Tag Archives: water

Raspberry Pi underwater camera drone | The MagPi 80

Post Syndicated from Rob Zwetsloot original https://www.raspberrypi.org/blog/raspberry-pi-underwater-camera-drone-magpi-80/

Never let it be said that some makers won’t jump in at the deep end for their ambitious experiments with the Raspberry Pi. When Ievgenii Tkachenko fancied a challenge, he sought to go where few had gone before by creating an underwater drone, successfully producing a working prototype that he’s now hard at work refining.

Inspired by watching inventors on the Discovery Channel, Ievgenii has learned much from his endeavour. “For me it was a significant engineering challenge,” he says, and while he has ended up submerging himself within a process of trial-and-error, the results so far have been impressive.

Pi dive

The project began with a loose plan in Ievgenii’s head. “I knew what I should have in the project as a minimum: motions, lights, camera, and a gyroscope inside the device and smartphone control outside,” he explains. “Pretty simple, but I didn’t have a clue what equipment I would be able to use for the drone, and I was limited by finances.”

Bearing that in mind, one of his first moves was to choose a Raspberry Pi 3B, which he says was perfect for controlling the motors, diodes, and gyroscope while sending video streams from a camera and receiving commands from a control device.

The Raspberry Pi 3 sits in the housing and connects to a LiPo battery that also powers the LEDs and motors

“I was really surprised that this small board has a fully functional UNIX-based OS and that software like the Node.js server can be easily installed,” he tells us. “It has control input and output pins and there are a lot of libraries. With an Ethernet port and wireless LAN and a camera, it just felt plug-and-play. I couldn’t find a better solution.”

The LEDs are attached to radiators to prevent overheating, and a pulse driver is used for flashlight control

Working with a friend, Ievgenii sought to create suitable housing for the components, which included a twin twisted-pair wire suitable for transferring data underwater, an electric motor, an electronic speed control, an LED together with a pulse driver, and a battery. Four motors were attached to the outside of the housing, and efforts were made to ensure it was waterproof. Tests in a bath and out on a lake were conducted.

Streaming video

With a WiFi router on the shore connected to the Raspberry Pi via RJ45 connectors and an Ethernet cable, Ievgenii developed an Android application to connect to the Raspberry Pi by address and port (“as an Android developer, I’m used to working with the platform”). This also allowed movement to be controlled via the touchscreen, although he says a gamepad for Android can also be used. When it’s up and running, the Pi streams a video from the camera to the app — “live video streaming is not simple, and I spent a lot of time on the solution” — but the wired connection means the drone can only currently travel as far as the cable length allows.

The camera was placed in this transparent waterproof case attached to the front of the waterproof housing

In that sense, it’s not perfect. “It’s also hard to handle the drone, and it needs to be enhanced with an additional controls board and a few more electromotors for smooth movement,” Ievgenii admits. But as well as wanting to base the project on fast and reliable C++ code and make use of a USB 4K camera, he can see the future potential and he feels it will swim rather than sink.

“Similar drones are used for boat inspections, and they can also be used by rescue squads or for scientific purposes,” he points out. “They can be used to discover a vast marine world without training and risks too. In fact, now that I understand the Raspberry Pi, I know I can create almost anything, from a radio electronic toy car to a smart home.”

The MagPi magazine

This article was lovingly borrowed from the latest issue of The MagPi magazine. Pick up your copy of issue 80 from your local stockist, online, or by downloading the free PDF.

Subscribers to The MagPi also get a rather delightful subscription gift!

The post Raspberry Pi underwater camera drone | The MagPi 80 appeared first on Raspberry Pi.

Protecting coral reefs with Nemo-Pi, the underwater monitor

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/coral-reefs-nemo-pi/

The German charity Save Nemo works to protect coral reefs, and they are developing Nemo-Pi, an underwater “weather station” that monitors ocean conditions. Right now, you can vote for Save Nemo in the Google.org Impact Challenge.

Nemo-Pi — Save Nemo

Save Nemo

The organisation says there are two major threats to coral reefs: divers, and climate change. To make diving saver for reefs, Save Nemo installs buoy anchor points where diving tour boats can anchor without damaging corals in the process.

reef damaged by anchor
boat anchored at buoy

In addition, they provide dos and don’ts for how to behave on a reef dive.

The Nemo-Pi

To monitor the effects of climate change, and to help divers decide whether conditions are right at a reef while they’re still on shore, Save Nemo is also in the process of perfecting Nemo-Pi.

Nemo-Pi schematic — Nemo-Pi — Save Nemo

This Raspberry Pi-powered device is made up of a buoy, a solar panel, a GPS device, a Pi, and an array of sensors. Nemo-Pi measures water conditions such as current, visibility, temperature, carbon dioxide and nitrogen oxide concentrations, and pH. It also uploads its readings live to a public webserver.

Inside the Nemo-Pi device — Save Nemo
Inside the Nemo-Pi device — Save Nemo
Inside the Nemo-Pi device — Save Nemo

The Save Nemo team is currently doing long-term tests of Nemo-Pi off the coast of Thailand and Indonesia. They are also working on improving the device’s power consumption and durability, and testing prototypes with the Raspberry Pi Zero W.

web dashboard — Nemo-Pi — Save Nemo

The web dashboard showing live Nemo-Pi data

Long-term goals

Save Nemo aims to install a network of Nemo-Pis at shallow reefs (up to 60 metres deep) in South East Asia. Then diving tour companies can check the live data online and decide day-to-day whether tours are feasible. This will lower the impact of humans on reefs and help the local flora and fauna survive.

Coral reefs with fishes

A healthy coral reef

Nemo-Pi data may also be useful for groups lobbying for reef conservation, and for scientists and activists who want to shine a spotlight on the awful effects of climate change on sea life, such as coral bleaching caused by rising water temperatures.

Bleached coral

A bleached coral reef

Vote now for Save Nemo

If you want to help Save Nemo in their mission today, vote for them to win the Google.org Impact Challenge:

  1. Head to the voting web page
  2. Click “Abstimmen” in the footer of the page to vote
  3. Click “JA” in the footer to confirm

Voting is open until 6 June. You can also follow Save Nemo on Facebook or Twitter. We think this organisation is doing valuable work, and that their projects could be expanded to reefs across the globe. It’s fantastic to see the Raspberry Pi being used to help protect ocean life.

The post Protecting coral reefs with Nemo-Pi, the underwater monitor appeared first on Raspberry Pi.

Naturebytes’ weatherproof Pi and camera case

Post Syndicated from Helen Lynn original https://www.raspberrypi.org/blog/naturebytes-weatherproof-pi-and-camera-case/

Naturebytes are making their weatherproof Wildlife Cam Case available as a standalone product for the first time, a welcome addition to the Raspberry Pi ecosystem that should take some of the hassle out of your outdoor builds.

A robin on a bird feeder in a garden with a Naturebytes Wildlife Cam mounted beside it

Weatherproofing digital making projects

People often use Raspberry Pis and Camera Modules for outdoor projects, but weatherproofing your set-up can be tricky. You need to keep water — and tiny creatures — out, but you might well need access for wires and cables, whether for power or sensors; if you’re using a camera, it’ll need something clear and cleanable in front of the lens. You can use sealant, but if you need to adjust anything that you’ve applied it to, you’ll have to remove it and redo it. While we’ve seen a few reasonable options available to buy, the choice has never been what you’d call extensive.

The Naturebytes case

For all these reasons, I was pleased to learn that Naturebytes, the wildlife camera people, are releasing their Wildlife Cam Case as a standalone product for the first time.

Naturebytes case open

The Wildlife Cam Case is ideal for nature camera projects, of course, but it’ll also be useful for anyone who wants to take their Pi outdoors. It has weatherproof lenses that are transparent to visible and IR light, for all your nature observation projects. Its opening is hinged to allow easy access to your hardware, and the case has waterproof access for cables. Inside, there’s a mount for fixing any model of Raspberry Pi and camera, as well as many other components. On top of all that, the case comes with a sturdy nylon strap to make it easy to attach it to a post or a tree.

Naturebytes case additional components

Order yours now!

At the moment, Naturebytes are producing a limited run of the cases. The first batch of 50 are due to be dispatched next week to arrive just in time for the Bank Holiday weekend in the UK, so get them while they’re hot. It’s the perfect thing for recording a timelapse of exactly how quickly the slugs obliterate your vegetable seedlings, and of lots more heartening things that must surely happen in gardens other than mine.

The post Naturebytes’ weatherproof Pi and camera case appeared first on Raspberry Pi.

Securing Your Cryptocurrency

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backing-up-your-cryptocurrency/

Securing Your Cryptocurrency

In our blog post on Tuesday, Cryptocurrency Security Challenges, we wrote about the two primary challenges faced by anyone interested in safely and profitably participating in the cryptocurrency economy: 1) make sure you’re dealing with reputable and ethical companies and services, and, 2) keep your cryptocurrency holdings safe and secure.

In this post, we’re going to focus on how to make sure you don’t lose any of your cryptocurrency holdings through accident, theft, or carelessness. You do that by backing up the keys needed to sell or trade your currencies.

$34 Billion in Lost Value

Of the 16.4 million bitcoins said to be in circulation in the middle of 2017, close to 3.8 million may have been lost because their owners no longer are able to claim their holdings. Based on today’s valuation, that could total as much as $34 billion dollars in lost value. And that’s just bitcoins. There are now over 1,500 different cryptocurrencies, and we don’t know how many of those have been misplaced or lost.



Now that some cryptocurrencies have reached (at least for now) staggering heights in value, it’s likely that owners will be more careful in keeping track of the keys needed to use their cryptocurrencies. For the ones already lost, however, the owners have been separated from their currencies just as surely as if they had thrown Benjamin Franklins and Grover Clevelands over the railing of a ship.

The Basics of Securing Your Cryptocurrencies

In our previous post, we reviewed how cryptocurrency keys work, and the common ways owners can keep track of them. A cryptocurrency owner needs two keys to use their currencies: a public key that can be shared with others is used to receive currency, and a private key that must be kept secure is used to spend or trade currency.

Many wallets and applications allow the user to require extra security to access them, such as a password, or iris, face, or thumb print scan. If one of these options is available in your wallets, take advantage of it. Beyond that, it’s essential to back up your wallet, either using the backup feature built into some applications and wallets, or manually backing up the data used by the wallet. When backing up, it’s a good idea to back up the entire wallet, as some wallets require additional private data to operate that might not be apparent.

No matter which backup method you use, it is important to back up often and have multiple backups, preferable in different locations. As with any valuable data, a 3-2-1 backup strategy is good to follow, which ensures that you’ll have a good backup copy if anything goes wrong with one or more copies of your data.

One more caveat, don’t reuse passwords. This applies to all of your accounts, but is especially important for something as critical as your finances. Don’t ever use the same password for more than one account. If security is breached on one of your accounts, someone could connect your name or ID with other accounts, and will attempt to use the password there, as well. Consider using a password manager such as LastPass or 1Password, which make creating and using complex and unique passwords easy no matter where you’re trying to sign in.

Approaches to Backing Up Your Cryptocurrency Keys

There are numerous ways to be sure your keys are backed up. Let’s take them one by one.

1. Automatic backups using a backup program

If you’re using a wallet program on your computer, for example, Bitcoin Core, it will store your keys, along with other information, in a file. For Bitcoin Core, that file is wallet.dat. Other currencies will use the same or a different file name and some give you the option to select a name for the wallet file.

To back up the wallet.dat or other wallet file, you might need to tell your backup program to explicitly back up that file. Users of Backblaze Backup don’t have to worry about configuring this, since by default, Backblaze Backup will back up all data files. You should determine where your particular cryptocurrency, wallet, or application stores your keys, and make sure the necessary file(s) are backed up if your backup program requires you to select which files are included in the backup.

Backblaze B2 is an option for those interested in low-cost and high security cloud storage of their cryptocurrency keys. Backblaze B2 supports 2-factor verification for account access, works with a number of apps that support automatic backups with encryption, error-recovery, and versioning, and offers an API and command-line interface (CLI), as well. The first 10GB of storage is free, which could be all one needs to store encrypted cryptocurrency keys.

2. Backing up by exporting keys to a file

Apps and wallets will let you export your keys from your app or wallet to a file. Once exported, your keys can be stored on a local drive, USB thumb drive, DAS, NAS, or in the cloud with any cloud storage or sync service you wish. Encrypting the file is strongly encouraged — more on that later. If you use 1Password or LastPass, or other secure notes program, you also could store your keys there.

3. Backing up by saving a mnemonic recovery seed

A mnemonic phrase, mnemonic recovery phrase, or mnemonic seed is a list of words that stores all the information needed to recover a cryptocurrency wallet. Many wallets will have the option to generate a mnemonic backup phrase, which can be written down on paper. If the user’s computer no longer works or their hard drive becomes corrupted, they can download the same wallet software again and use the mnemonic recovery phrase to restore their keys.

The phrase can be used by anyone to recover the keys, so it must be kept safe. Mnemonic phrases are an excellent way of backing up and storing cryptocurrency and so they are used by almost all wallets.

A mnemonic recovery seed is represented by a group of easy to remember words. For example:

eye female unfair moon genius pipe nuclear width dizzy forum cricket know expire purse laptop scale identify cube pause crucial day cigar noise receive

The above words represent the following seed:

0a5b25e1dab6039d22cd57469744499863962daba9d2844243fec 9c0313c1448d1a0b2cd9e230a78775556f9b514a8be45802c2808e fd449a20234e9262dfa69

These words have certain properties:

  • The first four letters are enough to unambiguously identify the word.
  • Similar words are avoided (such as: build and built).

Bitcoin and most other cryptocurrencies such as Litecoin, Ethereum, and others use mnemonic seeds that are 12 to 24 words long. Other currencies might use different length seeds.

4. Physical backups — Paper, Metal

Some cryptocurrency holders believe that their backup, or even all their cryptocurrency account information, should be stored entirely separately from the internet to avoid any risk of their information being compromised through hacks, exploits, or leaks. This type of storage is called “cold storage.” One method of cold storage involves printing out the keys to a piece of paper and then erasing any record of the keys from all computer systems. The keys can be entered into a program from the paper when needed, or scanned from a QR code printed on the paper.

Printed public and private keys

Printed public and private keys

Some who go to extremes suggest separating the mnemonic needed to access an account into individual pieces of paper and storing those pieces in different locations in the home or office, or even different geographical locations. Some say this is a bad idea since it could be possible to reconstruct the mnemonic from one or more pieces. How diligent you wish to be in protecting these codes is up to you.

Mnemonic recovery phrase booklet

Mnemonic recovery phrase booklet

There’s another option that could make you the envy of your friends. That’s the CryptoSteel wallet, which is a stainless steel metal case that comes with more than 250 stainless steel letter tiles engraved on each side. Codes and passwords are assembled manually from the supplied part-randomized set of tiles. Users are able to store up to 96 characters worth of confidential information. Cryptosteel claims to be fireproof, waterproof, and shock-proof.

image of a Cryptosteel cold storage device

Cryptosteel cold wallet

Of course, if you leave your Cryptosteel wallet in the pocket of a pair of ripped jeans that gets thrown out by the housekeeper, as happened to the character Russ Hanneman on the TV show Silicon Valley in last Sunday’s episode, then you’re out of luck. That fictional billionaire investor lost a USB drive with $300 million in cryptocoins. Let’s hope that doesn’t happen to you.

Encryption & Security

Whether you store your keys on your computer, an external disk, a USB drive, DAS, NAS, or in the cloud, you want to make sure that no one else can use those keys. The best way to handle that is to encrypt the backup.

With Backblaze Backup for Windows and Macintosh, your backups are encrypted in transmission to the cloud and on the backup server. Users have the option to add an additional level of security by adding a Personal Encryption Key (PEK), which secures their private key. Your cryptocurrency backup files are secure in the cloud. Using our web or mobile interface, previous versions of files can be accessed, as well.

Our object storage cloud offering, Backblaze B2, can be used with a variety of applications for Windows, Macintosh, and Linux. With B2, cryptocurrency users can choose whichever method of encryption they wish to use on their local computers and then upload their encrypted currency keys to the cloud. Depending on the client used, versioning and life-cycle rules can be applied to the stored files.

Other backup programs and systems provide some or all of these capabilities, as well. If you are backing up to a local drive, it is a good idea to encrypt the local backup, which is an option in some backup programs.

Address Security

Some experts recommend using a different address for each cryptocurrency transaction. Since the address is not the same as your wallet, this means that you are not creating a new wallet, but simply using a new identifier for people sending you cryptocurrency. Creating a new address is usually as easy as clicking a button in the wallet.

One of the chief advantages of using a different address for each transaction is anonymity. Each time you use an address, you put more information into the public ledger (blockchain) about where the currency came from or where it went. That means that over time, using the same address repeatedly could mean that someone could map your relationships, transactions, and incoming funds. The more you use that address, the more information someone can learn about you. For more on this topic, refer to Address reuse.

Note that a downside of using a paper wallet with a single key pair (type-0 non-deterministic wallet) is that it has the vulnerabilities listed above. Each transaction using that paper wallet will add to the public record of transactions associated with that address. Newer wallets, i.e. “deterministic” or those using mnemonic code words support multiple addresses and are now recommended.

There are other approaches to keeping your cryptocurrency transaction secure. Here are a couple of them.

Multi-signature

Multi-signature refers to requiring more than one key to authorize a transaction, much like requiring more than one key to open a safe. It is generally used to divide up responsibility for possession of cryptocurrency. Standard transactions could be called “single-signature transactions” because transfers require only one signature — from the owner of the private key associated with the currency address (public key). Some wallets and apps can be configured to require more than one signature, which means that a group of people, businesses, or other entities all must agree to trade in the cryptocurrencies.

Deep Cold Storage

Deep cold storage ensures the entire transaction process happens in an offline environment. There are typically three elements to deep cold storage.

First, the wallet and private key are generated offline, and the signing of transactions happens on a system not connected to the internet in any manner. This ensures it’s never exposed to a potentially compromised system or connection.

Second, details are secured with encryption to ensure that even if the wallet file ends up in the wrong hands, the information is protected.

Third, storage of the encrypted wallet file or paper wallet is generally at a location or facility that has restricted access, such as a safety deposit box at a bank.

Deep cold storage is used to safeguard a large individual cryptocurrency portfolio held for the long term, or for trustees holding cryptocurrency on behalf of others, and is possibly the safest method to ensure a crypto investment remains secure.

Keep Your Software Up to Date

You should always make sure that you are using the latest version of your app or wallet software, which includes important stability and security fixes. Installing updates for all other software on your computer or mobile device is also important to keep your wallet environment safer.

One Last Thing: Think About Your Testament

Your cryptocurrency funds can be lost forever if you don’t have a backup plan for your peers and family. If the location of your wallets or your passwords is not known by anyone when you are gone, there is no hope that your funds will ever be recovered. Taking a bit of time on these matters can make a huge difference.

To the Moon*

Are you comfortable with how you’re managing and backing up your cryptocurrency wallets and keys? Do you have a suggestion for keeping your cryptocurrencies safe that we missed above? Please let us know in the comments.


*To the Moon — Crypto slang for a currency that reaches an optimistic price projection.

The post Securing Your Cryptocurrency appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

ISP Sued For Breaching User Privacy After Blocking Pirate Sites

Post Syndicated from Andy original https://torrentfreak.com/isp-sued-for-breaching-user-privacy-after-blocking-pirate-sites-180428/

After hinting at moves to curb online piracy last month, on April 13 the Japanese government announced
emergency measures to target websites hosting pirated manga, anime and other types of content.

In common with dozens of counterparts around the world, the government said it favored site-blocking as the first line of defense. However, with no specific legislation to fall back on, authorities asked local ISPs if they’d come along for the ride voluntarily. On Monday, the Nippon Telegraph and Telephone Corp. (NTT) announced that it would.

“We have taken short-term emergency measures until legal systems on site-blocking are implemented,” NTT in a statement.

NTT Communications Corp., NTT Docomo Inc. and NTT Plala Inc., said they would target three sites highlighted by the government – Mangamura, AniTube! and MioMio – which together have a huge following in Japan.

The service providers added that at least in the short-term, they would prevent access to the sites using DNS blocking and would restrict access to other sites if requested to do so by the government. But, just a few days on, NTT is already facing problems.

Lawyer Yuichi Nakazawa has now launched legal action against NTT, demanding that the corporation immediately ends its site-blocking operations.

The complaint, filed at the Tokyo District Court, notes that the lawyer uses an Internet connection provided by NTT. Crucially, it also states that in order to block access to the sites in question, NTT would need to spy on customers’ Internet connections to find out if they’re trying to access the banned sites.

The lawyer informs TorrentFreak that the ISP’s decision prompted him into action.

“NTT’s decision was made arbitrarily on the site without any legal basis. No matter how legitimate the objective of copyright infringement is, it is very dangerous,” Nakazawa explains.

“I felt that ‘freedom,’ which is an important value of the Internet, was threatened. Actually, when the interruption of communications had begun, the company thought it would be impossible to reverse the situation, so I filed a lawsuit at this stage.”

Breaches of privacy could present a significant problem under Japanese law. The Telecommunications Business Act guarantees privacy of communications and prevents censorship, as does Article 21 of the Constitution.

“The secrecy of communications being handled by a telecommunications carrier shall not be violated,” the Telecommunications Business Act states, adding that “no communications being handled by a telecommunications carrier shall be censored.”

The Constitution is also clear, stating that “no censorship shall be maintained, nor shall the secrecy of any means of communication be violated.”

For his part, lawyer Yuichi Nakazawa is also concerned that his contract with the ISP is being breached.

“There is an Internet connection agreement between me and NTT. I am a customer of NTT. There is no provision in the contract between me and NTT to allow arbitrary interruption of communications,” he explains.

Nakazawa doesn’t appear to be against site-blocking per se, he’s just concerned that relevant laws and agreements are being broken.

“It is necessary to restrict sites of pirated publications but that does not mean you can do anything,” Nakazawa said, as quoted by Mainichi. “We should have sufficient discussions for an appropriate measure, including revising the law.”

The question of whether site-blocking does indeed represent an invasion of privacy will probably come down to how the ISP implements it and how that is interpreted by the courts.

A source familiar with the situation told TF that spying on user connections is clearly a problem but the deployment of an outer network firewall rule that simply prevents traffic passing through might be viewed differently.

Such a rule would provide no secret or private information that wasn’t already available to the ISP when the customer requested a banned site through a web browser, although it still falls foul of the “no censorship” requirements of both the Constitution and Telecommunications Business Act.

NTT Communications has declined to comment on the lawsuit but says it had no plans to backtrack on plans to block the sites. Earlier this week, SoftBank Corp., another ISP considering a blockade, expressed concerns that site-blocking has the potential to infringe secrecy of communications rules.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Welcome Steven: Associate Front End Developer

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-steven-associate-front-end-developer/

The Backblaze web team is growing! As we add more features and work on our website we need more hands to get things done. Enter Steven, who joins us as an Associate Front End Developer. Steven is going to be getting his hands dirty and diving in to the fun-filled world of web development. Lets learn a bit more about Steven shall we?

What is your Backblaze Title?
Associate Front End Developer.

Where are you originally from?
The Bronx, New York born and raised.

What attracted you to Backblaze?
The team behind Backblaze made me feel like family from the moment I stepped in the door. The level of respect and dedication they showed me is the same respect and dedication they show their customers. Those qualities made wanting to be a part of Backblaze a no brainer!

What do you expect to learn while being at Backblaze?
I expect to grow as a software developer and human being by absorbing as much as I can from the immensely talented people I’ll be surrounded by.

Where else have you worked?
I previously worked at The Greenwich Hotel where I was a front desk concierge and bellman. If the team at Backblaze is anything like the team I was a part of there then this is going to be a fun ride.

Where did you go to school?
I studied at Baruch College and Bloc.

What’s your dream job?
My dream job is one where I’m able to express 100% of my creativity.

Favorite place you’ve traveled?
Santiago, Dominican Republic.

Favorite hobby?
Watching my Yankees, Knicks or Jets play.

Of what achievement are you most proud?
Becoming a Software Developer…

Star Trek or Star Wars?
Star Wars! May the force be with you…

Coke or Pepsi?
… Water. Black iced tea? One of god’s finer creations.

Favorite food?
Mangu con Los Tres Golpes (Mashed Plantains with Fried Salami, Eggs & Cheese).

Why do you like certain things?
I like things that give me good vibes.

Anything else you’d like you’d like to tell us?
If you break any complex concept down into to its simplest parts you’ll have an easier time trying to fully grasp it.

Those are some serious words of wisdom from Steven. We look forward to him helping us get cool stuff out the door!

The post Welcome Steven: Associate Front End Developer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Under-Fire “Kodi Box” Company “Sold to Chinese Investor” For US$8.82m

Post Syndicated from Andy original https://torrentfreak.com/under-fire-kodi-box-company-sold-to-chinese-investor-for-us8-82m-180426/

Back in 2016, an article appeared in Kiwi media discussing the rise of a new company pledging to beat media giant Sky TV at its own game.

My Box NZ owner Krish Reddy told the publication he was selling Android boxes loaded with Kodi software and augmented with third-party addons.

Without any hint of fear, he stated that these devices enabled customers to access movies, TV shows and live channels for free, after shelling out a substantial US$182 for the box first, that is.

“Why pay $80 minimum per month for Sky when for one payment you can have it free for good?” a claim on the company’s website asked.

Noting that he’d been importing the boxes from China, Reddy suggested that his lawyers hadn’t found any problem with the business plan.

“I don’t see why [Sky] would contact me but if they do contact me and … if there’s something of theirs that they feel I’ve unlawfully taken then yeah … but as it stands I don’t [have any concerns],” he said.

At this point, Reddy said he’d been selling the boxes for just six weeks and had shifted around 80 units. To get coverage from a national newspaper at this stage of the game must’ve been very much appreciated but Reddy didn’t stop there.

In a bulk advertising email sent out to 50,000 people, Reddy described his boxes as “better than Sky”. However, by design or misfortune, the email managed to land in the inboxes of 50 Sky TV staff and directors, something that didn’t go unnoticed by the TV giant.

With Reddy claiming sales of 8,000 units, Sky ran out of patience last April. In a letter from its lawyers, the pay-TV company said Reddy’s devices breached copyright law and the Fair Trading Act. Reddy responded by calling the TV giant “a playground bully”, again denying that he was breaking the law.

“From a legal perspective, what we do is completely within the law. We advertise Sky television channels being available through our website and social media platforms as these are available via streams which you can find through My Box,” he said.

“The content is already available, I’m not going out there and bringing the content so how am I infringing the copyright… the content is already there, if someone uses the box to search for the content, that’s what it is.”

The initial compensation demand from Sky against Reddy’s company My Box ran to NZD$1.4m, around US$1m. It was an amount that had the potential rise by millions if matters got drawn out and/or escalated. But despite picking a terrible opponent in a battle he was unlikely to win, Reddy refused to give up.

“[Sky’s] point of view is they own copyright and I’m destroying the market by giving people content for free. To me it is business; I have got something that is new … that’s competition,” he said.

The Auckland High Court heard the case against My Box last month with Judge Warwick Smith reserving his judgment and Reddy still maintaining that his business is entirely legal. Sales were fantastic, he said, with 20,000 devices sold to customers in 12 countries.

Then something truly amazing happened.

A company up to its eyeballs in litigation, selling a commodity product that an amateur can buy and configure at home for US$40, reportedly got a chance of a lifetime. Reddy revealed to Stuff that a Chinese investor had offered to buy his company for an eye-watering NZ$10 million (US$7.06m).

“We have to thank Sky,” he said. “If they had left us alone we would just have been selling a few boxes, but the controversy made us world famous.”

Reddy noted he’d been given 21 days to respond to the offer, but refused to name the company. Interestingly, he also acknowledged that if My Box lost its case, the company would be liable for damages. However, that wouldn’t bother the potential investor.

“It makes no difference to them whether we win or lose, because their operations won’t be in New Zealand,” Reddy said.

According to the entrepreneur, that’s how things are playing out.

The Chinese firm – which Reddy is still refusing to name – has apparently accepted a counter offer from Reddy of US$8.8m for My Box. As a result, Reddy will wrap up his New Zealand operations within the next 90 days and his six employees will be rendered unemployed.

Given that anyone with the ability to install Kodi and a few addons before putting a box in the mail could replicate Reddy’s business model, the multi-million dollar offer for My Box was never anything less than a bewildering business proposition. That someone carried through with it an even higher price is so fantastic as to be almost unbelievable.

In a sea of unhappy endings for piracy-enabled Kodi box sellers globally, this is the only big win to ever grace the headlines. Assuming this really is the end of the story (and that might not be the case) it will almost certainly be the last.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

Ransomware Update: Viruses Targeting Business IT Servers

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/ransomware-update-viruses-targeting-business-it-servers/

Ransomware warning message on computer

As ransomware attacks have grown in number in recent months, the tactics and attack vectors also have evolved. While the primary method of attack used to be to target individual computer users within organizations with phishing emails and infected attachments, we’re increasingly seeing attacks that target weaknesses in businesses’ IT infrastructure.

How Ransomware Attacks Typically Work

In our previous posts on ransomware, we described the common vehicles used by hackers to infect organizations with ransomware viruses. Most often, downloaders distribute trojan horses through malicious downloads and spam emails. The emails contain a variety of file attachments, which if opened, will download and run one of the many ransomware variants. Once a user’s computer is infected with a malicious downloader, it will retrieve additional malware, which frequently includes crypto-ransomware. After the files have been encrypted, a ransom payment is demanded of the victim in order to decrypt the files.

What’s Changed With the Latest Ransomware Attacks?

In 2016, a customized ransomware strain called SamSam began attacking the servers in primarily health care institutions. SamSam, unlike more conventional ransomware, is not delivered through downloads or phishing emails. Instead, the attackers behind SamSam use tools to identify unpatched servers running Red Hat’s JBoss enterprise products. Once the attackers have successfully gained entry into one of these servers by exploiting vulnerabilities in JBoss, they use other freely available tools and scripts to collect credentials and gather information on networked computers. Then they deploy their ransomware to encrypt files on these systems before demanding a ransom. Gaining entry to an organization through its IT center rather than its endpoints makes this approach scalable and especially unsettling.

SamSam’s methodology is to scour the Internet searching for accessible and vulnerable JBoss application servers, especially ones used by hospitals. It’s not unlike a burglar rattling doorknobs in a neighborhood to find unlocked homes. When SamSam finds an unlocked home (unpatched server), the software infiltrates the system. It is then free to spread across the company’s network by stealing passwords. As it transverses the network and systems, it encrypts files, preventing access until the victims pay the hackers a ransom, typically between $10,000 and $15,000. The low ransom amount has encouraged some victimized organizations to pay the ransom rather than incur the downtime required to wipe and reinitialize their IT systems.

The success of SamSam is due to its effectiveness rather than its sophistication. SamSam can enter and transverse a network without human intervention. Some organizations are learning too late that securing internet-facing services in their data center from attack is just as important as securing endpoints.

The typical steps in a SamSam ransomware attack are:

1
Attackers gain access to vulnerable server
Attackers exploit vulnerable software or weak/stolen credentials.
2
Attack spreads via remote access tools
Attackers harvest credentials, create SOCKS proxies to tunnel traffic, and abuse RDP to install SamSam on more computers in the network.
3
Ransomware payload deployed
Attackers run batch scripts to execute ransomware on compromised machines.
4
Ransomware demand delivered requiring payment to decrypt files
Demand amounts vary from victim to victim. Relatively low ransom amounts appear to be designed to encourage quick payment decisions.

What all the organizations successfully exploited by SamSam have in common is that they were running unpatched servers that made them vulnerable to SamSam. Some organizations had their endpoints and servers backed up, while others did not. Some of those without backups they could use to recover their systems chose to pay the ransom money.

Timeline of SamSam History and Exploits

Since its appearance in 2016, SamSam has been in the news with many successful incursions into healthcare, business, and government institutions.

March 2016
SamSam appears

SamSam campaign targets vulnerable JBoss servers
Attackers hone in on healthcare organizations specifically, as they’re more likely to have unpatched JBoss machines.

April 2016
SamSam finds new targets

SamSam begins targeting schools and government.
After initial success targeting healthcare, attackers branch out to other sectors.

April 2017
New tactics include RDP

Attackers shift to targeting organizations with exposed RDP connections, and maintain focus on healthcare.
An attack on Erie County Medical Center costs the hospital $10 million over three months of recovery.
Erie County Medical Center attacked by SamSam ransomware virus

January 2018
Municipalities attacked

• Attack on Municipality of Farmington, NM.
• Attack on Hancock Health.
Hancock Regional Hospital notice following SamSam attack
• Attack on Adams Memorial Hospital
• Attack on Allscripts (Electronic Health Records), which includes 180,000 physicians, 2,500 hospitals, and 7.2 million patients’ health records.

February 2018
Attack volume increases

• Attack on Davidson County, NC.
• Attack on Colorado Department of Transportation.
SamSam virus notification

March 2018
SamSam shuts down Atlanta

• Second attack on Colorado Department of Transportation.
• City of Atlanta suffers a devastating attack by SamSam.
The attack has far-reaching impacts — crippling the court system, keeping residents from paying their water bills, limiting vital communications like sewer infrastructure requests, and pushing the Atlanta Police Department to file paper reports.
Atlanta Ransomware outage alert
• SamSam campaign nets $325,000 in 4 weeks.
Infections spike as attackers launch new campaigns. Healthcare and government organizations are once again the primary targets.

How to Defend Against SamSam and Other Ransomware Attacks

The best way to respond to a ransomware attack is to avoid having one in the first place. If you are attacked, making sure your valuable data is backed up and unreachable by ransomware infection will ensure that your downtime and data loss will be minimal or none if you ever suffer an attack.

In our previous post, How to Recover From Ransomware, we listed the ten ways to protect your organization from ransomware.

  1. Use anti-virus and anti-malware software or other security policies to block known payloads from launching.
  2. Make frequent, comprehensive backups of all important files and isolate them from local and open networks. Cybersecurity professionals view data backup and recovery (74% in a recent survey) by far as the most effective solution to respond to a successful ransomware attack.
  3. Keep offline backups of data stored in locations inaccessible from any potentially infected computer, such as disconnected external storage drives or the cloud, which prevents them from being accessed by the ransomware.
  4. Install the latest security updates issued by software vendors of your OS and applications. Remember to patch early and patch often to close known vulnerabilities in operating systems, server software, browsers, and web plugins.
  5. Consider deploying security software to protect endpoints, email servers, and network systems from infection.
  6. Exercise cyber hygiene, such as using caution when opening email attachments and links.
  7. Segment your networks to keep critical computers isolated and to prevent the spread of malware in case of attack. Turn off unneeded network shares.
  8. Turn off admin rights for users who don’t require them. Give users the lowest system permissions they need to do their work.
  9. Restrict write permissions on file servers as much as possible.
  10. Educate yourself, your employees, and your family in best practices to keep malware out of your systems. Update everyone on the latest email phishing scams and human engineering aimed at turning victims into abettors.

Please Tell Us About Your Experiences with Ransomware

Have you endured a ransomware attack or have a strategy to avoid becoming a victim? Please tell us of your experiences in the comments.

The post Ransomware Update: Viruses Targeting Business IT Servers appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Welcome Victoria — Sales Development Representative

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-victoria-sales-development-representative/

Ever since we introduced our Groups feature, Backblaze for Business has been growing at a rapid rate! We’ve been staffing up in order to support the product and the newest addition to the sales team, Victoria, joins us as a Sales Development Representative! Let’s learn a bit more about Victoria, shall we?

What is your Backblaze Title?
Sales Development Representative.

Where are you originally from?
Harrisburg, North Carolina.

What attracted you to Backblaze?
The leaders and family-style culture.

What do you expect to learn while being at Backblaze?
How to sell, sell, sell!

Where else have you worked?
The North Carolina Autism Society, an ophthalmologist’s office, home health care, and another tech startup.

Where did you go to school?
The University of North Carolina Chapel Hill and Duke University’s Fuqua School of Business.

What’s your dream job?
Fighter pilot, professional snowboarder or killer whale trainer.

Favorite place you’ve traveled?
Hawaii and Banff.

Favorite hobby?
Basketball and cars.

Of what achievement are you most proud?
Missionary work and helping patients feel better.

Star Trek or Star Wars?
Neither, but probably Star Wars.

Coke or Pepsi?
Neither, bubble tea.

Favorite food?
Snow crab legs.

Why do you like certain things?
Because God made me that way.

Anything else you’d like you’d like to tell us?
I’m a germophobe, drink a lot of water and unfortunately, am introverted.

Being on the phones all day is a good way to build up those extroversion skills! Welcome to the team and we hope you enjoy learning how to sell, sell, sell!

The post Welcome Victoria — Sales Development Representative appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Friday Squid Blogging: Eating Firefly Squid

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/friday_squid_bl_620.html

In Tokama, Japan, you can watch the firefly squid catch and eat them in various ways:

“It’s great to eat hotaruika around when the seasons change, which is when people tend to get sick,” said Ryoji Tanaka, an executive at the Toyama prefectural federation of fishing cooperatives. “In addition to popular cooking methods, such as boiling them in salted water, you can also add them to pasta or pizza.”

Now there is a new addition: eating hotaruika raw as sashimi. However, due to reports that parasites have been found in their internal organs, the Health, Labor and Welfare Ministry recommends eating the squid after its internal organs have been removed, or after it has been frozen for at least four days at minus 30 C or lower.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Friday Squid Blogging: Market Squid in Alaskan Waters

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/friday_squid_bl_618.html

Rising sea temperatures is causing market squid to move north into Alaskan waters.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Take home Mugsy, the Raspberry Pi coffee robot

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mugsy/

We love Mugsy, the Raspberry Pi coffee robot that has smashed its crowdfunding goal within days! Our latest YouTube video shows our catch-up with Mugsy and its creator Matthew Oswald at Maker Faire New York last year.

MUGSY THE RASPBERRY PI COFFEE ROBOT #MFNYC

Uploaded by Raspberry Pi on 2018-03-22.

Mugsy

Labelled ‘the world’s first hackable, customisable, dead simple, robotic coffee maker’, Mugsy allows you to take control of every aspect of the coffee-making process: from grind size and water temperature, to brew and bloom time. Feeling lazy instead? Read in your beans’ barcode via an onboard scanner, and it will automatically use the best settings for your brew.

Mugsy Raspberry Pi Coffee Robot

Looking to start your day with your favourite coffee straight out of bed? Send the robot a text, email, or tweet, and it will notify you when your coffee is ready!

Learning through product development

“Initially, I used [Mugsy] as a way to teach myself hardware design,” explained Matthew at his Editor’s Choice–winning Maker Faire stand. “I really wanted to hold something tangible in my hands. By using the Raspberry Pi and just being curious, anytime I wanted to use a new technology, I would try to pull back [and ask] ‘How can I integrate this into Mugsy?’”

Mugsy Raspberry Pi Coffee Robot

By exploring his passions and using Mugsy as his guinea pig, Matthew created a project that not only solves a problem — how to make amazing coffee at home — but also brings him one step closer to ‘making things’ for a living. “I used to dream about this stuff when I was a kid, and I used to say ‘I’m never going to be able to do something like that.’” he admitted. But now, with open-source devices like the Raspberry Pi so readily available, he “can see the end of the road”: making his passion his livelihood.

Back Mugsy

With only a few days left on the Kickstarter campaign, Mugsy has reached its goal and then some. It’s available for backing from $150 if you provide your own Raspberry Pi 3, or from $175 with a Pi included — check it out today!

The post Take home Mugsy, the Raspberry Pi coffee robot appeared first on Raspberry Pi.

SoFi, the underwater robotic fish

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/robotic-fish/

With the Greenland shark finally caught on video for the very first time, scientists and engineers are discussing the limitations of current marine monitoring technology. One significant advance comes from the CSAIL team at Massachusetts Institute of Technology (MIT): SoFi, the robotic fish.

A Robotic Fish Swims in the Ocean

More info: http://bit.ly/SoFiRobot Paper: http://robert.katzschmann.eu/wp-content/uploads/2018/03/katzschmann2018exploration.pdf

The untethered SoFi robot

Last week, the Computer Science and Artificial Intelligence Laboratory (CSAIL) team at MIT unveiled SoFi, “a soft robotic fish that can independently swim alongside real fish in the ocean.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Directed by a Super Nintendo controller and acoustic signals, SoFi can dive untethered to a maximum of 18 feet for a total of 40 minutes. A Raspberry Pi receives input from the controller and amplifies the ultrasound signals for SoFi via a HiFiBerry. The controller, Raspberry Pi, and HiFiBerry are sealed within a waterproof, cast-moulded silicone membrane filled with non-conductive mineral oil, allowing for underwater equalisation.

MIT CSAIL underwater fish SoFi using Raspberry Pi

The ultrasound signals, received by a modem within SoFi’s head, control everything from direction, tail oscillation, pitch, and depth to the onboard camera.

As explained on MIT’s news blog, “to make the robot swim, the motor pumps water into two balloon-like chambers in the fish’s tail that operate like a set of pistons in an engine. As one chamber expands, it bends and flexes to one side; when the actuators push water to the other channel, that one bends and flexes in the other direction.”

MIT CSAIL underwater fish SoFi using Raspberry Pi

Ocean exploration

While we’ve seen many autonomous underwater vehicles (AUVs) using onboard Raspberry Pis, SoFi’s ability to roam untethered with a wireless waterproof controller is an exciting achievement.

“To our knowledge, this is the first robotic fish that can swim untethered in three dimensions for extended periods of time. We are excited about the possibility of being able to use a system like this to get closer to marine life than humans can get on their own.” – CSAIL PhD candidate Robert Katzschmann

As the MIT news post notes, SoFi’s simple, lightweight setup of a single camera, a motor, and a smartphone lithium polymer battery set it apart it from existing bulky AUVs that require large motors or support from boats.

For more in-depth information on SoFi and the onboard tech that controls it, find the CSAIL team’s paper here.

The post SoFi, the underwater robotic fish appeared first on Raspberry Pi.

Friday Squid Blogging: Giant Squid Stealing Food from Each Other

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/friday_squid_bl_617.html

An interesting hunting strategy:

Off of northern Spain, giant squid often feed on schools of fish called blue whiting. The schools swim 400 meters or less below the surface, while the squid prefer to hang out around a mile deep. The squid must ascend to hunt, probably seizing fish from below with their tentacles, then descend again. In this scenario, a squid could save energy by pirating food from its neighbor rather than hunting its own fish, Guerra says: If the target squid has already carried its prey back to the depths to eat, the pirate could save itself a trip up to the shallow water. Staying below would also protect a pirate from predators such as dolphins and sperm whales that hang around the fish schools.

If a pirate happened to kill its victim, it would also reduce competition. The scientists think that’s what happened with the Bares squid: Its tentacles were ripped off in the fight over food. “The victim, disoriented and wounded, could enter a warmer mass of water in which the efficiency of their blood decreases markedly,” the authors write in a recent paper in the journal Ecology. “In this way, the victim, almost asphyxiated, would be at the mercy of the marine currents, being dragged toward the coast.”

It’s called “food piracy.”

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Welcome Michele – Our HR Coordinator

Post Syndicated from Yev original https://www.backblaze.com/blog/welcome-michele-our-hr-coordinator/

Backblaze is growing rapidly and as we have more and more job listings coming online and more employees to corral, we needed another member on our Human Resources team! Enter Michele, who is joining the HR folks to help recruit, onboard, and expand our HR organization. Lets learn a bit more about Michele shall we?

What is your Backblaze Title?
HR Coordinator.

Where are you originally from?
I was born and raised in the East Bay.

What attracted you to Backblaze?
The opportunity to learn new skills, as most of my experience is in office administration… I’m excited to jump into the HR world!

What do you expect to learn while being at Backblaze?
So much! All of the ins and outs of HR, the hiring and onboarding processes, and everything in between…so excited!

Where else have you worked?
I’ve previously worked at Clars Auction Gallery where I was Consignor Relations for 6 years, and most recently at Stellar Academy for Dyslexics where I was the Office Administrator/Bookkeeper.

Where did you go to school?
San Francisco Institute of Esthetics and Cosmetology.

What’s your dream job?
Pastry Chef!

Favorite place you’ve traveled?
Maui. I could lay on the beach and bob in the water all day, every day! But also, Disney World…who doesn’t love a good Disney vacation?

Favorite hobby?
Baking, traveling, reading, exploring new restaurants, SF Giants games

Star Trek or Star Wars?
Star Wars.

Coke or Pepsi?
Black iced tea?

Favorite food?
Pretty much everything…street tacos, ramen, sushi, Thai, pho.

Why do you like certain things?
Because why not?

Anything else you’d like you’d like to tell us?
I love Disney!

Another person who loves Disney! Welcome to the team Michele, we’ll have lots of tea ready for you!

The post Welcome Michele – Our HR Coordinator appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

PipeCam: the low-cost underwater camera

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/pipecam-low-cost-underwater-camera/

Fred Fourie is building a low-cost underwater camera for shallow deployment, and his prototypes are already returning fascinating results. You can build your own PipeCam, and explore the undiscovered depths with a Raspberry Pi and off-the-shelf materials.

PipeCam underwater Raspberry Pi Camera

Materials and build

In its latest iteration, PipeCam consists of a 110mm PVC waste pipe with fittings and a 10mm perspex window at one end. Previous prototypes have also used plumbing materials for the body, but this latest version employs heavy-duty parts that deliver the good seal this project needs.

PipeCam underwater Raspberry Pi Camera

In testing, Fred and a friend determined that the rig could withstand 4 bar of pressure. This is enough to protect the tech inside at the depths Fred plans for, and a significant performance improvement on previous prototypes.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Inside the pipe are a Raspberry Pi 3, a camera module, and a real-time clock add-on board. A 2.4Ah rechargeable lead acid battery powers the set-up via a voltage regulator.

Using foam and fibreboard, Fred made a mount that holds everything in place and fits snugly inside the pipe.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam will be subject to ocean currents, not to mention the attentions of sea creatures, so it’s essential to make sure that everything is held securely inside the pipe – something Fred has learned from previous versions of the project.

Software

It’s straightforward to write time-lapse code for a Raspberry Pi using Python and one of our free online resources, but Fred has more ambitious plans for PipeCam. As well as a Python script to control the camera, Fred made a web page to display the health of the device. It shows battery level and storage availability, along with the latest photo taken by the camera. He also made adjustments to the camera’s exposure settings using raspistill. You can see the effect in this side-by-side comparison of the default python-picam image and the edited raspistill one.

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

Underwater testing

Fred has completed the initial first test of PipeCam, running the device under water for an hour in two-metre deep water off the coast near his home. And the results? Well, see for yourself:

PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera
PipeCam underwater Raspberry Pi Camera

PipeCam is a work in progress, and you can read Fred’s build log at the project’s Hackaday.io page, so be sure to follow along.

The post PipeCam: the low-cost underwater camera appeared first on Raspberry Pi.

The Challenges of Opening a Data Center — Part 2

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/factors-for-choosing-data-center/

Rows of storage pods in a data center

This is part two of a series on the factors that an organization needs to consider when opening a data center and the challenges that must be met in the process.

In Part 1 of this series, we looked at the different types of data centers, the importance of location in planning a data center, data center certification, and the single most expensive factor in running a data center, power.

In Part 2, we continue to look at factors that need to considered both by those interested in a dedicated data center and those seeking to colocate in an existing center.

Power (continued from Part 1)

In part 1, we began our discussion of the power requirements of data centers.

As we discussed, redundancy and failover is a chief requirement for data center power. A redundantly designed power supply system is also a necessity for maintenance, as it enables repairs to be performed on one network, for example, without having to turn off servers, databases, or electrical equipment.

Power Path

The common critical components of a data center’s power flow are:

  • Utility Supply
  • Generators
  • Transfer Switches
  • Distribution Panels
  • Uninterruptible Power Supplies (UPS)
  • PDUs

Utility Supply is the power that comes from one or more utility grids. While most of us consider the grid to be our primary power supply (hats off to those of you who manage to live off the grid), politics, economics, and distribution make utility supply power susceptible to outages, which is why data centers must have autonomous power available to maintain availability.

Generators are used to supply power when the utility supply is unavailable. They convert mechanical energy, usually from motors, to electrical energy.

Transfer Switches are used to transfer electric load from one source or electrical device to another, such as from one utility line to another, from a generator to a utility, or between generators. The transfer could be manually activated or automatic to ensure continuous electrical power.

Distribution Panels get the power where it needs to go, taking a power feed and dividing it into separate circuits to supply multiple loads.

A UPS, as we touched on earlier, ensures that continuous power is available even when the main power source isn’t. It often consists of batteries that can come online almost instantaneously when the current power ceases. The power from a UPS does not have to last a long time as it is considered an emergency measure until the main power source can be restored. Another function of the UPS is to filter and stabilize the power from the main power supply.

Data Center UPS

Data center UPSs

PDU stands for the Power Distribution Unit and is the device that distributes power to the individual pieces of equipment.

Network

After power, the networking connections to the data center are of prime importance. Can the data center obtain and maintain high-speed networking connections to the building? With networking, as with all aspects of a data center, availability is a primary consideration. Data center designers think of all possible ways service can be interrupted or lost, even briefly. Details such as the vulnerabilities in the route the network connections make from the core network (the backhaul) to the center, and where network connections enter and exit a building, must be taken into consideration in network and data center design.

Routers and switches are used to transport traffic between the servers in the data center and the core network. Just as with power, network redundancy is a prime factor in maintaining availability of data center services. Two or more upstream service providers are required to ensure that availability.

How fast a customer can transfer data to a data center is affected by: 1) the speed of the connections the data center has with the outside world, 2) the quality of the connections between the customer and the data center, and 3) the distance of the route from customer to the data center. The longer the length of the route and the greater the number of packets that must be transferred, the more significant a factor will be played by latency in the data transfer. Latency is the delay before a transfer of data begins following an instruction for its transfer. Generally latency, not speed, will be the most significant factor in transferring data to and from a data center. Packets transferred using the TCP/IP protocol suite, which is the conceptual model and set of communications protocols used on the internet and similar computer networks, must be acknowledged when received (ACK’d) and requires a communications roundtrip for each packet. If the data is in larger packets, the number of ACKs required is reduced, so latency will be a smaller factor in the overall network communications speed.

Latency generally will be less significant for data storage transfers than for cloud computing. Optimizations such as multi-threading, which is used in Backblaze’s Cloud Backup service, will generally improve overall transfer throughput if sufficient bandwidth is available.

Those interested in testing the overall speed and latency of their connection to Backblaze’s data centers can use the Check Your Bandwidth tool on our website.
Data center telecommunications equipment

Data center telecommunications equipment

Data center under floor cable runs

Data center under floor cable runs

Cooling

Computer, networking, and power generation equipment generates heat, and there are a number of solutions employed to rid a data center of that heat. The location and climate of the data center is of great importance to the data center designer because the climatic conditions dictate to a large degree what cooling technologies should be deployed that in turn affect the power used and the cost of using that power. The power required and cost needed to manage a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate. Innovation is strong in this area and many new approaches to efficient and cost-effective cooling are used in the latest data centers.

Switch's uninterruptible, multi-system, HVAC Data Center Cooling Units

Switch’s uninterruptible, multi-system, HVAC Data Center Cooling Units

There are three primary ways data center cooling can be achieved:

Room Cooling cools the entire operating area of the data center. This method can be suitable for small data centers, but becomes more difficult and inefficient as IT equipment density and center size increase.

Row Cooling concentrates on cooling a data center on a row by row basis. In its simplest form, hot aisle/cold aisle data center design involves lining up server racks in alternating rows with cold air intakes facing one way and hot air exhausts facing the other. The rows composed of rack fronts are called cold aisles. Typically, cold aisles face air conditioner output ducts. The rows the heated exhausts pour into are called hot aisles. Typically, hot aisles face air conditioner return ducts.

Rack Cooling tackles cooling on a rack by rack basis. Air-conditioning units are dedicated to specific racks. This approach allows for maximum densities to be deployed per rack. This works best in data centers with fully loaded racks, otherwise there would be too much cooling capacity, and the air-conditioning losses alone could exceed the total IT load.

Security

Data Centers are high-security facilities as they house business, government, and other data that contains personal, financial, and other secure information about businesses and individuals.

This list contains the physical-security considerations when opening or co-locating in a data center:

Layered Security Zones. Systems and processes are deployed to allow only authorized personnel in certain areas of the data center. Examples include keycard access, alarm systems, mantraps, secure doors, and staffed checkpoints.

Physical Barriers. Physical barriers, fencing and reinforced walls are used to protect facilities. In a colocation facility, one customers’ racks and servers are often inaccessible to other customers colocating in the same data center.

Backblaze racks secured in the data center

Backblaze racks secured in the data center

Monitoring Systems. Advanced surveillance technology monitors and records activity on approaching driveways, building entrances, exits, loading areas, and equipment areas. These systems also can be used to monitor and detect fire and water emergencies, providing early detection and notification before significant damage results.

Top-tier providers evaluate their data center security and facilities on an ongoing basis. Technology becomes outdated quickly, so providers must stay-on-top of new approaches and technologies in order to protect valuable IT assets.

To pass into high security areas of a data center requires passing through a security checkpoint where credentials are verified.

Data Center security

The gauntlet of cameras and steel bars one must pass before entering this data center

Facilities and Services

Data center colocation providers often differentiate themselves by offering value-added services. In addition to the required space, power, cooling, connectivity and security capabilities, the best solutions provide several on-site amenities. These accommodations include offices and workstations, conference rooms, and access to phones, copy machines, and office equipment.

Additional features may consist of kitchen facilities, break rooms and relaxation lounges, storage facilities for client equipment, and secure loading docks and freight elevators.

Moving into A Data Center

Moving into a data center is a major job for any organization. We wrote a post last year, Desert To Data in 7 Days — Our New Phoenix Data Center, about what it was like to move into our new data center in Phoenix, Arizona.

Desert To Data in 7 Days — Our New Phoenix Data Center

Visiting a Data Center

Our Director of Product Marketing Andy Klein wrote a popular post last year on what it’s like to visit a data center called A Day in the Life of a Data Center.

A Day in the Life of a Data Center

Would you Like to Know More about The Challenges of Opening and Running a Data Center?

That’s it for part 2 of this series. If readers are interested, we could write a post about some of the new technologies and trends affecting data center design and use. Please let us know in the comments.

Here's a tip!Here’s a tip on finding all the posts tagged with data center on our blog. Just follow https://www.backblaze.com/blog/tag/data-center/.

Don’t miss future posts on data centers and other topics, including hard drive stats, cloud storage, and tips and tricks for backing up to the cloud. Use the Join button above to receive notification of future posts on our blog.

The post The Challenges of Opening a Data Center — Part 2 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The Challenges of Opening a Data Center — Part 1

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/choosing-data-center/

Backblaze storage pod in new data center

This is part one of a series. The second part will be posted later this week. Use the Join button above to receive notification of future posts in this series.

Though most of us have never set foot inside of a data center, as citizens of a data-driven world we nonetheless depend on the services that data centers provide almost as much as we depend on a reliable water supply, the electrical grid, and the highway system. Every time we send a tweet, post to Facebook, check our bank balance or credit score, watch a YouTube video, or back up a computer to the cloud we are interacting with a data center.

In this series, The Challenges of Opening a Data Center, we’ll talk in general terms about the factors that an organization needs to consider when opening a data center and the challenges that must be met in the process. Many of the factors to consider will be similar for opening a private data center or seeking space in a public data center, but we’ll assume for the sake of this discussion that our needs are more modest than requiring a data center dedicated solely to our own use (i.e. we’re not Google, Facebook, or China Telecom).

Data center technology and management are changing rapidly, with new approaches to design and operation appearing every year. This means we won’t be able to cover everything happening in the world of data centers in our series, however, we hope our brief overview proves useful.

What is a Data Center?

A data center is the structure that houses a large group of networked computer servers typically used by businesses, governments, and organizations for the remote storage, processing, or distribution of large amounts of data.

While many organizations will have computing services in the same location as their offices that support their day-to-day operations, a data center is a structure dedicated to 24/7 large-scale data processing and handling.

Depending on how you define the term, there are anywhere from a half million data centers in the world to many millions. While it’s possible to say that an organization’s on-site servers and data storage can be called a data center, in this discussion we are using the term data center to refer to facilities that are expressly dedicated to housing computer systems and associated components, such as telecommunications and storage systems. The facility might be a private center, which is owned or leased by one tenant only, or a shared data center that offers what are called “colocation services,” and rents space, services, and equipment to multiple tenants in the center.

A large, modern data center operates around the clock, placing a priority on providing secure and uninterrrupted service, and generally includes redundant or backup power systems or supplies, redundant data communication connections, environmental controls, fire suppression systems, and numerous security devices. Such a center is an industrial-scale operation often using as much electricity as a small town.

Types of Data Centers

There are a number of ways to classify data centers according to how they will be used, whether they are owned or used by one or multiple organizations, whether and how they fit into a topology of other data centers; which technologies and management approaches they use for computing, storage, cooling, power, and operations; and increasingly visible these days: how green they are.

Data centers can be loosely classified into three types according to who owns them and who uses them.

Exclusive Data Centers are facilities wholly built, maintained, operated and managed by the business for the optimal operation of its IT equipment. Some of these centers are well-known companies such as Facebook, Google, or Microsoft, while others are less public-facing big telecoms, insurance companies, or other service providers.

Managed Hosting Providers are data centers managed by a third party on behalf of a business. The business does not own data center or space within it. Rather, the business rents IT equipment and infrastructure it needs instead of investing in the outright purchase of what it needs.

Colocation Data Centers are usually large facilities built to accommodate multiple businesses within the center. The business rents its own space within the data center and subsequently fills the space with its IT equipment, or possibly uses equipment provided by the data center operator.

Backblaze, for example, doesn’t own its own data centers but colocates in data centers owned by others. As Backblaze’s storage needs grow, Backblaze increases the space it uses within a given data center and/or expands to other data centers in the same or different geographic areas.

Availability is Key

When designing or selecting a data center, an organization needs to decide what level of availability is required for its services. The type of business or service it provides likely will dictate this. Any organization that provides real-time and/or critical data services will need the highest level of availability and redundancy, as well as the ability to rapidly failover (transfer operation to another center) when and if required. Some organizations require multiple data centers not just to handle the computer or storage capacity they use, but to provide alternate locations for operation if something should happen temporarily or permanently to one or more of their centers.

Organizations operating data centers that can’t afford any downtime at all will typically operate data centers that have a mirrored site that can take over if something happens to the first site, or they operate a second site in parallel to the first one. These data center topologies are called Active/Passive, and Active/Active, respectively. Should disaster or an outage occur, disaster mode would dictate immediately moving all of the primary data center’s processing to the second data center.

While some data center topologies are spread throughout a single country or continent, others extend around the world. Practically, data transmission speeds put a cap on centers that can be operated in parallel with the appearance of simultaneous operation. Linking two data centers located apart from each other — say no more than 60 miles to limit data latency issues — together with dark fiber (leased fiber optic cable) could enable both data centers to be operated as if they were in the same location, reducing staffing requirements yet providing immediate failover to the secondary data center if needed.

This redundancy of facilities and ensured availability is of paramount importance to those needing uninterrupted data center services.

Active/Passive Data Centers

Active/Active Data Centers

LEED Certification

Leadership in Energy and Environmental Design (LEED) is a rating system devised by the United States Green Building Council (USGBC) for the design, construction, and operation of green buildings. Facilities can achieve ratings of certified, silver, gold, or platinum based on criteria within six categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality, and innovation and design.

Green certification has become increasingly important in data center design and operation as data centers require great amounts of electricity and often cooling water to operate. Green technologies can reduce costs for data center operation, as well as make the arrival of data centers more amenable to environmentally-conscious communities.

The ACT, Inc. data center in Iowa City, Iowa was the first data center in the U.S. to receive LEED-Platinum certification, the highest level available.

ACT Data Center exterior

ACT Data Center exterior

ACT Data Center interior

ACT Data Center interior

Factors to Consider When Selecting a Data Center

There are numerous factors to consider when deciding to build or to occupy space in a data center. Aspects such as proximity to available power grids, telecommunications infrastructure, networking services, transportation lines, and emergency services can affect costs, risk, security and other factors that need to be taken into consideration.

The size of the data center will be dictated by the business requirements of the owner or tenant. A data center can occupy one room of a building, one or more floors, or an entire building. Most of the equipment is often in the form of servers mounted in 19 inch rack cabinets, which are usually placed in single rows forming corridors (so-called aisles) between them. This allows staff access to the front and rear of each cabinet. Servers differ greatly in size from 1U servers (i.e. one “U” or “RU” rack unit measuring 44.50 millimeters or 1.75 inches), to Backblaze’s Storage Pod design that fits a 4U chassis, to large freestanding storage silos that occupy many square feet of floor space.

Location

Location will be one of the biggest factors to consider when selecting a data center and encompasses many other factors that should be taken into account, such as geological risks, neighboring uses, and even local flight paths. Access to suitable available power at a suitable price point is often the most critical factor and the longest lead time item, followed by broadband service availability.

With more and more data centers available providing varied levels of service and cost, the choices increase each year. Data center brokers can be employed to find a data center, just as one might use a broker for home or other commercial real estate.

Websites listing available colocation space, such as upstack.io, or entire data centers for sale or lease, are widely used. A common practice is for a customer to publish its data center requirements, and the vendors compete to provide the most attractive bid in a reverse auction.

Business and Customer Proximity

The center’s closeness to a business or organization may or may not be a factor in the site selection. The organization might wish to be close enough to manage the center or supervise the on-site staff from a nearby business location. The location of customers might be a factor, especially if data transmission speeds and latency are important, or the business or customers have regulatory, political, tax, or other considerations that dictate areas suitable or not suitable for the storage and processing of data.

Climate

Local climate is a major factor in data center design because the climatic conditions dictate what cooling technologies should be deployed. In turn this impacts uptime and the costs associated with cooling, which can total as much as 50% or more of a center’s power costs. The topology and the cost of managing a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate. Nevertheless, data centers are located in both extremely cold regions and extremely hot ones, with innovative approaches used in both extremes to maintain desired temperatures within the center.

Geographic Stability and Extreme Weather Events

A major obvious factor in locating a data center is the stability of the actual site as regards weather, seismic activity, and the likelihood of weather events such as hurricanes, as well as fire or flooding.

Backblaze’s Sacramento data center describes its location as one of the most stable geographic locations in California, outside fault zones and floodplains.

Sacramento Data Center

Sometimes the location of the center comes first and the facility is hardened to withstand anticipated threats, such as Equinix’s NAP of the Americas data center in Miami, one of the largest single-building data centers on the planet (six stories and 750,000 square feet), which is built 32 feet above sea level and designed to withstand category 5 hurricane winds.

Equinix Data Center in Miami

Equinix “NAP of the Americas” Data Center in Miami

Most data centers don’t have the extreme protection or history of the Bahnhof data center, which is located inside the ultra-secure former nuclear bunker Pionen, in Stockholm, Sweden. It is buried 100 feet below ground inside the White Mountains and secured behind 15.7 in. thick metal doors. It prides itself on its self-described “Bond villain” ambiance.

Bahnhof Data Center under White Mountain in Stockholm

Usually, the data center owner or tenant will want to take into account the balance between cost and risk in the selection of a location. The Ideal quadrant below is obviously favored when making this compromise.

Cost vs Risk in selecting a data center

Cost = Construction/lease, power, bandwidth, cooling, labor, taxes
Risk = Environmental (seismic, weather, water, fire), political, economic

Risk mitigation also plays a strong role in pricing. The extent to which providers must implement special building techniques and operating technologies to protect the facility will affect price. When selecting a data center, organizations must make note of the data center’s certification level on the basis of regulatory requirements in the industry. These certifications can ensure that an organization is meeting necessary compliance requirements.

Power

Electrical power usually represents the largest cost in a data center. The cost a service provider pays for power will be affected by the source of the power, the regulatory environment, the facility size and the rate concessions, if any, offered by the utility. At higher level tiers, battery, generator, and redundant power grids are a required part of the picture.

Fault tolerance and power redundancy are absolutely necessary to maintain uninterrupted data center operation. Parallel redundancy is a safeguard to ensure that an uninterruptible power supply (UPS) system is in place to provide electrical power if necessary. The UPS system can be based on batteries, saved kinetic energy, or some type of generator using diesel or another fuel. The center will operate on the UPS system with another UPS system acting as a backup power generator. If a power outage occurs, the additional UPS system power generator is available.

Many data centers require the use of independent power grids, with service provided by different utility companies or services, to prevent against loss of electrical service no matter what the cause. Some data centers have intentionally located themselves near national borders so that they can obtain redundant power from not just separate grids, but from separate geopolitical sources.

Higher redundancy levels required by a company will of invariably lead to higher prices. If one requires high availability backed by a service-level agreement (SLA), one can expect to pay more than another company with less demanding redundancy requirements.

Stay Tuned for Part 2 of The Challenges of Opening a Data Center

That’s it for part 1 of this post. In subsequent posts, we’ll take a look at some other factors to consider when moving into a data center such as network bandwidth, cooling, and security. We’ll take a look at what is involved in moving into a new data center (including stories from Backblaze’s experiences). We’ll also investigate what it takes to keep a data center running, and some of the new technologies and trends affecting data center design and use. You can discover all posts on our blog tagged with “Data Center” by following the link https://www.backblaze.com/blog/tag/data-center/.

The second part of this series on The Challenges of Opening a Data Center will be posted later this week. Use the Join button above to receive notification of future posts in this series.

The post The Challenges of Opening a Data Center — Part 1 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.