDefinitions": [
    {
      "name": "web",
      "image": "my web image url",
      "portMappings": [
        {
          "containerPort": 80
        }
      ],
      "memory": 500,
      "cpu": 10,
      "esssential": true
    },
    {
      "name": "api",
      "image": "my api image url",
      "portMappings": [
        {
          "containerPort": 8080
        }
      ],
      "cpu": 10,
      "memory": 500,
      "essential": true
    }
  ]
}

ECS, with Fargate, is able to take this definition and launch two containers, each of which is bound to a specific static port on the elastic network interface for the task.

Because each Fargate task has its own isolated networking stack, there is no need for dynamic ports to avoid port conflicts between different tasks as in other networking modes. The static ports make it easy for containers to communicate with each other. For example, the web container makes a request to the API container using its well-known static port:

curl 127.0.0.1:8080/my-endpoint

This sends a local network request, which goes directly from one container to the other over the local loopback interface without traversing the network. This deployment strategy allows for fast and efficient communication between two tightly coupled containers. But most application architectures require more than just internal local networking.

External Networking

External networking is used for network communications that go outside the task to other servers that are not part of the task, or network communications that originate from other hosts on the internet and are directed to the task.

Configuring external networking for a task is done by modifying the settings of the VPC in which you launch your tasks. A VPC is a fundamental tool in AWS for controlling the networking capabilities of resources that you launch on your account.

When setting up a VPC, you create one or more subnets, which are logical groups that your resources can be placed into. Each subnet has an Availability Zone and its own route table, which defines rules about how network traffic operates for that subnet. There are two main types of subnets: public and private.

Public subnets

A public subnet is a subnet that has an associated internet gateway. Fargate tasks in that subnet are assigned both private and public IP addresses:


A browser or other client on the internet can send network traffic to the task via the internet gateway using its public IP address. The tasks can also send network traffic to other servers on the internet because the route table can route traffic out via the internet gateway.

If tasks want to communicate directly with each other, they can use each other’s private IP address to send traffic directly from one to the other so that it stays inside the subnet without going out to the internet gateway and back in.

Private subnets

A private subnet does not have direct internet access. The Fargate tasks inside the subnet don’t have public IP addresses, only private IP addresses. Instead of an internet gateway, a network address translation (NAT) gateway is attached to the subnet:

 

There is no way for another server or client on the internet to reach your tasks directly, because they don’t even have an address or a direct route to reach them. This is a great way to add another layer of protection for internal tasks that handle sensitive data. Those tasks are protected and can’t receive any inbound traffic at all.

In this configuration, the tasks can still communicate to other servers on the internet via the NAT gateway. They would appear to have the IP address of the NAT gateway to the recipient of the communication. If you run a Fargate task in a private subnet, you must add this NAT gateway. Otherwise, Fargate can’t make a network request to Amazon ECR to download the container image, or communicate with Amazon CloudWatch to store container metrics.

Load balancers

If you are running a container that is hosting internet content in a private subnet, you need a way for traffic from the public to reach the container. This is generally accomplished by using a load balancer such as an Application Load Balancer or a Network Load Balancer.

ECS integrates tightly with AWS load balancers by automatically configuring a service-linked load balancer to send network traffic to containers that are part of the service. When each task starts, the IP address of its elastic network interface is added to the load balancer’s configuration. When the task is being shut down, network traffic is safely drained from the task before removal from the load balancer.

To get internet traffic to containers using a load balancer, the load balancer is placed into a public subnet. ECS configures the load balancer to forward traffic to the container tasks in the private subnet:

This configuration allows your tasks in Fargate to be safely isolated from the rest of the internet. They can still initiate network communication with external resources via the NAT gateway, and still receive traffic from the public via the Application Load Balancer that is in the public subnet.

Another potential use case for a load balancer is for internal communication from one service to another service within the private subnet. This is typically used for a microservice deployment, in which one service such as an internet user account service needs to communicate with an internal service such as a password service. Obviously, it is undesirable for the password service to be directly accessible on the internet, so using an internet load balancer would be a major security vulnerability. Instead, this can be accomplished by hosting an internal load balancer within the private subnet:

With this approach, one container can distribute requests across an Auto Scaling group of other private containers via the internal load balancer, ensuring that the network traffic stays safely protected within the private subnet.

Best Practices for Fargate Networking

Determine whether you should use local task networking

Local task networking is ideal for communicating between containers that are tightly coupled and require maximum networking performance between them. However, when you deploy one or more containers as part of the same task they are always deployed together so it removes the ability to independently scale different types of workload up and down.

In the example of the application with a web tier and an API tier, it may be the case that powering the application requires only two web tier containers but 10 API tier containers. If local container networking is used between these two container types, then an extra eight unnecessary web tier containers would end up being run instead of allowing the two different services to scale independently.

A better approach would be to deploy the two containers as two different services, each with its own load balancer. This allows clients to communicate with the two web containers via the web service’s load balancer. The web service could distribute requests across the eight backend API containers via the API service’s load balancer.

Run internet tasks that require internet access in a public subnet

If you have tasks that require internet access and a lot of bandwidth for communication with other services, it is best to run them in a public subnet. Give them public IP addresses so that each task can communicate with other services directly.

If you run these tasks in a private subnet, then all their outbound traffic has to go through an NAT gateway. AWS NAT gateways support up to 10 Gbps of burst bandwidth. If your bandwidth requirements go over this, then all task networking starts to get throttled. To avoid this, you could distribute the tasks across multiple private subnets, each with their own NAT gateway. It can be easier to just place the tasks into a public subnet, if possible.

Avoid using a public subnet or public IP addresses for private, internal tasks

If you are running a service that handles private, internal information, you should not put it into a public subnet or use a public IP address. For example, imagine that you have one task, which is an API gateway for authentication and access control. You have another background worker task that handles sensitive information.

The intended access pattern is that requests from the public go to the API gateway, which then proxies request to the background task only if the request is from an authenticated user. If the background task is in a public subnet and has a public IP address, then it could be possible for an attacker to bypass the API gateway entirely. They could communicate directly to the background task using its public IP address, without being authenticated.

Conclusion

Fargate gives you a way to run containerized tasks directly without managing any EC2 instances, but you still have full control over how you want networking to work. You can set up containers to talk to each other over the local network interface for maximum speed and efficiency. For running workloads that require privacy and security, use a private subnet with public internet access locked down. Or, for simplicity with an internet workload, you can just use a public subnet and give your containers a public IP address.

To deploy one of these Fargate task networking approaches, check out some sample CloudFormation templates showing how to configure the VPC, subnets, and load balancers.

If you have questions or suggestions, please comment below.

The Effects of the Spectre and Meltdown Vulnerabilities

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/the_effects_of_3.html

On January 3, the world learned about a series of major security vulnerabilities in modern microprocessors. Called Spectre and Meltdown, these vulnerabilities were discovered by several different researchers last summer, disclosed to the microprocessors’ manufacturers, and patched­ — at least to the extent possible.

This news isn’t really any different from the usual endless stream of security vulnerabilities and patches, but it’s also a harbinger of the sorts of security problems we’re going to be seeing in the coming years. These are vulnerabilities in computer hardware, not software. They affect virtually all high-end microprocessors produced in the last 20 years. Patching them requires large-scale coordination across the industry, and in some cases drastically affects the performance of the computers. And sometimes patching isn’t possible; the vulnerability will remain until the computer is discarded.

Spectre and Meltdown aren’t anomalies. They represent a new area to look for vulnerabilities and a new avenue of attack. They’re the future of security­ — and it doesn’t look good for the defenders.

Modern computers do lots of things at the same time. Your computer and your phone simultaneously run several applications — ­or apps. Your browser has several windows open. A cloud computer runs applications for many different computers. All of those applications need to be isolated from each other. For security, one application isn’t supposed to be able to peek at what another one is doing, except in very controlled circumstances. Otherwise, a malicious advertisement on a website you’re visiting could eavesdrop on your banking details, or the cloud service purchased by some foreign intelligence organization could eavesdrop on every other cloud customer, and so on. The companies that write browsers, operating systems, and cloud infrastructure spend a lot of time making sure this isolation works.

Both Spectre and Meltdown break that isolation, deep down at the microprocessor level, by exploiting performance optimizations that have been implemented for the past decade or so. Basically, microprocessors have become so fast that they spend a lot of time waiting for data to move in and out of memory. To increase performance, these processors guess what data they’re going to receive and execute instructions based on that. If the guess turns out to be correct, it’s a performance win. If it’s wrong, the microprocessors throw away what they’ve done without losing any time. This feature is called speculative execution.

Spectre and Meltdown attack speculative execution in different ways. Meltdown is more of a conventional vulnerability; the designers of the speculative-execution process made a mistake, so they just needed to fix it. Spectre is worse; it’s a flaw in the very concept of speculative execution. There’s no way to patch that vulnerability; the chips need to be redesigned in such a way as to eliminate it.

Since the announcement, manufacturers have been rolling out patches to these vulnerabilities to the extent possible. Operating systems have been patched so that attackers can’t make use of the vulnerabilities. Web browsers have been patched. Chips have been patched. From the user’s perspective, these are routine fixes. But several aspects of these vulnerabilities illustrate the sorts of security problems we’re only going to be seeing more of.

First, attacks against hardware, as opposed to software, will become more common. Last fall, vulnerabilities were discovered in Intel’s Management Engine, a remote-administration feature on its microprocessors. Like Spectre and Meltdown, they affected how the chips operate. Looking for vulnerabilities on computer chips is new. Now that researchers know this is a fruitful area to explore, security researchers, foreign intelligence agencies, and criminals will be on the hunt.

Second, because microprocessors are fundamental parts of computers, patching requires coordination between many companies. Even when manufacturers like Intel and AMD can write a patch for a vulnerability, computer makers and application vendors still have to customize and push the patch out to the users. This makes it much harder to keep vulnerabilities secret while patches are being written. Spectre and Meltdown were announced prematurely because details were leaking and rumors were swirling. Situations like this give malicious actors more opportunity to attack systems before they’re guarded.

Third, these vulnerabilities will affect computers’ functionality. In some cases, the patches for Spectre and Meltdown result in significant reductions in speed. The press initially reported 30%, but that only seems true for certain servers running in the cloud. For your personal computer or phone, the performance hit from the patch is minimal. But as more vulnerabilities are discovered in hardware, patches will affect performance in noticeable ways.

And then there are the unpatchable vulnerabilities. For decades, the computer industry has kept things secure by finding vulnerabilities in fielded products and quickly patching them. Now there are cases where that doesn’t work. Sometimes it’s because computers are in cheap products that don’t have a patch mechanism, like many of the DVRs and webcams that are vulnerable to the Mirai (and other) botnets — ­groups of Internet-connected devices sabotaged for coordinated digital attacks. Sometimes it’s because a computer chip’s functionality is so core to a computer’s design that patching it effectively means turning the computer off. This, too, is becoming more common.

Increasingly, everything is a computer: not just your laptop and phone, but your car, your appliances, your medical devices, and global infrastructure. These computers are and always will be vulnerable, but Spectre and Meltdown represent a new class of vulnerability. Unpatchable vulnerabilities in the deepest recesses of the world’s computer hardware is the new normal. It’s going to leave us all much more vulnerable in the future.

This essay previously appeared on TheAtlantic.com.

WhatsApp Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/01/whatsapp_vulner.html

A new vulnerability in WhatsApp has been discovered:

…the researchers unearthed far more significant gaps in WhatsApp’s security: They say that anyone who controls WhatsApp’s servers could effortlessly insert new people into an otherwise private group, even without the permission of the administrator who ostensibly controls access to that conversation.

Matthew Green has a good description:

If all you want is the TL;DR, here’s the headline finding: due to flaws in both Signal and WhatsApp (which I single out because I use them), it’s theoretically possible for strangers to add themselves to an encrypted group chat. However, the caveat is that these attacks are extremely difficult to pull off in practice, so nobody needs to panic. But both issues are very avoidable, and tend to undermine the logic of having an end-to-end encryption protocol in the first place.

Here’s the research paper.

[$] A survey of some free fuzzing tools

Post Syndicated from jake original https://lwn.net/Articles/744269/rss

Many techniques in software security are complicated and require a deep
understanding of the internal workings of the computer and the software under
test. Some techniques, though, are conceptually simple and do not rely on
knowledge of the underlying software. Fuzzing is a useful example: running a
program with a wide variety of junk input and seeing if it does anything
abnormal or interesting, like crashing. Though it might seem unsophisticated,
fuzzing is extremely helpful in finding the parsing and input processing
problems that are often the beginning of a security vulnerability.

BitTorrent Client Transmission Suffers Remote Takeover Vulnerability

Post Syndicated from Ernesto original https://torrentfreak.com/bittorrent-client-transmission-suffers-remote-takeover-vulnerability-180116/

With millions of active users, Transmission is one of the most used BitTorrent clients around, particularly for Mac users.

The application has been around for more than a decade and has a great reputation. However, as with any other type of software, it is not immune to vulnerabilities.

One rather concerning flaw was made public by Google vulnerability researcher Tavis Ormandy a few days ago. The flaw allows outsiders to gain access to Transmission via DNS rebinding. This ultimately allows attackers to control the BitTorrent client and execute custom code.

Ormandy has published a patch, which was also shared with the private Transmission security list at the end of November. Transmission, however, has yet to address the issue in an update.

The relatively slow response was the reason why Ormandy decided to make it public before Project Zero’s usual 90-day window expired, Ars highlights. This allows other projects to address the vulnerability right away.

“I’m finding it frustrating that the transmission developers are not responding on their private security list,” Google’s vulnerability researcher writes. “I’ve never had an opensource project take this long to fix a vulnerability before, so I usually don’t even mention the 90 day limit if the vulnerability is in an open source project.”

A member of the Transmission developer team informed Ars that they will address this ASAP, noting that the issue only affects users who have remote control enabled with the default password. This means that people who disable it or change their password can easily ‘patch’ it until the official update comes out.

Interestingly, this isn’t the last BitTorrent related vulnerability Ormandy plans to expose. According to one of his tweets on the matter, this is just the “first of a few remote code execution flaws in various popular torrent clients.”

Judging from a message the researcher sent late November, uTorrent is on the list as well. Apparently, the company’s security email address wasn’t set up correctly at the time, so BitTorrent inventor Bram Cohen has been acting as a forwarding service.

uTorrent?

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons