Tag Archives: www

More on My LinkedIn Account

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/08/more_on_my_link.html

I have successfully gotten the fake LinkedIn account in my name deleted. To prevent someone from doing this again, I signed up for LinkedIn. This is my first — and only — post on that account:

My Only LinkedIn Post (Yes, Really)

Welcome to my LinkedIn page. It looks empty because I’m never here. I don’t log in, I never post anything, and I won’t read any notes or comments you leave on this site. Nor will I accept any invitations or click on any “connect” links. I’m sure LinkedIn is a nice place; I just don’t have the time.

If you’re looking for me, visit my webpage at www.schneier.com. There you’ll find my blog, and just about everything I’ve written. My e-mail address is [email protected], if you want to talk to me personally.

I mirror my blog on my Facebook page (https://www.facebook.com/bruce.schneier/) and my Twitter feed (@schneierblog), but I don’t visit those, either.

Now I hear that LinkedIn is e-mailing people on my behalf, suggesting that they friend, follow, connect, or whatever they do there with me. I assure you that I have nothing to do with any of those e-mails, nor do I care what anyone does in response.

Michael Reeves and the ridiculous Subscriber Robot

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/michael-reeves-subscriber-robot/

At the beginning of his new build’s video, YouTuber Michael Reeves discusses a revelation he had about why some people don’t subscribe to his channel:

The real reason some people don’t subscribe is that when you hit this button, that’s all, that’s it, it’s done. It’s not special, it’s not enjoyable. So how do we make subscribing a fun, enjoyable process? Well, we do it by slowly chipping away at the content creator’s psyche every time someone subscribes.

His fix? The ‘fun’ interactive Subscriber Robot that is the subject of the video.

Be aware that Michael uses a couple of mild swears in this video, so maybe don’t watch it with a child.

The Subscriber Robot

Just showing that subscriber dedication My Patreon Page: https://www.patreon.com/michaelreeves Personal Site: https://michaelreeves.us/ Twitter: https://twitter.com/michaelreeves08 Song: Summer Salt – Sweet To Me

Who is Michael Reeves?

Software developer and student Michael Reeves started his YouTube account a mere four months ago, with the premiere of his robot that shines lasers into your eyes – now he has 110k+ subscribers. At only 19, Michael co-owns and manages a company together with friends, and is set on his career path in software and computing. So when he is not making videos, he works a nine-to-five job “to pay for college and, y’know, live”.

The Subscriber Robot

Michael shot to YouTube fame with the aforementioned laser robot built around an Arduino. But by now he has also be released videos for a few Raspberry Pi-based contraptions.

Michael Reeves Raspberry Pi Subscriber Robot

Michael, talking us through the details of one of the worst ideas ever made

His Subscriber Robot uses a series of Python scripts running on a Raspberry Pi to check for new subscribers to Michael’s channel via the YouTube API. When it identifies one, the Pi uses a relay to make the ceiling lights in Michael’s office flash ten times a second while ear-splitting noise is emitted by a 102-decibel-rated buzzer. Needless to say, this buzzer is not recommended for home use, work use, or any use whatsoever! Moreover, the Raspberry Pi also connects to a speaker that announces the name of the new subscriber, so Michael knows who to thank.

Michael Reeves Raspberry Pi Subscriber Robot

Subscriber Robot: EEH! EEH! EEH! MoistPretzels has subscribed.
Michael: Thank you, MoistPretzels…

Given that Michael has gained a whopping 30,000 followers in the ten days since the release of this video, it’s fair to assume he is currently curled up in a ball on the office floor, quietly crying to himself.

If you think Michael only makes videos about ridiculous builds, you’re mistaken. He also uses YouTube to provide educational content, because he believes that “it’s super important for people to teach themselves how to program”. For example, he has just released a new C# beginners tutorial, the third in the series.

Support Michael

If you’d like to help Michael in his mission to fill the world with both tutorials and ridiculous robot builds, make sure to subscribe to his channel. You can also follow him on Twitter and support him on Patreon.

You may also want to check out the Useless Duck Company and Simone Giertz if you’re in the mood for more impractical, yet highly amusing, robot builds.

Good luck with your channel, Michael! We are looking forward to, and slightly dreading, more videos from one of our favourite new YouTubers.

The post Michael Reeves and the ridiculous Subscriber Robot appeared first on Raspberry Pi.

OK Google, be aesthetically pleasing

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/aesthetically-pleasing-ok-google/

Maker Andrew Jones took a Raspberry Pi and the Google Assistant SDK and created a gorgeous-looking, and highly functional, alternative to store-bought smart speakers.

Raspberry Pi Google AI Assistant

In this video I get an “Ok Google” voice activated AI assistant running on a raspberry pi. I also hand make a nice wooden box for it to live in.

OK Google, what are you?

Google Assistant is software of the same ilk as Amazon’s Alexa, Apple’s Siri and Microsoft’s Cortana. It’s a virtual assistant that allows you to request information, play audio, and control smart home devices via voice commands.

Infinite Looping Siri, Alexa and Google Home

One can barely see the iPhone’s screen. That’s because I have a privacy protection screen. Sorry, did not check the camera angle. Learn how to create your own loop, why we put Cortana out of the loop, and how to train Siri to an artificial voice: https://www.danrl.com/2016/12/01/looping-ais-siri-alexa-google-home.html

You probably have a digital assistant on your mobile phone, and if you go to the home of someone even mildly tech-savvy, you may see a device awaiting commands via a wake word such the device’s name or, for the Google Assistant, the phrase “OK, Google”.

Homebrew versions

Understanding the maker need to ‘put tech into stuff’ and upgrade everyday objects into everyday objects 2.0, the creators of these virtual assistants have allowed access for developers to run their software on devices such as the Raspberry Pi. This means that your common-or-garden homemade robot can now be controlled via voice, and your shed-built home automation system can have easy-to-use internet connectivity via a reliable, multi-device platform.

Andrew’s Google Assistant build

Andrew gives a peerless explanation of how the Google Assistant works:

There’s Google’s Cloud. You log into Google’s Cloud and you do a bunch of cloud configuration cloud stuff. And then on the Raspberry Pi you install some Python software and you do a bunch of configuration. And then the cloud and the Pi talk the clouds kitten rainbow protocol and then you get a Google AI assistant.

It all makes perfect sense. Though for more extra detail, you could always head directly to Google.

Andrew Jones Raspberry Pi OK Google Assistant

I couldn’t have explained it better myself

Andrew decided to take his Google Assistant-enabled Raspberry Pi and create a new body for it. One that was more aesthetically pleasing than the standard Pi-inna-box. After wiring his build and cannibalising some speakers and a microphone, he created a sleek, wooden body that would sit quite comfortably in any Bang & Olufsen shop window.

Find the entire build tutorial on Instructables.

Make your own

It’s more straightforward than Andrew’s explanation suggests, we promise! And with an array of useful resources online, you should be able to incorporate your choice of virtual assistants into your build.

There’s The Raspberry Pi Guy’s tutorial on setting up Amazon Alexa on the Raspberry Pi. If you’re looking to use Siri on your Pi, YouTube has a plethora of tutorials waiting for you. And lastly, check out Microsoft’s site for using Cortana on the Pi!

If you’re looking for more information on Google Assistant, check out issue 57 of The MagPi Magazine, free to download as a PDF. The print edition of this issue came with a free AIY Projects Voice Kit, and you can sign up for The MagPi newsletter to be the first to know about the kit’s availability for purchase.

The post OK Google, be aesthetically pleasing appeared first on Raspberry Pi.

Backblaze Cloud Backup 5.0: The Rapid Access Release

Post Syndicated from Yev original https://www.backblaze.com/blog/cloud-backup-5-0-rapid-access/

Announcing Backblaze Cloud Backup 5.0: the Rapid Access Release. We’ve been at the backup game for a long time now, and we continue to focus on providing the best unlimited backup service on the planet. A lot of the features in this release have come from listening to our customers about how they want to use their data. “Rapid Access” quickly became the theme because, well, we’re all acquiring more and more data and want to access it in a myriad of ways.

This release brings a lot of new functionality to Backblaze Computer Backup: faster backups, accelerated file browsing, image preview, individual file download (without creating a “restore”), and file sharing. To top it all off, we’ve refreshed the user interface on our client app. We hope you like it!

Speeding Things Up

New code + new hardware + elbow grease = things are going to move much faster.

Faster Backups

We’ve doubled the number of threads available for backup on both Mac and PC . This gives our service the ability to intelligently detect the right settings for you (based on your computer, capacity, and bandwidth). As always, you can manually set the number of threads — keep in mind that if you have a slow internet connection, adding threads might have the opposite effect and slow you down. On its default settings, our client app will now automatically evaluate what’s best given your environment. We’ve internally tested our service backing up at over 100 Mbps, which means if you have a fast-enough internet connection, you could back up 50 GB in just one hour.

Faster Browsing

We’ve introduced a number of enhancements that increase file browsing speed by 3x. Hidden files are no longer displayed by default, but you can still show them with one click on the restore page. This gives the restore interface a cleaner look, and helps you navigate backup history if you need to roll back time.

Faster Restore Preparation

We take pride in providing a variety of ways for consumers to get their data back. When something has happened to your computer, getting your files back quickly is critical. Both web download restores and Restore by Mail will now be much faster. In some cases up to 10x faster!

Preview — Access — Share

Our system has received a number of enhancements — all intended to give you more access to your data.

Image Preview

If you have a lot of photos, this one’s for you. When you go to the restore page you’ll now be able to click on each individual file that we have backed up, and if it’s an image you’ll see a preview of that file. We hope this helps people figure out which pictures they want to download (this especially helps people with a lot of photos named something along the lines of: 2017-04-20-9783-41241.jpg). Now you can just click on the picture to preview it.


Once you’ve clicked on a file (30MB and smaller), you’ll be able to individually download that file directly in your browser. You’ll no longer need to wait for a single-file restore to be built and zipped up; you’ll be able to download it quickly and easily. This was a highly requested feature and we’re stoked to get it implemented.


We’re leveraging Backblaze B2 Cloud Storage and giving folks the ability to publicly share their files. In order to use this feature, you’ll need to enable Backblaze B2 on your account (if you haven’t already, there’s a simple wizard that will pop up the first time you try to share a file). Files can be shared anywhere in the world via URL. All B2 accounts have 10GB/month of storage and 1GB/day of downloads (equivalent to sharing an iPhone photo 1,000 times per month) for free. You can increase those limits in your B2 Settings. Keep in mind that any file you share will be accessible to anybody with the link. Learn more about File Sharing.

For now, we’ve limited the Preview/Access/Share functionality to files 30MB and smaller, but larger files will be supported in the coming weeks!

Other Goodies

In addition to adding 2FV via ToTP, we’ve also been hard at work on the client. In version 5.0 we’ve touched up the user interface to make it a bit more lively, and we’ve also made the client IPv6 compatible.

Backblaze 5.0 Available: August 10, 2017

We will slowly be auto-updating all users in the coming weeks. To update now:

This version is now the default download on www.backblaze.com.

We hope you enjoy Backblaze Cloud Backup v5.0!

The post Backblaze Cloud Backup 5.0: The Rapid Access Release appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Query name minimization

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/08/query-name-minimization.html

One new thing you need to add your DNS security policies is “query name minimizations” (RFC 7816). I thought I’d mention it since many haven’t heard about it.

Right now, when DNS resolvers lookup a name like “www.example.com.”, they send the entire name to the root server (like a.root-servers.net.). When it gets back the answer to the .com DNS server a.gtld-servers.net), it then resends the full “www.example.com” query to that server.

This is obviously unnecessary. The first query should be just .com. to the root server, then example.com. to the next server — the minimal amount needed for each query, not the full query.

The reason this is important is that everyone is listening in on root name server queries. Universities and independent researchers do this to maintain the DNS system, and to track malware. Security companies do this also to track malware, bots, command-and-control channels, and so forth. The world’s biggest spy agencies do this in order just to spy on people. Minimizing your queries prevents them from spying on you.

An example where this is important is that story of lookups from AlfaBank in Russia for “mail1.trump-emails.com”. Whatever you think of Trump, this was an improper invasion of privacy, where DNS researchers misused their privileged access in order to pursue their anti-Trump political agenda. If AlfaBank had used query name minimization, none of this would have happened.

It’s also critical for not exposing internal resources. Even when you do “split DNS”, when the .com record expires, you resolver will still forward the internal DNS record to the outside world. All those Russian hackers can map out the internal names of your network simply by eavesdropping on root server queries.

Servers that support this are Knot resolver and Unbound 1.5.7+ and possibly others. It’s a relatively new standard, so it make take a while for other DNS servers to support this.

Awesome Raspberry Pi cases to 3D print at home

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/3d-printed-raspberry-pi-cases/

Unless you’re planning to fit your Raspberry Pi inside a build, you may find yourself in need of a case to protect it from dust, damage and/or the occasional pet attack. Here are some of our favourite 3D-printed cases, for which files are available online so you can recreate them at home.


TARDIS Raspberry PI 3 case – 3D Printing Time lapse

Every Tuesday we’ll 3D print designs from the community and showcase slicer settings, use cases and of course, Time-lapses! This week: TARDIS Raspberry PI 3 case By: https://www.thingiverse.com/Jason3030 https://www.thingiverse.com/thing:2430122/ BCN3D Sigma Blue PLA 3hrs 20min X:73 Y:73 Z:165mm .4mm layer / .6mm nozzle 0% Infill / 4mm retract 230C / 0C 114G 60mm/s —————————————– Shop for parts for your own DIY projects http://adafru.it/3dprinting Download Autodesk Fusion 360 – 1 Year Free License (renew it after that for more free use!)

Since I am an avid Whovian, it’s not surprising that this case made its way onto the list. Its outside is aesthetically pleasing to the aspiring Time Lord, and it snugly fits your treasured Pi.

Pop this case on your desk and chuckle with glee every time someone asks what’s inside it:

Person: What’s that?
You: My Raspberry Pi.
Person: What’s a Raspberry Pi?
You: It’s a computer!
Person: There’s a whole computer in that tiny case?

I’ll get my coat.

Pi crust

Yes, we all wish we’d thought of it first. What better case for a Raspberry Pi than a pie crust?

3D-printed Raspberry Pi cases

While the case is designed to fit the Raspberry Pi Model B, you will be able to upgrade the build to accommodate newer models with a few tweaks.

Just make sure that if you do, you credit Marco Valenzuela, its original baker.


Since many people use the Raspberry Pi to run RetroPie, there is a growing trend of 3D-printed console-style Pi cases.

3D-printed Raspberry Pi cases

So why not pop your Raspberry Pi into a case made to look like your favourite vintage console, such as the Nintendo NES or N64?

You could also use an adapter to fit a Raspberry Pi Zero within an actual Atari cartridge, or go modern and print a PlayStation 4 case!


Maybe you’re looking to use your Raspberry Pi as a component of a larger project, such as a home automation system, learning suite, or makerspace. In that case you may need to attach it to a wall, under a desk, or behind a monitor.

3D-printed Raspberry Pi cases

Coo! Coo!

The Pidgeon, shown above, allows you to turn your Zero W into a surveillance camera, while the piPad lets you keep a breadboard attached for easy access to your Pi’s GPIO pins.

Functional cases with added brackets are great for incorporating your Pi on the sly. The VESA mount case will allow you to attach your Pi to any VESA-compatible monitor, and the Fallout 4 Terminal is just really cool.


You might want your case to just look cute, especially if it’s going to sit in full view on your desk or shelf.

3D-printed Raspberry Pi cases

The tired cube above is the only one of our featured 3D prints for which you have to buy the files ($1.30), but its adorable face begged to be shared anyway.

If you’d rather save your money for another day, you may want to check out this adorable monster from Adafruit. Be aware that this case will also need some altering to fit newer versions of the Pi.

Our cases

Finally, there are great options for you if you don’t have access to a 3D printer, or if you would like to help the Raspberry Pi Foundation’s mission. You can buy one of the official Raspberry Pi cases for the Raspberry Pi 3 and Raspberry Pi Zero (and Zero W)!

3D-printed Raspberry Pi cases

As with all official Raspberry Pi accessories (and with the Pi itself), your money goes toward helping the Foundation to put the power of digital making into the hands of people all over the world.

3D-printed Raspberry Pi cases

You could also print a replica of the official Astro Pi cases, in which two Pis are currently orbiting the earth on the International Space Station.

Design your own Raspberry Pi case!

If you’ve built a case for your Raspberry Pi, be it with a 3D printer, laser-cutter, or your bare hands, make sure to share it with us in the comments below, or via our social media channels.

And if you’d like to give 3D printing a go, there are plenty of free online learning resources, and sites that offer tutorials and software to get you started, such as TinkerCAD, Instructables, and Adafruit.

The post Awesome Raspberry Pi cases to 3D print at home appeared first on Raspberry Pi.


Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/spaceship-bunk-bed/

Many of us have created basic forts in our childhood bedrooms using pillows, sheets, and stuffed toys. Pete Dearing’s sons, meanwhile, get to play and sleep in an incredible spaceship bunk bed.

A spaceship bunk bed with functional lights, levers, buttons, and knobs.

I’m not jealous at all.

Not. At. All.

spaceship bunk bed Raspberry Pi

All the best beds have LEDs.

Building a spaceship bunk bed

Pete purchased plans for a spacecraft-shaped bunk bed online, and set out to build its MDF frame. Now, I don’t know about you, but for young me, having a bunk bed shaped like a spaceship would have been enough – tiny humans have such incredible imagination. But it wasn’t enough for Pete. He had witnessed his children’s obsession with elevator buttons, mobile phones, and the small control panel he’d made for them using switches and an old tool box. He knew he had to go big or go home.

spaceship bunk bed Raspberry Pi

While he was cutting out pieces for the bed frame, Pete asked the boys some creative input, and then adjusted the bed’s plans to include a functional cockpit and extra storage (for moon boots, spacesuits, and flags for staking claims, no doubt).

Wiring a spaceship bunk bed

After realising he hadn’t made enough allowance for the space taken up by the cockpit’s dials, levers, and switches, Pete struggled a little to fit everything in place inside the bunk bed.

spaceship bunk bed Raspberry Pi

“Ground Control to Major Sleepy…”

But it all worked out, and the results were lights, buttons, and fun aplenty. Finally, as icing on the build’s proverbial cake, Pete added sound effects, powered by a Raspberry Pi, and headsets fitted with microphones.

spaceship bunk bed Raspberry Pi

“Red Leader standing by…”

The electronics of the build run on a 12V power supply. To ensure his boys’ safety, and so that they will actually be able to sleep, Pete integrated a timer for the bed’s ‘entertainment system’.

Find more information about the spaceship bunk bed and photos of the project here.

So where do I get mine?

If you want to apply to be adopted by Pete, you can head to www.alex-is-first-in-line.com/seriously_me_first. Alternatively, you could build your own fantastic Pi-powered bed, and add lights and sounds of your choosing. How about a Yellow Submarine bed with a dashboard of Beatles songs? Or an X-Wing bed with flight and weapon controls? Oh, oh, how about a bed shaped like one of the cars from Jurassic Park, or like a Top Gun jet?

Yup…I definitely need a new bed.

While I go take measurements and get the power tools out, why not share your own ideas with us in the comments? Have you pimped your kid’s room with a Raspberry Pi (maybe like this)? Or do you have plans to incorporate lights and noise into something wonderful you’re making for a friend or relation? We want to know.

And I want a spaceship bunk bed!

The post 5…4…3…2…1…SPACESHIP BUNK BED! appeared first on Raspberry Pi.

Top 10 Most Obvious Hacks of All Time (v0.9)

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/07/top-10-most-obvious-hacks-of-all-time.html

For teaching hacking/cybersecurity, I thought I’d create of the most obvious hacks of all time. Not the best hacks, the most sophisticated hacks, or the hacks with the biggest impact, but the most obvious hacks — ones that even the least knowledgeable among us should be able to understand. Below I propose some hacks that fit this bill, though in no particular order.

The reason I’m writing this is that my niece wants me to teach her some hacking. I thought I’d start with the obvious stuff first.

Shared Passwords

If you use the same password for every website, and one of those websites gets hacked, then the hacker has your password for all your websites. The reason your Facebook account got hacked wasn’t because of anything Facebook did, but because you used the same email-address and password when creating an account on “beagleforums.com”, which got hacked last year.

I’ve heard people say “I’m sure, because I choose a complex password and use it everywhere”. No, this is the very worst thing you can do. Sure, you can the use the same password on all sites you don’t care much about, but for Facebook, your email account, and your bank, you should have a unique password, so that when other sites get hacked, your important sites are secure.

And yes, it’s okay to write down your passwords on paper.

Tools: HaveIBeenPwned.com

PIN encrypted PDFs

My accountant emails PDF statements encrypted with the last 4 digits of my Social Security Number. This is not encryption — a 4 digit number has only 10,000 combinations, and a hacker can guess all of them in seconds.
PIN numbers for ATM cards work because ATM machines are online, and the machine can reject your card after four guesses. PIN numbers don’t work for documents, because they are offline — the hacker has a copy of the document on their own machine, disconnected from the Internet, and can continue making bad guesses with no restrictions.
Passwords protecting documents must be long enough that even trillion upon trillion guesses are insufficient to guess.

Tools: Hashcat, John the Ripper

SQL and other injection

The lazy way of combining websites with databases is to combine user input with an SQL statement. This combines code with data, so the obvious consequence is that hackers can craft data to mess with the code.
No, this isn’t obvious to the general public, but it should be obvious to programmers. The moment you write code that adds unfiltered user-input to an SQL statement, the consequence should be obvious. Yet, “SQL injection” has remained one of the most effective hacks for the last 15 years because somehow programmers don’t understand the consequence.
CGI shell injection is a similar issue. Back in early days, when “CGI scripts” were a thing, it was really important, but these days, not so much, so I just included it with SQL. The consequence of executing shell code should’ve been obvious, but weirdly, it wasn’t. The IT guy at the company I worked for back in the late 1990s came to me and asked “this guy says we have a vulnerability, is he full of shit?”, and I had to answer “no, he’s right — obviously so”.

XSS (“Cross Site Scripting”) [*] is another injection issue, but this time at somebody’s web browser rather than a server. It works because websites will echo back what is sent to them. For example, if you search for Cross Site Scripting with the URL https://www.google.com/search?q=cross+site+scripting, then you’ll get a page back from the server that contains that string. If the string is JavaScript code rather than text, then some servers (thought not Google) send back the code in the page in a way that it’ll be executed. This is most often used to hack somebody’s account: you send them an email or tweet a link, and when they click on it, the JavaScript gives control of the account to the hacker.

Cross site injection issues like this should probably be their own category, but I’m including it here for now.

More: Wikipedia on SQL injection, Wikipedia on cross site scripting.
Tools: Burpsuite, SQLmap

Buffer overflows

In the C programming language, programmers first create a buffer, then read input into it. If input is long than the buffer, then it overflows. The extra bytes overwrite other parts of the program, letting the hacker run code.
Again, it’s not a thing the general public is expected to know about, but is instead something C programmers should be expected to understand. They should know that it’s up to them to check the length and stop reading input before it overflows the buffer, that there’s no language feature that takes care of this for them.
We are three decades after the first major buffer overflow exploits, so there is no excuse for C programmers not to understand this issue.

What makes particular obvious is the way they are wrapped in exploits, like in Metasploit. While the bug itself is obvious that it’s a bug, actually exploiting it can take some very non-obvious skill. However, once that exploit is written, any trained monkey can press a button and run the exploit. That’s where we get the insult “script kiddie” from — referring to wannabe-hackers who never learn enough to write their own exploits, but who spend a lot of time running the exploit scripts written by better hackers than they.

More: Wikipedia on buffer overflow, Wikipedia on script kiddie,  “Smashing The Stack For Fun And Profit” — Phrack (1996)
Tools: bash, Metasploit

SendMail DEBUG command (historical)

The first popular email server in the 1980s was called “SendMail”. It had a feature whereby if you send a “DEBUG” command to it, it would execute any code following the command. The consequence of this was obvious — hackers could (and did) upload code to take control of the server. This was used in the Morris Worm of 1988. Most Internet machines of the day ran SendMail, so the worm spread fast infecting most machines.
This bug was mostly ignored at the time. It was thought of as a theoretical problem, that might only rarely be used to hack a system. Part of the motivation of the Morris Worm was to demonstrate that such problems was to demonstrate the consequences — consequences that should’ve been obvious but somehow were rejected by everyone.

More: Wikipedia on Morris Worm

Email Attachments/Links

I’m conflicted whether I should add this or not, because here’s the deal: you are supposed to click on attachments and links within emails. That’s what they are there for. The difference between good and bad attachments/links is not obvious. Indeed, easy-to-use email systems makes detecting the difference harder.
On the other hand, the consequences of bad attachments/links is obvious. That worms like ILOVEYOU spread so easily is because people trusted attachments coming from their friends, and ran them.
We have no solution to the problem of bad email attachments and links. Viruses and phishing are pervasive problems. Yet, we know why they exist.

Default and backdoor passwords

The Mirai botnet was caused by surveillance-cameras having default and backdoor passwords, and being exposed to the Internet without a firewall. The consequence should be obvious: people will discover the passwords and use them to take control of the bots.
Surveillance-cameras have the problem that they are usually exposed to the public, and can’t be reached without a ladder — often a really tall ladder. Therefore, you don’t want a button consumers can press to reset to factory defaults. You want a remote way to reset them. Therefore, they put backdoor passwords to do the reset. Such passwords are easy for hackers to reverse-engineer, and hence, take control of millions of cameras across the Internet.
The same reasoning applies to “default” passwords. Many users will not change the defaults, leaving a ton of devices hackers can hack.

Masscan and background radiation of the Internet

I’ve written a tool that can easily scan the entire Internet in a short period of time. It surprises people that this possible, but it obvious from the numbers. Internet addresses are only 32-bits long, or roughly 4 billion combinations. A fast Internet link can easily handle 1 million packets-per-second, so the entire Internet can be scanned in 4000 seconds, little more than an hour. It’s basic math.
Because it’s so easy, many people do it. If you monitor your Internet link, you’ll see a steady trickle of packets coming in from all over the Internet, especially Russia and China, from hackers scanning the Internet for things they can hack.
People’s reaction to this scanning is weirdly emotional, taking is personally, such as:
  1. Why are they hacking me? What did I do to them?
  2. Great! They are hacking me! That must mean I’m important!
  3. Grrr! How dare they?! How can I hack them back for some retribution!?

I find this odd, because obviously such scanning isn’t personal, the hackers have no idea who you are.

Tools: masscan, firewalls

Packet-sniffing, sidejacking

If you connect to the Starbucks WiFi, a hacker nearby can easily eavesdrop on your network traffic, because it’s not encrypted. Windows even warns you about this, in case you weren’t sure.

At DefCon, they have a “Wall of Sheep”, where they show passwords from people who logged onto stuff using the insecure “DefCon-Open” network. Calling them “sheep” for not grasping this basic fact that unencrypted traffic is unencrypted.

To be fair, it’s actually non-obvious to many people. Even if the WiFi itself is not encrypted, SSL traffic is. They expect their services to be encrypted, without them having to worry about it. And in fact, most are, especially Google, Facebook, Twitter, Apple, and other major services that won’t allow you to log in anymore without encryption.

But many services (especially old ones) may not be encrypted. Unless users check and verify them carefully, they’ll happily expose passwords.

What’s interesting about this was 10 years ago, when most services which only used SSL to encrypt the passwords, but then used unencrypted connections after that, using “cookies”. This allowed the cookies to be sniffed and stolen, allowing other people to share the login session. I used this on stage at BlackHat to connect to somebody’s GMail session. Google, and other major websites, fixed this soon after. But it should never have been a problem — because the sidejacking of cookies should have been obvious.

Tools: Wireshark, dsniff

Stuxnet LNK vulnerability

Again, this issue isn’t obvious to the public, but it should’ve been obvious to anybody who knew how Windows works.
When Windows loads a .dll, it first calls the function DllMain(). A Windows link file (.lnk) can load icons/graphics from the resources in a .dll file. It does this by loading the .dll file, thus calling DllMain. Thus, a hacker could put on a USB drive a .lnk file pointing to a .dll file, and thus, cause arbitrary code execution as soon as a user inserted a drive.
I say this is obvious because I did this, created .lnks that pointed to .dlls, but without hostile DllMain code. The consequence should’ve been obvious to me, but I totally missed the connection. We all missed the connection, for decades.

Social Engineering and Tech Support [* * *]

After posting this, many people have pointed out “social engineering”, especially of “tech support”. This probably should be up near #1 in terms of obviousness.

The classic example of social engineering is when you call tech support and tell them you’ve lost your password, and they reset it for you with minimum of questions proving who you are. For example, you set the volume on your computer really loud and play the sound of a crying baby in the background and appear to be a bit frazzled and incoherent, which explains why you aren’t answering the questions they are asking. They, understanding your predicament as a new parent, will go the extra mile in helping you, resetting “your” password.

One of the interesting consequences is how it affects domain names (DNS). It’s quite easy in many cases to call up the registrar and convince them to transfer a domain name. This has been used in lots of hacks. It’s really hard to defend against. If a registrar charges only $9/year for a domain name, then it really can’t afford to provide very good tech support — or very secure tech support — to prevent this sort of hack.

Social engineering is such a huge problem, and obvious problem, that it’s outside the scope of this document. Just google it to find example after example.

A related issue that perhaps deserves it’s own section is OSINT [*], or “open-source intelligence”, where you gather public information about a target. For example, on the day the bank manager is out on vacation (which you got from their Facebook post) you show up and claim to be a bank auditor, and are shown into their office where you grab their backup tapes. (We’ve actually done this).

More: Wikipedia on Social Engineering, Wikipedia on OSINT, “How I Won the Defcon Social Engineering CTF” — blogpost (2011), “Questioning 42: Where’s the Engineering in Social Engineering of Namespace Compromises” — BSidesLV talk (2016)

Blue-boxes (historical) [*]

Telephones historically used what we call “in-band signaling”. That’s why when you dial on an old phone, it makes sounds — those sounds are sent no differently than the way your voice is sent. Thus, it was possible to make tone generators to do things other than simply dial calls. Early hackers (in the 1970s) would make tone-generators called “blue-boxes” and “black-boxes” to make free long distance calls, for example.

These days, “signaling” and “voice” are digitized, then sent as separate channels or “bands”. This is call “out-of-band signaling”. You can’t trick the phone system by generating tones. When your iPhone makes sounds when you dial, it’s entirely for you benefit and has nothing to do with how it signals the cell tower to make a call.

Early hackers, like the founders of Apple, are famous for having started their careers making such “boxes” for tricking the phone system. The problem was obvious back in the day, which is why as the phone system moves from analog to digital, the problem was fixed.

More: Wikipedia on blue box, Wikipedia article on Steve Wozniak.

Thumb drives in parking lots [*]

A simple trick is to put a virus on a USB flash drive, and drop it in a parking lot. Somebody is bound to notice it, stick it in their computer, and open the file.

This can be extended with tricks. For example, you can put a file labeled “third-quarter-salaries.xlsx” on the drive that required macros to be run in order to open. It’s irresistible to other employees who want to know what their peers are being paid, so they’ll bypass any warning prompts in order to see the data.

Another example is to go online and get custom USB sticks made printed with the logo of the target company, making them seem more trustworthy.

We also did a trick of taking an Adobe Flash game “Punch the Monkey” and replaced the monkey with a logo of a competitor of our target. They now only played the game (infecting themselves with our virus), but gave to others inside the company to play, infecting others, including the CEO.

Thumb drives like this have been used in many incidents, such as Russians hacking military headquarters in Afghanistan. It’s really hard to defend against.

More: “Computer Virus Hits U.S. Military Base in Afghanistan” — USNews (2008), “The Return of the Worm That Ate The Pentagon” — Wired (2011), DoD Bans Flash Drives — Stripes (2008)

Googling [*]

Search engines like Google will index your website — your entire website. Frequently companies put things on their website without much protection because they are nearly impossible for users to find. But Google finds them, then indexes them, causing them to pop up with innocent searches.
There are books written on “Google hacking” explaining what search terms to look for, like “not for public release”, in order to find such documents.

More: Wikipedia entry on Google Hacking, “Google Hacking” book.

URL editing [*]

At the top of every browser is what’s called the “URL”. You can change it. Thus, if you see a URL that looks like this:


Then you can edit it to see the next document on the server:


The owner of the website may think they are secure, because nothing points to this document, so the Google search won’t find it. But that doesn’t stop a user from manually editing the URL.
An example of this is a big Fortune 500 company that posts the quarterly results to the website an hour before the official announcement. Simply editing the URL from previous financial announcements allows hackers to find the document, then buy/sell the stock as appropriate in order to make a lot of money.
Another example is the classic case of Andrew “Weev” Auernheimer who did this trick in order to download the account email addresses of early owners of the iPad, including movie stars and members of the Obama administration. It’s an interesting legal case because on one hand, techies consider this so obvious as to not be “hacking”. On the other hand, non-techies, especially judges and prosecutors, believe this to be obviously “hacking”.

DDoS, spoofing, and amplification [*]

For decades now, online gamers have figured out an easy way to win: just flood the opponent with Internet traffic, slowing their network connection. This is called a DoS, which stands for “Denial of Service”. DoSing game competitors is often a teenager’s first foray into hacking.
A variant of this is when you hack a bunch of other machines on the Internet, then command them to flood your target. (The hacked machines are often called a “botnet”, a network of robot computers). This is called DDoS, or “Distributed DoS”. At this point, it gets quite serious, as instead of competitive gamers hackers can take down entire businesses. Extortion scams, DDoSing websites then demanding payment to stop, is a common way hackers earn money.
Another form of DDoS is “amplification”. Sometimes when you send a packet to a machine on the Internet it’ll respond with a much larger response, either a very large packet or many packets. The hacker can then send a packet to many of these sites, “spoofing” or forging the IP address of the victim. This causes all those sites to then flood the victim with traffic. Thus, with a small amount of outbound traffic, the hacker can flood the inbound traffic of the victim.
This is one of those things that has worked for 20 years, because it’s so obvious teenagers can do it, yet there is no obvious solution. President Trump’s executive order of cyberspace specifically demanded that his government come up with a report on how to address this, but it’s unlikely that they’ll come up with any useful strategy.

More: Wikipedia on DDoS, Wikipedia on Spoofing


Tweet me (@ErrataRob) your obvious hacks, so I can add them to the list.

Break a world record with Moonhack 2017

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/moonhack-2017/

The team at Code Club Australia set a world record last year by gathering 10,207 Australian kids together to participate in their coding event Moonhack. But they are not going to rest on their laurels: this year, they’ve set their sights even higher with their event on 15 August.

Moonhack Code Club Australia

What is Moonhack?

In honour of the Apollo 11 landing, Code Club Australia created a series of space-themed coding activities for their Moonhack event in July 2016. Their aim? To bring together as many kids as possible from all over Australia, to get them to code and have fun, and to hopefully establish a world record along the way.

Code Club Australia #MoonHack

Watch the Sunrise coverage of Code Club Australia World Record ‪#‎Moonhack‬ event – Launching Wed 20th July 2016 18:00 AEST – Register Now: www.moonhack.com.au

And they did exactly that! 10,207 kids completed Moonhack projects, which constitutes the largest number of children coding on one day ever recorded.

Moonhack 2017

With the success of the 2016 event spurring them on, the Code Club Australia team have scaled up their efforts this year. By opening Moonhack to kids across the globe, they want to spread enthusiasm for coding everywhere. And why not break their own world record in the process? Every kid in the world can take part in the event, as the website explains:

“Moonhack is for everyone. Moonhack is inclusive, not exclusive, because coding is for everyone, no matter their skill level or age – kids new to code, coding whizz kids, and anyone who wants to try out coding for the first time, or coding pros who want to get creative.”

Participants between the ages of 8 and 18 are invited to form teams and create their own space-themed project – or use one of the provided examples in Scratch, ScratchJr, or Python. If you’re outside the age range, don’t worry – you can still take part, but your project won’t be counted toward the world record attempt.

Moonhack Code Club Australia

The sky is no longer the limit…

Participating teams submit their complete project to the Moonhack website as a link, screenshot, or file upload. All successful participants will receive a certificate to print and hang proudly on their wall. Woohoo!

How do we take part?

Teams will need to be registered on the website by a facilitator. Registering will give the facilitator access to a whole host of helpful tips for how to help their team out. Then, on Moonhack day, 15 August, the facilitator can upload the team’s completed project. If you can’t host an event for your team on 15 August, don’t worry – simply get the kids to complete the project beforehand. For more information go to the Moonhack website, where you can also find coding projects in several human and programming languages.

So what are you waiting for? Get together with the code-loving young people in your life, put your thinking hats on, get programming, and have the chance to set a new world record!

The post Break a world record with Moonhack 2017 appeared first on Raspberry Pi.

Run Common Data Science Packages on Anaconda and Oozie with Amazon EMR

Post Syndicated from John Ohle original https://aws.amazon.com/blogs/big-data/run-common-data-science-packages-on-anaconda-and-oozie-with-amazon-emr/

In the world of data science, users must often sacrifice cluster set-up time to allow for complex usability scenarios. Amazon EMR allows data scientists to spin up complex cluster configurations easily, and to be up and running with complex queries in a matter of minutes.

Data scientists often use scheduling applications such as Oozie to run jobs overnight. However, Oozie can be difficult to configure when you are trying to use popular Python packages (such as “pandas,” “numpy,” and “statsmodels”), which are not included by default.

One such popular platform that contains these types of packages (and more) is Anaconda. This post focuses on setting up an Anaconda platform on EMR, with an intent to use its packages with Oozie. I describe how to run jobs using a popular open source scheduler like Oozie.


For this post, you walk through the following tasks:

  • Create an EMR cluster.
  • Download Anaconda on your master node.
  • Configure Oozie.
  • Test the steps.

Create an EMR cluster

Spin up an Amazon EMR cluster using the console or the AWS CLI. Use the latest release, and include Apache Hadoop, Apache Spark, Apache Hive, and Oozie.

To create a three-node cluster in the us-east-1 region, issue an AWS CLI command such as the following. This command must be typed as one line, as shown below. It is shown here separated for readability purposes only.

aws emr create-cluster \ 
--release-label emr-5.7.0 \ 
 --name '<YOUR-CLUSTER-NAME>' \
 --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive \ 
 --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' \ 
 --use-default-roles \ 
 --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

One-line version for reference:

aws emr create-cluster --release-label emr-5.7.0 --name '<YOUR-CLUSTER-NAME>' --applications Name=Hadoop Name=Oozie Name=Spark Name=Hive --ec2-attributes '{"KeyName":"<YOUR-KEY-PAIR>","SubnetId":"<YOUR-SUBNET-ID>","EmrManagedSlaveSecurityGroup":"<YOUR-EMR-SLAVE-SECURITY-GROUP>","EmrManagedMasterSecurityGroup":"<YOUR-EMR-MASTER-SECURITY-GROUP>"}' --use-default-roles --instance-groups '[{"InstanceCount":1,"InstanceGroupType":"MASTER","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Master - 1"},{"InstanceCount":<YOUR-CORE-INSTANCE-COUNT>,"InstanceGroupType":"CORE","InstanceType":"<YOUR-INSTANCE-TYPE>","Name":"Core - 2"}]'

Download Anaconda

SSH into your EMR master node instance and download the official Anaconda installer:

wget https://repo.continuum.io/archive/Anaconda2-4.4.0-Linux-x86_64.sh

At the time of publication, Anaconda 4.4 is the most current version available. For the download link location for the latest Python 2.7 version (Python 3.6 may encounter issues), see https://www.continuum.io/downloads.  Open the context (right-click) menu for the Python 2.7 download link, choose Copy Link Location, and use this value in the previous wget command.

This post used the Anaconda 4.4 installation. If you have a later version, it is shown in the downloaded filename:  “anaconda2-<version number>-Linux-x86_64.sh”.

Run this downloaded script and follow the on-screen installer prompts.

chmod u+x Anaconda2-4.4.0-Linux-x86_64.sh

For an installation directory, select somewhere with enough space on your cluster, such as “/mnt/anaconda/”.

The process should take approximately 1–2 minutes to install. When prompted if you “wish the installer to prepend the Anaconda2 install location”, select the default option of [no].

After you are done, export the PATH to include this new Anaconda installation:

export PATH=/mnt/anaconda/bin:$PATH

Zip up the Anaconda installation:

cd /mnt/anaconda/
zip -r anaconda.zip .

The zip process may take 4–5 minutes to complete.

(Optional) Upload this anaconda.zip file to your S3 bucket for easier inclusion into future EMR clusters. This removes the need to repeat the previous steps for future EMR clusters.

Configure Oozie

Next, you configure Oozie to use Pyspark and the Anaconda platform.

Get the location of your Oozie sharelibupdate folder. Issue the following command and take note of the “sharelibDirNew” value:

oozie admin -sharelibupdate

For this post, this value is “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136”.

Pass in the required Pyspark files into Oozies sharelibupdate location. The following files are required for Oozie to be able to run Pyspark commands:

  • pyspark.zip
  • py4j-0.10.4-src.zip

These are located on the EMR master instance in the location “/usr/lib/spark/python/lib/”, and must be put into the Oozie sharelib spark directory. This location is the value of the sharelibDirNew parameter value (shown above) with “/spark/” appended, that is, “hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/”.

To do this, issue the following commands:

hdfs dfs -put /usr/lib/spark/python/lib/py4j-0.10.4-src.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/
hdfs dfs -put /usr/lib/spark/python/lib/pyspark.zip hdfs://ip-192-168-4-200.us-east-1.compute.internal:8020/user/oozie/share/lib/lib_20170616133136/spark/

After you’re done, Oozie can use Pyspark in its processes.

Pass the anaconda.zip file into HDFS as follows:

hdfs dfs -put /mnt/anaconda/anaconda.zip /tmp/myLocation/anaconda.zip

(Optional) Verify that it was transferred successfully with the following command:

hdfs dfs -ls /tmp/myLocation/

On your master node, execute the following command:

export PYSPARK_PYTHON=/mnt/anaconda/bin/python

Set the PYSPARK_PYTHON environment variable on the executor nodes. Put the following configurations in your “spark-opts” values in your Oozie workflow.xml file:

–conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
–conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python

This is referenced from the Oozie job in the following line in your workflow.xml file, also included as part of your “spark-opts”:

--archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote

Your Oozie workflow.xml file should now look something like the following:

<workflow-app name="spark-wf" xmlns="uri:oozie:workflow:0.5">
<start to="start_spark" />
<action name="start_spark">
    <spark xmlns="uri:oozie:spark-action:0.1">
            <delete path="/tmp/test/spark_oozie_test_out3"/>
        <spark-opts>--queue default
            --conf spark.ui.view.acls=*
            --executor-memory 2G --num-executors 2 --executor-cores 2 --driver-memory 3g
            --conf spark.executorEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --conf spark.yarn.appMasterEnv.PYSPARK_PYTHON=./anaconda_remote/bin/python
            --archives hdfs:///tmp/myLocation/anaconda.zip#anaconda_remote
    <ok to="end"/>
    <error to="kill"/>
        <kill name="kill">
                <message>Action failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
        <end name="end"/>

Test steps

To test this out, you can use the following job.properties and myPysparkProgram.py file, along with the following steps:


masterNode ip-xxx-xxx-xxx-xxx.us-east-1.compute.internal
nameNode hdfs://${masterNode}:8020
jobTracker ${masterNode}:8032
master yarn
mode cluster
queueName default
oozie.libpath ${nameNode}/user/oozie/share/lib
oozie.use.system.libpath true
oozie.wf.application.path ${nameNode}/user/oozie/apps/

Note: You can get your master node IP address (denoted as “ip-xxx-xxx-xxx-xxx” here) from the value for the sharelibDirNew parameter noted earlier.


from pyspark import SparkContext, SparkConf
import numpy
import sys

conf = SparkConf().setAppName('myPysparkProgram')
sc = SparkContext(conf=conf)

rdd = sc.textFile("/user/hadoop/input.txt")

x = numpy.sum([3,4,5]) #total = 12

rdd = rdd.map(lambda line: line + str(x))

Put the “myPysparkProgram.py” into the location mentioned between the “<jar>xxxxx</jar>” tags in your workflow.xml. In this example, the location is “hdfs:///user/oozie/apps/”. Use the following command to move the “myPysparkProgram.py” file to the correct location:

hdfs dfs -put myPysparkProgram.py /user/oozie/apps/

Put the above workflow.xml file into the “/user/oozie/apps/” location in hdfs:

hdfs dfs –put workflow.xml /user/oozie/apps/

Note: The job.properties file is run locally from the EMR master node.

Create a sample input.txt file with some data in it. For example:


This is a sentence.
So is this. 
This is also a sentence.

Put this file into hdfs:

hdfs dfs -put input.txt /user/hadoop/

Execute the job in Oozie with the following command. This creates an Oozie job ID.

oozie job -config job.properties -run

You can check the Oozie job state with the command:

oozie job -info <Oozie job ID>

  1. When the job is successfully finished, the results are located at:

  1. Run the following commands to view the output:
hdfs dfs -cat /user/hadoop/output/part-00000
hdfs dfs -cat /user/hadoop/output/part-00001

The output will be:

This is a sentence. 12
So is this 12
This is also a sentence 12


The myPysparkProgram.py has successfully imported the numpy library from the Anaconda platform and has produced some output with it. If you tried to run this using standard Python, you’d encounter the following error:

Now when your Python job runs in Oozie, any imported packages that are implicitly imported by your Pyspark script are imported into your job within Oozie directly from the Anaconda platform. Simple!

If you have questions or suggestions, please leave a comment below.

Additional Reading

Learn how to use Apache Oozie workflows to automate Apache Spark jobs on Amazon EMR.


About the Author

John Ohle is an AWS BigData Cloud Support Engineer II for the BigData team in Dublin. He works to provide advice and solutions to our customers on their Big Data projects and workflows on AWS. In his spare time, he likes to play music, learn, develop tools and write documentation to further help others – both colleagues and customers alike.




FossHub Forced to Pull Google Ads From qBitTorrent Downloads

Post Syndicated from Andy original https://torrentfreak.com/fosshub-forced-to-pull-google-ads-from-qbittorrent-downloads-170721/

There are no shortage of sites on the Internet that promise free software downloads but few do so with no strings attached. Thousands bundle adware and worse with ‘free’ software, while others bombard visitors with ads.

FossHub, on the other hand, does things very differently.

FossHub only offers free software, with no adware, spyware or malware attached. It doesn’t bombard users with advertising either. In fact, its download pages only have a single ad at the top. Well, that’s the plan at least but when it comes to BitTorrent software, things haven’t been so straightforward recently.

The problem centered around qBitTorrent, the free and open-source torrent client developed as an alternative to µTorrent. FossHub makes the client available in its file-sharing section and as the image below shows, has racked up close to 18 million downloads.

Previously, when people viewed the qBitTorrent page, they were presented with a single advert, courtesy of Google. However, a couple of months ago the guys at FossHub contacted the people behind the client to say they’d had problems with AdSense persistently flagging the qBitTorrent page as “unauthorized file sharing.”

“The consequence was that it stopped generating revenue for that page for FossHub,” a member of the qBitTorrent team explains.

TorrentFreak spoke with Sam at FossHub who provided more details.

“FossHub has hosted qBittorrent and other free projects binaries for almost a decade. For qBitorrent, we hosted its files for at least three years by now. We provide all the necessary bandwidth and other things that the project might need,” Sam said.

“It was not a problem for the last three years to show the single Google Adsense ad until the beginning of last month (June 2017) when we noticed a Policy violation message appearing under our account.

“Since we didn’t have any major issues with our account, we thought it must be a false positive. We tried to get in touch with Google AdSense team, but unfortunately, we received some (at least that what we think) standard canned responses.”

Sam says that FossHub wrote to Google AdSense support several times but never got to the bottom of the problem. Then, something catastrophic happened.

During June, presumably due to the problems with the qBitTorrent page, the entire FossHub site was banned by AdSense for seven days, thereby stopping the site from generating any revenue on any of the software offered.

“We wrote on a daily basis and attempted to request another review, but there was no human so that we can talk and try to obtain an answer,” Sam explained.

In the absence of any feedback, FossHub then took the decision to stop placing ads on any of the software available in its file-sharing section, despite none of the tools being illegal or infringing anyone’s copyrights. In a follow-up post on Reddit this week, FossHub underlined that fact.

“qBitorrent and other similar apps are legit software. You are responsible for what you choose to download and share,” a representative from the site wrote.

“Many free projects and sites publish their files via .torrent files. Just an excellent example of how qBitorrent and other similar clients can help you download files and allow GIMP project to save bandwidth: https://www.gimp.org/downloads/.”

The qBitTorrent team say they have made this matter public out of “frustration and protest”, not only due to the legality of file-sharing software but also in support of FossHub, who have helped qBitTorrent many times over the years.

“I keep wondering why the multitude of other unofficial sites, which are very popular and place ads on their qBittorrent pages too, aren’t being flagged too?” a member of the team responded.

“In any case, I am writing this to inform our user base about Google’s shenanigans. And if any of you works at AdSense, then please help FossHub talk to a real person or treat all sites fair by allowing or not allowing BitTorrent clients.”

Whether Google will take the opportunity to clarify the situation remains to be seen but it’s abundantly clear that the qBitTorrent software is not only entirely legal, it’s also one of the most respected torrent clients around.

“Despite this unpleasant incident we will support and help free projects such as qBitorrent as much as we can,” FossHub concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.

Deploying Java Microservices on Amazon EC2 Container Service

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/deploying-java-microservices-on-amazon-ec2-container-service/

This post and accompanying code graciously contributed by:

Huy Huynh
Sr. Solutions Architect
Magnus Bjorkman
Solutions Architect

Java is a popular language used by many enterprises today. To simplify and accelerate Java application development, many companies are moving from a monolithic to microservices architecture. For some, it has become a strategic imperative. Containerization technology, such as Docker, lets enterprises build scalable, robust microservice architectures without major code rewrites.

In this post, I cover how to containerize a monolithic Java application to run on Docker. Then, I show how to deploy it on AWS using Amazon EC2 Container Service (Amazon ECS), a high-performance container management service. Finally, I show how to break the monolith into multiple services, all running in containers on Amazon ECS.

Application Architecture

For this example, I use the Spring Pet Clinic, a monolithic Java application for managing a veterinary practice. It is a simple REST API, which allows the client to manage and view Owners, Pets, Vets, and Visits.

It is a simple three-tier architecture:

  • Client
    You simulate this by using curl commands.
  • Web/app server
    This is the Java and Spring-based application that you run using the embedded Tomcat. As part of this post, you run this within Docker containers.
  • Database server
    This is the relational database for your application that stores information about owners, pets, vets, and visits. For this post, use MySQL RDS.

I decided to not put the database inside a container as containers were designed for applications and are transient in nature. The choice was made even easier because you have a fully managed database service available with Amazon RDS.

RDS manages the work involved in setting up a relational database, from provisioning the infrastructure capacity that you request to installing the database software. After your database is up and running, RDS automates common administrative tasks, such as performing backups and patching the software that powers your database. With optional Multi-AZ deployments, Amazon RDS also manages synchronous data replication across Availability Zones with automatic failover.


You can find the code for the example covered in this post at amazon-ecs-java-microservices on GitHub.


You need the following to walk through this solution:

  • An AWS account
  • An access key and secret key for a user in the account
  • The AWS CLI installed

Also, install the latest versions of the following:

  • Java
  • Maven
  • Python
  • Docker

Step 1: Move the existing Java Spring application to a container deployed using Amazon ECS

First, move the existing monolith application to a container and deploy it using Amazon ECS. This is a great first step before breaking the monolith apart because you still get some benefits before breaking apart the monolith:

  • An improved pipeline. The container also allows an engineering organization to create a standard pipeline for the application lifecycle.
  • No mutations to machines.

You can find the monolith example at 1_ECS_Java_Spring_PetClinic.

Container deployment overview

The following diagram is an overview of what the setup looks like for Amazon ECS and related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The load balancer that distributes requests across all available ports and instances registered in the application’s target group using round-robin.
  • The target group that is updated by Amazon ECS to always have an up-to-date list of all the service containers in the cluster. This includes the port on which they are accessible.
  • One Amazon ECS cluster that hosts the container for the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Each container has a single application process that is bound to port 8080 within its namespace. In reality, all the containers are exposed on a different, randomly assigned port on the host.

The architecture is containerized but still monolithic because each container has all the same features of the rest of the containers

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon EC2 Container Registry (Amazon ECR) repository for the application.
  • A service/task definition that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers, so that the application can connect to the MySQL RDS instance.

I have automated setup with the 1_ECS_Java_Spring_PetClinic/ecs-cluster.cf AWS CloudFormation template and a Python script.

The Python script calls the CloudFormation template for the initial setup of the VPC, Amazon ECS cluster, and RDS instance. It then extracts the outputs from the template and uses those for API calls to create Amazon ECR repositories, tasks, services, Application Load Balancer, and target groups.

Environment variables and Spring properties binding

As part of the Python script, you pass in a number of environment variables to the container as part of the task/container definition:

'environment': [
'value': 'mysql'
'value': my_sql_options['dns_name']
'value': my_sql_options['username']
'value': my_sql_options['password']

The preceding environment variables work in concert with the Spring property system. The value in the variable SPRING_PROFILES_ACTIVE, makes Spring use the MySQL version of the application property file. The other environment files override the following properties in that file:

  • spring.datasource.url
  • spring.datasource.username
  • spring.datasource.password

Optionally, you can also encrypt sensitive values by using Amazon EC2 Systems Manager Parameter Store. Instead of handing in the password, you pass in a reference to the parameter and fetch the value as part of the container startup. For more information, see Managing Secrets for Amazon ECS Applications Using Parameter Store and IAM Roles for Tasks.

Spotify Docker Maven plugin

Use the Spotify Docker Maven plugin to create the image and push it directly to Amazon ECR. This allows you to do this as part of the regular Maven build. It also integrates the image generation as part of the overall build process. Use an explicit Dockerfile as input to the plugin.

FROM frolvlad/alpine-oraclejdk8:slim
ADD spring-petclinic-rest-1.7.jar app.jar
RUN sh -c 'touch /app.jar'
ENTRYPOINT [ "sh", "-c", "java $JAVA_OPTS -Djava.security.egd=file:/dev/./urandom -jar /app.jar" ]

The Python script discussed earlier uses the AWS CLI to authenticate you with AWS. The script places the token in the appropriate location so that the plugin can work directly against the Amazon ECR repository.

Test setup

You can test the setup by running the Python script:
python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:
curl <your endpoint from output above>/owner

You can clean this up before going to the next section:
python setup.py -m cleanup -r <your region>

Step 2: Converting the monolith into microservices running on Amazon ECS

The second step is to convert the monolith into microservices. For a real application, you would likely not do this as one step, but re-architect an application piece by piece. You would continue to run your monolith but it would keep getting smaller for each piece that you are breaking apart.

By migrating microservices, you would get four benefits associated with microservices:

  • Isolation of crashes
    If one microservice in your application is crashing, then only that part of your application goes down. The rest of your application continues to work properly.
  • Isolation of security
    When microservice best practices are followed, the result is that if an attacker compromises one service, they only gain access to the resources of that service. They can’t horizontally access other resources from other services without breaking into those services as well.
  • Independent scaling
    When features are broken out into microservices, then the amount of infrastructure and number of instances of each microservice class can be scaled up and down independently.
  • Development velocity
    In a monolith, adding a new feature can potentially impact every other feature that the monolith contains. On the other hand, a proper microservice architecture has new code for a new feature going into a new service. You can be confident that any code you write won’t impact the existing code at all, unless you explicitly write a connection between two microservices.

Find the monolith example at 2_ECS_Java_Spring_PetClinic_Microservices.
You break apart the Spring Pet Clinic application by creating a microservice for each REST API operation, as well as creating one for the system services.

Java code changes

Comparing the project structure between the monolith and the microservices version, you can see that each service is now its own separate build.
First, the monolith version:

You can clearly see how each API operation is its own subpackage under the org.springframework.samples.petclinic package, all part of the same monolithic application.
This changes as you break it apart in the microservices version:

Now, each API operation is its own separate build, which you can build independently and deploy. You have also duplicated some code across the different microservices, such as the classes under the model subpackage. This is intentional as you don’t want to introduce artificial dependencies among the microservices and allow these to evolve differently for each microservice.

Also, make the dependencies among the API operations more loosely coupled. In the monolithic version, the components are tightly coupled and use object-based invocation.

Here is an example of this from the OwnerController operation, where the class is directly calling PetRepository to get information about pets. PetRepository is the Repository class (Spring data access layer) to the Pet table in the RDS instance for the Pet API:

class OwnerController {

    private PetRepository pets;
    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> visitList.addAll(pet.getVisits()));
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);

In the microservice version, call the Pet API operation and not PetRepository directly. Decouple the components by using interprocess communication; in this case, the Rest API. This provides for fault tolerance and disposability.

class OwnerController {

    @Value("#{environment['SERVICE_ENDPOINT'] ?: 'localhost:8080'}")
    private String serviceEndpoint;

    private OwnerRepository owners;
    private static final Logger logger = LoggerFactory.getLogger(OwnerController.class);

    @RequestMapping(value = "/owner/{ownerId}/getVisits", method = RequestMethod.GET)
    public ResponseEntity<List<Visit>> getOwnerVisits(@PathVariable int ownerId){
        List<Pet> petList = this.owners.findById(ownerId).getPets();
        List<Visit> visitList = new ArrayList<Visit>();
        petList.forEach(pet -> {
        return new ResponseEntity<List<Visit>>(visitList, HttpStatus.OK);

    private List<Visit> getPetVisits(int petId){
        List<Visit> visitList = new ArrayList<Visit>();
        RestTemplate restTemplate = new RestTemplate();
        Pet pet = restTemplate.getForObject("http://"+serviceEndpoint+"/pet/"+petId, Pet.class);
        return pet.getVisits();

You now have an additional method that calls the API. You are also handing in the service endpoint that should be called, so that you can easily inject dynamic endpoints based on the current deployment.

Container deployment overview

Here is an overview of what the setup looks like for Amazon ECS and the related services:

This setup consists of the following resources:

  • The client application that makes a request to the load balancer.
  • The Application Load Balancer that inspects the client request. Based on routing rules, it directs the request to an instance and port from the target group that matches the rule.
  • The Application Load Balancer that has a target group for each microservice. The target groups are used by the corresponding services to register available container instances. Each target group has a path, so when you call the path for a particular microservice, it is mapped to the correct target group. This allows you to use one Application Load Balancer to serve all the different microservices, accessed by the path. For example, https:///owner/* would be mapped and directed to the Owner microservice.
  • One Amazon ECS cluster that hosts the containers for each microservice of the application.
  • A VPC network to host the Amazon ECS cluster and associated security groups.

Because you are running multiple containers on the same instances, use dynamic port mapping to avoid port clashing. By using dynamic port mapping, the container is allocated an anonymous port on the host to which the container port (8080) is mapped. The anonymous port is registered with the Application Load Balancer and target group so that traffic is routed correctly.

The following is also part of the solution but not depicted in the above diagram:

  • One Amazon ECR repository for each microservice.
  • A service/task definition per microservice that spins up containers on the instances of the Amazon ECS cluster.
  • A MySQL RDS instance that hosts the applications schema. The information about the MySQL RDS instance is sent in through environment variables to the containers. That way, the application can connect to the MySQL RDS instance.

I have again automated setup with the 2_ECS_Java_Spring_PetClinic_Microservices/ecs-cluster.cf CloudFormation template and a Python script.

The CloudFormation template remains the same as in the previous section. In the Python script, you are now building five different Java applications, one for each microservice (also includes a system application). There is a separate Maven POM file for each one. The resulting Docker image gets pushed to its own Amazon ECR repository, and is deployed separately using its own service/task definition. This is critical to get the benefits described earlier for microservices.

Here is an example of the POM file for the Owner microservice:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
        <!-- Generic properties -->
        <!-- Spring and Spring Boot dependencies -->
        <!-- Databases - Uses HSQL by default -->
        <!-- caching -->
        <!-- end of webjars -->

Test setup

You can test this by running the Python script:

python setup.py -m setup -r <your region>

After the script has successfully run, you can test by querying an endpoint:

curl <your endpoint from output above>/owner


Migrating a monolithic application to a containerized set of microservices can seem like a daunting task. Following the steps outlined in this post, you can begin to containerize monolithic Java apps, taking advantage of the container runtime environment, and beginning the process of re-architecting into microservices. On the whole, containerized microservices are faster to develop, easier to iterate on, and more cost effective to maintain and secure.

This post focused on the first steps of microservice migration. You can learn more about optimizing and scaling your microservices with components such as service discovery, blue/green deployment, circuit breakers, and configuration servers at http://aws.amazon.com/containers.

If you have questions or suggestions, please comment below.

Plane Spotting with Pi and Amazon Alexa

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/plane-spotting/

Plane spotting, like train spotting, is a hobby enjoyed by many a tech enthusiast. Nick Sypteras has built a voice-controlled plane identifier using a Raspberry Pi and an Amazon Echo Dot.

“Look! Up in the sky! It’s a bird! It’s a plane! No, it’s Superm… hang on … it’s definitely a plane.”

What plane is that?

There’s a great write-up on Nick’s blog describing how he went about this. In addition to the Pi and the Echo, all he needed was a radio receiver to pick up signals from individual planes. So he bought an RTL-SDR USB dongle to pick up ADS-B broadcasts.

Alexa Plane Spotting Skill

Demonstrating an Alexa skill for identifying what planes are flying by my window. Ingredients: – raspberry pi – amazon echo dot – rtl-sdr dongle Explanation here: https://www.nicksypteras.com/projects/teaching-alexa-to-spot-airplanes

With the help of open-source software he can convert aircraft broadcasts into JSON data, which is stored on the Pi. Included in the broadcast is each passing plane’s unique ICAO code. Using this identifier, he looks up model, operator, and registration number in a data set of possible aircraft which he downloaded and stored on the Pi as a Mongo database.

Where is that plane going?

His Python script, with the help of the Beautiful Soup package, parses the FlightRadar24 website to find out the origin and destination of each plane. Nick also created a Node.js server in which all this data is stored in human-readable language to be accessed by Alexa.

Finally, it was a matter of setting up a new skill on the Alexa Skills Kit dashboard so that it would query the Pi in response to the right voice command.

Pretty neat, huh?

Plane spotting is serious business

Nick has made all his code available on GitHub, so head on over if this make has piqued your interest. He mentions that the radio receiver he uses picks up most unencrypted broadcasts, so you could adapt his build for other purposes as well.

Boost your hobby with the Pi

We’ve seen many builds by makers who have pushed their hobby to the next level with the help of the Pi, whether it’s astronomy, high-altitude ballooning, or making music. What hobby do you have that the Pi could improve? Let us know in the comments.

The post Plane Spotting with Pi and Amazon Alexa appeared first on Raspberry Pi.

PiCorder, the miniature camcorder

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/picorder/

The modest dimensions of our Raspberry Pi Zero and its wirelessly connectable sibling, the Pi Zero W, enable makers in our community to build devices that are very small indeed. The PiCorder built by Wayne Keenan is probably the slimmest Pi-powered video-recording device we’ve ever seen.

PiCorder – Pimoroni HyperPixel

A simple Pi-camcorder using @pimoroni #HyperPixel, ZeroLipo, lipo bat, camera and #PiZeroW. All parts from the Pirates, total of ~£85. Project build instructions: https://www.hackster.io/TheBubbleworks/picorder-0eb94d

PiCorder hardware

Wayne’s PiCorder is a very straightforward make. On the hardware side, it features a Pimoroni HyperPixel screen, Pi Zero camera module, and Zero LiPo plus LiPo battery pack. To put it together, he simply soldered header pins onto a Zero W, and connected all the components to it – easy as Pi! (Yes, I went there.)


So sleek as to be almost aerodynamic

Recording with the PiCorder (rePiCording?)

Then it was just a matter of installing the HyperPixel driver on the Pi, and the PiCorder was good to go. In this basic setup, recording is controlled via SSH. However, there’s a discussion about better ways to control the device in the comments on Wayne’s write-up. As the HyperPixel is a touchscreen, adding a GUI would make full use of its capabilities.

Picorder screen

Think about how many screens you’re looking at right now

The PiCorder is a great project to recreate if you’re looking to build a small portable camera. If you’re new to soldering, this build is perfect for you: just follow our ‘How to solder’ video and tutorial, and you’re on your way. This could be the start of your journey into the magical world of physical computing!

You could also check our blog on Alex Ellis‘s implementation of YouTube live-streaming for the Pi, and learn how to share your videos in real time.

Cool camera projects

Our educational resources include plenty of cool projects that could use the PiCorder, or for which the device could be adapted.

Get your head around using the official Raspberry Pi Camera Module with this picamera tutorial. Learn how to set up a stationary or wearable time-lapse camera, and turn your images into animated GIFs. You could also kickstart your career as a director by making an amazing stop-motion film!

No matter which camera project you choose to work on, we’d love to see the results. So be sure to share a link in the comments.

The post PiCorder, the miniature camcorder appeared first on Raspberry Pi.

Analysis of Top-N DynamoDB Objects using Amazon Athena and Amazon QuickSight

Post Syndicated from Rendy Oka original https://aws.amazon.com/blogs/big-data/analysis-of-top-n-dynamodb-objects-using-amazon-athena-and-amazon-quicksight/

If you run an operation that continuously generates a large amount of data, you may want to know what kind of data is being inserted by your application. The ability to analyze data intake quickly can be very valuable for business units, such as operations and marketing. For many operations, it’s important to see what is driving the business at any particular moment. For retail companies, for example, understanding which products are currently popular can aid in planning for future growth. Similarly, for PR companies, understanding the impact of an advertising campaign can help them market their products more effectively.

This post covers an architecture that helps you analyze your streaming data. You’ll build a solution using Amazon DynamoDB Streams, AWS Lambda, Amazon Kinesis Firehose, and Amazon Athena to analyze data intake at a frequency that you choose. And because this is a serverless architecture, you can use all of the services here without the need to provision or manage servers.

The data source

You’ll collect a random sampling of tweets via Twitter’s API and store a variety of attributes in your DynamoDB table, such as: Twitter handle, tweet ID, hashtags, location, and Time-To-Live (TTL) value.

In DynamoDB, the primary key is used as an input to an internal hash function. The output from this function determines the partition in which the data will be stored. When using a combination of primary key and sort key as a DynamoDB schema, you need to make sure that no single partition key contains many more objects than the other partition keys because this can cause partition level throttling. For the demonstration in this blog, the Twitter handle will be the primary key and the tweet ID will be the sort key. This allows you to group and sort tweets from each user.

To help you get started, I have written a script that pulls a live Twitter stream that you can use to generate your data. All you need to do is provide your own Twitter Apps credentials, and it should generate the data immediately. Alternatively, I have also provided a script that you can use to generate random Tweets with little effort.

You can find both scripts in the Github repository:


There are some modules that you may need to install to run these scripts. You can find them in Python’s module repository:

To get your own Twitter credentials, go to https://www.twitter.com/ and sign up for a free account, if you don’t already have one. After your account is set up, go to https://apps.twitter.com/. On the main landing page, choose the Create New App button. After the application is created, go to Keys and Access Tokens to get your credentials to use the Twitter API. You’ll need to generate Customer Tokens/Secret and Access Token/Secret. All four keys will be used to authenticate your request.

Architecture overview

Before we begin, let’s take a look at the overall flow of information will look like, from data ingestion into DynamoDB to visualization of results in Amazon QuickSight.

As illustrated in the architecture diagram above, any changes made to the items in DynamoDB will be captured and processed using DynamoDB Streams. Next, a Lambda function will be invoked by a trigger that is configured to respond to events in DynamoDB Streams. The Lambda function processes the data prior to pushing to Amazon Kinesis Firehose, which will output to Amazon S3. Finally, you use Amazon Athena to analyze the streaming data landing in Amazon S3. The result can be explored and visualized in Amazon QuickSight for your company’s business analytics.

You’ll need to implement your custom Lambda function to help transform the raw <key, value> data stored in DynamoDB to a JSON format for Athena to digest, but I can help you with a sample code that you are free to modify.


In the following sections, I’ll walk through how you can set up the architecture discussed earlier.

Create your DynamoDB table

First, let’s create a DynamoDB table and enable DynamoDB Streams. This will enable data to be copied out of this table. From the console, use the user_id as the partition key and tweet_id as the sort key:

After the table is ready, you can enable DynamoDB Streams. This process operates asynchronously, so there is no performance impact on the table when you enable this feature. The easiest way to manage DynamoDB Streams is also through the DynamoDB console.

In the Overview tab of your newly created table, click Manage Stream. In the window, choose the information that will be written to the stream whenever data in the table is added or modified. In this example, you can choose either New image or New and old images.

For more details on this process, check out our documentation:


Configure Kinesis Firehose

Before creating the Lambda function, you need to configure Kinesis Firehose delivery stream so that it’s ready to accept data from Lambda. Open the Firehose console and choose Create Firehose Delivery Stream. From here, choose S3 as the destination and use the following to information to configure the resource. Note the Delivery stream name because you will use it in the next step.

For more details on this process, check out our documentation:


Create your Lambda function

Now that Kinesis Firehose is ready to accept data, you can create your Lambda function.

From the AWS Lambda console, choose the Create a Lambda function button and use the Blank Function. Enter a name and description, and choose Python 2.7 as the Runtime. Note your Lambda function name because you’ll need it in the next step.

In the Lambda function code field, you can paste the script that I have written for this purpose. All this function needs is the name of your Firehose stream name set as an environment variable.

import boto3
import json
import os

# Initiate Firehose client
firehose_client = boto3.client('firehose')

def lambda_handler(event, context):
    records = []
    batch   = []
    try :
        for record in event['Records']:
            tweet = {}
            t_stats = '{ "table_name":"%s", "user_id":"%s", "tweet_id":"%s", "approx_post_time":"%d" }\n' \
                      % ( record['eventSourceARN'].split('/')[1], \
                          record['dynamodb']['Keys']['user_id']['S'], \
                          record['dynamodb']['Keys']['tweet_id']['N'], \
                          int(record['dynamodb']['ApproximateCreationDateTime']) )
            tweet["Data"] = t_stats
        res = firehose_client.put_record_batch(
            DeliveryStreamName = os.environ['firehose_stream_name'],
            Records = batch[0]
        return 'Successfully processed {} records.'.format(len(event['Records']))
    except Exception :

The handler should be set to lambda_function.lambda_handler and you can use the existing lambda_dynamodb_streams role that’s been created by default.

Enable DynamoDB trigger and start collecting data

Everything is ready to go. Open your table using the DynamoDB console and go to the Triggers tab. Select the Create trigger drop down list and choose Existing Lambda function. In the pop-up window, select the function that you just created, and choose the Create button.

At this point, you can start collecting data with the Python script that I’ve provided. The first one will create a script that will pull public Twitter data and the other will generate fake tweets using Lorem Ipsum text.

Configure Amazon Athena to read the data

Next, you will configure Amazon Athena so that it can read the data Kinesis Firehose outputs to Amazon S3 and allow you to analyze the data as needed. You can connect to Athena directly from the Athena console, and you can establish a connection using JDBC or the Athena API. In this example, I’m going to demonstrate what this looks like on the Athena console.

First, create a new database and a new table. You can do this by running the following two queries. The first query creates a new database:


And the second query creates a new table:

CREATE EXTERNAL TABLE IF NOT EXISTS ddbtablestats.twitterfeed (
    `table_name` string,
    `user_id` string,
    `tweet_id` bigint,
    `approx_post_time` timestamp 
    year string,
    month string,
    day string,
    hour string 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
WITH SERDEPROPERTIES ('serialization.format' = '1')
LOCATION 's3://myBucket/dynamodb/streams/transactions/'

Note that this table is created using partitions. Partitioning separates your data into logical parts based on certain criteria, such as date, location, language, etc. This allows Athena to selectively pull your data without needing to process the entire data set. This effectively minimizes the query execution time, and it also allows you to have greater control over the data that you want to query.

After the query has completed, you should be able to see the table in the left side pane of the Athena dashboard.

After the database and table have been created, execute the ALTER TABLE query to populate the partitions in your table. Replace the date with the current date when the script was executed.

ALTER TABLE ddbtablestats.TwitterFeed ADD IF NOT EXISTS
PARTITION (year='2017',month='05',day='17',hour='01') location 's3://myBucket/dynamodb/streams/transactions/2017/05/17/01/'

Using the Athena console, you’ll need to manually populate each partition for each additional partition that you’d like to analyze, however you can programmatically automate this process by using the JDBC driver or any AWS SDK of your choice.

For more information on partitioning in Athena, check out our documentation:


Querying the data in Amazon Athena

This is it! Let’s run this query to see the top 10 most active Twitter users in the last 24 hours. You can do this from the Athena console:

SELECT user_id, COUNT(DISTINCT tweet_id) tweets FROM ddbTableStats.TwitterFeed
WHERE year='2017' AND month='05' AND day='17'
GROUP BY user_id

The result should look similar to the following:

Linking Athena to Amazon QuickSight

Finally, to make this data available to a larger audience, let’s visualize this data in Amazon QuickSight. Amazon QuickSight provides native connectivity to AWS data sources such as Amazon Redshift, Amazon RDS, and Amazon Athena. Amazon QuickSight can also connect to on-premises databases, Excel, or CSV files, and it can connect to cloud data sources such as Salesforce.com. For this solution, we will connect Amazon QuickSight to the Athena table we just created.

Amazon QuickSight has a free tier that provides 1 user and 1GB of SPICE (Superfast Parallel In-memory Calculated Engine) capacity free. So you can sign up and use QuickSight free of charge.

When you are signing up for Amazon QuickSight, ensure that you grant permissions for QuickSight to connect to Athena and the S3 bucket where the data is stored.

After you’ve signed up, navigate to the new analysis button, and choose new data set, and then select the Athena data source option. Create a new name for your data source and proceed to the next prompt. At this point, you should see the Athena table you created earlier.

Choose the option to import the data to SPICE for a quicker analysis. SPICE is an in-memory optimized calculation engine that is designed for quick data visualization through parallel processing. SPICE also enables you to refresh your data sets at a regular interval or on-demand as you want.

In the dialog box, confirm this data set creation, and you’ll arrive on the landing page where you can start building your graph. The X-axis will represent the user_id and the Value will be used to represent the SUM total of the tweets from each user.

The Amazon QuickSight report looks like this:

Through this visualization, I can easily see that there are 3 users that tweeted over 20 times that day and that the majority of the users have fewer than 10 tweets that day. I can also set up a scheduled refresh of my SPICE dataset so that I have a dashboard that is regularly updated with the latest data.

Closing thoughts

Here are the benefits that you can gain from using this architecture:

  1. You can optimize the design of your DynamoDB schema that follows AWS best practice recommendations.
  1. You can run analysis and data intelligence in order to understand the current customer demands for your business.
  1. You can store incremental backup for future auditing.

The flexibility of our AWS services invites you to create and design the ideal workflow for your production at any scale, and, as always, if you ever need some guidance, don’t hesitate to reach out to us.I  hope this has been helpful to you! Please leave any questions and comments below.


Additional Reading

Learn how to analyze VPC Flow Logs with Amazon Kinesis Firehose, Amazon Athena, and Amazon QuickSight.

About the Author

Rendy Oka is a Big Data Support Engineer for Amazon Web Services. He provides consultations and architectural designs and partners with the TAMs, Solution Architects, and AWS product teams to help develop solutions for our customers. He is also a team lead for the big data support team in Seattle. Rendy has traveled to dozens of countries around the world and takes every opportunity to experience the local culture wherever he goes





Mira, tiny robot of joyful delight

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/mira-robot-alonso-martinez/

The staff of Pi Towers are currently melting into puddles while making ‘Aaaawwwwwww’ noises as Mira, the adorable little Pi-controlled robot made by Pixar 3D artist Alonso Martinez, steals their hearts.

Mira the robot playing peek-a-boo

If you want to get updates on Mira’s progress, sign up for the mailing list! http://eepurl.com/bteigD Mira is a desk companion that makes your life better one smile at a time. This project explores human robot interactivity and emotional intelligence. Currently Mira uses face tracking to interact with the users and loves playing the game “peek-a-boo”.

Introducing Mira

Honestly, I can’t type words – I am but a puddle! If I could type at all, I would only produce a stream of affectionate fragments. Imagine walking into a room full of kittens. What you would sound like is what I’d type.

No! I can do this. I’m a professional. I write for a living! I can…


Mira Alonso Martinez Raspberry Pi

Weebl & Bob meets South Park’s Ike Broflovski in an adorable 3D-printed bundle of ‘Aaawwwww’

Introducing Mira (I promise I can do this)

Right. I’ve had a nap and a drink. I’ve composed myself. I am up for this challenge. As long as I don’t look directly at her, I’ll be fine!

Here I go.

As one of the many über-talented 3D artists at Pixar, Alonso Martinez knows a thing or two about bringing adorable-looking characters to life on screen. However, his work left him wondering:

In movies you see really amazing things happening but you actually can’t interact with them – what would it be like if you could interact with characters?

So with the help of his friends Aaron Nathan and Vijay Sundaram, Alonso set out to bring the concept of animation to the physical world by building a “character” that reacts to her environment. His experiments with robotics started with Gertie, a ball-like robot reminiscent of his time spent animating bouncing balls when he was learning his trade. From there, he moved on to Mira.

Mira Alonso Martinez

Many, many of the views of this Tested YouTube video have come from me. So many.

Mira swivels to follow a person’s face, plays games such as peekaboo, shows surprise when you finger-shoot her, and giggles when you give her a kiss.

Mira’s inner workings

To get Mira to turn her head in three dimensions, Alonso took inspiration from the Microsoft Sidewinder Pro joystick he had as a kid. He purchased one on eBay, took it apart to understand how it works, and replicated its mechanism for Mira’s Raspberry Pi-powered innards.

Mira Alonso Martinez

Alonso used the smallest components he could find so that they would fit inside Mira’s tiny body.

Mira’s axis of 3D-printed parts moves via tiny Power HD DSM44 servos, while a camera and OpenCV handle face-tracking, and a single NeoPixel provides a range of colours to indicate her emotions. As for the blinking eyes? Two OLED screens boasting acrylic domes fit within the few millimeters between all the other moving parts.

More on Mira, including her history and how she works, can be found in this wonderful video released by Tested this week.

Pixar Artist’s 3D-Printed Animated Robots!

We’re gushing with grins and delight at the sight of these adorable animated robots created by artist Alonso Martinez. Sean chats with Alonso to learn how he designed and engineered his family of robots, using processes like 3D printing, mold-making, and silicone casting. They’re amazing!

You can also sign up for Alonso’s newsletter here to stay up-to-date about this little robot. Hopefully one of these newsletters will explain how to buy or build your own Mira, as I for one am desperate to see her adorable little face on my desk every day for the rest of my life.

The post Mira, tiny robot of joyful delight appeared first on Raspberry Pi.

Estefannie’s GPS-Controlled GoPro Photo Taker

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/estefannie-gopro-selfie/

Are you tired of having to take selfies physically? Do you only use your GoPro for the occasional beach vacation? Are you maybe even wondering what to do with the load of velcro you bought on a whim? Then we have good news for you: Estefannie‘s back to help you out with her Personal Automated GPS-Controlled Portable Photo Taker…PAGCPPT for short…or pagsssspt, if you like.


Hey World! Do you like vacation pictures but don’t like taking them? Make your own Personal Automated GPS Controlled Portable Photo Taker! The code, components, and instructions are in my Hackster.io account: https://www.hackster.io/estefanniegg/automated-gps-controlled-photo-taker-3fc84c For this build, I decided to put together a backpack to take pictures of me when I am close to places that like.

The Personal Automated GPS-Controlled Portable Photo Taker

Try saying that five times in a row.

Go on. I’ll wait.

Using a Raspberry Pi 3, a GPS module, a power pack, and a GoPro plus GoPro Stick, Estefannie created the PAGCPPT as a means of automatically taking selfies at pre-specified tourist attractions across London.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

There’s pie in my backpack too…but it’s a bit messy

With velcro and hot glue, she secured the tech in place on (and inside) a backpack. Then it was simply a case of programming her set up to take pictures while she walked around the city.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

Making the GoPro…go

Estefannie made use of a GoPro API library to connect her GoPro to the Raspberry Pi via WiFi. With the help of this library, she wrote a Python script that made the GoPro take a photograph whenever her GPS module placed her within a ten-metre radius of a pre-selected landmark such as Tower Bridge, Abbey Road, or Platform 9 3/4.

Estefannie Explains it All Raspberry Pi GPS GoPro Camera

“Accio selfie.”

The full script, as well as details regarding the components she used for the project, can be found on her hackster.io page here.

Estefannie Explains it All

You’ll have noticed that we’ve covered Estefannie once or twice before on the Raspberry Pi blog. We love project videos that convey a sense of ‘Oh hey, I can totally build one of those!’, and hers always tick that box. They are imaginative, interesting, quirky, and to be totally honest with you, I’ve been waiting for this particular video since she hinted at it on her visit to Pi Towers in May. I got the inside scoop, yo!

What’s better than taking pictures? Not taking pictures. But STILL having pictures. I made a personal automated GPS controlled Portable Photo Taker ⚡ NEW VIDEO ALERT⚡ Link in bio.

1,351 Likes, 70 Comments – Estefannie Explains It All (@estefanniegg) on Instagram: “What’s better than taking pictures? Not taking pictures. But STILL having pictures. I made a…”

Make sure to follow her on YouTube and Instagram for more maker content and random shenanigans. And if you have your own maker social media channel, YouTube account, blog, etc, this is your chance to share it for the world to see in the comments below!

The post Estefannie’s GPS-Controlled GoPro Photo Taker appeared first on Raspberry Pi.

Подкаст за българска фантастика

Post Syndicated from Григор original http://www.gatchev.info/blog/?p=2062

Днес в скромния ми блог е на гости Валентин Д. Иванов. Известен по света като астроном и откривател на класа небесни тела „планемо“ – самотните планети, които нямат звезда. Едно от големите астрономически открития за последните 100 години.

У нас е „световно неизвестен“ – повечето българи мислят, че „астрономия“ е грешка и правилното е „астрология“. За щастие, в кръговете на любителите на фантастиката Вальо е отлично известен писател, преводач, популяризатор, застъпник на фендъма и какво ли не още. И може би най-много от всичко фен с душа, който не просто произвежда шум, а върши полезни неща.

За едно от тези неща – по любезния съвет на Александър Карапанчев – ще прочетете по-долу.


Добре дошли в специализирания подкаст „Българска фантастика“ –

С еднакъв успех можете да го наричате и аудио списание. Целта ни е да произвеждаме аудио версии на български фантастични произведения.

Преди година и нещо, по силата на служебните си задължения в Eвропейската южна обсерватория, ми се наложи да правя образователни филмчета за нашите средства за обработка на наблюдателни данни (https://www.youtube.com/channel/UCCq4rxr30ydNyV94OWmLrMA). От друга страна, аудио фантастиката ми е близка, понеже доста често си запълвам времето, докато пътувам, със слушане на фантастични подкастове. Има много на английски (http://escapepod.org/; www.starshipsofa.com/) и руски език (https://fantlab.ru/work203487). Вече немалко списания слагат на страниците си и аудио версии на публикуваните разкази (http://www.newyorker.com/series/fiction-podcast, http://www.lightspeedmagazine.com/; http://strangehorizons.com/podcasts/).

Не беше далеч мисълта да опитам с българска фантастика, в частност с моята собствена, и на 7 юни 2016 г. се появи това – https://www.youtube.com/watch?v=7Rfpa3NvR34.

Ясно е, че аз не съм професионален актьор, и резултатът беше точно толкова зле, колкото очаквах. За известно време оставих това начинание настрани, но преди няколко месеца пак се наложи да се върна към видео ръководствата и събрах смелост да пробвам отново. Разказът на Иван Вазов можеше да стане по-добре, обаче последните два си ги харесвам, колкото и да е нескромно. Живот и здраве, по-нататък се надявам да стават още по-сполучливи.

Ще се опитам да подготвям нов разказ един път на месец, най-много на два месеца. Бързам да кажа, че не мога да гарантирам периодичността, тя ще зависи от обстоятелствата. Изданието е плод на колектив от хора, включващ Дружеството на българските фантасти „Тера Фантазия“ и Фондация „Човешката библиотека“. По-нататък ще представя всеки един от тях.

Поканвам всички желаещи да ми пращат разкази и стихове в обем до 2500 думи [email protected]

Възнамеряваме да редуваме художествените произведения с публицистика, обаче за нея моля първо да се свържете с нас, за да проверите дали би ни заинтересувала. Същото се отнася и за илюстрациите – всеки разказ има нужда от една. Не знаем предварително какво ще публикуваме, но достатъчно общи фантастични сюжети са подходящи. Предполагам, че с времето ще създадем резерв от илюстрации, които ще използваме в бъдеще.

Определена тема няма. Изисквания също няма освен обичайните – разказите да не разпалват вражда и да не включват ненужно насилие или сексуални описания. Ще правя аудио версии на това, което аз и колегите ми харесаме. Всичко е субективно, не се огорчавайте, ако не изберем разказа ви или не успеем да му подготвим аудио версия по някаква друга причина. Мислете си как са се разпространявали книгите през Средновековието – някой е трябвало толкова да хареса вашия текст, че да отдели няколко месеца, за да си направи копие собственоръчно или да плати на специалист калиграф, който да произведе копието.

Дебело подчертавам, че ние нямаме монопол. Винаги може да си направите ваша аудио версия на собственото си произведение. Авторите ни не получават хонорари, но и не плащат за публикацията. Преди да ни упреквате за нещо, моля не забравяйте, че за това начинание отделяме доброволно и безвъзмездно от собственото си време.

Освен автори, поканвам с нас да се свързват и желаещи да четат разкази. Подозирам, че от такива хора ще имаме много по-голяма нужда, отколкото от автори.

В началото казах „първо аудио списание“, но има някои предтечи, които е редно да спомена. Например Богдан Дуков (https://www.youtube.com/channel/UCzD5Irz7MHwGA0_yiANA5wQ) от доста време публикува чудесни аудио версии на българската класика, включително от Светослав Минков (https://www.youtube.com/watch?v=jK3jQ7TRQGQ). Един от подкастовете на „Правилният Мед“ (https://www.youtube.com/channel/UCuP9AG8V1M_LbNgL-Ku3uZw) от 2014 г. е разговор за фантастиката (https://www.youtube.com/watch?v=SpMKNQo1Ias). И, разбира се, Янчо Чолаков, който през 2012 г. чете откъс от книгата си „Историята на Самотния редник“ (https://www.youtube.com/watch?v=yGt0ToQM_Sw). Може би има и други – ако науча за тях, с удоволствие ще ги добавя.

Пожелайте ни успех!

Amazon Rekognition Update – Celebrity Recognition

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-rekognition-update-celebrity-recognition/

We launched Amazon Rekognition at re:Invent (Amazon Rekognition – Image Detection and Recognition Powered by Deep Learning) and added Image Moderation earlier this year.

Today we are adding celebrity recognition!

Rekognition has been trained to identify hundreds of thousands of people who are famous, noteworthy, or prominent in fields that includes politics, sports, entertainment, business, and media. The list is global, and is updated frequently.

To access this feature, simply call the new RecognizeCelebrities function. In addition to the bounding box and facial landmark feature returned by the existing DetectFaces function, the new function returns information about any celebrities that it recognizes:

"Id": "3Ir0du6", 
"MatchConfidence": 97, 
"Name": "Jeff Bezos", 
"Urls": [ "www.imdb.com/name/nm1757263" ]

The Urls provide additional information about the celebrity. The API currently return links to IMDB content; we may add other sources in the future.

You can use the Celebrity Recognition Demo in the AWS Management Console to experiment with this feature:

If you have an image archive you can now index it by celebrity. You could also use a combination of celebrity recognition and object detection to build all kinds of search tools. If your images are already stored in S3, you can process them in-place.

I’m sure that you will come up with all sorts of interesting uses for this new feature. Leave me a comment and let me know what you build!