Tag Archives: watch

[$] A filesystem “change journal” and other topics

Post Syndicated from jake original https://lwn.net/Articles/755277/rss

At the 2017 Linux Storage, Filesystem, and Memory-Management Summit
(LSFMM), Amir Goldstein presented his work
on adding a superblock watch mechanism to provide a scalable way to notify
applications
of changes in a filesystem. At the 2018 edition of LSFMM, he was back to
discuss adding NTFS-like change
journals
to the kernel in support of backup solutions of various
sorts. As a second topic for the session, he also wanted to discuss doing
more performance-regression testing
for filesystems.

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

Monitoring your Amazon SNS message filtering activity with Amazon CloudWatch

Post Syndicated from Rachel Richardson original https://aws.amazon.com/blogs/compute/monitoring-your-amazon-sns-message-filtering-activity-with-amazon-cloudwatch/

This post is courtesy of Otavio Ferreira, Manager, Amazon SNS, AWS Messaging.

Amazon SNS message filtering provides a set of string and numeric matching operators that allow each subscription to receive only the messages of interest. Hence, SNS message filtering can simplify your pub/sub messaging architecture by offloading the message filtering logic from your subscriber systems, as well as the message routing logic from your publisher systems.

After you set the subscription attribute that defines a filter policy, the subscribing endpoint receives only the messages that carry attributes matching this filter policy. Other messages published to the topic are filtered out for this subscription. In this way, the native integration between SNS and Amazon CloudWatch provides visibility into the number of messages delivered, as well as the number of messages filtered out.

CloudWatch metrics are captured automatically for you. To get started with SNS message filtering, see Filtering Messages with Amazon SNS.

Message Filtering Metrics

The following six CloudWatch metrics are relevant to understanding your SNS message filtering activity:

  • NumberOfMessagesPublished – Inbound traffic to SNS. This metric tracks all the messages that have been published to the topic.
  • NumberOfNotificationsDelivered – Outbound traffic from SNS. This metric tracks all the messages that have been successfully delivered to endpoints subscribed to the topic. A delivery takes place either when the incoming message attributes match a subscription filter policy, or when the subscription has no filter policy at all, which results in a catch-all behavior.
  • NumberOfNotificationsFilteredOut – This metric tracks all the messages that were filtered out because they carried attributes that didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-NoMessageAttributes – This metric tracks all the messages that were filtered out because they didn’t carry any attributes at all and, consequently, didn’t match the subscription filter policy.
  • NumberOfNotificationsFilteredOut-InvalidAttributes – This metric keeps track of messages that were filtered out because they carried invalid or malformed attributes and, thus, didn’t match the subscription filter policy.
  • NumberOfNotificationsFailed – This last metric tracks all the messages that failed to be delivered to subscribing endpoints, regardless of whether a filter policy had been set for the endpoint. This metric is emitted after the message delivery retry policy is exhausted, and SNS stops attempting to deliver the message. At that moment, the subscribing endpoint is likely no longer reachable. For example, the subscribing SQS queue or Lambda function has been deleted by its owner. You may want to closely monitor this metric to address message delivery issues quickly.

Message filtering graphs

Through the AWS Management Console, you can compose graphs to display your SNS message filtering activity. The graph shows the number of messages published, delivered, and filtered out within the timeframe you specify (1h, 3h, 12h, 1d, 3d, 1w, or custom).

SNS message filtering for CloudWatch Metrics

To compose an SNS message filtering graph with CloudWatch:

  1. Open the CloudWatch console.
  2. Choose Metrics, SNS, All Metrics, and Topic Metrics.
  3. Select all metrics to add to the graph, such as:
    • NumberOfMessagesPublished
    • NumberOfNotificationsDelivered
    • NumberOfNotificationsFilteredOut
  4. Choose Graphed metrics.
  5. In the Statistic column, switch from Average to Sum.
  6. Title your graph with a descriptive name, such as “SNS Message Filtering”

After you have your graph set up, you may want to copy the graph link for bookmarking, emailing, or sharing with co-workers. You may also want to add your graph to a CloudWatch dashboard for easy access in the future. Both actions are available to you on the Actions menu, which is found above the graph.

Summary

SNS message filtering defines how SNS topics behave in terms of message delivery. By using CloudWatch metrics, you gain visibility into the number of messages published, delivered, and filtered out. This enables you to validate the operation of filter policies and more easily troubleshoot during development phases.

SNS message filtering can be implemented easily with existing AWS SDKs by applying message and subscription attributes across all SNS supported protocols (Amazon SQS, AWS Lambda, HTTP, SMS, email, and mobile push). CloudWatch metrics for SNS message filtering is available now, in all AWS Regions.

For information about pricing, see the CloudWatch pricing page.

For more information, see:

Raspberry Jam Cameroon #PiParty

Post Syndicated from Ben Nuttall original https://www.raspberrypi.org/blog/raspberry-jam-cameroon-piparty/

Earlier this year on 3 and 4 March, communities around the world held Raspberry Jam events to celebrate Raspberry Pi’s sixth birthday. We sent out special birthday kits to participating Jams — it was amazing to know the kits would end up in the hands of people in parts of the world very far from Raspberry Pi HQ in Cambridge, UK.

The Raspberry Jam Camer team: Damien Doumer, Eyong Etta, Loïc Dessap and Lionel Sichom, aka Lionel Tellem

Preparing for the #PiParty

One birthday kit went to Yaoundé, the capital of Cameroon. There, a team of four students in their twenties — Lionel Sichom (aka Lionel Tellem), Eyong Etta, Loïc Dessap, and Damien Doumer — were organising Yaoundé’s first Jam, called Raspberry Jam Camer, as part of the Raspberry Jam Big Birthday Weekend. The team knew one another through their shared interests and skills in electronics, robotics, and programming. Damien explains in his blog post about the Jam that they planned ahead for several activities for the Jam based on their own projects, so they could be confident of having a few things that would definitely be successful for attendees to do and see.

Show-and-tell at Raspberry Jam Cameroon

Loïc presented a Raspberry Pi–based, Android app–controlled robot arm that he had built, and Lionel coded a small video game using Scratch on Raspberry Pi while the audience watched. Damien demonstrated the possibilities of Windows 10 IoT Core on Raspberry Pi, showing how to install it, how to use it remotely, and what you can do with it, including building a simple application.

Loïc Dessap, wearing a Raspberry Jam Big Birthday Weekend T-shirt, sits at a table with a robot arm, a laptop with a Pi sticker and other components. He is making an adjustment to his set-up.

Loïc showcases the prototype robot arm he built

There was lots more too, with others discussing their own Pi projects and talking about the possibilities Raspberry Pi offers, including a Pi-controlled drone and car. Cake was a prevailing theme of the Raspberry Jam Big Birthday Weekend around the world, and Raspberry Jam Camer made sure they didn’t miss out.

A round pink-iced cake decorated with the words "Happy Birthday RBP" and six candles, on a table beside Raspberry Pi stickers, Raspberry Jam stickers and Raspberry Jam fliers

Yay, birthday cake!!

A big success

Most visitors to the Jam were secondary school students, while others were university students and graduates. The majority were unfamiliar with Raspberry Pi, but all wanted to learn about Raspberry Pi and what they could do with it. Damien comments that the fact most people were new to Raspberry Pi made the event more interactive rather than creating any challenges, because the visitors were all interested in finding out about the little computer. The Jam was an all-round success, and the team was pleased with how it went:

What I liked the most was that we sensitized several people about the Raspberry Pi and what one can be capable of with such a small but powerful device. — Damien Doumer

The Jam team rounded off the event by announcing that this was the start of a Raspberry Pi community in Yaoundé. They hope that they and others will be able to organise more Jams and similar events in the area to spread the word about what people can do with Raspberry Pi, and to help them realise their ideas.

The Raspberry Jam Camer team, wearing Raspberry Jam Big Birthday Weekend T-shirts, pose with young Jam attendees outside their venue

Raspberry Jam Camer gets the thumbs-up

The Raspberry Pi community in Cameroon

In a French-language interview about their Jam, the team behind Raspberry Jam Camer said they’d like programming to become the third official language of Cameroon, after French and English; their aim is to to popularise programming and digital making across Cameroonian society. Neither of these fields is very familiar to most people in Cameroon, but both are very well aligned with the country’s ambitions for development. The team is conscious of the difficulties around the emergence of information and communication technologies in the Cameroonian context; in response, they are seizing the opportunities Raspberry Pi offers to give children and young people access to modern and constantly evolving technology at low cost.

Thanks to Lionel, Eyong, Damien, and Loïc, and to everyone who helped put on a Jam for the Big Birthday Weekend! Remember, anyone can start a Jam at any time — and we provide plenty of resources to get you started. Check out the Guidebook, the Jam branding pack, our specially-made Jam activities online (in multiple languages), printable worksheets, and more.

The post Raspberry Jam Cameroon #PiParty appeared first on Raspberry Pi.

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

A serverless solution for invoking AWS Lambda at a sub-minute frequency

Post Syndicated from Emanuele Menga original https://aws.amazon.com/blogs/architecture/a-serverless-solution-for-invoking-aws-lambda-at-a-sub-minute-frequency/

If you’ve used Amazon CloudWatch Events to schedule the invocation of a Lambda function at regular intervals, you may have noticed that the highest frequency possible is one invocation per minute. However, in some cases, you may need to invoke Lambda more often than that. In this blog post, I’ll cover invoking a Lambda function every 10 seconds, but with some simple math you can change to whatever interval you like.

To achieve this, I’ll show you how to leverage Step Functions and Amazon Kinesis Data Streams.

The Solution

For this example, I’ve created a Step Functions State Machine that invokes our Lambda function 6 times, 10 seconds apart. Such State Machine is then executed once per minute by a CloudWatch Events Rule. This state machine is then executed once per minute by an Amazon CloudWatch Events rule. Finally, the Kinesis Data Stream triggers our Lambda function for each record inserted. The result is our Lambda function being invoked every 10 seconds, indefinitely.

Below is a diagram illustrating how the various services work together.

Step 1: My sampleLambda function doesn’t actually do anything, it just simulates an execution for a few seconds. This is the (Python) code of my dummy function:

import time

import random


def lambda_handler(event, context):

rand = random.randint(1, 3)

print('Running for {} seconds'.format(rand))

time.sleep(rand)

return True

Step 2:

The next step is to create a second Lambda function, that I called Iterator, which has two duties:

  • It keeps track of the current number of iterations, since Step Function doesn’t natively have a state we can use for this purpose.
  • It asynchronously invokes our Lambda function at every loops.

This is the code of the Iterator, adapted from here.

 

import boto3

client = boto3.client('kinesis')

def lambda_handler(event, context):

index = event['iterator']['index'] + 1

response = client.put_record(

StreamName='LambdaSubMinute',

PartitionKey='1',

Data='',

)

return {

'index': index,

'continue': index < event['iterator']['count'],

'count': event['iterator']['count']

}

This function does three things:

  • Increments the counter.
  • Verifies if we reached a count of (in this example) 6.
  • Sends an empty record to the Kinesis Stream.

Now we can create the Step Functions State Machine; the definition is, again, adapted from here.

 

{

"Comment": "Invoke Lambda every 10 seconds",

"StartAt": "ConfigureCount",

"States": {

"ConfigureCount": {

"Type": "Pass",

"Result": {

"index": 0,

"count": 6

},

"ResultPath": "$.iterator",

"Next": "Iterator"

},

"Iterator": {

"Type": "Task",

"Resource": “arn:aws:lambda:REGION:ACCOUNT_ID:function:Iterator",

"ResultPath": "$.iterator",

"Next": "IsCountReached"

},

"IsCountReached": {

"Type": "Choice",

"Choices": [

{

"Variable": "$.iterator.continue",

"BooleanEquals": true,

"Next": "Wait"

}

],

"Default": "Done"

},

"Wait": {

"Type": "Wait",

"Seconds": 10,

"Next": "Iterator"

},

"Done": {

"Type": "Pass",

"End": true

}

}

}

This is how it works:

  1. The state machine starts and sets the index at 0 and the count at 6.
  2. Iterator function is invoked.
  3. If the iterator function reached the end of the loop, the IsCountReached state terminates the execution, otherwise the machine waits for 10 seconds.
  4. The machine loops back to the iterator.

Step 3: Create an Amazon CloudWatch Events rule scheduled to trigger every minute and add the state machine as its target. I’ve actually prepared an Amazon CloudFormation template that creates the whole stack and starts the Lambda invocations, you can find it here.

Performance

Let’s have a look at a sample series of invocations and analyse how precise the timing is. In the following chart I reported the delay (in excess of the expected 10-second-wait) of 30 consecutive invocations of my dummy function, when the Iterator is configured with a memory size of 1024MB.

Invocations Delay

Notice the delay increases by a few hundred milliseconds at every invocation. The good news is it accrues only within the same loop, 6 times; after that, a new CloudWatch Events kicks in and it resets.

This delay  is due to the work that AWS Step Function does outside of the Wait state, the main component of which is the Iterator function itself, that runs synchronously in the state machine and therefore adds up its duration to the 10-second-wait.

As we can easily imagine, the memory size of the Iterator Lambda function does make a difference. Here are the Average and Maximum duration of the function with 256MB, 512MB, 1GB and 2GB of memory.

Average Duration

Maximum Duration


Given those results, I’d say that a memory of 1024MB is a good compromise between costs and performance.

Caveats

As mentioned, in our Amazon CloudWatch Events documentation, in rare cases a rule can be triggered twice, causing two parallel executions of the state machine. If that is a concern, we can add a task state at the beginning of the state machine that checks if any other executions are currently running. If the outcome is positive, then a choice state can immediately terminate the flow. Since the state machine is invoked every 60 seconds and runs for about 50, it is safe to assume that executions should all be sequential and any parallel executions should be treated as duplicates. The task state that checks for current running executions can be a Lambda function similar to the following:

 

import boto3

client = boto3.client('stepfunctions')

def lambda_handler(event, context):

response = client.list_executions(

stateMachineArn='arn:aws:states:REGION:ACCOUNTID:stateMachine:LambdaSubMinute',

statusFilter='RUNNING'

)

return {

'alreadyRunning': len(response['executions']) > 0

}

About the Author

Emanuele Menga, Cloud Support Engineer

 

Analyze Apache Parquet optimized data using Amazon Kinesis Data Firehose, Amazon Athena, and Amazon Redshift

Post Syndicated from Roy Hasson original https://aws.amazon.com/blogs/big-data/analyzing-apache-parquet-optimized-data-using-amazon-kinesis-data-firehose-amazon-athena-and-amazon-redshift/

Amazon Kinesis Data Firehose is the easiest way to capture and stream data into a data lake built on Amazon S3. This data can be anything—from AWS service logs like AWS CloudTrail log files, Amazon VPC Flow Logs, Application Load Balancer logs, and others. It can also be IoT events, game events, and much more. To efficiently query this data, a time-consuming ETL (extract, transform, and load) process is required to massage and convert the data to an optimal file format, which increases the time to insight. This situation is less than ideal, especially for real-time data that loses its value over time.

To solve this common challenge, Kinesis Data Firehose can now save data to Amazon S3 in Apache Parquet or Apache ORC format. These are optimized columnar formats that are highly recommended for best performance and cost-savings when querying data in S3. This feature directly benefits you if you use Amazon Athena, Amazon Redshift, AWS Glue, Amazon EMR, or any other big data tools that are available from the AWS Partner Network and through the open-source community.

Amazon Connect is a simple-to-use, cloud-based contact center service that makes it easy for any business to provide a great customer experience at a lower cost than common alternatives. Its open platform design enables easy integration with other systems. One of those systems is Amazon Kinesis—in particular, Kinesis Data Streams and Kinesis Data Firehose.

What’s really exciting is that you can now save events from Amazon Connect to S3 in Apache Parquet format. You can then perform analytics using Amazon Athena and Amazon Redshift Spectrum in real time, taking advantage of this key performance and cost optimization. Of course, Amazon Connect is only one example. This new capability opens the door for a great deal of opportunity, especially as organizations continue to build their data lakes.

Amazon Connect includes an array of analytics views in the Administrator dashboard. But you might want to run other types of analysis. In this post, I describe how to set up a data stream from Amazon Connect through Kinesis Data Streams and Kinesis Data Firehose and out to S3, and then perform analytics using Athena and Amazon Redshift Spectrum. I focus primarily on the Kinesis Data Firehose support for Parquet and its integration with the AWS Glue Data Catalog, Amazon Athena, and Amazon Redshift.

Solution overview

Here is how the solution is laid out:

 

 

The following sections walk you through each of these steps to set up the pipeline.

1. Define the schema

When Kinesis Data Firehose processes incoming events and converts the data to Parquet, it needs to know which schema to apply. The reason is that many times, incoming events contain all or some of the expected fields based on which values the producers are advertising. A typical process is to normalize the schema during a batch ETL job so that you end up with a consistent schema that can easily be understood and queried. Doing this introduces latency due to the nature of the batch process. To overcome this issue, Kinesis Data Firehose requires the schema to be defined in advance.

To see the available columns and structures, see Amazon Connect Agent Event Streams. For the purpose of simplicity, I opted to make all the columns of type String rather than create the nested structures. But you can definitely do that if you want.

The simplest way to define the schema is to create a table in the Amazon Athena console. Open the Athena console, and paste the following create table statement, substituting your own S3 bucket and prefix for where your event data will be stored. A Data Catalog database is a logical container that holds the different tables that you can create. The default database name shown here should already exist. If it doesn’t, you can create it or use another database that you’ve already created.

CREATE EXTERNAL TABLE default.kfhconnectblog (
  awsaccountid string,
  agentarn string,
  currentagentsnapshot string,
  eventid string,
  eventtimestamp string,
  eventtype string,
  instancearn string,
  previousagentsnapshot string,
  version string
)
STORED AS parquet
LOCATION 's3://your_bucket/kfhconnectblog/'
TBLPROPERTIES ("parquet.compression"="SNAPPY")

That’s all you have to do to prepare the schema for Kinesis Data Firehose.

2. Define the data streams

Next, you need to define the Kinesis data streams that will be used to stream the Amazon Connect events.  Open the Kinesis Data Streams console and create two streams.  You can configure them with only one shard each because you don’t have a lot of data right now.

3. Define the Kinesis Data Firehose delivery stream for Parquet

Let’s configure the Data Firehose delivery stream using the data stream as the source and Amazon S3 as the output. Start by opening the Kinesis Data Firehose console and creating a new data delivery stream. Give it a name, and associate it with the Kinesis data stream that you created in Step 2.

As shown in the following screenshot, enable Record format conversion (1) and choose Apache Parquet (2). As you can see, Apache ORC is also supported. Scroll down and provide the AWS Glue Data Catalog database name (3) and table names (4) that you created in Step 1. Choose Next.

To make things easier, the output S3 bucket and prefix fields are automatically populated using the values that you defined in the LOCATION parameter of the create table statement from Step 1. Pretty cool. Additionally, you have the option to save the raw events into another location as defined in the Source record S3 backup section. Don’t forget to add a trailing forward slash “ / “ so that Data Firehose creates the date partitions inside that prefix.

On the next page, in the S3 buffer conditions section, there is a note about configuring a large buffer size. The Parquet file format is highly efficient in how it stores and compresses data. Increasing the buffer size allows you to pack more rows into each output file, which is preferred and gives you the most benefit from Parquet.

Compression using Snappy is automatically enabled for both Parquet and ORC. You can modify the compression algorithm by using the Kinesis Data Firehose API and update the OutputFormatConfiguration.

Be sure to also enable Amazon CloudWatch Logs so that you can debug any issues that you might run into.

Lastly, finalize the creation of the Firehose delivery stream, and continue on to the next section.

4. Set up the Amazon Connect contact center

After setting up the Kinesis pipeline, you now need to set up a simple contact center in Amazon Connect. The Getting Started page provides clear instructions on how to set up your environment, acquire a phone number, and create an agent to accept calls.

After setting up the contact center, in the Amazon Connect console, choose your Instance Alias, and then choose Data Streaming. Under Agent Event, choose the Kinesis data stream that you created in Step 2, and then choose Save.

At this point, your pipeline is complete.  Agent events from Amazon Connect are generated as agents go about their day. Events are sent via Kinesis Data Streams to Kinesis Data Firehose, which converts the event data from JSON to Parquet and stores it in S3. Athena and Amazon Redshift Spectrum can simply query the data without any additional work.

So let’s generate some data. Go back into the Administrator console for your Amazon Connect contact center, and create an agent to handle incoming calls. In this example, I creatively named mine Agent One. After it is created, Agent One can get to work and log into their console and set their availability to Available so that they are ready to receive calls.

To make the data a bit more interesting, I also created a second agent, Agent Two. I then made some incoming and outgoing calls and caused some failures to occur, so I now have enough data available to analyze.

5. Analyze the data with Athena

Let’s open the Athena console and run some queries. One thing you’ll notice is that when we created the schema for the dataset, we defined some of the fields as Strings even though in the documentation they were complex structures.  The reason for doing that was simply to show some of the flexibility of Athena to be able to parse JSON data. However, you can define nested structures in your table schema so that Kinesis Data Firehose applies the appropriate schema to the Parquet file.

Let’s run the first query to see which agents have logged into the system.

The query might look complex, but it’s fairly straightforward:

WITH dataset AS (
  SELECT 
    from_iso8601_timestamp(eventtimestamp) AS event_ts,
    eventtype,
    -- CURRENT STATE
    json_extract_scalar(
      currentagentsnapshot,
      '$.agentstatus.name') AS current_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        currentagentsnapshot,
        '$.agentstatus.starttimestamp')) AS current_starttimestamp,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.firstname') AS current_firstname,
    json_extract_scalar(
      currentagentsnapshot,
      '$.configuration.lastname') AS current_lastname,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.username') AS current_username,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') AS               current_outboundqueue,
    json_extract_scalar(
      currentagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as current_inboundqueue,
    -- PREVIOUS STATE
    json_extract_scalar(
      previousagentsnapshot, 
      '$.agentstatus.name') as prev_status,
    from_iso8601_timestamp(
      json_extract_scalar(
        previousagentsnapshot, 
       '$.agentstatus.starttimestamp')) as prev_starttimestamp,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.firstname') as prev_firstname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.lastname') as prev_lastname,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.username') as prev_username,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.defaultoutboundqueue.name') as current_outboundqueue,
    json_extract_scalar(
      previousagentsnapshot, 
      '$.configuration.routingprofile.inboundqueues[0].name') as prev_inboundqueue
  from kfhconnectblog
  where eventtype <> 'HEART_BEAT'
)
SELECT
  current_status as status,
  current_username as username,
  event_ts
FROM dataset
WHERE eventtype = 'LOGIN' AND current_username <> ''
ORDER BY event_ts DESC

The query output looks something like this:

Here is another query that shows the sessions each of the agents engaged with. It tells us where they were incoming or outgoing, if they were completed, and where there were missed or failed calls.

WITH src AS (
  SELECT
     eventid,
     json_extract_scalar(currentagentsnapshot, '$.configuration.username') as username,
     cast(json_extract(currentagentsnapshot, '$.contacts') AS ARRAY(JSON)) as c,
     cast(json_extract(previousagentsnapshot, '$.contacts') AS ARRAY(JSON)) as p
  from kfhconnectblog
),
src2 AS (
  SELECT *
  FROM src CROSS JOIN UNNEST (c, p) AS contacts(c_item, p_item)
),
dataset AS (
SELECT 
  eventid,
  username,
  json_extract_scalar(c_item, '$.contactid') as c_contactid,
  json_extract_scalar(c_item, '$.channel') as c_channel,
  json_extract_scalar(c_item, '$.initiationmethod') as c_direction,
  json_extract_scalar(c_item, '$.queue.name') as c_queue,
  json_extract_scalar(c_item, '$.state') as c_state,
  from_iso8601_timestamp(json_extract_scalar(c_item, '$.statestarttimestamp')) as c_ts,
  
  json_extract_scalar(p_item, '$.contactid') as p_contactid,
  json_extract_scalar(p_item, '$.channel') as p_channel,
  json_extract_scalar(p_item, '$.initiationmethod') as p_direction,
  json_extract_scalar(p_item, '$.queue.name') as p_queue,
  json_extract_scalar(p_item, '$.state') as p_state,
  from_iso8601_timestamp(json_extract_scalar(p_item, '$.statestarttimestamp')) as p_ts
FROM src2
)
SELECT 
  username,
  c_channel as channel,
  c_direction as direction,
  p_state as prev_state,
  c_state as current_state,
  c_ts as current_ts,
  c_contactid as id
FROM dataset
WHERE c_contactid = p_contactid
ORDER BY id DESC, current_ts ASC

The query output looks similar to the following:

6. Analyze the data with Amazon Redshift Spectrum

With Amazon Redshift Spectrum, you can query data directly in S3 using your existing Amazon Redshift data warehouse cluster. Because the data is already in Parquet format, Redshift Spectrum gets the same great benefits that Athena does.

Here is a simple query to show querying the same data from Amazon Redshift. Note that to do this, you need to first create an external schema in Amazon Redshift that points to the AWS Glue Data Catalog.

SELECT 
  eventtype,
  json_extract_path_text(currentagentsnapshot,'agentstatus','name') AS current_status,
  json_extract_path_text(currentagentsnapshot, 'configuration','firstname') AS current_firstname,
  json_extract_path_text(currentagentsnapshot, 'configuration','lastname') AS current_lastname,
  json_extract_path_text(
    currentagentsnapshot,
    'configuration','routingprofile','defaultoutboundqueue','name') AS current_outboundqueue,
FROM default_schema.kfhconnectblog

The following shows the query output:

Summary

In this post, I showed you how to use Kinesis Data Firehose to ingest and convert data to columnar file format, enabling real-time analysis using Athena and Amazon Redshift. This great feature enables a level of optimization in both cost and performance that you need when storing and analyzing large amounts of data. This feature is equally important if you are investing in building data lakes on AWS.

 


Additional Reading

If you found this post useful, be sure to check out Analyzing VPC Flow Logs with Amazon Kinesis Firehose, Amazon Athena, and Amazon QuickSight and Work with partitioned data in AWS Glue.


About the Author

Roy Hasson is a Global Business Development Manager for AWS Analytics. He works with customers around the globe to design solutions to meet their data processing, analytics and business intelligence needs. Roy is big Manchester United fan cheering his team on and hanging out with his family.

 

 

 

Augmented-reality projection lamp with Raspberry Pi and Android Things

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/augmented-reality-projector/

If your day has been a little fraught so far, watch this video. It opens with a tableau of methodically laid-out components and then shows them soldered, screwed, and slotted neatly into place. Everything fits perfectly; nothing needs percussive adjustment. Then it shows us glimpses of an AR future just like the one promised in the less dystopian comics and TV programmes of my 1980s childhood. It is all very soothing, and exactly what I needed.

Android Things – Lantern

Transform any surface into mixed-reality using Raspberry Pi, a laser projector, and Android Things. Android Experiments – http://experiments.withgoogle.com/android/lantern Lantern project site – http://nordprojects.co/lantern check below to make your own ↓↓↓ Get the code – https://github.com/nordprojects/lantern Build the lamp – https://www.hackster.io/nord-projects/lantern-9f0c28

Creating augmented reality with projection

We’ve seen plenty of Raspberry Pi IoT builds that are smart devices for the home; they add computing power to things like lights, door locks, or toasters to make these objects interact with humans and with their environment in new ways. Nord ProjectsLantern takes a different approach. In their words, it:

imagines a future where projections are used to present ambient information, and relevant UI within everyday objects. Point it at a clock to show your appointments, or point to speaker to display the currently playing song. Unlike a screen, when Lantern’s projections are no longer needed, they simply fade away.

Lantern is set up so that you can connect your wireless device to it using Google Nearby. This means there’s no need to create an account before you can dive into augmented reality.

Lantern Raspberry Pi powered projector lamp

Your own open-source AR lamp

Nord Projects collaborated on Lantern with Google’s Android Things team. They’ve made it fully open-source, so you can find the code on GitHub and also download their parts list, which includes a Pi, an IKEA lamp, an accelerometer, and a laser projector. Build instructions are at hackster.io and on GitHub.

This is a particularly clear tutorial, very well illustrated with photos and GIFs, and once you’ve sourced and 3D-printed all of the components, you shouldn’t need a whole lot of experience to put everything together successfully. Since everything is open-source, though, if you want to adapt it — for example, if you’d like to source a less costly projector than the snazzy one used here — you can do that too.

components of Lantern Raspberry Pi powered augmented reality projector lamp

The instructions walk you through the mechanical build and the wiring, as well as installing Android Things and Nord Projects’ custom software on the Raspberry Pi. Once you’ve set everything up, an accelerometer connected to the Pi’s GPIO pins lets the lamp know which surface it is pointing at. A companion app on your mobile device lets you choose from the mini apps that work on that surface to select the projection you want.

The designers are making several mini apps available for Lantern, including the charmingly named Space Porthole: this uses Processing and your local longitude and latitude to project onto your ceiling the stars you’d see if you punched a hole through to the sky, if it were night time, and clear weather. Wouldn’t you rather look at that than deal with the ant problem in your kitchen or tackle your GitHub notifications?

What would you like to project onto your living environment? Let us know in the comments!

The post Augmented-reality projection lamp with Raspberry Pi and Android Things appeared first on Raspberry Pi.

AWS Online Tech Talks – May and Early June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-may-and-early-june-2018/

AWS Online Tech Talks – May and Early June 2018  

Join us this month to learn about some of the exciting new services and solution best practices at AWS. We also have our first re:Invent 2018 webinar series, “How to re:Invent”. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

Analytics & Big Data

May 21, 2018 | 11:00 AM – 11:45 AM PT Integrating Amazon Elasticsearch with your DevOps Tooling – Learn how you can easily integrate Amazon Elasticsearch Service into your DevOps tooling and gain valuable insight from your log data.

May 23, 2018 | 11:00 AM – 11:45 AM PTData Warehousing and Data Lake Analytics, Together – Learn how to query data across your data warehouse and data lake without moving data.

May 24, 2018 | 11:00 AM – 11:45 AM PTData Transformation Patterns in AWS – Discover how to perform common data transformations on the AWS Data Lake.

Compute

May 29, 2018 | 01:00 PM – 01:45 PM PT – Creating and Managing a WordPress Website with Amazon Lightsail – Learn about Amazon Lightsail and how you can create, run and manage your WordPress websites with Amazon’s simple compute platform.

May 30, 2018 | 01:00 PM – 01:45 PM PTAccelerating Life Sciences with HPC on AWS – Learn how you can accelerate your Life Sciences research workloads by harnessing the power of high performance computing on AWS.

Containers

May 24, 2018 | 01:00 PM – 01:45 PM PT – Building Microservices with the 12 Factor App Pattern on AWS – Learn best practices for building containerized microservices on AWS, and how traditional software design patterns evolve in the context of containers.

Databases

May 21, 2018 | 01:00 PM – 01:45 PM PTHow to Migrate from Cassandra to Amazon DynamoDB – Get the benefits, best practices and guides on how to migrate your Cassandra databases to Amazon DynamoDB.

May 23, 2018 | 01:00 PM – 01:45 PM PT5 Hacks for Optimizing MySQL in the Cloud – Learn how to optimize your MySQL databases for high availability, performance, and disaster resilience using RDS.

DevOps

May 23, 2018 | 09:00 AM – 09:45 AM PT.NET Serverless Development on AWS – Learn how to build a modern serverless application in .NET Core 2.0.

Enterprise & Hybrid

May 22, 2018 | 11:00 AM – 11:45 AM PTHybrid Cloud Customer Use Cases on AWS – Learn how customers are leveraging AWS hybrid cloud capabilities to easily extend their datacenter capacity, deliver new services and applications, and ensure business continuity and disaster recovery.

IoT

May 31, 2018 | 11:00 AM – 11:45 AM PTUsing AWS IoT for Industrial Applications – Discover how you can quickly onboard your fleet of connected devices, keep them secure, and build predictive analytics with AWS IoT.

Machine Learning

May 22, 2018 | 09:00 AM – 09:45 AM PTUsing Apache Spark with Amazon SageMaker – Discover how to use Apache Spark with Amazon SageMaker for training jobs and application integration.

May 24, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS DeepLens – Learn how AWS DeepLens provides a new way for developers to learn machine learning by pairing the physical device with a broad set of tutorials, examples, source code, and integration with familiar AWS services.

Management Tools

May 21, 2018 | 09:00 AM – 09:45 AM PTGaining Better Observability of Your VMs with Amazon CloudWatch – Learn how CloudWatch Agent makes it easy for customers like Rackspace to monitor their VMs.

Mobile

May 29, 2018 | 11:00 AM – 11:45 AM PT – Deep Dive on Amazon Pinpoint Segmentation and Endpoint Management – See how segmentation and endpoint management with Amazon Pinpoint can help you target the right audience.

Networking

May 31, 2018 | 09:00 AM – 09:45 AM PTMaking Private Connectivity the New Norm via AWS PrivateLink – See how PrivateLink enables service owners to offer private endpoints to customers outside their company.

Security, Identity, & Compliance

May 30, 2018 | 09:00 AM – 09:45 AM PT – Introducing AWS Certificate Manager Private Certificate Authority (CA) – Learn how AWS Certificate Manager (ACM) Private Certificate Authority (CA), a managed private CA service, helps you easily and securely manage the lifecycle of your private certificates.

June 1, 2018 | 09:00 AM – 09:45 AM PTIntroducing AWS Firewall Manager – Centrally configure and manage AWS WAF rules across your accounts and applications.

Serverless

May 22, 2018 | 01:00 PM – 01:45 PM PTBuilding API-Driven Microservices with Amazon API Gateway – Learn how to build a secure, scalable API for your application in our tech talk about API-driven microservices.

Storage

May 30, 2018 | 11:00 AM – 11:45 AM PTAccelerate Productivity by Computing at the Edge – Learn how AWS Snowball Edge support for compute instances helps accelerate data transfers, execute custom applications, and reduce overall storage costs.

June 1, 2018 | 11:00 AM – 11:45 AM PTLearn to Build a Cloud-Scale Website Powered by Amazon EFS – Technical deep dive where you’ll learn tips and tricks for integrating WordPress, Drupal and Magento with Amazon EFS.

 

 

 

 

This is a really lovely Raspberry Pi tricorder

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/raspberry-pi-tricorder-prop/

At the moment I’m spending my evenings watching all of Star Trek in order. Yes, I have watched it before (but with some really big gaps). Yes, including the animated series (I’m up to The Terratin Incident). So I’m gratified to find this beautiful The Original Series–style tricorder build.

Star Trek Tricorder with Working Display!

At this year’s Replica Prop Forum showcase, we meet up once again wtih Brian Mix, who brought his new Star Trek TOS Tricorder. This beautiful replica captures the weight and finish of the filming hand prop, and Brian has taken it one step further with some modern-day electronics!

A what now?

If you don’t know what a tricorder is, which I guess is faintly possible, the easiest way I can explain is to steal words that Liz wrote when Recantha made one back in 2013. It’s “a made-up thing used by the crew of the Enterprise to measure stuff, store data, and scout ahead remotely when exploring strange new worlds, seeking out new life and new civilisations, and all that jazz.”

A brief history of Picorders

We’ve seen other Raspberry Pi–based realisations of this iconic device. Recantha’s LEGO-cased tricorder delivered some authentic functionality, including temperature sensors, an ultrasonic distance sensor, a photosensor, and a magnetometer. Michael Hahn’s tricorder for element14’s Sci-Fi Your Pi competition in 2015 packed some similar functions, along with Original Series audio effects, into a neat (albeit non-canon) enclosure.

Brian Mix’s Original Series tricorder

Brian Mix’s tricorder, seen in the video above from Tested at this year’s Replica Prop Forum showcase, is based on a high-quality kit into which, he discovered, a Raspberry Pi just fits. He explains that the kit is the work of the late Steve Horch, a special effects professional who provided props for later Star Trek series, including the classic Deep Space Nine episode Trials and Tribble-ations.

A still from an episode of Star Trek: Deep Space Nine: Jadzia Dax, holding an Original Series-sylte tricorder, speaks with Benjamin Sisko

Dax, equipped for time travel

This episode’s plot required sets and props — including tricorders — replicating the USS Enterprise of The Original Series, and Steve Horch provided many of these. Thus, a tricorder kit from him is about as close to authentic as you can possibly find unless you can get your hands on a screen-used prop. The Pi allows Brian to drive a real display and a speaker: “Being the geek that I am,” he explains, “I set it up to run every single Original Series Star Trek episode.”

Even more wonderful hypothetical tricorders that I would like someone to make

This tricorder is beautiful, and it makes me think how amazing it would be to squeeze in some of the sensor functionality of the devices depicted in the show. Space in the case is tight, but it looks like there might be a little bit of depth to spare — enough for an IMU, maybe, or a temperature sensor. I’m certain the future will bring more Pi tricorder builds, and I, for one, can’t wait. Please tell us in the comments if you’re planning something along these lines, and, well, I suppose some other sci-fi franchises have decent Pi project potential too, so we could probably stand to hear about those.

If you’re commenting, no spoilers please past The Animated Series S1 E11. Thanks.

The post This is a really lovely Raspberry Pi tricorder appeared first on Raspberry Pi.

Creating a 1.3 Million vCPU Grid on AWS using EC2 Spot Instances and TIBCO GridServer

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/creating-a-1-3-million-vcpu-grid-on-aws-using-ec2-spot-instances-and-tibco-gridserver/

Many of my colleagues are fortunate to be able to spend a good part of their day sitting down with and listening to our customers, doing their best to understand ways that we can better meet their business and technology needs. This information is treated with extreme care and is used to drive the roadmap for new services and new features.

AWS customers in the financial services industry (often abbreviated as FSI) are looking ahead to the Fundamental Review of Trading Book (FRTB) regulations that will come in to effect between 2019 and 2021. Among other things, these regulations mandate a new approach to the “value at risk” calculations that each financial institution must perform in the four hour time window after trading ends in New York and begins in Tokyo. Today, our customers report this mission-critical calculation consumes on the order of 200,000 vCPUs, growing to between 400K and 800K vCPUs in order to meet the FRTB regulations. While there’s still some debate about the magnitude and frequency with which they’ll need to run this expanded calculation, the overall direction is clear.

Building a Big Grid
In order to make sure that we are ready to help our FSI customers meet these new regulations, we worked with TIBCO to set up and run a proof of concept grid in the AWS Cloud. The periodic nature of the calculation, along with the amount of processing power and storage needed to run it to completion within four hours, make it a great fit for an environment where a vast amount of cost-effective compute power is available on an on-demand basis.

Our customers are already using the TIBCO GridServer on-premises and want to use it in the cloud. This product is designed to run grids at enterprise scale. It runs apps in a virtualized fashion, and accepts requests for resources, dynamically provisioning them on an as-needed basis. The cloud version supports Amazon Linux as well as the PostgreSQL-compatible edition of Amazon Aurora.

Working together with TIBCO, we set out to create a grid that was substantially larger than the current high-end prediction of 800K vCPUs, adding a 50% safety factor and then rounding up to reach 1.3 million vCPUs (5x the size of the largest on-premises grid). With that target in mind, the account limits were raised as follows:

  • Spot Instance Limit – 120,000
  • EBS Volume Limit – 120,000
  • EBS Capacity Limit – 2 PB

If you plan to create a grid of this size, you should also bring your friendly local AWS Solutions Architect into the loop as early as possible. They will review your plans, provide you with architecture guidance, and help you to schedule your run.

Running the Grid
We hit the Go button and launched the grid, watching as it bid for and obtained Spot Instances, each of which booted, initialized, and joined the grid within two minutes. The test workload used the Strata open source analytics & market risk library from OpenGamma and was set up with their assistance.

The grid grew to 61,299 Spot Instances (1.3 million vCPUs drawn from 34 instance types spanning 3 generations of EC2 hardware) as planned, with just 1,937 instances reclaimed and automatically replaced during the run, and cost $30,000 per hour to run, at an average hourly cost of $0.078 per vCPU. If the same instances had been used in On-Demand form, the hourly cost to run the grid would have been approximately $93,000.

Despite the scale of the grid, prices for the EC2 instances did not move during the bidding process. This is due to the overall size of the AWS Cloud and the smooth price change model that we launched late last year.

To give you a sense of the compute power, we computed that this grid would have taken the #1 position on the TOP 500 supercomputer list in November 2007 by a considerable margin, and the #2 position in June 2008. Today, it would occupy position #360 on the list.

I hope that you enjoyed this AWS success story, and that it gives you an idea of the scale that you can achieve in the cloud!

Jeff;

2018 Специален доклад 301

Post Syndicated from nellyo original https://nellyo.wordpress.com/2018/05/02/2018-301/

В изпълнение на Търговския закон от 1974 г. американското правителство публикува доклад  – т.нар. Доклад 301 – за наличието на адекватна и ефективна защита на правата  на интелектуалната собственост по света – в държавите-търговски партньори на САЩ.

Сега  е оповестен Доклад 301 за 2018 година (2018 Special 301 Report on Intellectual Property Rights).

За миналата година 11 държави са в  т.нар. Priority Watch List, между тях Китай, Индия, Русия, Украйна,   и 23 – в  Watch List, между тях България. Тази година България е извадена от Watch List – с обяснението на стр. 28, че България през март 2018 г. е приела изменения на закона за авторското право,  участвала е в операция  ЕВРОПОЛ  срещу голяма пиратска мрежа в региона,  отделила е  допълнителни ресурси на звеното за разследване на онлайн пиратството, а Главна прокуратура се е ангажирала да предприеме допълнителни стъпки за подобряване на прилагането. Според доклада проблемите, свързани с прилагането на законодателството, продължават да се отнасят до високите нива на онлайн пиратството, недостатъчното съдебно преследване, недостатъчно възспиращото действие на наказателните санкции.

Министерството на външните работи е отбелязало новия доклад 301 с отделно съобщение, в което се казва, че “в резултат на дългогодишните усилия на посолството на Република България във Вашингтон и българските институции  страната ни вече е изключена от т.нар. „черен списък“ за защита на интелектуалната собственост на САЩ.”

Няма съмнение, че напускането на Watch List  е изисквало усилия. Все пак съобщението е можело да бъде по-прецизно по отношение на т.нар. в съобщението черен списък, защото – както се вижда, има черен, има и по-черен. 

Критично отношение към доклада изразява EFF:  “Някои доклади и публикации от американските правителствени агенции имат репутация на задълбочени, актуални и основани на факти[…] Специален доклад  301, чието последно годишно издание е публикуванo миналата седмица, не е такъв.” Според EFF докладът разкрива законите, политиките и практиките, които не осигуряват адекватна и ефективна защита на интелектуалната собственост, но  няма последователна методология за оценка  кое  е  адекватно и ефективно.

Неотдавна ЕК обяви обществена консултация относно евентуално наблюдение на защитата на интелектуалната собственост по света.

CI/CD with Data: Enabling Data Portability in a Software Delivery Pipeline with AWS Developer Tools, Kubernetes, and Portworx

Post Syndicated from Kausalya Rani Krishna Samy original https://aws.amazon.com/blogs/devops/cicd-with-data-enabling-data-portability-in-a-software-delivery-pipeline-with-aws-developer-tools-kubernetes-and-portworx/

This post is written by Eric Han – Vice President of Product Management Portworx and Asif Khan – Solutions Architect

Data is the soul of an application. As containers make it easier to package and deploy applications faster, testing plays an even more important role in the reliable delivery of software. Given that all applications have data, development teams want a way to reliably control, move, and test using real application data or, at times, obfuscated data.

For many teams, moving application data through a CI/CD pipeline, while honoring compliance and maintaining separation of concerns, has been a manual task that doesn’t scale. At best, it is limited to a few applications, and is not portable across environments. The goal should be to make running and testing stateful containers (think databases and message buses where operations are tracked) as easy as with stateless (such as with web front ends where they are often not).

Why is state important in testing scenarios? One reason is that many bugs manifest only when code is tested against real data. For example, we might simply want to test a database schema upgrade but a small synthetic dataset does not exercise the critical, finer corner cases in complex business logic. If we want true end-to-end testing, we need to be able to easily manage our data or state.

In this blog post, we define a CI/CD pipeline reference architecture that can automate data movement between applications. We also provide the steps to follow to configure the CI/CD pipeline.

 

Stateful Pipelines: Need for Portable Volumes

As part of continuous integration, testing, and deployment, a team may need to reproduce a bug found in production against a staging setup. Here, the hosting environment is comprised of a cluster with Kubernetes as the scheduler and Portworx for persistent volumes. The testing workflow is then automated by AWS CodeCommit, AWS CodePipeline, and AWS CodeBuild.

Portworx offers Kubernetes storage that can be used to make persistent volumes portable between AWS environments and pipelines. The addition of Portworx to the AWS Developer Tools continuous deployment for Kubernetes reference architecture adds persistent storage and storage orchestration to a Kubernetes cluster. The example uses MongoDB as the demonstration of a stateful application. In practice, the workflow applies to any containerized application such as Cassandra, MySQL, Kafka, and Elasticsearch.

Using the reference architecture, a developer calls CodePipeline to trigger a snapshot of the running production MongoDB database. Portworx then creates a block-based, writable snapshot of the MongoDB volume. Meanwhile, the production MongoDB database continues serving end users and is uninterrupted.

Without the Portworx integrations, a manual process would require an application-level backup of the database instance that is outside of the CI/CD process. For larger databases, this could take hours and impact production. The use of block-based snapshots follows best practices for resilient and non-disruptive backups.

As part of the workflow, CodePipeline deploys a new MongoDB instance for staging onto the Kubernetes cluster and mounts the second Portworx volume that has the data from production. CodePipeline triggers the snapshot of a Portworx volume through an AWS Lambda function, as shown here

 

 

 

AWS Developer Tools with Kubernetes: Integrated Workflow with Portworx

In the following workflow, a developer is testing changes to a containerized application that calls on MongoDB. The tests are performed against a staging instance of MongoDB. The same workflow applies if changes were on the server side. The original production deployment is scheduled as a Kubernetes deployment object and uses Portworx as the storage for the persistent volume.

The continuous deployment pipeline runs as follows:

  • Developers integrate bug fix changes into a main development branch that gets merged into a CodeCommit master branch.
  • Amazon CloudWatch triggers the pipeline when code is merged into a master branch of an AWS CodeCommit repository.
  • AWS CodePipeline sends the new revision to AWS CodeBuild, which builds a Docker container image with the build ID.
  • AWS CodeBuild pushes the new Docker container image tagged with the build ID to an Amazon ECR registry.
  • Kubernetes downloads the new container (for the database client) from Amazon ECR and deploys the application (as a pod) and staging MongoDB instance (as a deployment object).
  • AWS CodePipeline, through a Lambda function, calls Portworx to snapshot the production MongoDB and deploy a staging instance of MongoDB• Portworx provides a snapshot of the production instance as the persistent storage of the staging MongoDB
    • The MongoDB instance mounts the snapshot.

At this point, the staging setup mimics a production environment. Teams can run integration and full end-to-end tests, using partner tooling, without impacting production workloads. The full pipeline is shown here.

 

Summary

This reference architecture showcases how development teams can easily move data between production and staging for the purposes of testing. Instead of taking application-specific manual steps, all operations in this CodePipeline architecture are automated and tracked as part of the CI/CD process.

This integrated experience is part of making stateful containers as easy as stateless. With AWS CodePipeline for CI/CD process, developers can easily deploy stateful containers onto a Kubernetes cluster with Portworx storage and automate data movement within their process.

The reference architecture and code are available on GitHub:

● Reference architecture: https://github.com/portworx/aws-kube-codesuite
● Lambda function source code for Portworx additions: https://github.com/portworx/aws-kube-codesuite/blob/master/src/kube-lambda.py

For more information about persistent storage for containers, visit the Portworx website. For more information about Code Pipeline, see the AWS CodePipeline User Guide.

Own your own working Pokémon Pokédex!

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/deep-learning-pokedex/

Squeal with delight as your inner Pokémon trainer witnesses the wonder of Adrian Rosebrock’s deep learning Pokédex.

Creating a real-life Pokedex with a Raspberry Pi, Python, and Deep Learning

This video demos a real-like Pokedex, complete with visual recognition, that I created using a Raspberry Pi, Python, and Deep Learning. You can find the entire blog post, including code, using this link: https://www.pyimagesearch.com/2018/04/30/a-fun-hands-on-deep-learning-project-for-beginners-students-and-hobbyists/ Music credit to YouTube user “No Copyright” for providing royalty free music: https://www.youtube.com/watch?v=PXpjqURczn8

The history of Pokémon in 30 seconds

The Pokémon franchise was created by video game designer Satoshi Tajiri in 1995. In the fictional world of Pokémon, Pokémon Trainers explore the vast landscape, catching and training small creatures called Pokémon. To date, there are 802 different types of Pokémon. They range from the ever recognisable Pikachu, a bright yellow electric Pokémon, to the highly sought-after Shiny Charizard, a metallic, playing-card-shaped Pokémon that your mate Alex claims she has in mint condition, but refuses to show you.

Pokemon GIF

In the world of Pokémon, children as young as ten-year-old protagonist and all-round annoyance Ash Ketchum are allowed to leave home and wander the wilderness. There, they hunt vicious, deadly creatures in the hope of becoming a Pokémon Master.

Adrian’s deep learning Pokédex

Adrian is a bit of a deep learning pro, as demonstrated by his Santa/Not Santa detector, which we wrote about last year. For that project, he also provided a great explanation of what deep learning actually is. In a nutshell:

…a subfield of machine learning, which is, in turn, a subfield of artificial intelligence (AI).While AI embodies a large, diverse set of techniques and algorithms related to automatic reasoning (inference, planning, heuristics, etc), the machine learning subfields are specifically interested in pattern recognition and learning from data.

As with his earlier Raspberry Pi project, Adrian uses the Keras deep learning model and the TensorFlow backend, plus a few other packages such as Adrian’s own imutils functions and OpenCV.

Adrian trained a Convolutional Neural Network using Keras on a dataset of 1191 Pokémon images, obtaining 96.84% accuracy. As Adrian explains, this model is able to identify Pokémon via still image and video. It’s perfect for creating a Pokédex – an interactive Pokémon catalogue that should, according to the franchise, be able to identify and read out information on any known Pokémon when captured by camera. More information on model training can be found on Adrian’s blog.

Adrian Rosebeck deep learning pokemon pokedex

For the physical build, a Raspberry Pi 3 with camera module is paired with the Raspberry Pi 7″ touch display to create a portable Pokédex. And while Adrian comments that the same result can be achieved using your home computer and a webcam, that’s not how Adrian rolls as a Raspberry Pi fan.

Adrian Rosebeck deep learning pokemon pokedex

Plus, the smaller size of the Pi is perfect for one of you to incorporate this deep learning model into a 3D-printed Pokédex for ultimate Pokémon glory, pretty please, thank you.

Adrian Rosebeck deep learning pokemon pokedex

Adrian has gone into impressive detail about how the project works and how you can create your own on his blog, pyimagesearch. So if you’re interested in learning more about deep learning, and making your own Pokédex, be sure to visit.

The post Own your own working Pokémon Pokédex! appeared first on Raspberry Pi.

Welcome Steven: Associate Front End Developer

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-steven-associate-front-end-developer/

The Backblaze web team is growing! As we add more features and work on our website we need more hands to get things done. Enter Steven, who joins us as an Associate Front End Developer. Steven is going to be getting his hands dirty and diving in to the fun-filled world of web development. Lets learn a bit more about Steven shall we?

What is your Backblaze Title?
Associate Front End Developer.

Where are you originally from?
The Bronx, New York born and raised.

What attracted you to Backblaze?
The team behind Backblaze made me feel like family from the moment I stepped in the door. The level of respect and dedication they showed me is the same respect and dedication they show their customers. Those qualities made wanting to be a part of Backblaze a no brainer!

What do you expect to learn while being at Backblaze?
I expect to grow as a software developer and human being by absorbing as much as I can from the immensely talented people I’ll be surrounded by.

Where else have you worked?
I previously worked at The Greenwich Hotel where I was a front desk concierge and bellman. If the team at Backblaze is anything like the team I was a part of there then this is going to be a fun ride.

Where did you go to school?
I studied at Baruch College and Bloc.

What’s your dream job?
My dream job is one where I’m able to express 100% of my creativity.

Favorite place you’ve traveled?
Santiago, Dominican Republic.

Favorite hobby?
Watching my Yankees, Knicks or Jets play.

Of what achievement are you most proud?
Becoming a Software Developer…

Star Trek or Star Wars?
Star Wars! May the force be with you…

Coke or Pepsi?
… Water. Black iced tea? One of god’s finer creations.

Favorite food?
Mangu con Los Tres Golpes (Mashed Plantains with Fried Salami, Eggs & Cheese).

Why do you like certain things?
I like things that give me good vibes.

Anything else you’d like you’d like to tell us?
If you break any complex concept down into to its simplest parts you’ll have an easier time trying to fully grasp it.

Those are some serious words of wisdom from Steven. We look forward to him helping us get cool stuff out the door!

The post Welcome Steven: Associate Front End Developer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Stream to Twitch with the push of a button

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/tinkernut-twitch-streaming/

Stream your video gaming exploits to the internet at the touch of a button with the Twitch-O-Matic. Everyone else is doing it, so you should too.

Twitch-O-Matic: Raspberry Pi Twitch Streaming Device – Weekend Hacker #1804

Some gaming consoles make it easy to stream to Twitch, some gaming consoles don’t (come on, Nintendo). So for those that don’t, I’ve made this beta version of the “Twitch-O-Matic”. No it doesn’t chop onions or fold your laundry, but what it DOES do is stream anything with HDMI output to your Twitch channel with the simple push of a button!

eSports and online game streaming

Interest in eSports has skyrocketed over the last few years, with viewership numbers in the hundreds of millions, sponsorship deals increasing in value and prestige, and tournament prize funds reaching millions of dollars. So it’s no wonder that more and more gamers are starting to stream live to online platforms in order to boost their fanbase and try to cash in on this growing industry.

Streaming to Twitch

Launched in 2011, Twitch.tv is an online live-streaming platform with a primary focus on video gaming. Users can create accounts to contribute their comments and content to the site, as well as watching live-streamed gaming competitions and broadcasts. With a staggering fifteen million daily users, Twitch is accessible via smartphone and gaming console apps, smart TVs, computers, and tablets. But if you want to stream to Twitch, you may find yourself using third-party software in order to do so. And with more buttons to click and more wires to plug in for older, app-less consoles, streaming can get confusing.

Enter Tinkernut.

Side note: we ❤ Tinkernut

We’ve featured Tinkernut a few times on the Raspberry Pi blog – his tutorials are clear, his projects are interesting and useful, and his live-streamed comment videos for every build are a nice touch to sharing homebrew builds on the internet.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

So, yes, we love him. [This is true. Alex never shuts up about him. – Ed.] And since he has over 500K subscribers on YouTube, we’re obviously not the only ones. We wave our Tinkernut flags with pride.

Twitch-O-Matic

With a Raspberry Pi Zero W, an HDMI to CSI adapter, and a case to fit it all in, Tinkernut’s Twitch-O-Matic allows easy connection to the Twitch streaming service. You’ll also need a button – the bigger, the better in our opinion, though Tinkernut has opted for the Adafruit 16mm Illuminated Pushbutton for his build, and not the 100mm Massive Arcade Button that, sadly, we still haven’t found a reason to use yet.

Adafruit massive button

“I’m sorry, Dave…”

For added frills and pizzazz, Tinketnut has also incorporated Adafruit’s White LED Backlight Module into the case, though you don’t have to do so unless you’re feeling super fancy.

The setup

The Raspberry Pi Zero W is connected to the HDMI to CSI adapter via the camera connector, in the same way you’d attach the camera ribbon. Tinkernut uses a standard Raspbian image on an 8GB SD card, with SSH enabled for remote access from his laptop. He uses the simple command Raspivid to test the HDMI connection by recording ten seconds of video footage from his console.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

One lead is all you need

Once you have the Pi receiving video from your console, you can connect to Twitch using your Twitch stream key, which you can find by logging in to your account at Twitch.tv. Tinkernut’s tutorial gives you all the commands you need to stream from your Pi.

The frills

To up the aesthetic impact of your project, adding buttons and backlights is fairly straightforward.

Tinkernut Raspberry Pi Zero W Twitch-O-Matic

Pretty LED frills

To run the stream command, Tinketnut uses a button: press once to start the stream, press again to stop. Pressing the button also turns on the LED backlight, so it’s obvious when streaming is in progress.

The tutorial

For the full code and 3D-printable case STL file, head to Tinketnut’s hackster.io project page. And if you’re already using a Raspberry Pi for Twitch streaming, share your build setup with us. Cheers!

The post Stream to Twitch with the push of a button appeared first on Raspberry Pi.