Tag Archives: yelling

JavaScript got better while I wasn’t looking

Post Syndicated from Eevee original https://eev.ee/blog/2017/10/07/javascript-got-better-while-i-wasnt-looking/

IndustrialRobot has generously donated in order to inquire:

In the last few years there seems to have been a lot of activity with adding emojis to Unicode. Has there been an equal effort to add ‘real’ languages/glyph systems/etc?

And as always, if you don’t have anything to say on that topic, feel free to choose your own. :p

Yes.

I mean, each release of Unicode lists major new additions right at the top — Unicode 10, Unicode 9, Unicode 8, etc. They also keep fastidious notes, so you can also dig into how and why these new scripts came from, by reading e.g. the proposal for the addition of Zanabazar Square. I don’t think I have much to add here; I’m not a real linguist, I only play one on TV.

So with that out of the way, here’s something completely different!

A brief history of JavaScript

JavaScript was created in seven days, about eight thousand years ago. It was pretty rough, and it stayed rough for most of its life. But that was fine, because no one used it for anything besides having a trail of sparkles follow your mouse on their Xanga profile.

Then people discovered you could actually do a handful of useful things with JavaScript, and it saw a sharp uptick in usage. Alas, it stayed pretty rough. So we came up with polyfills and jQuerys and all kinds of miscellaneous things that tried to smooth over the rough parts, to varying degrees of success.

And… that’s it. That’s pretty much how things stayed for a while.


I have complicated feelings about JavaScript. I don’t hate it… but I certainly don’t enjoy it, either. It has some pretty neat ideas, like prototypical inheritance and “everything is a value”, but it buries them under a pile of annoying quirks and a woefully inadequate standard library. The DOM APIs don’t make things much better — they seem to be designed as though the target language were Java, rarely taking advantage of any interesting JavaScript features. And the places where the APIs overlap with the language are a hilarious mess: I have to check documentation every single time I use any API that returns a set of things, because there are at least three totally different conventions for handling that and I can’t keep them straight.

The funny thing is that I’ve been fairly happy to work with Lua, even though it shares most of the same obvious quirks as JavaScript. Both languages are weakly typed; both treat nonexistent variables and keys as simply false values, rather than errors; both have a single data structure that doubles as both a list and a map; both use 64-bit floating-point as their only numeric type (though Lua added integers very recently); both lack a standard object model; both have very tiny standard libraries. Hell, Lua doesn’t even have exceptions, not really — you have to fake them in much the same style as Perl.

And yet none of this bothers me nearly as much in Lua. The differences between the languages are very subtle, but combined they make a huge impact.

  • Lua has separate operators for addition and concatenation, so + is never ambiguous. It also has printf-style string formatting in the standard library.

  • Lua’s method calls are syntactic sugar: foo:bar() just means foo.bar(foo). Lua doesn’t even have a special this or self value; the invocant just becomes the first argument. In contrast, JavaScript invokes some hand-waved magic to set its contextual this variable, which has led to no end of confusion.

  • Lua has an iteration protocol, as well as built-in iterators for dealing with list-style or map-style data. JavaScript has a special dedicated Array type and clumsy built-in iteration syntax.

  • Lua has operator overloading and (surprisingly flexible) module importing.

  • Lua allows the keys of a map to be any value (though non-scalars are always compared by identity). JavaScript implicitly converts keys to strings — and since there’s no operator overloading, there’s no way to natively fix this.

These are fairly minor differences, in the grand scheme of language design. And almost every feature in Lua is implemented in a ridiculously simple way; in fact the entire language is described in complete detail in a single web page. So writing JavaScript is always frustrating for me: the language is so close to being much more ergonomic, and yet, it isn’t.

Or, so I thought. As it turns out, while I’ve been off doing other stuff for a few years, browser vendors have been implementing all this pie-in-the-sky stuff from “ES5” and “ES6”, whatever those are. People even upgrade their browsers now. Lo and behold, the last time I went to write JavaScript, I found out that a number of papercuts had actually been solved, and the solutions were sufficiently widely available that I could actually use them in web code.

The weird thing is that I do hear a lot about JavaScript, but the feature I’ve seen raved the most about by far is probably… built-in types for working with arrays of bytes? That’s cool and all, but not exactly the most pressing concern for me.

Anyway, if you also haven’t been keeping tabs on the world of JavaScript, here are some things we missed.

let

MDN docs — supported in Firefox 44, Chrome 41, IE 11, Safari 10

I’m pretty sure I first saw let over a decade ago. Firefox has supported it for ages, but you actually had to opt in by specifying JavaScript version 1.7. Remember JavaScript versions? You know, from back in the days when people actually suggested you write stuff like this:

1
<SCRIPT LANGUAGE="JavaScript1.2" TYPE="text/javascript">

Yikes.

Anyway, so, let declares a variable — but scoped to the immediately containing block, unlike var, which scopes to the innermost function. The trouble with var was that it was very easy to make misleading:

1
2
3
4
5
6
// foo exists here
while (true) {
    var foo = ...;
    ...
}
// foo exists here too

If you reused the same temporary variable name in a different block, or if you expected to be shadowing an outer foo, or if you were trying to do something with creating closures in a loop, this would cause you some trouble.

But no more, because let actually scopes the way it looks like it should, the way variable declarations do in C and friends. As an added bonus, if you refer to a variable declared with let outside of where it’s valid, you’ll get a ReferenceError instead of a silent undefined value. Hooray!

There’s one other interesting quirk to let that I can’t find explicitly documented. Consider:

1
2
3
4
5
6
7
let closures = [];
for (let i = 0; i < 4; i++) {
    closures.push(function() { console.log(i); });
}
for (let j = 0; j < closures.length; j++) {
    closures[j]();
}

If this code had used var i, then it would print 4 four times, because the function-scoped var i means each closure is sharing the same i, whose final value is 4. With let, the output is 0 1 2 3, as you might expect, because each run through the loop gets its own i.

But wait, hang on.

The semantics of a C-style for are that the first expression is only evaluated once, at the very beginning. So there’s only one let i. In fact, it makes no sense for each run through the loop to have a distinct i, because the whole idea of the loop is to modify i each time with i++.

I assume this is simply a special case, since it’s what everyone expects. We expect it so much that I can’t find anyone pointing out that the usual explanation for why it works makes no sense. It has the interesting side effect that for no longer de-sugars perfectly to a while, since this will print all 4s:

1
2
3
4
5
6
7
8
9
closures = [];
let i = 0;
while (i < 4) {
    closures.push(function() { console.log(i); });
    i++;
}
for (let j = 0; j < closures.length; j++) {
    closures[j]();
}

This isn’t a problem — I’m glad let works this way! — it just stands out to me as interesting. Lua doesn’t need a special case here, since it uses an iterator protocol that produces values rather than mutating a visible state variable, so there’s no problem with having the loop variable be truly distinct on each run through the loop.

Classes

MDN docs — supported in Firefox 45, Chrome 42, Safari 9, Edge 13

Prototypical inheritance is pretty cool. The way JavaScript presents it is a little bit opaque, unfortunately, which seems to confuse a lot of people. JavaScript gives you enough functionality to make it work, and even makes it sound like a first-class feature with a property outright called prototype… but to actually use it, you have to do a bunch of weird stuff that doesn’t much look like constructing an object or type.

The funny thing is, people with almost any background get along with Python just fine, and Python uses prototypical inheritance! Nobody ever seems to notice this, because Python tucks it neatly behind a class block that works enough like a Java-style class. (Python also handles inheritance without using the prototype, so it’s a little different… but I digress. Maybe in another post.)

The point is, there’s nothing fundamentally wrong with how JavaScript handles objects; the ergonomics are just terrible.

Lo! They finally added a class keyword. Or, rather, they finally made the class keyword do something; it’s been reserved this entire time.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Vector {
    constructor(x, y) {
        this.x = x;
        this.y = y;
    }

    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    }

    dot(other) {
        return this.x * other.x + this.y * other.y;
    }
}

This is all just sugar for existing features: creating a Vector function to act as the constructor, assigning a function to Vector.prototype.dot, and whatever it is you do to make a property. (Oh, there are properties. I’ll get to that in a bit.)

The class block can be used as an expression, with or without a name. It also supports prototypical inheritance with an extends clause and has a super pseudo-value for superclass calls.

It’s a little weird that the inside of the class block has its own special syntax, with function omitted and whatnot, but honestly you’d have a hard time making a class block without special syntax.

One severe omission here is that you can’t declare values inside the block, i.e. you can’t just drop a bar = 3; in there if you want all your objects to share a default attribute. The workaround is to just do this.bar = 3; inside the constructor, but I find that unsatisfying, since it defeats half the point of using prototypes.

Properties

MDN docs — supported in Firefox 4, Chrome 5, IE 9, Safari 5.1

JavaScript historically didn’t have a way to intercept attribute access, which is a travesty. And by “intercept attribute access”, I mean that you couldn’t design a value foo such that evaluating foo.bar runs some code you wrote.

Exciting news: now it does. Or, rather, you can intercept specific attributes, like in the class example above. The above magnitude definition is equivalent to:

1
2
3
4
5
6
7
Object.defineProperty(Vector.prototype, 'magnitude', {
    configurable: true,
    enumerable: true,
    get: function() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
});

Beautiful.

And what even are these configurable and enumerable things? It seems that every single key on every single object now has its own set of three Boolean twiddles:

  • configurable means the property itself can be reconfigured with another call to Object.defineProperty.
  • enumerable means the property appears in for..in or Object.keys().
  • writable means the property value can be changed, which only applies to properties with real values rather than accessor functions.

The incredibly wild thing is that for properties defined by Object.defineProperty, configurable and enumerable default to false, meaning that by default accessor properties are immutable and invisible. Super weird.

Nice to have, though. And luckily, it turns out the same syntax as in class also works in object literals.

1
2
3
4
5
6
Vector.prototype = {
    get magnitude() {
        return Math.sqrt(this.x * this.x + this.y * this.y);
    },
    ...
};

Alas, I’m not aware of a way to intercept arbitrary attribute access.

Another feature along the same lines is Object.seal(), which marks all of an object’s properties as non-configurable and prevents any new properties from being added to the object. The object is still mutable, but its “shape” can’t be changed. And of course you can just make the object completely immutable if you want, via setting all its properties non-writable, or just using Object.freeze().

I have mixed feelings about the ability to irrevocably change something about a dynamic runtime. It would certainly solve some gripes of former Haskell-minded colleagues, and I don’t have any compelling argument against it, but it feels like it violates some unwritten contract about dynamic languages — surely any structural change made by user code should also be able to be undone by user code?

Slurpy arguments

MDN docs — supported in Firefox 15, Chrome 47, Edge 12, Safari 10

Officially this feature is called “rest parameters”, but that’s a terrible name, no one cares about “arguments” vs “parameters”, and “slurpy” is a good word. Bless you, Perl.

1
2
3
function foo(a, b, ...args) {
    // ...
}

Now you can call foo with as many arguments as you want, and every argument after the second will be collected in args as a regular array.

You can also do the reverse with the spread operator:

1
2
3
4
5
let args = [];
args.push(1);
args.push(2);
args.push(3);
foo(...args);

It even works in array literals, even multiple times:

1
2
let args2 = [...args, ...args];
console.log(args2);  // [1, 2, 3, 1, 2, 3]

Apparently there’s also a proposal for allowing the same thing with objects inside object literals.

Default arguments

MDN docs — supported in Firefox 15, Chrome 49, Edge 14, Safari 10

Yes, arguments can have defaults now. It’s more like Sass than Python — default expressions are evaluated once per call, and later default expressions can refer to earlier arguments. I don’t know how I feel about that but whatever.

1
2
3
function foo(n = 1, m = n + 1, list = []) {
    ...
}

Also, unlike Python, you can have an argument with a default and follow it with an argument without a default, since the default default (!) is and always has been defined as undefined. Er, let me just write it out.

1
2
3
function bar(a = 5, b) {
    ...
}

Arrow functions

MDN docs — supported in Firefox 22, Chrome 45, Edge 12, Safari 10

Perhaps the most humble improvement is the arrow function. It’s a slightly shorter way to write an anonymous function.

1
2
3
(a, b, c) => { ... }
a => { ... }
() => { ... }

An arrow function does not set this or some other magical values, so you can safely use an arrow function as a quick closure inside a method without having to rebind this. Hooray!

Otherwise, arrow functions act pretty much like regular functions; you can even use all the features of regular function signatures.

Arrow functions are particularly nice in combination with all the combinator-style array functions that were added a while ago, like Array.forEach.

1
2
3
[7, 8, 9].forEach(value => {
    console.log(value);
});

Symbol

MDN docs — supported in Firefox 36, Chrome 38, Edge 12, Safari 9

This isn’t quite what I’d call an exciting feature, but it’s necessary for explaining the next one. It’s actually… extremely weird.

symbol is a new kind of primitive (like number and string), not an object (like, er, Number and String). A symbol is created with Symbol('foo'). No, not new Symbol('foo'); that throws a TypeError, for, uh, some reason.

The only point of a symbol is as a unique key. You see, symbols have one very special property: they can be used as object keys, and will not be stringified. Remember, only strings can be keys in JavaScript — even the indices of an array are, semantically speaking, still strings. Symbols are a new exception to this rule.

Also, like other objects, two symbols don’t compare equal to each other: Symbol('foo') != Symbol('foo').

The result is that symbols solve one of the problems that plauges most object systems, something I’ve talked about before: interfaces. Since an interface might be implemented by any arbitrary type, and any arbitrary type might want to implement any number of arbitrary interfaces, all the method names on an interface are effectively part of a single global namespace.

I think I need to take a moment to justify that. If you have IFoo and IBar, both with a method called method, and you want to implement both on the same type… you have a problem. Because most object systems consider “interface” to mean “I have a method called method, with no way to say which interface’s method you mean. This is a hard problem to avoid, because IFoo and IBar might not even come from the same library. Occasionally languages offer a clumsy way to “rename” one method or the other, but the most common approach seems to be for interface designers to avoid names that sound “too common”. You end up with redundant mouthfuls like IFoo.foo_method.

This incredibly sucks, and the only languages I’m aware of that avoid the problem are the ML family and Rust. In Rust, you define all the methods for a particular trait (interface) in a separate block, away from the type’s “own” methods. It’s pretty slick. You can still do obj.method(), and as long as there’s only one method among all the available traits, you’ll get that one. If not, there’s syntax for explicitly saying which trait you mean, which I can’t remember because I’ve never had to use it.

Symbols are JavaScript’s answer to this problem. If you want to define some interface, you can name its methods with symbols, which are guaranteed to be unique. You just have to make sure you keep the symbol around somewhere accessible so other people can actually use it. (Or… not?)

The interesting thing is that JavaScript now has several of its own symbols built in, allowing user objects to implement features that were previously reserved for built-in types. For example, you can use the Symbol.hasInstance symbol — which is simply where the language is storing an existing symbol and is not the same as Symbol('hasInstance')! — to override instanceof:

1
2
3
4
5
6
7
8
// oh my god don't do this though
class EvenNumber {
    static [Symbol.hasInstance](obj) {
        return obj % 2 == 0;
    }
}
console.log(2 instanceof EvenNumber);  // true
console.log(3 instanceof EvenNumber);  // false

Oh, and those brackets around Symbol.hasInstance are a sort of reverse-quoting — they indicate an expression to use where the language would normally expect a literal identifier. I think they work as object keys, too, and maybe some other places.

The equivalent in Python is to implement a method called __instancecheck__, a name which is not special in any way except that Python has reserved all method names of the form __foo__. That’s great for Python, but doesn’t really help user code. JavaScript has actually outclassed (ho ho) Python here.

Of course, obj[BobNamespace.some_method]() is not the prettiest way to call an interface method, so it’s not perfect. I imagine this would be best implemented in user code by exposing a polymorphic function, similar to how Python’s len(obj) pretty much just calls obj.__len__().

I only bring this up because it’s the plumbing behind one of the most incredible things in JavaScript that I didn’t even know about until I started writing this post. I’m so excited oh my gosh. Are you ready? It’s:

Iteration protocol

MDN docs — supported in Firefox 27, Chrome 39, Safari 10; still experimental in Edge

Yes! Amazing! JavaScript has first-class support for iteration! I can’t even believe this.

It works pretty much how you’d expect, or at least, how I’d expect. You give your object a method called Symbol.iterator, and that returns an iterator.

What’s an iterator? It’s an object with a next() method that returns the next value and whether the iterator is exhausted.

Wait, wait, wait a second. Hang on. The method is called next? Really? You didn’t go for Symbol.next? Python 2 did exactly the same thing, then realized its mistake and changed it to __next__ in Python 3. Why did you do this?

Well, anyway. My go-to test of an iterator protocol is how hard it is to write an equivalent to Python’s enumerate(), which takes a list and iterates over its values and their indices. In Python it looks like this:

1
2
3
4
5
for i, value in enumerate(['one', 'two', 'three']):
    print(i, value)
# 0 one
# 1 two
# 2 three

It’s super nice to have, and I’m always amazed when languages with “strong” “support” for iteration don’t have it. Like, C# doesn’t. So if you want to iterate over a list but also need indices, you need to fall back to a C-style for loop. And if you want to iterate over a lazy or arbitrary iterable but also need indices, you need to track it yourself with a counter. Ridiculous.

Here’s my attempt at building it in JavaScript.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function enumerate(iterable) {
    // Return a new iter*able* object with a Symbol.iterator method that
    // returns an iterator.
    return {
        [Symbol.iterator]: function() {
            let iterator = iterable[Symbol.iterator]();
            let i = 0;

            return {
                next: function() {
                    let nextval = iterator.next();
                    if (! nextval.done) {
                        nextval.value = [i, nextval.value];
                        i++;
                    }
                    return nextval;
                },
            };
        },
    };
}
for (let [i, value] of enumerate(['one', 'two', 'three'])) {
    console.log(i, value);
}
// 0 one
// 1 two
// 2 three

Incidentally, for..of (which iterates over a sequence, unlike for..in which iterates over keys — obviously) is finally supported in Edge 12. Hallelujah.

Oh, and let [i, value] is destructuring assignment, which is also a thing now and works with objects as well. You can even use the splat operator with it! Like Python! (And you can use it in function signatures! Like Python! Wait, no, Python decided that was terrible and removed it in 3…)

1
let [x, y, ...others] = ['apple', 'orange', 'cherry', 'banana'];

It’s a Halloween miracle. 🎃

Generators

MDN docs — supported in Firefox 26, Chrome 39, Edge 13, Safari 10

That’s right, JavaScript has goddamn generators now. It’s basically just copying Python and adding a lot of superfluous punctuation everywhere. Not that I’m complaining.

Also, generators are themselves iterable, so I’m going to cut to the chase and rewrite my enumerate() with a generator.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function enumerate(iterable) {
    return {
        [Symbol.iterator]: function*() {
            let i = 0;
            for (let value of iterable) {
                yield [i, value];
                i++;
            }
        },
    };
}
for (let [i, value] of enumerate(['one', 'two', 'three'])) {
    console.log(i, value);
}
// 0 one
// 1 two
// 2 three

Amazing. function* is a pretty strange choice of syntax, but whatever? I guess it also lets them make yield only act as a keyword inside a generator, for ultimate backwards compatibility.

JavaScript generators support everything Python generators do: yield* yields every item from a subsequence, like Python’s yield from; generators can return final values; you can pass values back into the generator if you iterate it by hand. No, really, I wasn’t kidding, it’s basically just copying Python. It’s great. You could now built asyncio in JavaScript!

In fact, they did that! JavaScript now has async and await. An async function returns a Promise, which is also a built-in type now. Amazing.

Sets and maps

MDN docs for MapMDN docs for Set — supported in Firefox 13, Chrome 38, IE 11, Safari 7.1

I did not save the best for last. This is much less exciting than generators. But still exciting.

The only data structure in JavaScript is the object, a map where the strings are keys. (Or now, also symbols, I guess.) That means you can’t readily use custom values as keys, nor simulate a set of arbitrary objects. And you have to worry about people mucking with Object.prototype, yikes.

But now, there’s Map and Set! Wow.

Unfortunately, because JavaScript, Map couldn’t use the indexing operators without losing the ability to have methods, so you have to use a boring old method-based API. But Map has convenient methods that plain objects don’t, like entries() to iterate over pairs of keys and values. In fact, you can use a map with for..of to get key/value pairs. So that’s nice.

Perhaps more interesting, there’s also now a WeakMap and WeakSet, where the keys are weak references. I don’t think JavaScript had any way to do weak references before this, so that’s pretty slick. There’s no obvious way to hold a weak value, but I guess you could substitute a WeakSet with only one item.

Template literals

MDN docs — supported in Firefox 34, Chrome 41, Edge 12, Safari 9

Template literals are JavaScript’s answer to string interpolation, which has historically been a huge pain in the ass because it doesn’t even have string formatting in the standard library.

They’re just strings delimited by backticks instead of quotes. They can span multiple lines and contain expressions.

1
2
console.log(`one plus
two is ${1 + 2}`);

Someone decided it would be a good idea to allow nesting more sets of backticks inside a ${} expression, so, good luck to syntax highlighters.

However, someone also had the most incredible idea ever, which was to add syntax allowing user code to do the interpolation — so you can do custom escaping, when absolutely necessary, which is virtually never, because “escaping” means you’re building a structured format by slopping strings together willy-nilly instead of using some API that works with the structure.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
// OF COURSE, YOU SHOULDN'T BE DOING THIS ANYWAY; YOU SHOULD BUILD HTML WITH
// THE DOM API AND USE .textContent FOR LITERAL TEXT.  BUT AS AN EXAMPLE:
function html(literals, ...values) {
    let ret = [];
    literals.forEach((literal, i) => {
        if (i > 0) {
            // Is there seriously still not a built-in function for doing this?
            // Well, probably because you SHOULDN'T BE DOING IT
            ret.push(values[i - 1]
                .replace(/&/g, '&amp;')
                .replace(/</g, '&lt;')
                .replace(/>/g, '&gt;')
                .replace(/"/g, '&quot;')
                .replace(/'/g, '&apos;'));
        }
        ret.push(literal);
    });
    return ret.join('');
}
let username = 'Bob<script>';
let result = html`<b>Hello, ${username}!</b>`;
console.log(result);
// <b>Hello, Bob&lt;script&gt;!</b>

It’s a shame this feature is in JavaScript, the language where you are least likely to need it.

Trailing commas

Remember how you couldn’t do this for ages, because ass-old IE considered it a syntax error and would reject the entire script?

1
2
3
4
5
{
    a: 'one',
    b: 'two',
    c: 'three',  // <- THIS GUY RIGHT HERE
}

Well now it’s part of the goddamn spec and if there’s anything in this post you can rely on, it’s this. In fact you can use AS MANY GODDAMN TRAILING COMMAS AS YOU WANT. But only in arrays.

1
[1, 2, 3,,,,,,,,,,,,,,,,,,,,,,,,,]

Apparently that has the bizarre side effect of reserving extra space at the end of the array, without putting values there.

And more, probably

Like strict mode, which makes a few silent “errors” be actual errors, forces you to declare variables (no implicit globals!), and forbids the completely bozotic with block.

Or String.trim(), which trims whitespace off of strings.

Or… Math.sign()? That’s new? Seriously? Well, okay.

Or the Proxy type, which lets you customize indexing and assignment and calling. Oh. I guess that is possible, though this is a pretty weird way to do it; why not just use symbol-named methods?

You can write Unicode escapes for astral plane characters in strings (or identifiers!), as \u{XXXXXXXX}.

There’s a const now? I extremely don’t care, just name it in all caps and don’t reassign it, come on.

There’s also a mountain of other minor things, which you can peruse at your leisure via MDN or the ECMAScript compatibility tables (note the links at the top, too).

That’s all I’ve got. I still wouldn’t say I’m a big fan of JavaScript, but it’s definitely making an effort to clean up some goofy inconsistencies and solve common problems. I think I could even write some without yelling on Twitter about it now.

On the other hand, if you’re still stuck supporting IE 10 for some reason… well, er, my condolences.

Nazis, are bad

Post Syndicated from Eevee original https://eev.ee/blog/2017/08/13/nazis-are-bad/

Anonymous asks:

Could you talk about something related to the management/moderation and growth of online communities? IOW your thoughts on online community management, if any.

I think you’ve tweeted about this stuff in the past so I suspect you have thoughts on this, but if not, again, feel free to just blog about … anything 🙂

Oh, I think I have some stuff to say about community management, in light of recent events. None of it hasn’t already been said elsewhere, but I have to get this out.

Hopefully the content warning is implicit in the title.


I am frustrated.

I’ve gone on before about a particularly bothersome phenomenon that hurts a lot of small online communities: often, people are willing to tolerate the misery of others in a community, but then get up in arms when someone pushes back. Someone makes a lot of off-hand, off-color comments about women? Uses a lot of dog-whistle terms? Eh, they’re not bothering anyone, or at least not bothering me. Someone else gets tired of it and tells them to knock it off? Whoa there! Now we have the appearance of conflict, which is unacceptable, and people will turn on the person who’s pissed off — even though they’ve been at the butt end of an invisible conflict for who knows how long. The appearance of peace is paramount, even if it means a large chunk of the population is quietly miserable.

Okay, so now, imagine that on a vastly larger scale, and also those annoying people who know how to skirt the rules are Nazis.


The label “Nazi” gets thrown around a lot lately, probably far too easily. But when I see a group of people doing the Hitler salute, waving large Nazi flags, wearing Nazi armbands styled after the SS, well… if the shoe fits, right? I suppose they might have flown across the country to join a torch-bearing mob ironically, but if so, the joke is going way over my head. (Was the murder ironic, too?) Maybe they’re not Nazis in the sense that the original party doesn’t exist any more, but for ease of writing, let’s refer to “someone who espouses Nazi ideology and deliberately bears a number of Nazi symbols” as, well, “a Nazi”.

This isn’t a new thing, either; I’ve stumbled upon any number of Twitter accounts that are decorated in Nazi regalia. I suppose the trouble arises when perfectly innocent members of the alt-right get unfairly labelled as Nazis.

But hang on; this march was called “Unite the Right” and was intended to bring together various far right sub-groups. So what does their choice of aesthetic say about those sub-groups? I haven’t heard, say, alt-right coiner Richard Spencer denounce the use of Nazi symbology — extra notable since he was fucking there and apparently didn’t care to discourage it.


And so begins the rule-skirting. “Nazi” is definitely overused, but even using it to describe white supremacists who make not-so-subtle nods to Hitler is likely to earn you some sarcastic derailment. A Nazi? Oh, so is everyone you don’t like and who wants to establish a white ethno state a Nazi?

Calling someone a Nazi — or even a white supremacist — is an attack, you see. Merely expressing the desire that people of color not exist is perfectly peaceful, but identifying the sentiment for what it is causes visible discord, which is unacceptable.

These clowns even know this sort of thing and strategize around it. Or, try, at least. Maybe it wasn’t that successful this weekend — though flicking through Charlottesville headlines now, they seem to be relatively tame in how they refer to the ralliers.

I’m reminded of a group of furries — the alt-furries — who have been espousing white supremacy and wearing red armbands with a white circle containing a black… pawprint. Ah, yes, that’s completely different.


So, what to do about this?

Ignore them” is a popular option, often espoused to bullied children by parents who have never been bullied, shortly before they resume complaining about passive-aggressive office politics. The trouble with ignoring them is that, just like in smaller communitiest, they have a tendency to fester. They take over large chunks of influential Internet surface area like 4chan and Reddit; they help get an inept buffoon elected; and then they start to have torch-bearing rallies and run people over with cars.

4chan illustrates a kind of corollary here. Anyone who’s steeped in Internet Culture™ is surely familiar with 4chan; I was never a regular visitor, but it had enough influence that I was still aware of it and some of its culture. It was always thick with irony, which grew into a sort of ironic detachment — perhaps one of the major sources of the recurring online trope that having feelings is bad — which proceeded into ironic racism.

And now the ironic racism is indistinguishable from actual racism, as tends to be the case. Do they “actually” “mean it”, or are they just trying to get a rise out of people? What the hell is unironic racism if not trying to get a rise out of people? What difference is there to onlookers, especially as they move to become increasingly involved with politics?

It’s just a joke” and “it was just a thoughtless comment” are exceptionally common defenses made by people desperate to preserve the illusion of harmony, but the strain of overt white supremacy currently running rampant through the US was built on those excuses.


The other favored option is to debate them, to defeat their ideas with better ideas.

Well, hang on. What are their ideas, again? I hear they were chanting stuff like “go back to Africa” and “fuck you, faggots”. Given that this was an overtly political rally (and again, the Nazi fucking regalia), I don’t think it’s a far cry to describe their ideas as “let’s get rid of black people and queer folks”.

This is an underlying proposition: that white supremacy is inherently violent. After all, if the alt-right seized total political power, what would they do with it? If I asked the same question of Democrats or Republicans, I’d imagine answers like “universal health care” or “screw over poor people”. But people whose primary goal is to have a country full of only white folks? What are they going to do, politely ask everyone else to leave? They’re invoking the memory of people who committed genocide and also tried to take over the fucking world. They are outright saying, these are the people we look up to, this is who we think had a great idea.

How, precisely, does one defeat these ideas with rational debate?

Because the underlying core philosophy beneath all this is: “it would be good for me if everything were about me”. And that’s true! (Well, it probably wouldn’t work out how they imagine in practice, but it’s true enough.) Consider that slavery is probably fantastic if you’re the one with the slaves; the issue is that it’s reprehensible, not that the very notion contains some kind of 101-level logical fallacy. That’s probably why we had a fucking war over it instead of hashing it out over brunch.

…except we did hash it out over brunch once, and the result was that slavery was still allowed but slaves only counted as 60% of a person for the sake of counting how much political power states got. So that’s how rational debate worked out. I’m sure the slaves were thrilled with that progress.


That really only leaves pushing back, which raises the question of how to push back.

And, I don’t know. Pushing back is much harder in spaces you don’t control, spaces you’re already struggling to justify your own presence in. For most people, that’s most spaces. It’s made all the harder by that tendency to preserve illusory peace; even the tamest request that someone knock off some odious behavior can be met by pushback, even by third parties.

At the same time, I’m aware that white supremacists prey on disillusioned young white dudes who feel like they don’t fit in, who were promised the world and inherited kind of a mess. Does criticism drive them further away? The alt-right also opposes “political correctness”, i.e. “not being a fucking asshole”.

God knows we all suck at this kind of behavior correction, even within our own in-groups. Fandoms have become almost ridiculously vicious as platforms like Twitter and Tumblr amplify individual anger to deafening levels. It probably doesn’t help that we’re all just exhausted, that every new fuck-up feels like it bears the same weight as the last hundred combined.

This is the part where I admit I don’t know anything about people and don’t have any easy answers. Surprise!


The other alternative is, well, punching Nazis.

That meme kind of haunts me. It raises really fucking complicated questions about when violence is acceptable, in a culture that’s completely incapable of answering them.

America’s relationship to violence is so bizarre and two-faced as to be almost incomprehensible. We worship it. We have the biggest military in the world by an almost comical margin. It’s fairly mainstream to own deadly weapons for the express stated purpose of armed revolution against the government, should that become necessary, where “necessary” is left ominously undefined. Our movies are about explosions and beating up bad guys; our video games are about explosions and shooting bad guys. We fantasize about solving foreign policy problems by nuking someone — hell, our talking heads are currently in polite discussion about whether we should nuke North Korea and annihilate up to twenty-five million people, as punishment for daring to have the bomb that only we’re allowed to have.

But… violence is bad.

That’s about as far as the other side of the coin gets. It’s bad. We condemn it in the strongest possible terms. Also, guess who we bombed today?

I observe that the one time Nazis were a serious threat, America was happy to let them try to take over the world until their allies finally showed up on our back porch.

Maybe I don’t understand what “violence” means. In a quest to find out why people are talking about “leftist violence” lately, I found a National Review article from May that twice suggests blocking traffic is a form of violence. Anarchists have smashed some windows and set a couple fires at protests this year — and, hey, please knock that crap off? — which is called violence against, I guess, Starbucks. Black Lives Matter could be throwing a birthday party and Twitter would still be abuzz with people calling them thugs.

Meanwhile, there’s a trend of murderers with increasingly overt links to the alt-right, and everyone is still handling them with kid gloves. First it was murders by people repeating their talking points; now it’s the culmination of a torches-and-pitchforks mob. (Ah, sorry, not pitchforks; assault rifles.) And we still get this incredibly bizarre both-sides-ism, a White House that refers to the people who didn’t murder anyone as “just as violent if not more so“.


Should you punch Nazis? I don’t know. All I know is that I’m extremely dissatisfied with discourse that’s extremely alarmed by hypothetical punches — far more mundane than what you’d see after a sporting event — but treats a push for ethnic cleansing as a mere difference of opinion.

The equivalent to a punch in an online space is probably banning, which is almost laughable in comparison. It doesn’t cause physical harm, but it is a use of concrete force. Doesn’t pose quite the same moral quandary, though.

Somewhere in the middle is the currently popular pastime of doxxing (doxxxxxxing) people spotted at the rally in an attempt to get them fired or whatever. Frankly, that skeeves me out, though apparently not enough that I’m directly chastizing anyone for it.


We aren’t really equipped, as a society, to deal with memetic threats. We aren’t even equipped to determine what they are. We had a fucking world war over this, and now people are outright saying “hey I’m like those people we went and killed a lot in that world war” and we give them interviews and compliment their fashion sense.

A looming question is always, what if they then do it to you? What if people try to get you fired, to punch you for your beliefs?

I think about that a lot, and then I remember that it’s perfectly legal to fire someone for being gay in half the country. (Courts are currently wrangling whether Title VII forbids this, but with the current administration, I’m not optimistic.) I know people who’ve been fired for coming out as trans. I doubt I’d have to look very far to find someone who’s been punched for either reason.

And these aren’t even beliefs; they’re just properties of a person. You can stop being a white supremacist, one of those people yelling “fuck you, faggots”.

So I have to recuse myself from this asinine question, because I can’t fairly judge the risk of retaliation when it already happens to people I care about.

Meanwhile, if a white supremacist does get punched, I absolutely still want my tax dollars to pay for their universal healthcare.


The same wrinkle comes up with free speech, which is paramount.

The ACLU reminds us that the First Amendment “protects vile, hateful, and ignorant speech”. I think they’ve forgotten that that’s a side effect, not the goal. No one sat down and suggested that protecting vile speech was some kind of noble cause, yet that’s how we seem to be treating it.

The point was to avoid a situation where the government is arbitrarily deciding what qualifies as vile, hateful, and ignorant, and was using that power to eliminate ideas distasteful to politicians. You know, like, hypothetically, if they interrogated and jailed a bunch of people for supporting the wrong economic system. Or convicted someone under the Espionage Act for opposing the draft. (Hey, that’s where the “shouting fire in a crowded theater” line comes from.)

But these are ideas that are already in the government. Bannon, a man who was chair of a news organization he himself called “the platform for the alt-right”, has the President’s ear! How much more mainstream can you get?

So again I’m having a little trouble balancing “we need to defend the free speech of white supremacists or risk losing it for everyone” against “we fairly recently were ferreting out communists and the lingering public perception is that communists are scary, not that the government is”.


This isn’t to say that freedom of speech is bad, only that the way we talk about it has become fanatical to the point of absurdity. We love it so much that we turn around and try to apply it to corporations, to platforms, to communities, to interpersonal relationships.

Look at 4chan. It’s completely public and anonymous; you only get banned for putting the functioning of the site itself in jeopardy. Nothing is stopping a larger group of people from joining its politics board and tilting sentiment the other way — except that the current population is so odious that no one wants to be around them. Everyone else has evaporated away, as tends to happen.

Free speech is great for a government, to prevent quashing politics that threaten the status quo (except it’s a joke and they’ll do it anyway). People can’t very readily just bail when the government doesn’t like them, anyway. It’s also nice to keep in mind to some degree for ubiquitous platforms. But the smaller you go, the easier it is for people to evaporate away, and the faster pure free speech will turn the place to crap. You’ll be left only with people who care about nothing.


At the very least, it seems clear that the goal of white supremacists is some form of destabilization, of disruption to the fabric of a community for purely selfish purposes. And those are the kinds of people you want to get rid of as quickly as possible.

Usually this is hard, because they act just nicely enough to create some plausible deniability. But damn, if someone is outright telling you they love Hitler, maybe skip the principled hand-wringing and eject them.

A Rebuttal For Python 3

Post Syndicated from Eevee original https://eev.ee/blog/2016/11/23/a-rebuttal-for-python-3/

Zed Shaw, of Learn Python the Hard Way fame, has now written The Case Against Python 3.

I’m not involved with core Python development. The only skin I have in this game is that I like Python 3. It’s a good language. And one of the big factors I’ve seen slowing its adoption is that respected people in the Python community keep grouching about it. I’ve had multiple newcomers tell me they have the impression that Python 3 is some kind of unusable disaster, though they don’t know exactly why; it’s just something they hear from people who sound like they know what they’re talking about. Then they actually use the language, and it’s fine.

I’m sad to see the Python community needlessly sabotage itself, but Zed’s contribution is beyond the pale. It’s not just making a big deal about changed details that won’t affect most beginners; it’s complete and utter nonsense, on a platform aimed at people who can’t yet recognize it as nonsense. I am so mad.

The Case Against Python 3

I give two sets of reasons as I see them now. One for total beginners, and another for people who are more knowledgeable about programming.

Just to note: the two sets of reasons are largely the same ideas presented differently, so I’ll just weave them together below.

The first section attempts to explain the case against starting with Python 3 in non-technical terms so a beginner can make up their own mind without being influenced by propaganda or social pressure.

Having already read through this once, this sentence really stands out to me. The author of a book many beginners read to learn Python in the first place is providing a number of reasons (some outright fabricated) not to use Python 3, often in terms beginners are ill-equipped to evaluate, but believes this is a defense against propaganda or social pressure.

The Most Important Reason

Before getting into the main technical reasons I would like to discuss the one most important social reason for why you should not use Python 3 as a beginner:

THERE IS A HIGH PROBABILITY THAT PYTHON 3 IS SUCH A FAILURE IT WILL KILL PYTHON.

Python 3’s adoption is really only at about 30% whenever there is an attempt to measure it.

Wait, really? Wow, that’s fantastic.

I mean, it would probably be higher if the most popular beginner resources were actually teaching Python 3, but you know.

Nobody is all that interested in finding out what the real complete adoption is, despite there being fairly simple ways to gather metrics on the adoption.

This accusatory sentence conspicuously neglects to mention what these fairly simple ways are, a pattern that repeats throughout. The trouble is that it’s hard to even define what “adoption” means — I write all my code in Python 3 now, but veekun is still Python 2 because it’s in maintenance mode, so what does that say about adoption? You could look at PyPI download stats, but those are thrown way off by caches and system package managers. You could look at downloads from the Python website, but a great deal of Python is written and used on Unix-likes, where Python itself is either bundled or installed from the package manager.

It’s as simple as that. If you learn Python 2, then you can still work with all the legacy Python 2 code in existence until Python dies or you (hopefully) move on. But if you learn Python 3 then your future is very uncertain. You could really be learning a dead language and end up having to learn Python 2 anyway.

You could use Python 2, until it dies… or you could use Python 3, which might die. What a choice.

By some definitions, Python 2 is already dead — it will not see another major release, only security fixes. Python 3 is still actively developed, and its seventh major release is next month. It even contains a new feature that Zed later mentions he prefers to Python 2’s offerings.

It may shock you to learn that I know both Python 2 and Python 3. Amazingly, two versions of the same language are much more similar than they are different. If you learned Python 3 and then a wizard cast a spell that made it vanish from the face of the earth, you’d just have to spend half an hour reading up on what had changed from Python 2.

Also, it’s been over a decade, maybe even multiple decades, and Python 3 still isn’t above about 30% in adoption. Even among the sciences where Python 3 is touted as a “success” it’s still only around 25-30% adoption. After that long it’s time to admit defeat and come up with a new plan.

Python 3.0 came out in 2008. The first couple releases ironed out some compatibility and API problems, so it didn’t start to gain much traction until Python 3.2 came out in 2011. Hell, Python 2.0 came out in 2000, so even Python 2 isn’t multiple decades old. It would be great if this trusted beginner reference could take two seconds to check details like this before using them to scaremonger.

The big early problem was library compatibility: it’s hard to justify switching to a new version of the language if none of the libraries work. Libraries could only port once their own dependencies had ported, of course, and it took a couple years to figure out the best way to maintain compatibility with both Python 2 and Python 3. I’d say we only really hit critical mass a few years ago — for instance, Django didn’t support Python 3 until 2013 — in which case that 30% is nothing to sneeze at.

There are more reasons beyond just the uncertain future of Python 3 even decades later.

In one paragraph, we’ve gone from “maybe even multiple decades” to just “decades”, which is a funny way to spell “eight years”.

Not In Your Best Interests

The Python project’s efforts to convince you to start with Python 3 are not in your best interest, but, rather, are only in the best interests of the Python project.

It’s bad, you see, for the Python project to want people to use the work it produced.

Anyway, please buy Zed Shaw’s book.

Anyway, please pledge to my Patreon.

Ultimately though, if Python 3 were good they wouldn’t need to do any convincing to get you to use it. It would just naturally work for you and you wouldn’t have any problems. Instead, there are serious issues with Python 3 for beginners, and rather than fix those issues the Python project uses propaganda, social pressure, and marketing to convince you to use it. In the world of technology using marketing and propaganda is immediately a sign that the technology is defective in some obvious way.

This use of social pressure and propaganda to convince you to use Python 3 despite its problems, in an attempt to benefit the Python project, is morally unconscionable to me.

Ten paragraphs in, Zed is telling me that I should be suspicious of anything that relies on marketing and propaganda. Meanwhile, there has yet to be a single concrete reason why Python 3 is bad for beginners — just several flat-out incorrect assertions and a lot of handwaving about how inexplicably nefarious the Python core developers are. You know, the same people who made Python 2. But they weren’t evil then, I guess.

You Should Be Able to Run 2 and 3

In the programming language theory there is this basic requirement that, given a “complete” programming language, I can run any other programming language. In the world of Java I’m able to run Ruby, Java, C++, C, and Lua all at the same time. In the world of Microsoft I can run F#, C#, C++, and Python all at the same time. This isn’t just a theoretical thing. There is solid math behind it. Math that is truly the foundation of computer science.

The fact that you can’t run Python 2 and Python 3 at the same time is purely a social and technical decision that the Python project made with no basis in mathematical reality. This means you are working with a purposefully broken platform when you use Python 3, and I personally can’t condone teaching people to use something that is fundamentally broken.

The programmer-oriented section makes clear that the solid math being referred to is Turing-completeness — the section is even titled “Python 3 Is Not Turing Complete”.

First, notice a rhetorical trick here. You can run Ruby, Java, C++, etc. at the same time, so why not Python 2 and Python 3?

But can you run Java and C# at the same time? (I’m sure someone has done this, but it’s certainly much less popular than something like Jython or IronPython.)

Can you run Ruby 1.8 and Ruby 2.3 at the same time? Ah, no, so I guess Ruby 2.3 is fundamentally and purposefully broken.

Can you run Lua 5.1 and 5.3 at the same time? Lua is a spectacular example, because Lua 5.2 made a breaking change to how the details of scope work, and it’s led to a situation where a lot of programs that embed Lua haven’t bothered upgrading from Lua 5.1. Was Lua 5.2 some kind of dark plot to deliberately break the language? No, it’s just slightly more inconvenient than expected for people to upgrade.

Anyway, as for Turing machines:

In computer science a fundamental law is that if I have one Turing Machine I can build any other Turing Machine. If I have COBOL then I can bootstrap a compiler for FORTRAN (as disgusting as that might be). If I have FORTH, then I can build an interpreter for Ruby. This also applies to bytecodes for CPUs. If I have a Turing Complete bytecode then I can create a compiler for any language. The rule then can be extended even further to say that if I cannot create another Turing Machine in your language, then your language cannot be Turing Complete. If I can’t use your language to write a compiler or interpreter for any other language then your language is not Turing Complete.

Yes, this is true.

Currently you cannot run Python 2 inside the Python 3 virtual machine. Since I cannot, that means Python 3 is not Turing Complete and should not be used by anyone.

And this is completely asinine. Worse, it’s flat-out dishonest, and relies on another rhetorical trick. You only “cannot” run Python 2 inside the Python 3 VM because no one has written a Python 2 interpreter in Python 3. The “cannot” is not a mathematical impossibility; it’s a simple matter of the code not having been written. Or perhaps it has, but no one cares anyway, because it would be comically and unusably slow.

I assume this was meant to be sarcastic on some level, since it’s followed by a big blue box that seems unsure about whether to double down or reverse course. But I can’t tell why it was even brought up, because it has absolutely nothing to do with Zed’s true complaint, which is that Python 2 and Python 3 do not coexist within a single environment. Implementing language X using language Y does not mean that X and Y can now be used together seamlessly.

The canonical Python release is written in C (just like with Ruby or Lua), but you can’t just dump a bunch of C code into a Python (or Ruby or Lua) file and expect it to work. You can talk to C from Python and vice versa, but defining how they communicate is a bit of a pain in the ass and requires some level of setup.

I’ll get into this some more shortly.

No Working Translator

Python 3 comes with a tool called 2to3 which is supposed to take Python 2 code and translate it to Python 3 code.

I should point out right off the bat that this is not actually what you want to use most of the time, because you probably want to translate your Python 2 code to Python 2/3 code. 2to3 produces code that most likely will not work on Python 2. Other tools exist to help you port more conservatively.

Translating one programming language into another is a solidly researched topic with solid math behind it. There are translators that convert any number of languages into JavaScript, C, C++, Java, and many times you have no idea the translation is being done. In addition to this, one of the first steps when implementing a new language is to convert the new language into an existing language (like C) so you don’t have to write a full compiler. Translation is a fully solved problem.

This is completely fucking ludicrous. Translating one programming language to another is a common task, though “fully solved” sounds mighty questionable. But do you know what the results look like?

I found a project called “Transcrypt”, which puts Python in the browser by “translating” it to JavaScript. I’ve never used or heard of this before; I just googled for something to convert Python to JavaScript. Here’s their first sample, a demo using jQuery:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
def start ():
    def changeColors ():
        for div in S__divs:
            S (div) .css ({
                'color': 'rgb({},{},{})'.format (* [int (256 * Math.random ()) for i in range (3)]),
            })

    S__divs = S ('div')
    changeColors ()
    window.setInterval (changeColors, 500)

And here’s the JavaScript code it compiles to:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(function () {
    var start = function () {
        var changeColors = function () {
            var __iterable0__ = $divs;
            for (var __index0__ = 0; __index0__ < __iterable0__.length; __index0__++) {
                var div = __iterable0__ [__index0__];
                $ (div).css (dict ({'color': 'rgb({},{},{})'.format.apply (null, function () {
                    var __accu0__ = [];
                    for (var i = 0; i < 3; i++) {
                        __accu0__.append (int (256 * Math.random ()));
                    }
                    return __accu0__;
                } ())}));
            }
        };
        var $divs = $ ('div');
        changeColors ();
        window.setInterval (changeColors, 500);
    };
    __pragma__ ('<all>')
        __all__.start = start;
    __pragma__ ('</all>')
}) ();

Well, not quite. That’s actually just a small piece at the end of the full 1861-line file.

You may notice that the emitted JavaScript effectively has to emulate the Python for loop, because JavaScript doesn’t have anything that works exactly the same way. And this is a basic, common language feature translated between two languages in the same general family! Imagine how your code would look if you relied on gritty details of how classes are implemented.

Is this what you want 2to3 to do to your code?

Even if something has been proven to be mathematically possible, that doesn’t mean it’s easy, and it doesn’t mean the results will be pretty (or fast).

The 2to3 translator fails on about 15% of the code it attempts, and does a poor job of translating the code it can handle. The motivations for this are unclear, but keep in mind that a group of people who claim to be programming language experts can’t write a reliable translator from one version of their own language to another. This is also a cause of their porting problems, which adds up to more evidence Python 3’s future is uncertain.

Writing a translator from one language to another is a fully proven and fundamental piece of computer science. Yet, the 2to3 translator cannot translate code 100%. In my own tests it is only about 85% effective, leaving a large amount of code to translate manually. Given that translation is a solved problem this seems to be a decision bordering on malice rather than incredible incompetence.

The programmer-oriented section doubles down on this idea with a title of “Purposefully Crippled 2to3 Translator” — again, accusing the Python project of sabotaging everyone. That doesn’t even make sense; if their goal is to make everyone use Python 3 at any cost, why would they deliberately break their tool that reduces the amount of Python 2 code and increases the amount of Python 3 code?

2to3 sucks because its job is hard. Python is dynamically typed. If it sees d.iteritems(), it might want to change that to d.items(), as it’s called in Python 3 — but it can’t always be sure that d is actually a dict. If d is some user-defined type, renaming the method is wrong.

But hey, Turing-completeness, right? It must be mathematically possible. And it is! As long as you’re willing to see this:

1
2
for key, value in d.iteritems():
    ...

Get translated to this:

1
2
3
__d = d
for key, value in (__d.items() if isinstance(__d, dict) else __d.iteritems()):
    ...

Would Zed be happier with that, I wonder?

The JVM and CLR Prove It’s Pointless

Yet, for some reason, the Python 3 virtual machine can’t run Python 2? Despite the solidly established mathematics disproving this, the countless examples of running one crazy language inside a Russian doll cascade of other crazy languages, and huge number of languages that can coexist in nearly every other virtual machine? That makes no sense.

This, finally, is the real complaint. It’s not a bad one, and it comes up sometimes, but… it’s not this easy.

The Python 3 VM is fairly similar to the Python 2 VM. The problem isn’t the VM, but the core language constructs and standard library.

Consider: what happens when a Python 2 old-style class instance gets passed into Python 3, which has no such concept? It seems like a value would have to always have the semantics of the language version it came from — that’s how languages usually coexist on the same VM, anyway.

Now, I’m using Python 3, and I load some library written for Python 2. I call a Python 2 function that deals with bytestrings, and I pass it a Python 3 bytestring. Oh no! It breaks because Python 3 bytestrings iterate as integers, whereas the Python 2 library expects them to iterate as characters.

Okay, well, no big deal, you say. Maybe Python 2 libraries just need to be updated to work either way, before they can be used with Python 3.

But that’s exactly the situation we’re in right now. Syntax changes are trivially fixed by 2to3 and similar tools. It’s libraries that cause the subtler issues.

The same applies the other way, too. I write Python 3 code, and it gets an int from some Python 2 library. I try to use the .to_bytes method on it, but that doesn’t exist on Python 2 integers. So my Python 3 code, written and intended purely for Python 3, now has to deal with Python 2 integers as well.

Perhaps “primitive” types should convert automatically, on the boundary? Okay, sure. What about the Python 2 buffer type, which is C-backed and replaced by memoryview in Python 3?

Or how about this very fundamental problem: names of methods and other attributes are str in both versions, but that means they’re bytestrings in Python 2 and text in Python 3. If you’re in Python 3 land, and you call obj.foo() on a Python 2 object, what happens? Python 3 wants a method with the text name foo, but Python 2 wants a method with the bytes name foo. Text and bytes are not implicitly convertible in Python 3. So does it error? Somehow work anyway? What about the other way around?

What about the standard library, which has had a number of improvements in Python 3 that don’t or can’t exist in Python 2? Should Python ship two entire separate copies of its standard library? What about modules like logging, which rely on global state? Does Python 2 and Python 3 code need to set up logging separately within the same process?

There are no good solutions here. The language would double in size and complexity, and you’d still end up with a mess at least as bad as the one we have now when values leak from one version into the other.

We either have two situations here:

  1. Python 3 has been purposefully crippled to prevent Python 2’s execution alongside Python 3 for someone’s professional or ideological gain.
  2. Python 3 cannot run Python 2 due to simple incompetence on the part of the Python project.

I can think of a third.

Difficult To Use Strings

The strings in Python 3 are very difficult to use for beginners. In an attempt to make their strings more “international” they turned them into difficult to use types with poor error messages.

Why is “international” in scare quotes?

Every time you attempt to deal with characters in your programs you’ll have to understand the difference between byte sequences and Unicode strings.

Given that I’m reading part of a book teaching Python, this would be a perfect opportunity to drive this point home by saying “Look! Running exercise N in Python 3 doesn’t work.” Exercise 1, at least, works fine for me with a little extra sprinkle of parentheses:

1
2
3
4
5
6
7
print("Hello World!")
print("Hello Again")
print("I like typing this.")
print("This is fun.")
print('Yay! Printing.')
print("I'd much rather you 'not'.")
print('I "said" do not touch this.')

Contrast with the actual content of that exercise — at the bottom is a big red warning box telling people from “another country” (relative to where?) that if they get errors about ASCII encodings, they should put an unexplained magical incantation at the top of their scripts to fix “Unicode UTF-8”, whatever that is. I wonder if Zed has read his own book.

Don’t know what that is? Exactly.

If only there were a book that could explain it to beginners in more depth than “you have to fix this if you’re foreign”.

The Python project took a language that is very forgiving to beginners and mostly “just works” and implemented strings that require you to constantly know what type of string they are. Worst of all, when you get an error with strings (which is very often) you get an error message that doesn’t tell you what variable names you need to fix.

The complaint is that this happens in Python 3, whereas it’s accepted in Python 2:

1
2
3
4
>>> b"hello" + "hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can't concat bytes to str

The programmer section is called “Statically Typed Strings”. But this is not static typing. That’s strong typing, a property that sets Python’s type system apart from languages like JavaScript. It’s usually considered a good thing, because the alternative is to silently produce nonsense in some cases, and then that nonsense propagates through your program and is hard to track down when it finally causes problems.

If they’re going to require beginners to struggle with the difference between bytes and Unicode the least they could do is tell people what variables are bytes and what variables are strings.

That would be nice, but it’s not like this is a new problem. Try this in Python 2.

1
2
3
4
>>> 3 + "hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

How would Python even report this error when I used literals instead of variables? How could custom types hook into such a thing? Error messages are hard.

By the way, did you know that several error messages are much improved in Python 3? Python 2 is somewhat notorious for the confusing errors it produces when an argument is missing from a method call, but Python 3 is specific about the problem, which is much friendlier to beginners.

However, when you point out that this is hard to use they try to claim it’s good for you. It is not. It’s simple blustering covering for a poor implementation.

I don’t know what about this is hard. Why do you have a text string and a bytestring in the first place? Why is it okay to refuse adding a number to a string, but not to refuse adding bytes to a string?

Imagine if one of the Python core developers were just getting into Python 2 and messing around.

1
2
3
# -*- coding: utf8 -*-
print "Hi, my name is Łukasz Langa."
print "Hi, my name is Łukasz Langa."[::-1]
1
2
Hi, my name is Łukasz Langa.
.agnaL zsaku�� si eman ym ,iH

Good luck figuring out how to fix that.

This isn’t blustering. Bytes are not text; they are binary data that could encode anything. They happen to look like text sometimes, and you can get away with thinking they’re text if you’re not from “another country”, but that mindset will lead you to write code that is wrong. The resulting bugs will be insidious and confusing, and you’ll have a hard time even reasoning about them because it’ll seem like “Unicode text” is somehow a different beast altogether from “ASCII text”.

Exercise 11 mentions at the end that you can use int() to convert a number to an integer. It’s no more complicated to say that you convert bytes to a string using .decode(). It shouldn’t even come up unless you’re explicitly working with binary data, and I don’t see any reading from sockets in LPTHW.

It’s also not statically compiled as strongly as it could be, so you can’t find these kinds of type errors until you run the code.

This comes a scant few paragraphs after “Dynamic typing is what makes Python easy to use and one of the reasons I advocate it for beginners.”

You can’t find any kinds of type errors until you run the code. Welcome to dynamic typing.

Strings are also most frequently received from an external source, such as a network socket, file, or similar input. This means that Python 3’s statically typed strings and lack of static type safety will cause Python 3 applications to crash more often and have more security problems when compared with Python 2.

On the contrary — Python 3 applications should crash less often. The problem with silently converting between bytestrings and text in Python 2 is that it might fail, depending on the contents. "cafe" + u"hello" works fine, but "café" + u"hello" raises a UnicodeDecodeError. Python 2 makes it very easy to write code that appears to work when tested with ASCII data, but later breaks with anything else, even though the values are still the same types. In Python 3, you get an error the first time you try to run such code, regardless of what’s in the actual values. That’s the biggest reason for the change: it improves things from being intermittent value errors to consistent type errors.

More security problems? This is never substantiated, and seems to have been entirely fabricated.

Too Many Formatting Options

In addition to that you will have 3 different formatting options in Python 3.6. That means you’ll have to learn to read and use multiple ways to format strings that are all very different. Not even I, an experienced professional programmer, can easily figure out these new formatting systems or keep up with their changing features.

I don’t know what on earth “keep up with their changing features” is supposed to mean, and Zed doesn’t bother to go into details.

Python 3 has three ways to format strings: % interpolation, str.format(), and the new f"" strings in Python 3.6. The f"" strings use the same syntax as str.format(); the difference is that where str.format() uses numbers or names of keyword arguments, f"" strings just use expressions. Compare:

1
2
3
number = 133
print("{n:02x}".format(n=number))
print(f"{number:02x}")

This isn’t “very different”. A frequently-used method is being promoted to syntax.

I really like this new style, and I have no idea why this wasn’t the formatting for Python 3 instead of that stupid .format function. String interpolation is natural for most people and easy to explain.

The problem is that beginner will now how to know all three of these formatting styles, and that’s too many.

I could swear Zed, an experienced professional programmer, just said he couldn’t easily figure out these new formatting systems. Note also that str.format() has existed in Python 2 since Python 2.6 was released in 2008, so I don’t know why Zed said “new formatting systems“, plural.

This is a truly bizarre complaint overall, because the mechanism Zed likes best is the newest one. If Python core had agreed that three mechanisms was too many, we wouldn’t be getting f"" at all.

Even More Versions of Strings

Finally, I’m told there is a new proposal for a string type that is both bytes and Unicode at the same time? That’d be fantastic if this new type brings back the dynamic typing that makes Python easy, but I’m betting it will end up being yet another static type to learn. For that reason I also think beginners should avoid Python 3 until this new “chimera string” is implemented and works reliably in a dynamic way. Until then, you will just be dealing with difficult strings that are statically typed in a dynamically typed language.

I have absolutely no idea what this is referring to, and I can’t find anyone who does. I don’t see any recent PEPs mentioning such a thing, nor anything in the last several months on the python-dev mailing list. I don’t see it in the Python 3.6 release notes.

The closest thing I can think of is the backwards-compatibility shenanigans for PEP 528 and PEP 529 — they switch to the Windows wide-string APIs for console and filesystem encoding, but pretend under the hood that the APIs take UTF-8-encoded bytes to avoid breaking libraries like Twisted. That’s a microscopic detail that should never matter to anyone but authors of Twisted, and is nothing like a new hybrid string type, but otherwise I’m at a loss.

This paragraph really is a perfect summary of the whole article. It speaks vaguely yet authoritatively about something that doesn’t seem to exist, it doesn’t bother actually investigating the thing the entire section talks about, it conjectures that this mysterious feature will be hard just because it’s in Python 3, and it misuses terminology to complain about a fundamental property of Python that’s always existed.

Core Libraries Not Updated

Many of the core libraries included with Python 3 have been rewritten to use Python 3, but have not been updated to use its features. How could they given Python 3’s constant changing status and new features?

What “constant changing status”? The language makes new releases; is that bad? The only mention of “changing” so far was with string formatting, which makes no sense to me, because the only major change has been the addition of syntax that Zed prefers.

There are several libraries that, despite knowing the encoding of data, fail to return proper strings. The worst offender seems to be any libraries dealing with the HTTP protocol, which does indicate the encoding of the underlying byte stream in many cases.

In many cases, yes. Not in all. Some web servers don’t send back an encoding. Some files don’t have an encoding, because they’re images or other binary data. HTML allows the encoding to be given inside the document, instead. urllib has always returned bytes, so it’s not all that unreasonable to keep doing that, rather than… well, I’m not quite sure what this is proposing. Return strings sometimes?

The documentation for urllib.request and http.client both advise using the higher-level Requests library instead, in a prominent yellow box right at the top. Requests has distinct mechanisms for retrieving bytes versus text and is vastly easier to use overall, though I don’t think even it understands reading encodings from HTML. Alas, computers.

Good luck to any beginner figuring out how to install Requests on Python 2 — but thankfully, Python 3 now comes bundled with pip, which makes installing libraries much easier. Contrast with the beginning of exercise 46, which apologizes for how difficult this is to explain, lists four things to install, warns that it will be frustrating, and advises watching a video to help figure it out.

What’s even more idiotic about this is Python has a really good Chardet library for detecting the encoding of byte streams. If Python 3 is supposed to be “batteries included” then fast Chardet should be baked into the core of Python 3’s strings making it cake to translate strings to bytes even if you don’t know the underlying encoding. … Call the function whatever you want, but it’s not magic to guess at the encoding of a byte stream, it’s science. The only reason this isn’t done for you is that the Python project decided that you should be punished for not knowing about bytes vs. Unicode, and their arrogance means you have difficult to use strings.

Guessing at the encoding of a byte stream isn’t so much science as, well, guessing. Guessing means that sometimes you’re wrong. Sometimes that’s what you want, and I’m honestly ambivalent about having chardet in the standard library, but it’s hardly arrogant to not want to include a highly-fallible heuristic in your programming language.

Conclusions and Warnings

I have resisted writing about these problems with Python 3 for 5 versions because I hoped it would become usable for beginners. Each year I would attempt to convert some of my code and write a couple small tests with Python 3 and simply fail. If I couldn’t use Python 3 reliably then there’s no way a total beginner could manage it. So each year I’d attempt it, and fail, and wait until they fix it. I really liked Python and hoped the Python project would drop their stupid stances on usability.

Let us recap the usability problems seen thusfar.

  • You can’t add b"hello" to "hello".
  • TypeErrors are phrased exactly the same as they were in Python 2.
  • The type system is exactly as dynamic as it was in Python 2.
  • There is a new formatting mechanism, using the same syntax as one in Python 2, that Zed prefers over the ones in Python 2.
  • urllib.request doesn’t decode for you, just like in Python 2.
  • 档牡敤㽴 isn’t built in. Oh, sorry, I meant chardet.

Currently, the state of strings is viewed as a Good Thing in the Python community. The fact that you can’t run Python 2 inside Python 3 is seen as a weird kind of tough love. The brainwashing goes so far as to outright deny the mathematics behind language translation and compilation in an attempt to motivate the Python community to brute force convert all Python 2 code.

Which is probably why the Python project focuses on convincing unsuspecting beginners to use Python 3. They don’t have a switching cost, so if you get them to fumble their way through the Python 3 usability problems then you have new converts who don’t know any better. To me this is morally wrong and is simply preying on people to prop up a project that needs a full reset to survive. It means beginners will fail at learning to code not because of their own abilities, but because of Python 3’s difficulty.

Now that we’re towards the end, it’s a good time to say this: Zed Shaw, your behavior here is fucking reprehensible.

Half of what’s written here is irrelevant nonsense backed by a vague appeal to “mathematics”. Instead of having even the shred of humility required to step back and wonder if there are complicating factors beyond whether something is theoretically possible, you have invented a variety of conflicting and malicious motivations to ascribe to the Python project.

It’s fine to criticize Python 3. The string changes force you to think about what you’re doing a little more in some cases, and occasionally that’s a pain in the ass. I absolutely get it.

But you’ve gone out of your way to invent a conspiracy out of whole cloth and promote it on your popular platform aimed at beginners, who won’t know how obviously full of it you are. And why? Because you can’t add b"hello" to "hello"? Are you kidding me? No one can even offer to help you, because instead of examples of real problems you’ve had, you gave two trivial toys and then yelled a lot about how the whole Python project is releasing mind-altering chemicals into the air.

The Python 3 migration has been hard enough. It’s taken a lot of work from a lot of people who’ve given enough of a crap to help Python evolve — to make it better to the best of their judgment and abilities. Now we’re finally, finally at the point where virtually all libraries support Python 3, a few new ones only support Python 3, and Python 3 adoption is starting to take hold among application developers.

And you show up to piss all over it, to propagate this myth that Python 3 is hamstrung to the point of unusability, because if the Great And Wise Zed Shaw can’t figure it out in ten seconds then it must just be impossible.

Fuck you.

Sadly, I doubt this will happen, and instead they’ll just rant about how I don’t know what I’m talking about and I should shut up.

This is because you don’t know what you’re talking about, and you should shut up.

A Rebuttal For Python 3

Post Syndicated from Eevee original https://eev.ee/blog/2016/11/23/a-rebuttal-for-python-3/

Zed Shaw, of Learn Python the Hard Way fame, has now written The Case Against Python 3.

I’m not involved with core Python development. The only skin I have in this game is that I like Python 3. It’s a good language. And one of the big factors I’ve seen slowing its adoption is that respected people in the Python community keep grouching about it. I’ve had multiple newcomers tell me they have the impression that Python 3 is some kind of unusable disaster, though they don’t know exactly why; it’s just something they hear from people who sound like they know what they’re talking about. Then they actually use the language, and it’s fine.

I’m sad to see the Python community needlessly sabotage itself, but Zed’s contribution is beyond the pale. It’s not just making a big deal about changed details that won’t affect most beginners; it’s complete and utter nonsense, on a platform aimed at people who can’t yet recognize it as nonsense. I am so mad.

The Case Against Python 3

I give two sets of reasons as I see them now. One for total beginners, and another for people who are more knowledgeable about programming.

Just to note: the two sets of reasons are largely the same ideas presented differently, so I’ll just weave them together below.

The first section attempts to explain the case against starting with Python 3 in non-technical terms so a beginner can make up their own mind without being influenced by propaganda or social pressure.

Having already read through this once, this sentence really stands out to me. The author of a book many beginners read to learn Python in the first place is providing a number of reasons (some outright fabricated) not to use Python 3, often in terms beginners are ill-equipped to evaluate, but believes this is a defense against propaganda or social pressure.

The Most Important Reason

Before getting into the main technical reasons I would like to discuss the one most important social reason for why you should not use Python 3 as a beginner:

THERE IS A HIGH PROBABILITY THAT PYTHON 3 IS SUCH A FAILURE IT WILL KILL PYTHON.

Python 3’s adoption is really only at about 30% whenever there is an attempt to measure it.

Wait, really? Wow, that’s fantastic.

I mean, it would probably be higher if the most popular beginner resources were actually teaching Python 3, but you know.

Nobody is all that interested in finding out what the real complete adoption is, despite there being fairly simple ways to gather metrics on the adoption.

This accusatory sentence conspicuously neglects to mention what these fairly simple ways are, a pattern that repeats throughout. The trouble is that it’s hard to even define what “adoption” means — I write all my code in Python 3 now, but veekun is still Python 2 because it’s in maintenance mode, so what does that say about adoption? You could look at PyPI download stats, but those are thrown way off by caches and system package managers. You could look at downloads from the Python website, but a great deal of Python is written and used on Unix-likes, where Python itself is either bundled or installed from the package manager.

It’s as simple as that. If you learn Python 2, then you can still work with all the legacy Python 2 code in existence until Python dies or you (hopefully) move on. But if you learn Python 3 then your future is very uncertain. You could really be learning a dead language and end up having to learn Python 2 anyway.

You could use Python 2, until it dies… or you could use Python 3, which might die. What a choice.

By some definitions, Python 2 is already dead — it will not see another major release, only security fixes. Python 3 is still actively developed, and its seventh major release is next month. It even contains a new feature that Zed later mentions he prefers to Python 2’s offerings.

It may shock you to learn that I know both Python 2 and Python 3. Amazingly, two versions of the same language are much more similar than they are different. If you learned Python 3 and then a wizard cast a spell that made it vanish from the face of the earth, you’d just have to spend half an hour reading up on what had changed from Python 2.

Also, it’s been over a decade, maybe even multiple decades, and Python 3 still isn’t above about 30% in adoption. Even among the sciences where Python 3 is touted as a “success” it’s still only around 25-30% adoption. After that long it’s time to admit defeat and come up with a new plan.

Python 3.0 came out in 2008. The first couple releases ironed out some compatibility and API problems, so it didn’t start to gain much traction until Python 3.2 came out in 2011. Hell, Python 2.0 came out in 2000, so even Python 2 isn’t multiple decades old. It would be great if this trusted beginner reference could take two seconds to check details like this before using them to scaremonger.

The big early problem was library compatibility: it’s hard to justify switching to a new version of the language if none of the libraries work. Libraries could only port once their own dependencies had ported, of course, and it took a couple years to figure out the best way to maintain compatibility with both Python 2 and Python 3. I’d say we only really hit critical mass a few years ago — for instance, Django didn’t support Python 3 until 2013 — in which case that 30% is nothing to sneeze at.

There are more reasons beyond just the uncertain future of Python 3 even decades later.

In one paragraph, we’ve gone from “maybe even multiple decades” to just “decades”, which is a funny way to spell “eight years”.

Not In Your Best Interests

The Python project’s efforts to convince you to start with Python 3 are not in your best interest, but, rather, are only in the best interests of the Python project.

It’s bad, you see, for the Python project to want people to use the work it produced.

Anyway, please buy Zed Shaw’s book.

Anyway, please pledge to my Patreon.

Ultimately though, if Python 3 were good they wouldn’t need to do any convincing to get you to use it. It would just naturally work for you and you wouldn’t have any problems. Instead, there are serious issues with Python 3 for beginners, and rather than fix those issues the Python project uses propaganda, social pressure, and marketing to convince you to use it. In the world of technology using marketing and propaganda is immediately a sign that the technology is defective in some obvious way.

This use of social pressure and propaganda to convince you to use Python 3 despite its problems, in an attempt to benefit the Python project, is morally unconscionable to me.

Ten paragraphs in, Zed is telling me that I should be suspicious of anything that relies on marketing and propaganda. Meanwhile, there has yet to be a single concrete reason why Python 3 is bad for beginners — just several flat-out incorrect assertions and a lot of handwaving about how inexplicably nefarious the Python core developers are. You know, the same people who made Python 2. But they weren’t evil then, I guess.

You Should Be Able to Run 2 and 3

In the programming language theory there is this basic requirement that, given a “complete” programming language, I can run any other programming language. In the world of Java I’m able to run Ruby, Java, C++, C, and Lua all at the same time. In the world of Microsoft I can run F#, C#, C++, and Python all at the same time. This isn’t just a theoretical thing. There is solid math behind it. Math that is truly the foundation of computer science.

The fact that you can’t run Python 2 and Python 3 at the same time is purely a social and technical decision that the Python project made with no basis in mathematical reality. This means you are working with a purposefully broken platform when you use Python 3, and I personally can’t condone teaching people to use something that is fundamentally broken.

The programmer-oriented section makes clear that the solid math being referred to is Turing-completeness — the section is even titled “Python 3 Is Not Turing Complete”.

First, notice a rhetorical trick here. You can run Ruby, Java, C++, etc. at the same time, so why not Python 2 and Python 3?

But can you run Java and C# at the same time? (I’m sure someone has done this, but it’s certainly much less popular than something like Jython or IronPython.)

Can you run Ruby 1.8 and Ruby 2.3 at the same time? Ah, no, so I guess Ruby 2.3 is fundamentally and purposefully broken.

Can you run Lua 5.1 and 5.3 at the same time? Lua is a spectacular example, because Lua 5.2 made a breaking change to how the details of scope work, and it’s led to a situation where a lot of programs that embed Lua haven’t bothered upgrading from Lua 5.1. Was Lua 5.2 some kind of dark plot to deliberately break the language? No, it’s just slightly more inconvenient than expected for people to upgrade.

Anyway, as for Turing machines:

In computer science a fundamental law is that if I have one Turing Machine I can build any other Turing Machine. If I have COBOL then I can bootstrap a compiler for FORTRAN (as disgusting as that might be). If I have FORTH, then I can build an interpreter for Ruby. This also applies to bytecodes for CPUs. If I have a Turing Complete bytecode then I can create a compiler for any language. The rule then can be extended even further to say that if I cannot create another Turing Machine in your language, then your language cannot be Turing Complete. If I can’t use your language to write a compiler or interpreter for any other language then your language is not Turing Complete.

Yes, this is true.

Currently you cannot run Python 2 inside the Python 3 virtual machine. Since I cannot, that means Python 3 is not Turing Complete and should not be used by anyone.

And this is completely asinine. Worse, it’s flat-out dishonest, and relies on another rhetorical trick. You only “cannot” run Python 2 inside the Python 3 VM because no one has written a Python 2 interpreter in Python 3. The “cannot” is not a mathematical impossibility; it’s a simple matter of the code not having been written. Or perhaps it has, but no one cares anyway, because it would be comically and unusably slow.

I assume this was meant to be sarcastic on some level, since it’s followed by a big blue box that seems unsure about whether to double down or reverse course. But I can’t tell why it was even brought up, because it has absolutely nothing to do with Zed’s true complaint, which is that Python 2 and Python 3 do not coexist within a single environment. Implementing language X using language Y does not mean that X and Y can now be used together seamlessly.

The canonical Python release is written in C (just like with Ruby or Lua), but you can’t just dump a bunch of C code into a Python (or Ruby or Lua) file and expect it to work. You can talk to C from Python and vice versa, but defining how they communicate is a bit of a pain in the ass and requires some level of setup.

I’ll get into this some more shortly.

No Working Translator

Python 3 comes with a tool called 2to3 which is supposed to take Python 2 code and translate it to Python 3 code.

I should point out right off the bat that this is not actually what you want to use most of the time, because you probably want to translate your Python 2 code to Python 2/3 code. 2to3 produces code that most likely will not work on Python 2. Other tools exist to help you port more conservatively.

Translating one programming language into another is a solidly researched topic with solid math behind it. There are translators that convert any number of languages into JavaScript, C, C++, Java, and many times you have no idea the translation is being done. In addition to this, one of the first steps when implementing a new language is to convert the new language into an existing language (like C) so you don’t have to write a full compiler. Translation is a fully solved problem.

This is completely fucking ludicrous. Translating one programming language to another is a common task, though “fully solved” sounds mighty questionable. But do you know what the results look like?

I found a project called “Transcrypt”, which puts Python in the browser by “translating” it to JavaScript. I’ve never used or heard of this before; I just googled for something to convert Python to JavaScript. Here’s their first sample, a demo using jQuery:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
def start ():
    def changeColors ():
        for div in S__divs:
            S (div) .css ({
                'color': 'rgb({},{},{})'.format (* [int (256 * Math.random ()) for i in range (3)]),
            })

    S__divs = S ('div')
    changeColors ()
    window.setInterval (changeColors, 500)

And here’s the JavaScript code it compiles to:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
(function () {
    var start = function () {
        var changeColors = function () {
            var __iterable0__ = $divs;
            for (var __index0__ = 0; __index0__ < __iterable0__.length; __index0__++) {
                var div = __iterable0__ [__index0__];
                $ (div).css (dict ({'color': 'rgb({},{},{})'.format.apply (null, function () {
                    var __accu0__ = [];
                    for (var i = 0; i < 3; i++) {
                        __accu0__.append (int (256 * Math.random ()));
                    }
                    return __accu0__;
                } ())}));
            }
        };
        var $divs = $ ('div');
        changeColors ();
        window.setInterval (changeColors, 500);
    };
    __pragma__ ('<all>')
        __all__.start = start;
    __pragma__ ('</all>')
}) ();

Well, not quite. That’s actually just a small piece at the end of the full 1861-line file.

You may notice that the emitted JavaScript effectively has to emulate the Python for loop, because JavaScript doesn’t have anything that works exactly the same way. And this is a basic, common language feature translated between two languages in the same general family! Imagine how your code would look if you relied on gritty details of how classes are implemented.

Is this what you want 2to3 to do to your code?

Even if something has been proven to be mathematically possible, that doesn’t mean it’s easy, and it doesn’t mean the results will be pretty (or fast).

The 2to3 translator fails on about 15% of the code it attempts, and does a poor job of translating the code it can handle. The motivations for this are unclear, but keep in mind that a group of people who claim to be programming language experts can’t write a reliable translator from one version of their own language to another. This is also a cause of their porting problems, which adds up to more evidence Python 3’s future is uncertain.

Writing a translator from one language to another is a fully proven and fundamental piece of computer science. Yet, the 2to3 translator cannot translate code 100%. In my own tests it is only about 85% effective, leaving a large amount of code to translate manually. Given that translation is a solved problem this seems to be a decision bordering on malice rather than incredible incompetence.

The programmer-oriented section doubles down on this idea with a title of “Purposefully Crippled 2to3 Translator” — again, accusing the Python project of sabotaging everyone. That doesn’t even make sense; if their goal is to make everyone use Python 3 at any cost, why would they deliberately break their tool that reduces the amount of Python 2 code and increases the amount of Python 3 code?

2to3 sucks because its job is hard. Python is dynamically typed. If it sees d.iteritems(), it might want to change that to d.items(), as it’s called in Python 3 — but it can’t always be sure that d is actually a dict. If d is some user-defined type, renaming the method is wrong.

But hey, Turing-completeness, right? It must be mathematically possible. And it is! As long as you’re willing to see this:

1
2
for key, value in d.iteritems():
    ...

Get translated to this:

1
2
3
__d = d
for key, value in (__d.items() if isinstance(__d, dict) else __d.iteritems()):
    ...

Would Zed be happier with that, I wonder?

The JVM and CLR Prove It’s Pointless

Yet, for some reason, the Python 3 virtual machine can’t run Python 2? Despite the solidly established mathematics disproving this, the countless examples of running one crazy language inside a Russian doll cascade of other crazy languages, and huge number of languages that can coexist in nearly every other virtual machine? That makes no sense.

This, finally, is the real complaint. It’s not a bad one, and it comes up sometimes, but… it’s not this easy.

The Python 3 VM is fairly similar to the Python 2 VM. The problem isn’t the VM, but the core language constructs and standard library.

Consider: what happens when a Python 2 old-style class instance gets passed into Python 3, which has no such concept? It seems like a value would have to always have the semantics of the language version it came from — that’s how languages usually coexist on the same VM, anyway.

Now, I’m using Python 3, and I load some library written for Python 2. I call a Python 2 function that deals with bytestrings, and I pass it a Python 3 bytestring. Oh no! It breaks because Python 3 bytestrings iterate as integers, whereas the Python 2 library expects them to iterate as characters.

Okay, well, no big deal, you say. Maybe Python 2 libraries just need to be updated to work either way, before they can be used with Python 3.

But that’s exactly the situation we’re in right now. Syntax changes are trivially fixed by 2to3 and similar tools. It’s libraries that cause the subtler issues.

The same applies the other way, too. I write Python 3 code, and it gets an int from some Python 2 library. I try to use the .to_bytes method on it, but that doesn’t exist on Python 2 integers. So my Python 3 code, written and intended purely for Python 3, now has to deal with Python 2 integers as well.

Perhaps “primitive” types should convert automatically, on the boundary? Okay, sure. What about the Python 2 buffer type, which is C-backed and replaced by memoryview in Python 3?

Or how about this very fundamental problem: names of methods and other attributes are str in both versions, but that means they’re bytestrings in Python 2 and text in Python 3. If you’re in Python 3 land, and you call obj.foo() on a Python 2 object, what happens? Python 3 wants a method with the text name foo, but Python 2 wants a method with the bytes name foo. Text and bytes are not implicitly convertible in Python 3. So does it error? Somehow work anyway? What about the other way around?

What about the standard library, which has had a number of improvements in Python 3 that don’t or can’t exist in Python 2? Should Python ship two entire separate copies of its standard library? What about modules like logging, which rely on global state? Does Python 2 and Python 3 code need to set up logging separately within the same process?

There are no good solutions here. The language would double in size and complexity, and you’d still end up with a mess at least as bad as the one we have now when values leak from one version into the other.

We either have two situations here:

  1. Python 3 has been purposefully crippled to prevent Python 2’s execution alongside Python 3 for someone’s professional or ideological gain.
  2. Python 3 cannot run Python 2 due to simple incompetence on the part of the Python project.

I can think of a third.

Difficult To Use Strings

The strings in Python 3 are very difficult to use for beginners. In an attempt to make their strings more “international” they turned them into difficult to use types with poor error messages.

Why is “international” in scare quotes?

Every time you attempt to deal with characters in your programs you’ll have to understand the difference between byte sequences and Unicode strings.

Given that I’m reading part of a book teaching Python, this would be a perfect opportunity to drive this point home by saying “Look! Running exercise N in Python 3 doesn’t work.” Exercise 1, at least, works fine for me with a little extra sprinkle of parentheses:

1
2
3
4
5
6
7
print("Hello World!")
print("Hello Again")
print("I like typing this.")
print("This is fun.")
print('Yay! Printing.')
print("I'd much rather you 'not'.")
print('I "said" do not touch this.')

Contrast with the actual content of that exercise — at the bottom is a big red warning box telling people from “another country” (relative to where?) that if they get errors about ASCII encodings, they should put an unexplained magical incantation at the top of their scripts to fix “Unicode UTF-8”, whatever that is. I wonder if Zed has read his own book.

Don’t know what that is? Exactly.

If only there were a book that could explain it to beginners in more depth than “you have to fix this if you’re foreign”.

The Python project took a language that is very forgiving to beginners and mostly “just works” and implemented strings that require you to constantly know what type of string they are. Worst of all, when you get an error with strings (which is very often) you get an error message that doesn’t tell you what variable names you need to fix.

The complaint is that this happens in Python 3, whereas it’s accepted in Python 2:

1
2
3
4
>>> b"hello" + "hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: can't concat bytes to str

The programmer section is called “Statically Typed Strings”. But this is not static typing. That’s strong typing, a property that sets Python’s type system apart from languages like JavaScript. It’s usually considered a good thing, because the alternative is to silently produce nonsense in some cases, and then that nonsense propagates through your program and is hard to track down when it finally causes problems.

If they’re going to require beginners to struggle with the difference between bytes and Unicode the least they could do is tell people what variables are bytes and what variables are strings.

That would be nice, but it’s not like this is a new problem. Try this in Python 2.

1
2
3
4
>>> 3 + "hello"
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

How would Python even report this error when I used literals instead of variables? How could custom types hook into such a thing? Error messages are hard.

By the way, did you know that several error messages are much improved in Python 3? Python 2 is somewhat notorious for the confusing errors it produces when an argument is missing from a method call, but Python 3 is specific about the problem, which is much friendlier to beginners.

However, when you point out that this is hard to use they try to claim it’s good for you. It is not. It’s simple blustering covering for a poor implementation.

I don’t know what about this is hard. Why do you have a text string and a bytestring in the first place? Why is it okay to refuse adding a number to a string, but not to refuse adding bytes to a string?

Imagine if one of the Python core developers were just getting into Python 2 and messing around.

1
2
3
# -*- coding: utf8 -*-
print "Hi, my name is Łukasz Langa."
print "Hi, my name is Łukasz Langa."[::-1]
1
2
Hi, my name is Łukasz Langa.
.agnaL zsaku�� si eman ym ,iH

Good luck figuring out how to fix that.

This isn’t blustering. Bytes are not text; they are binary data that could encode anything. They happen to look like text sometimes, and you can get away with thinking they’re text if you’re not from “another country”, but that mindset will lead you to write code that is wrong. The resulting bugs will be insidious and confusing, and you’ll have a hard time even reasoning about them because it’ll seem like “Unicode text” is somehow a different beast altogether from “ASCII text”.

Exercise 11 mentions at the end that you can use int() to convert a number to an integer. It’s no more complicated to say that you convert bytes to a string using .decode(). It shouldn’t even come up unless you’re explicitly working with binary data, and I don’t see any reading from sockets in LPTHW.

It’s also not statically compiled as strongly as it could be, so you can’t find these kinds of type errors until you run the code.

This comes a scant few paragraphs after “Dynamic typing is what makes Python easy to use and one of the reasons I advocate it for beginners.”

You can’t find any kinds of type errors until you run the code. Welcome to dynamic typing.

Strings are also most frequently received from an external source, such as a network socket, file, or similar input. This means that Python 3’s statically typed strings and lack of static type safety will cause Python 3 applications to crash more often and have more security problems when compared with Python 2.

On the contrary — Python 3 applications should crash less often. The problem with silently converting between bytestrings and text in Python 2 is that it might fail, depending on the contents. "cafe" + u"hello" works fine, but "café" + u"hello" raises a UnicodeDecodeError. Python 2 makes it very easy to write code that appears to work when tested with ASCII data, but later breaks with anything else, even though the values are still the same types. In Python 3, you get an error the first time you try to run such code, regardless of what’s in the actual values. That’s the biggest reason for the change: it improves things from being intermittent value errors to consistent type errors.

More security problems? This is never substantiated, and seems to have been entirely fabricated.

Too Many Formatting Options

In addition to that you will have 3 different formatting options in Python 3.6. That means you’ll have to learn to read and use multiple ways to format strings that are all very different. Not even I, an experienced professional programmer, can easily figure out these new formatting systems or keep up with their changing features.

I don’t know what on earth “keep up with their changing features” is supposed to mean, and Zed doesn’t bother to go into details.

Python 3 has three ways to format strings: % interpolation, str.format(), and the new f"" strings in Python 3.6. The f"" strings use the same syntax as str.format(); the difference is that where str.format() uses numbers or names of keyword arguments, f"" strings just use expressions. Compare:

1
2
3
number = 133
print("{n:02x}".format(n=number))
print(f"{number:02x}")

This isn’t “very different”. A frequently-used method is being promoted to syntax.

I really like this new style, and I have no idea why this wasn’t the formatting for Python 3 instead of that stupid .format function. String interpolation is natural for most people and easy to explain.

The problem is that beginner will now how to know all three of these formatting styles, and that’s too many.

I could swear Zed, an experienced professional programmer, just said he couldn’t easily figure out these new formatting systems. Note also that str.format() has existed in Python 2 since Python 2.6 was released in 2008, so I don’t know why Zed said “new formatting systems“, plural.

This is a truly bizarre complaint overall, because the mechanism Zed likes best is the newest one. If Python core had agreed that three mechanisms was too many, we wouldn’t be getting f"" at all.

Even More Versions of Strings

Finally, I’m told there is a new proposal for a string type that is both bytes and Unicode at the same time? That’d be fantastic if this new type brings back the dynamic typing that makes Python easy, but I’m betting it will end up being yet another static type to learn. For that reason I also think beginners should avoid Python 3 until this new “chimera string” is implemented and works reliably in a dynamic way. Until then, you will just be dealing with difficult strings that are statically typed in a dynamically typed language.

I have absolutely no idea what this is referring to, and I can’t find anyone who does. I don’t see any recent PEPs mentioning such a thing, nor anything in the last several months on the python-dev mailing list. I don’t see it in the Python 3.6 release notes.

The closest thing I can think of is the backwards-compatibility shenanigans for PEP 528 and PEP 529 — they switch to the Windows wide-string APIs for console and filesystem encoding, but pretend under the hood that the APIs take UTF-8-encoded bytes to avoid breaking libraries like Twisted. That’s a microscopic detail that should never matter to anyone but authors of Twisted, and is nothing like a new hybrid string type, but otherwise I’m at a loss.

This paragraph really is a perfect summary of the whole article. It speaks vaguely yet authoritatively about something that doesn’t seem to exist, it doesn’t bother actually investigating the thing the entire section talks about, it conjectures that this mysterious feature will be hard just because it’s in Python 3, and it misuses terminology to complain about a fundamental property of Python that’s always existed.

Core Libraries Not Updated

Many of the core libraries included with Python 3 have been rewritten to use Python 3, but have not been updated to use its features. How could they given Python 3’s constant changing status and new features?

What “constant changing status”? The language makes new releases; is that bad? The only mention of “changing” so far was with string formatting, which makes no sense to me, because the only major change has been the addition of syntax that Zed prefers.

There are several libraries that, despite knowing the encoding of data, fail to return proper strings. The worst offender seems to be any libraries dealing with the HTTP protocol, which does indicate the encoding of the underlying byte stream in many cases.

In many cases, yes. Not in all. Some web servers don’t send back an encoding. Some files don’t have an encoding, because they’re images or other binary data. HTML allows the encoding to be given inside the document, instead. urllib has always returned bytes, so it’s not all that unreasonable to keep doing that, rather than… well, I’m not quite sure what this is proposing. Return strings sometimes?

The documentation for urllib.request and http.client both advise using the higher-level Requests library instead, in a prominent yellow box right at the top. Requests has distinct mechanisms for retrieving bytes versus text and is vastly easier to use overall, though I don’t think even it understands reading encodings from HTML. Alas, computers.

Good luck to any beginner figuring out how to install Requests on Python 2 — but thankfully, Python 3 now comes bundled with pip, which makes installing libraries much easier. Contrast with the beginning of exercise 46, which apologizes for how difficult this is to explain, lists four things to install, warns that it will be frustrating, and advises watching a video to help figure it out.

What’s even more idiotic about this is Python has a really good Chardet library for detecting the encoding of byte streams. If Python 3 is supposed to be “batteries included” then fast Chardet should be baked into the core of Python 3’s strings making it cake to translate strings to bytes even if you don’t know the underlying encoding. … Call the function whatever you want, but it’s not magic to guess at the encoding of a byte stream, it’s science. The only reason this isn’t done for you is that the Python project decided that you should be punished for not knowing about bytes vs. Unicode, and their arrogance means you have difficult to use strings.

Guessing at the encoding of a byte stream isn’t so much science as, well, guessing. Guessing means that sometimes you’re wrong. Sometimes that’s what you want, and I’m honestly ambivalent about having chardet in the standard library, but it’s hardly arrogant to not want to include a highly-fallible heuristic in your programming language.

Conclusions and Warnings

I have resisted writing about these problems with Python 3 for 5 versions because I hoped it would become usable for beginners. Each year I would attempt to convert some of my code and write a couple small tests with Python 3 and simply fail. If I couldn’t use Python 3 reliably then there’s no way a total beginner could manage it. So each year I’d attempt it, and fail, and wait until they fix it. I really liked Python and hoped the Python project would drop their stupid stances on usability.

Let us recap the usability problems seen thusfar.

  • You can’t add b"hello" to "hello".
  • TypeErrors are phrased exactly the same as they were in Python 2.
  • The type system is exactly as dynamic as it was in Python 2.
  • There is a new formatting mechanism, using the same syntax as one in Python 2, that Zed prefers over the ones in Python 2.
  • urllib.request doesn’t decode for you, just like in Python 2.
  • 档牡敤㽴 isn’t built in. Oh, sorry, I meant chardet.

Currently, the state of strings is viewed as a Good Thing in the Python community. The fact that you can’t run Python 2 inside Python 3 is seen as a weird kind of tough love. The brainwashing goes so far as to outright deny the mathematics behind language translation and compilation in an attempt to motivate the Python community to brute force convert all Python 2 code.

Which is probably why the Python project focuses on convincing unsuspecting beginners to use Python 3. They don’t have a switching cost, so if you get them to fumble their way through the Python 3 usability problems then you have new converts who don’t know any better. To me this is morally wrong and is simply preying on people to prop up a project that needs a full reset to survive. It means beginners will fail at learning to code not because of their own abilities, but because of Python 3’s difficulty.

Now that we’re towards the end, it’s a good time to say this: Zed Shaw, your behavior here is fucking reprehensible.

Half of what’s written here is irrelevant nonsense backed by a vague appeal to “mathematics”. Instead of having even the shred of humility required to step back and wonder if there are complicating factors beyond whether something is theoretically possible, you have invented a variety of conflicting and malicious motivations to ascribe to the Python project.

It’s fine to criticize Python 3. The string changes force you to think about what you’re doing a little more in some cases, and occasionally that’s a pain in the ass. I absolutely get it.

But you’ve gone out of your way to invent a conspiracy out of whole cloth and promote it on your popular platform aimed at beginners, who won’t know how obviously full of it you are. And why? Because you can’t add b"hello" to "hello"? Are you kidding me? No one can even offer to help you, because instead of examples of real problems you’ve had, you gave two trivial toys and then yelled a lot about how the whole Python project is releasing mind-altering chemicals into the air.

The Python 3 migration has been hard enough. It’s taken a lot of work from a lot of people who’ve given enough of a crap to help Python evolve — to make it better to the best of their judgment and abilities. Now we’re finally, finally at the point where virtually all libraries support Python 3, a few new ones only support Python 3, and Python 3 adoption is starting to take hold among application developers.

And you show up to piss all over it, to propagate this myth that Python 3 is hamstrung to the point of unusability, because if the Great And Wise Zed Shaw can’t figure it out in ten seconds then it must just be impossible.

Fuck you.

Sadly, I doubt this will happen, and instead they’ll just rant about how I don’t know what I’m talking about and I should shut up.

This is because you don’t know what you’re talking about, and you should shut up.