All posts by David Honess

Astro Pi upgrades launch today!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-upgrades-launch/

Before our beloved SpaceDave left the Raspberry Pi Foundation to join the ranks of the European Space Agency (ESA) — and no, we’re still not jealous *ahem* — he kindly drafted us one final blog post about the Astro Pi upgrades heading to the International Space Station today! So here it is. Enjoy!

We are very excited to announce that Astro Pi upgrades are on their way to the International Space Station! Back in September, we blogged about a small payload being launched to the International Space Station to upgrade the capabilities of our Astro Pi units.

Astro Pi Raspberry Pi International Space Station

Sneak peek

For the longest time, the payload was scheduled to be launched on SpaceX CRS 14 in February. However, the launch was delayed to April and so impacted the flight operations we have planned for running Mission Space Lab student experiments.

To avoid this, ESA had the payload transferred to Russian Soyuz MS-08 (54S), which is launching today to carry crew members Oleg Artemyev, Andrew Feustel, and Ricky Arnold to the ISS.

Ricky Arnold on Twitter

L-47 hours.

You can watch coverage of the launch on NASA TV from 4.30pm GMT this afternoon, with the launch scheduled for 5.44pm GMT. Check the NASA TV schedule for updates.

The upgrades

The pictures below show the flight hardware in its final configuration before loading onto the launch vehicle.

Wireless dongle in bag — Astro Pi upgrades

All access

With the wireless dongle, the Astro Pi units can be deployed in ISS locations other than the Columbus module, where they don’t have access to an Ethernet switch.

We are also sending some flexible optical filters. These are made from the same material as the blue square which is shipped with the Raspberry Pi NoIR Camera Module.

Optical filters in bag — Astro Pi upgrades

#bluefilter

So that future Astro Pi code will need to command fewer windows to download earth observation imagery to the ground, we’re also including some 32GB micro SD cards to replace the current 8GB cards.

Micro SD cards in bag — Astro Pi upgrades

More space in space

Tthe items above are enclosed in a large 8″ ziplock bag that has been designated the “AstroPi Kit”.

bag of Astro Pi upgrades

It’s ziplock bags all the way down up

Once the Soyuz docks with the ISS, this payload is one of the first which will be unpacked, so that the Astro Pi units can be upgraded and deployed ready to run your experiments!

More Astro Pi

Stay tuned for our next update in April, when student code is set to be run on the Astro Pi units as part of our Mission Space Lab programme. And to find out more about Astro Pi, head to the programme website.

The post Astro Pi upgrades launch today! appeared first on Raspberry Pi.

Astro Pi celebrates anniversary of ISS Columbus module

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-celebrates-anniversary/

Right now, 400km above the Earth aboard the International Space Station, are two very special Raspberry Pi computers. They were launched into space on 6 December 2015 and are, most assuredly, the farthest-travelled Raspberry Pi computers in existence. Each year they run experiments that school students create in the European Astro Pi Challenge.

Raspberry Astro Pi units on the International Space Station

Left: Astro Pi Vis (Ed); right: Astro Pi IR (Izzy). Image credit: ESA.

The European Columbus module

Today marks the tenth anniversary of the launch of the European Columbus module. The Columbus module is the European Space Agency’s largest single contribution to the ISS, and it supports research in many scientific disciplines, from astrobiology and solar science to metallurgy and psychology. More than 225 experiments have been carried out inside it during the past decade. It’s also home to our Astro Pi computers.

Here’s a video from 7 February 2008, when Space Shuttle Atlantis went skywards carrying the Columbus module in its cargo bay.

STS-122 Launch NASA TV Coverage

From February 7th, 2008 NASA-TV Coverage of The 121st Space Shuttle Launch Launched At:2:45:30 P.M E.T – Coverage begins exactly one hour till launch STS-122 Crew:

Today, coincidentally, is also the deadline for the European Astro Pi Challenge: Mission Space Lab. Participating teams have until midnight tonight to submit their experiments.

Anniversary celebrations

At 16:30 GMT today there will be a live event on NASA TV for the Columbus module anniversary with NASA flight engineers Joe Acaba and Mark Vande Hei.

Our Astro Pi computers will be joining in the celebrations by displaying a digital birthday candle that the crew can blow out. It works by detecting an increase in humidity when someone blows on it. The video below demonstrates the concept.

AstroPi candle

Uploaded by Effi Edmonton on 2018-01-17.

Do try this at home

The exact Astro Pi code that will run on the ISS today is available for you to download and run on your own Raspberry Pi and Sense HAT. You’ll notice that the program includes code to make it stop automatically when the date changes to 8 February. This is just to save time for the ground control team.

If you have a Raspberry Pi and a Sense HAT, you can use the terminal commands below to download and run the code yourself:

wget http://rpf.io/colbday -O birthday.py
chmod +x birthday.py
./birthday.py

When you see a blank blue screen with the brightness increasing, the Sense HAT is measuring the baseline humidity. It does this every 15 minutes so it can recalibrate to take account of natural changes in background humidity. A humidity increase of 2% is needed to blow out the candle, so if the background humidity changes by more than 2% in 15 minutes, it’s possible to get a false positive. Press Ctrl + C to quit.

Please tweet pictures of your candles to @astro_pi – we might share yours! And if we’re lucky, we might catch a glimpse of the candle on the ISS during the NASA TV event at 16:30 GMT today.

The post Astro Pi celebrates anniversary of ISS Columbus module appeared first on Raspberry Pi.

Astro Pi Mission Zero: your code is in space

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-mission-zero-day/

Every school year, we run the European Astro Pi challenge to find the next generation of space scientists who will program two space-hardened Raspberry Pi units, called Astro Pis, living aboard the International Space Station.

Italian ESA Astronaut Paolo Nespoli with the Astro Pi units. Image credit ESA.

Astro Pi Mission Zero

The 2017–2018 challenge included the brand-new non-competitive Mission Zero, which guaranteed that participants could have their code run on the ISS for 30 seconds, provided they followed the rules. They would also get a certificate showing the exact time period during which their code ran in space.

Astro Pi Mission Zero logo

We asked participants to write a simple Python program to display a personalised message and the air temperature on the Astro Pi screen. No special hardware was needed, since all the code could be written in a web browser using the Sense HAT emulator developed in partnership with Trinket.

Scott McKenzie on Twitter

Students coding #astropi emulator to scroll a message to astronauts on @Raspberry_Pi in space this summer. Try it here: https://t.co/0KURq11X0L #Rm9Parents #CSforAll #ontariocodes

And now it’s time…

We received over 2500 entries for Mission Zero, and we’re excited to announce that tomorrow all entries with flight status will be run on the ISS…in SPAAACE!

There are 1771 Python programs with flight status, which will run back-to-back on Astro Pi VIS (Ed). The whole process will take about 14 hours. This means that everyone will get a timestamp showing 1 February, so we’re going to call this day Mission Zero Day!

Part of each team’s certificate will be a map, like the one below, showing the exact location of the ISS while the team’s code was running.

The grey line is the ISS orbital path, the red marker shows the ISS’s location when their code was running. Produced using Google Static Maps API.

The programs will be run in the same sequence in which we received them. For operational reasons, we can’t guarantee that they will run while the ISS flies over any particular location. However, if you have submitted an entry to Mission Zero, there is a chance that your code will run while the ISS is right overhead!

Go out and spot the station

Spotting the ISS is a great activity to do by yourself or with your students. The station looks like a very fast-moving star that crosses the sky in just a few minutes. If you know when and where to look, and it’s not cloudy, you literally can’t miss it.

Source Andreas Möller, Wikimedia Commons.

The ISS passes over most ground locations about twice a day. For it to be clearly visible though, you need darkness on the ground with sunlight on the ISS due to its altitude. There are a number of websites which can tell you when these visible passes occur, such as NASA’s Spot the Station. Each of the sites requires you to give your location so it can work out when visible passes will occur near you.

Visible ISS pass star chart from Heavens Above, on which familiar constellations such as the Plough (see label Ursa Major) can be seen.

A personal favourite of mine is Heavens Above. It’s slightly more fiddly to use than other sites, but it produces brilliant star charts that show you precisely where to look in the sky. This is how it works:

  1. Go to www.heavens-above.com
  2. To set your location, click on Unspecified in the top right-hand corner
  3. Enter your location (e.g. Cambridge, United Kingdom) into the text box and click Search
  4. The map should change to the correct location — scroll down and click Update
  5. You’ll be taken back to the homepage, but with your location showing at the top right
  6. Click on ISS in the Satellites section
  7. A table of dates will now show, which are the upcoming visible passes for your location
  8. Click on a row to view the star chart for that pass — the line is the path of the ISS, and the arrow shows direction of travel
  9. Be outside in cloudless weather at the start time, look towards the direction where the line begins, and hope the skies stay clear

If you go out and do this, then tweet some pictures to @raspberry_pi, @astro_pi, and @esa. Good luck!

More Astro Pi

Mission Zero certificates will be arriving in participants’ inboxes shortly. We would like to thank everyone who participated in Mission Zero this school year, and we hope that next time you’ll take it one step further and try Mission Space Lab.

Mission Zero and Mission Space Lab are two really exciting programmes that young people of all ages can take part in. If you would like to be notified when the next round of Astro Pi opens for registrations, sign up to our mailing list here.

The post Astro Pi Mission Zero: your code is in space appeared first on Raspberry Pi.

Announcing the 2017-18 European Astro Pi challenge!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/announcing-2017-18-astro-pi/

Astro Pi is back! Today we’re excited to announce the 2017-18 European Astro Pi challenge in partnership with the European Space Agency (ESA). We are searching for the next generation of space scientists.

YouTube

Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.

Astro Pi is an annual science and coding competition where student-written code is run on the International Space Station under the oversight of an ESA astronaut. The challenge is open to students from all 22 ESA member countries, including — for the first time — associate members Canada and Slovenia.

The format of the competition is changing slightly this year, and we also have a brand-new non-competitive mission in which participants are guaranteed to have their code run on the ISS for 30 seconds!

Mission Zero

Until now, students have worked on Astro Pi projects in an extra-curricular context and over multiple sessions. For teachers and students who don’t have much spare capacity, we wanted to provide an accessible activity that teams can complete in just one session.

So we came up with Mission Zero for young people no older than 14. To complete it, form a team of two to four people and use our step-by-step guide to help you write a simple Python program that shows your personal message and the ambient temperature on the Astro Pi. If you adhere to a few rules, your code is guaranteed to run in space for 30 seconds, and you’ll receive a certificate showing the exact time period during which your code has run in space. No special hardware is needed for this mission, since everything is done in a web browser.

Mission Zero is open until 26 November 2017! Find out more.

Mission Space Lab

Students aged up to 19 can take part in Mission Space Lab. Form a team of two to six people, and work like real space scientists to design your own experiment. Receive free kit to work with, and write the Python code to carry out your experiment.

There are two themes for Mission Space Lab teams to choose from for their projects:

  • Life in space
    You will make use of Astro Pi Vis (“Ed”) in the European Columbus module. You can use all of its sensors, but you cannot record images or videos.
  • Life on Earth
    You will make use of Astro Pi IR (“Izzy”), which will be aimed towards the Earth through a window. You can use all of its sensors and its camera.

The Astro Pi kit, delivered to Space Lab teams by ESA

If you achieve flight status, your code will be uploaded to the ISS and run for three hours (two orbits). All the data that your code records in space will be downloaded and returned to you for analysis. Then submit a short report on your findings to be in with a chance to win exclusive, money-can’t-buy prizes! You can also submit your project for a Bronze CREST Award.

Mission Space Lab registration is open until 29 October 2017, and accepted teams will continue to spring 2018. Find out more.

How do I get started?

There are loads of materials available that will help you begin your Astro Pi journey — check out the Getting started with the Sense HAT resource and this video explaining how to build the flight case.

Questions?

If you have any questions, please post them in the comments below. We’re standing by to answer them!

The post Announcing the 2017-18 European Astro Pi challenge! appeared first on Raspberry Pi.

Astro Pi upgrades on the International Space Station

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-upgrades/

In 2015, The Raspberry Pi Foundation built two space-hardened Raspberry Pi units, or Astro Pis, to run student code on board the International Space Station (ISS).

Astro Pi

A space-hardened Raspberry Pi

Astro Pi upgrades

Each school year we run an Astro Pi challenge to find the next generation of space scientists to program them. After the students have their code run in space, any output files are downloaded to ground and returned to them for analysis.

That download process was originally accomplished by an astronaut shutting down the Astro Pi, moving its micro SD card to a crew laptop and copying over the files manually. This used about 20 minutes of precious crew time.

space pi – Create, Discover and Share Awesome GIFs on Gfycat

Watch space pi GIF by sooperdave on Gfycat. Discover more GIFS online on Gfycat

Last year, we passed the qualification to allow the Astro Pi computers to be connected to the Local Area Network (LAN) on board the ISS. This allows us to remotely access them from the ground, upload student code and download the results without having to involve the crew.

This year, we have been preparing a new payload to upgrade the operational capabilities of the Astro Pi units.

The payload consists of the following items:

  • 2 × USB WiFi dongles
  • 5 × optical filters
  • 4 × 32GB micro SD cards

Before anyone asks – no, we’re not going outside into the vacuum of space!

USB WiFi dongle

Currently both Astro Pi units are located in the European Columbus module. They’re even visible on Google Street View (pan down and right)! You can see that we’ve created a bit of a bird’s nest of wires behind them.

Astro Pi

The D-Link DWA-171

The decision to add WiFi capability is partly to clean up the cabling situation, but mainly so that the Astro Pi units can be deployed in ISS locations other than the Columbus module, where we won’t have access to an Ethernet switch.

The Raspberry Pi used in the Astro Pi flight units is the B+ (released in 2014), which does not have any built in wireless connectivity, so we need to use a USB dongle. This particular D-Link dongle was recommended by the European Space Agency (ESA) because a number of other payloads are already using it.

Astro Pi

An Astro Pi unit with WiFi dongle installed

Plans have been made for one of the Astro Pi units to be deployed on an Earth-facing window, to allow Earth-observation student experiments. This is where WiFi connectivity will be required to maintain LAN access for ground control.

Optical filters

With Earth-observation experiments in mind, we are also sending some flexible film optical filters. These are made from the same material as the blue square which is shipped with the Pi NoIR camera module, as noted in this post from when the product was launched. You can find the data sheet here.

Astro Pi

Rosco Roscalux #2007 Storaro Blue

To permit the filter to be easily attached to the Astro Pi unit, the film is laser-cut to friction-fit onto the 12 inner heatsink pins on the base, so that the camera aperture is covered.

Astro Pi

Laser cutting at Makespace

The laser-cutting work was done right here in Cambridge at Makespace by our own Alex Bate, and local artist Diana Probst.

Astro Pi

An Astro Pi with the optical filter installed

32GB micro SD cards

A consequence of running Earth observation experiments is a dramatic increase in the amount of disk space needed. To avoid a high frequency of commanding windows to download imagery to ground, we’re also flying some larger 32GB micro SD cards to replace the current 8GB cards.

Astro Pi

The Samsung Evo MB-MP32DA/EU

This particular type of micro SD card is X-ray proof, waterproof, and resistant to magnetism and heat. Operationally speaking there is no difference, other than the additional available disk space.

Astro Pi

An Astro Pi unit with the new micro SD card installed

The micro SD cards will be flown with a security-hardened version of Raspbian pre-installed.

Crew activities

We have several crew activities planned for when this payload arrives on the ISS. These include the installation of the upgrade items on both Astro Pi units; moving one of the units from Columbus to an earth-facing window (possibly in Node 2); and then moving it back a few weeks later.

Currently it is expected that these activities will be carried out by German ESA astronaut Alexander Gerst who launches to the ISS in November (and will also be the ISS commander for Expedition 57).

Payload launch

We are targeting a January 2018 launch date for the payload. The exact launch vehicle is yet to be determined, but it could be SpaceX CRS 14. We will update you closer to the time.

Questions?

If you have any questions about this payload, how an item works, or why that specific model was chosen, please post them in the comments below, and we’ll try to answer them.

The post Astro Pi upgrades on the International Space Station appeared first on Raspberry Pi.

European Astro Pi: Mission complete

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/european-astro-pi-mission-complete/

In October last year, with the European Space Agency and CNES, we launched the first ever European Astro Pi challenge. We asked students from all across Europe to write code for the flight of French ESA astronaut Thomas Pesquet to the International Space Station (ISS) as part of the Proxima mission.

The winners were announced back in March, and since then their code has been uploaded to the ISS and run in space!

Thomas Pesquet aboard the ISS with the Astro Pi units

French ESA astronaut Thomas Pesquet with the Astro Pi units. Image credit ESA.

Code from 64 student teams ran between 28 April and 10 May, supervised by Thomas, in the European Columbus module.

Astro Pi on Twitter

We can confirm student programs are finished, results are downloaded from @Space_Station and teams will receive their​ data by next week 🛰️📡

On 10 May the results, data, and log files were downloaded to the ground, and the following week they were emailed back to the student teams for analysis.

Ecole St-André d’E on Twitter

On vient de recevoir les données enregistrées par nos codes #python depuis l’ #iss @CNES @astro_pi @Thom_astro . Reste à analyser tout ça!

We’ve looked at the results, and we can see that many of the teams have been successful in their missions: congratulations to all of you! We look forward to reading your write-ups and blogs.

In pictures

In a surprise turn of events, we learnt that Thomas set up a camera to take regular pictures of the Astro Pi units for one afternoon. This was entirely voluntary on his part and was not scheduled as part of the mission. Thank you so much, Thomas!

Some lucky teams have some very nice souvenirs from the ISS. Here are a couple of them:

Astro Pi units on the ISS photographed by Thomas Pesquet

Juvara team – Italy (left) and South London Raspberry Jam – UK (right). Image credit ESA.

Astro Pi units on the ISS photographed by Thomas Pesquet

Astro Team – Italy (left) and AstroShot – Greece (right). Image credit ESA.

Until next time…

This brings the 2016/17 European Astro Pi challenge to a close. We would like to thank all the students and teachers who participated; the ESA Education, Integration and Implementation, Ground Systems, and Flight Control teams; BioTesc (ESA’s user operations control centre for Astro Pi); and especially Thomas Pesquet himself.

Thomas and Russian Soyuz commander Oleg Novitskiy return to Earth today, concluding their six-month stay on the ISS. After a three-hour journey in their Soyuz spacecraft, they will land in the Kazakh steppe at approximately 15:09 this afternoon. You can watch coverage of the departure, re-entry, and landing on NASA TV.

Astro Pi has been a hugely enjoyable project to work on, and we hope to be back in the new school year (2017-18) with brand-new challenges for teachers and students.

 

The post European Astro Pi: Mission complete appeared first on Raspberry Pi.

Sense HAT Emulator Upgrade

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/sense-hat-emulator-upgrade/

Last year, we partnered with Trinket to develop a web-based emulator for the Sense HAT, the multipurpose add-on board for the Raspberry Pi. Today, we are proud to announce an exciting new upgrade to the emulator. We hope this will make it even easier for you to design amazing experiments with the Sense HAT!

What’s new?

The original release of the emulator didn’t fully support all of the Sense HAT features. Specifically, the movement sensors were not emulated. Thanks to funding from the UK Space Agency, we are delighted to announce that a new round of development has just been completed. From today, the movement sensors are fully supported. The emulator also comes with a shiny new 3D interface, Astro Pi skin mode, and Pygame event handling. Click the ▶︎ button below to see what’s new!

Upgraded sensors

On a physical Sense HAT, real sensors react to changes in environmental conditions like fluctuations in temperature or humidity. The emulator has sliders which are designed to simulate this. However, emulating the movement sensor is a bit more complicated. The upgrade introduces a 3D slider, which is essentially a model of the Sense HAT that you can move with your mouse. Moving the model affects the readings provided by the accelerometer, gyroscope, and magnetometer sensors.

Code written in this emulator is directly portable to a physical Raspberry Pi and Sense HAT without modification. This means you can now develop and test programs using the movement sensors from any internet-connected computer, anywhere in the world.

Astro Pi mode

Astro Pi is our series of competitions offering students the chance to have their code run in space! The code is run on two space-hardened Raspberry Pi units, with attached Sense HATs, on the International Space Station.

Image of Astro Pi unit Sense HAT emulator upgrade

Astro Pi skin mode

There are a number of practical things that can catch you out when you are porting your Sense HAT code to an Astro Pi unit, though, such as the orientation of the screen and joystick. Just as having a 3D-printed Astro Pi case enables you to discover and overcome these, so does the Astro Pi skin mode in this emulator. In the bottom right-hand panel, there is an Astro Pi button which enables the mode: click it again to go back to the Sense HAT.

The joystick and push buttons are operated by pressing your keyboard keys: use the cursor keys and Enter for the joystick, and U, D, L, R, A, and B for the buttons.

Sense Hat resources for Code Clubs

Image of gallery of Code Club Sense HAT projects Sense HAT emulator upgrade

Click the image to visit the Code Club projects page

We also have a new range of Code Club resources which are based on the emulator. Of these, three use the environmental sensors and two use the movement sensors. The resources are an ideal way for any Code Club to get into physical computing.

The technology

The 3D models in the emulator are represented entirely with HTML and CSS. “This project pushed the Trinket team, and the 3D web, to its limit,” says Elliott Hauser, CEO of Trinket. “Our first step was to test whether pure 3D HTML/CSS was feasible, using Julian Garnier’s Tridiv.”

Sense HAT 3D image mockup Sense HAT emulator upgrade

The Trinket team’s preliminary 3D model of the Sense HAT

“We added JavaScript rotation logic and the proof of concept worked!” Elliot continues. “Countless iterations, SVG textures, and pixel-pushing tweaks later, the finished emulator is far more than the sum of its parts.”

Sense HAT emulator 3d image final version Sense HAT emulator upgrade

The finished Sense HAT model: doesn’t it look amazing?

Check out this blog post from Trinket for more on the technology and mathematics behind the models.

One of the compromises we’ve had to make is browser support. Unfortunately, browsers like Firefox and Microsoft Edge don’t fully support this technology yet. Instead, we recommend that you use Chrome, Safari, or Opera to access the emulator.

Where do I start?

If you’re new to the Sense HAT, you can simply copy and paste many of the code examples from our educational resources, like this one. Alternatively, you can check out our Sense HAT Essentials e-book. For a complete list of all the functions you can use, have a look at the Sense HAT API reference here.

The post Sense HAT Emulator Upgrade appeared first on Raspberry Pi.

European Astro Pi Challenge winners

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/european-astro-pi-winners/

In October last year, with the European Space Agency and CNES, we launched the first ever European Astro Pi challenge. We asked students from all across Europe to write code for the flight of French ESA astronaut Thomas Pesquet to the International Space Station (ISS) as part of the Proxima mission. Today, we are very excited to announce the winners! First of all, though, we have a very special message from Thomas Pesquet himself, which comes all the way from space…

Thomas Pesquet congratulates Astro Pi participants from space

French ESA astronaut Thomas Pesquet floats in to thank all participants in the European Astro Pi challenge. In October last year, together with the European Space Agency, we launched the first ever European Astro Pi challenge for the flight of French ESA astronaut Thomas Pesquet to the International Space Station (ISS) as part of mission Proxima.

Thomas also recorded a video in French: you can click here to see it and to enjoy some more of his excellent microgravity acrobatics.

A bit of background

This year’s competition expands on our previous work with British ESA astronaut Tim Peake, in which, together with the UK Space Agency and ESA, we invited UK students to design software experiments to run on board the ISS.

Astro Pi Vis (AKA Ed) on board the ISS. Image from ESA.

In 2015, we built two space-hardened Raspberry Pi units, or Astro Pis, to act as the platform on which to run the students’ code. Affectionately nicknamed Ed and Izzy, the units were launched into space on an Atlas V rocket, arriving at the ISS a few days before Tim Peake. He had a great time running all of the programs, and the data collected was transmitted back to Earth so that the winners could analyse their results and share them with the public.

The European challenge provides the opportunity to design code to be run in space to school students from every ESA member country. To support the participants, we worked with ESA and CPC to design, manufacture, and distribute several hundred free Astro Pi activity kits to the teams who registered. Further support for teachers was provided in the form of three live webinars, a demonstration video, and numerous free educational resources.

Image of Astro Pi kit box

The Astro Pi activity kit used by participants in the European challenge.

The challenge

Thomas Pesquet assigned two missions to the teams:

  • A primary mission, for which teams needed to write code to detect when the crew are working in the Columbus module near the Astro Pi units.
  • A secondary mission, for which teams needed to come up with their own scientific investigation and write the code to execute it.

The deadline for code submissions was 28 February 2017, with the judging taking place the following week. We can now reveal which schools will have the privilege of having their code uploaded to the ISS and run in space.

The proud winners!

Everyone produced great work and the judges found it really tough to narrow the entries down. In addition to the winning submissions, there were a number of teams who had put a great deal of work into their projects, and whose entries have been awarded ‘Highly Commended’ status. These teams will also have their code run on the ISS.

We would like to say a big thank you to everyone who participated. Massive congratulations are due to the winners! We will upload your code digitally using the space-to-ground link over the next few weeks. Your code will be executed, and any files created will be downloaded from space and returned to you via email for analysis.

In no particular order, the winners are:

France

  • Winners
    • @stroteam, Institut de Genech, Hauts-de-France
    • Wierzbinski, École à la maison, Occitanie
    • Les Marsilyens, École J. M. Marsily, PACA
    • MauriacSpaceCoders, Lycée François Mauriac, Nouvelle-Aquitaine
    • Ici-bas, École de Saint-André d’Embrun, PACA
    • Les Astrollinaires, Lycée général et technologique Guillaume Apollinaire, PACA
  • Highly Commended
    • ALTAÏR, Lycée Albert Claveille, Nouvelle Aquitaine
    • GalaXess Reloaded, Lycée Saint-Cricq, Nouvelle Aquitaine
    • Les CM de Neffiès, École Louis Authie, Occitanie
    • Équipe Sciences, Collège Léonce Bourliaguet, Nouvelle Aquitaine
    • Maurois ICN, Lycée André Maurois, Normandie
    • Space Project SP4, Lycée Saint-Paul IV, Île de la Réunion
    • 4eme2 Gymnase Jean Sturm, Gymnase Jean Sturm, Grand Est
    • Astro Pascal dans les étoiles, École Pascal, Île-de-France
    • les-4mis, EREA Alexandre Vialatte, Auvergne-Rhône-Alpes
    • Space Cavenne Oddity, École Cavenne, Auvergne-Rhône-Alpes
    • Luanda for Space, Lycée Français de Luanda, Angola
      (Note: this is a French international school and the team members have French nationality/citizenship)
    • François Detrille, Lycée Langevin-Wallon, Île-de-France

Greece

  • Winners
    • Delta, TALOS ed-UTH-robotix, Magnesia
    • Weightless Mass, Intercultural Junior High School of Evosmos, Macedonia
    • 49th Astro Pi Teamwork, 49th Elementary School of Patras, Achaia
    • Astro Travellers, 12th Primary School of Petroupolis, Attiki
    • GKGF-1, Gymnasium of Kanithos, Sterea Ellada
  • Highly Commended
    • AstroShot, Lixouri High School, Kefalonia
    • Salamina Rockets Pi, 1st Senior High School of Salamina, Attiki
    • The four Astro-fans, 6th Gymnasio of Veria, Macedonia
    • Samians, 2nd Gymnasio Samou, North Eastern Aegean

United Kingdom

  • Winners
    • Madeley Ad Astra, Madeley Academy, Shropshire
    • Team Dexterity, Dyffryn Taf School, Carmarthenshire
    • The Kepler Kids, St Nicolas C of E Junior School, Berkshire
    • Catterline Pi Bugs, Catterline Primary, Aberdeenshire
    • smileyPi, Westminster School, London
  • Highly Commended
    • South London Raspberry Jam, South London Raspberry Jam, London

Italy

  • Winners
    • Garibaldini, Istituto Comprensivo Rapisardi-Garibaldi, Sicilia
    • Buzz, IIS Verona-Trento, Sicilia
    • Water warmers, Liceo Scientifico Galileo Galilei, Abruzzo
    • Juvara/Einaudi Siracusa, IIS L. Einaudi, Sicilia
    • AstroTeam, IIS Arimondi-Eula, Piemonte

Poland

  • Winners
    • Birnam, Zespół Szkoły i Gimnazjum im. W. Orkana w Niedźwiedziu, Malopolska
    • TechnoZONE, Zespół Szkół nr 2 im. Eugeniusza Kwiatkowskiego, Podkarpacie
    • DeltaV, Gimnazjum nr 49, Województwo śląskie
    • The Safety Crew, MZS Gimnazjum nr 1, Województwo śląskie
    • Warriors, Zespół Szkół Miejskich nr 3 w Jaśle, Podkarpackie
  • Highly Commended
    • The Young Cuiavian Astronomers, Gimnazjum im. Stefana Kardynała Wyszyńskiego w Piotrkowie Kujawskim, Kujawsko-pomorskie
    • AstroLeszczynPi, I Liceum Ogolnokształcace w Jasle im. Krola Stanislawa Leszczynskiego, Podkarpackie

Portugal

  • Winners
    • Sampaionautas, Escola Secundária de Sampaio, Setúbal
    • Labutes Pi, Escola Secundária D. João II, Setúbal
    • AgroSpace Makers, EB 2/3 D. Afonso Henriques, Cávado
    • Zero Gravity, EB 2/3 D. Afonso Henriques, Cávado
    • Lua, Agrupamento de Escolas José Belchior Viegas, Algarve

Romania

  • Winners
    • AstroVianu, Tudor Vianu National High School of Computer Science, Bucharest
    • MiBus Researchers, Mihai Busuioc High School, Iași
    • Cosmos Dreams, Nicolae Balcescu High School, Cluj
    • Carmen Sylva Astro Pi, Liceul Teoretic Carmen Sylva Eforie, Constanța
    • Stargazers, Tudor Vianu National High School of Computer Science, Bucharest

Spain

  • Winners
    • Papaya, IES Sopela, Vizcaya
    • Salesianos-Ubeda, Salesianos Santo Domingo Savio, Andalusia
    • Valdespartans, IES Valdespartera, Aragón
    • Ins Terrassa, Institut Terrassa, Cataluña

Ireland

  • Winner
    • Moonty1, Mayfield Community School, Cork

Germany

  • Winner
    • BSC Behringersdorf Space Center, Labenwolf-Gymnasium, Bayern

Norway

  • Winner
    • Skedsmo Kodeklubb, Kjeller Skole, Akershus

Hungary

  • Winner
    • UltimaSpace, Mihaly Tancsics Grammar School of Kaposvár, Somogy

Belgium

  • Winner
    • Lambda Voyager, Stedelijke Humaniora Dilsen, Limburg

FAQ

Why aren’t all 22 ESA member states listed?

  • Because some countries did not have teams participating in the challenge.

Why do some countries have fewer than five teams?

  • Either because those countries had fewer than five teams qualifying for space flight, or because they had fewer than five teams participating in the challenge.

How will I get my results back from space?

  • After your code has run on the ISS, we will download any files you created and they will be emailed to your teacher.

The post European Astro Pi Challenge winners appeared first on Raspberry Pi.

Desktop Sense HAT emulator

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/desktop-sense-hat-emulator/

If this post gives you a sense of déjà-vu it’s because, last month, we announced a web-based Sense HAT emulator in partnership with US-based startup Trinket.

Today, we’re announcing another Sense HAT emulator designed to run natively on your Raspberry Pi desktop, instead of inside a browser. Developed by Dave Jones, it’s intended for people who own a Raspberry Pi but not a Sense HAT. In the picture below, the sliders are used to change the values reported by the sensors while your code is running.

sense-emu

So, why do we need two versions?

  • For offline use, possibly the most common way Raspberry Pis are used in the classroom.
  • To accommodate the oldest 256 MB models of Raspberry Pi which cannot run the web version.
  • To allow you to integrate your Sense HAT program with any available Python modules, or other Raspberry Pi features such as the Camera Module.

The emulator will come pre-installed in the next Raspbian release but, for now, you can just install it by typing the commands below into a terminal window:

sudo apt-get update
sudo apt-get install python-sense-emu python3-sense-emu python-sense-emu-doc sense-emu-tools -y

You can then access it from the Desktop menu, under Programming.

The emulator closely simulates the Sense HAT hardware being attached to your Pi. You can read from the sensors or write to the LED matrix using multiple Python processes, for example.

sense-idle

Write your code in IDLE as before; there are also a number of examples that can be opened from the emulator’s built-in menu. If you then want to port your code to a physical Sense HAT, you just need to change

sense_emu

to

sense_hat

at the top of your program. Reverse this if you’re porting a physical Sense HAT program to the emulator, perhaps from one of our educational resources; this step isn’t required in the web version of the emulator.

sense-emu-prefs

There are a number of preferences that you can adjust to change the behaviour of the emulator, most notably sensor simulation, otherwise known as jitter. This costs some CPU time, and is disabled by default on the low-end Raspberry Pis, but it provides a realistic experience of how the hardware sensors would behave. You’ll see that the values being returned in your code drift according to the known error tolerances of the physical sensors used on the Sense HAT.

This emulator will allow more Raspberry Pi users to participate in future Astro Pi competitions without having to buy a Sense HAT: ideal for the classroom where 15 Sense HATs may be beyond the budget.

So, where do you start? If you’re new to the Sense HAT, you can just copy and paste many of the code examples from our educational resources, like this one. You can also check out our e-book Sense HAT Essentials. For a complete list of all the functions you can use, have a look at the Sense HAT API reference here.

You can even install this emulator on other types of Linux desktop, such as Ubuntu! For more information on how to do this, please visit the emulator documentation pages here.

The post Desktop Sense HAT emulator appeared first on Raspberry Pi.

Astro Pi: Mission Update 9 – Science Results

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-mission-update-9-science-results/

Liz: Before we get down to business, we’ve a notice to share. Laura Clay, who is behind the scenes editing this blog, The MagPi and much more, is also a fiction writer; and she’s been chosen as one of 17 Emerging Writers by the Edinburgh UNESCO City of Literature Trust. Each writer will be reading a short story at the Edinburgh International Book Festival, and it’s a great way to discover writers living and working in the city at the start of their careers. Laura will be reading her story Loch na Bèiste on Friday 26 August at 3pm in the Spiegeltent, and entry is free, so why not come along and support her? Warning: story may contain murderous kelpies.

Now that British ESA Astronaut Tim Peake is back on the ground it’s time for the final Astro Pi mission update: the summary of the experiment results from the International Space Station (ISS). We’ve been holding this back to give the winners some time to publish the results of their experiments themselves.

Back in 2015 we ran a competition where students could design and program computer science experiments, to be run by Tim Peake on specially cased Raspberry Pis called Astro Pis. Here’s the original competition video, voiced by Tim himself:

Astro Pi

This is “Astro Pi” by raspberrypi on Vimeo, the home for high quality videos and the people who love them.

The competition ran from January to July 2015 and produced seven winning experiments, which were launched into space a few days before Tim started his mission. Between February and April 2016, these experiments were run on board the ISS under Tim Peake’s supervision. They’re mostly based around the sensors found on the Sense HAT, but a few also employ the Raspberry Pi Camera Module. Head over to the Astro Pi website now to check out the results, released today!

You might also know that we ran an extension to this competition involving a couple of music-based challenges. These challenges have no scientific output to discuss, because they were part of a crew care package for Tim’s enjoyment, but you can get your hands on the winning code to turn the Astro Pis into MP3 players and Sonic Pi tunes.

One of the main things we’ve learnt from running Astro Pi is that the biggest motivational factor for young people is the very tangible goal of having their code run in space. This eclipses any physical prize we could offer. Many people see space as quite distant and abstract, but with Astro Pi you can actually get your hands on space-qualified hardware, create something that would work up in space, and become an active participant in the European space programme.

Many of the Astro Pi winners now express an interest in studying aerospace and computer science. They’ve gained exposure to the real-life process of scientific endeavour, and faced industrial software development challenges along the way. We hope that everyone who participated in Astro Pi has been positively influenced by the programme. The results also demonstrate that the payload works reliably in space. This has been noticed by ESA, who are now planning to use it during upcoming missions. It’s really important for us that the payload continues to be used to run your code in space, so we’re working hard with ESA to make sure that we can do Astro Pi all over again.

This project has been a huge collaborative effort from the start and the Raspberry Pi Foundation would like to thank everyone who has participated in the competitions, and the following companies who have contributed staff time, facilities, and funding to make it all happen: UK Space Agency, European Space Agency, BIOTESC, TLOGOS, Surrey Satellite Technology, Airbus Defence and Space, CGI Group, QinetiQ Space, UK Space Trade Association, ESERO UK, KTN Space, and Nesta. Of course, Tim Peake himself has been hugely supportive and enthusiastic about the project from the start.

British ESA Astronaut Tim Peake with the prototype Astro Pi

British ESA Astronaut Tim Peake with the prototype Astro Pi. Image credit ESA.

We would also like to thank Libby Jackson, who is the Astronaut Flight Education Programme Manager at the UK Space Agency and a former flight director at ESA. She oversees all of the Principia educational activities, including Astro Pi.

libby-jackson-uksa

Libby Jackson, UK Space Agency. Image credit Imperial College London.

During the interview for her job at the UK Space Agency a few years ago, she pitched an idea for running a project on the ISS involving Raspberry Pi computers. Instead of launching traditional physical equipment, the experiments would be in the form of computer software, meaning that many more experiments could be accommodated. That kernel of an idea is what eventually became Astro Pi.

iss046e042740

Izzy deployed on the Nadir Hatch window of Node 2. Image credit ESA.

The post Astro Pi: Mission Update 9 – Science Results appeared first on Raspberry Pi.

Sense HAT emulator

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/sense-hat-emulator/

Over the last few months, we’ve been working with US-based startup Trinket to develop a web-based emulator for the Sense HAT, the multipurpose add-on board for the Raspberry Pi which is also the core component of the Astro Pi units on the International Space Station. We wanted to provide a unique, free learning resource that brings the excitement of programming our space-qualified hardware to students, teachers, and others all over the world.

We’re delighted to announce its release today, and you can try it for yourself right now. Click the Run button below and see what happens!

trinket-logo

The emulator will allow more people to participate in future Astro Pi competitions – you’ll be able to join in without needing to own a Raspberry Pi computer or a Sense HAT.

British ESA Astronaut Tim Peake with an Astro Pi unit on the International Space Station

British ESA Astronaut Tim Peake with the Astro Pi. Image credit ESA

The new emulator builds on Trinket’s existing Python-in-browser platform, and provides the following features:

  • Virtual Sense HAT with environmental controls and joystick input
  • Full Python syntax highlighting
  • Contextual auto-complete
  • Intuitive error reporting and highlighting
  • Image upload
  • HTML page embedding
  • Social media integration
  • Project sharing via direct URL
  • Project download as zip (for moving to Raspberry Pi)
  • All major browsers supported

sense_hat_emu

The Sense HAT has temperature, pressure and humidity sensors, and can change its behaviour according to the values they report. The Sense HAT emulator has sliders you can move to change these values, so you can test how your code responds to environmental variables.

Part of a screenshot of the Astro Pi emulator, showing three silders with buttons that can be dragged to change the temperature, pressure and humidity that the virtual Sense HAT's sensors are reporting

You can move the sliders to change what the sensors are reporting

Code written in this emulator is directly portable to a physical Raspberry Pi with a Sense HAT without modification. This means any code you write can be run by the Astro Pi units on board the ISS! It is our hope that, within the next 12 months, code that has been written in the emulator will run in space. Look out for news on this, coming soon on the Astro Pi site!

We owe huge thanks to Trinket, who have been wonderful partners in this project. The development work has been completed in just over two months, and has been a huge collaborative effort from the start. The software relies heavily on open-source technology and a global community of developers who are committed to making the power of code more accessible to students.

A closed group of beta testers, made up of previous Astro Pi participants and Code Club champions, has been putting the emulator through its paces over recent weeks. We’re proud to say that we’ve just had a bug-free open beta over the weekend, and now we’re looking forward to seeing it used as widely as possible.

So, where do you start? If you’re new to the Sense HAT, you can just copy and paste a lot of the code examples from our educational resources like this one. You can also check out our e-book Sense HAT Essentials. For a complete list of all the functions you can use, have a look at the Sense HAT API reference here; please note that the IMU (movement-sensing) functions will be supported in a future update. Head over to the main Sense HAT emulator site to see loads of other cool examples of what’s possible. Flappy LED, anyone?

Don’t forget to share your projects!

The post Sense HAT emulator appeared first on Raspberry Pi.

Astro Pi Coding Challenges: a message from Tim Peake

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-coding-challenges-update/

Back in February, we announced an extension to the Astro Pi mission in the form of two coding challenges. The first required you to write Python Sense HAT code to turn Ed and Izzy (the Astro Pi computers) into an MP3 player, so that Tim Peake could plug in his headphones and listen to his music. The second required you to code Sonic Pi music for Tim to listen to via the MP3 player.

Astro_Pi_Logo_WEB-300px

We announced the winners in early April. Since then, we’ve been checking your code on flight-equivalent Astro Pi units and going through the official software delivery and deployment process with the European Space Agency (ESA).

Crew time is heavily regulated on the ISS. However, because no science or experimentation output is required for this, they allowed us to upload it as a crew care package for Tim! We’re very grateful to the UK Space Agency and ESA for letting us extend the Astro Pi project in this way to engage more kids.

The code was uploaded and Tim deployed it onto Ed on May 15. He then recorded this and sent it to us:

Tim Peake with the Astro Pi MP3 player

British ESA astronaut Tim Peake’s message to the students who took part in the 2016 Astro Pi coding challenges to hack his Astro Pi mini-computer, on the International Space Station, into an MP3 player. The music heard is called Run to the Stars composed by one of the teams who took part.

In total, there were four winning MP3 players and four winning Sonic Pi tunes; the audio from the Sonic Pi entries was converted into MP3 format, so that it could be played by the MP3 players. The music heard is called Run to the Stars, composed with Sonic Pi by Iris and Joseph Mitchell, who won the 11 years and under age group.

Tim tested all four MP3 players, listened to all four Sonic Pi tunes, and then went on to load more tunes from his own Spacerocks collection onto the Astro Pi!

Tim said in an email:

As a side note, I’ve also loaded it with some of my Spacerocks music – it works just great. I was dubious about the tilt mechanism working well in microgravity, using the accelerometers to change tracks, but it works brilliantly. I tried inputting motion in other axes to test the stability and it was rock solid – it only worked with the correct motion. Well done to that group!!

“That group” was Lowena Hull from Portsmouth High School, whose MP3 player could change tracks by quickly twisting the Astro Pi to the left or right. Good coding, Lowena!

Thanks again to everyone who took part, to our special judges OMD and Ilan Eshkeri, and especially to Tim Peake, who did this during his time off on a Sunday afternoon last weekend.

The post Astro Pi Coding Challenges: a message from Tim Peake appeared first on Raspberry Pi.

Principia schools conferences

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/principia-schools-conferences/

Principia

In November this year the UK Space Agency (UKSA) is holding two special conferences to celebrate the educational work linked to Tim Peake’s Principia mission. These events will be an opportunity for kids of all ages to show their projects to a panel of leading space experts – hopefully including Tim himself!

Tim’s schedule after he returns to Earth is hectically busy, but he’s very keen to be at the events and meet children, and everyone involved is working hard towards this goal. The conferences will be held at:

Attendance is free, and UKSA are offering travel bursaries to help with the cost of getting there. However, if you want to go, you’ll need to apply for one of the available places.

The Principia mission has a huge range of linked educational activities, one of which is our own Astro Pi, and the conferences will be attended by students selected from across them all. There are about 500 student places available for each event; the individuals and teams who submit the strongest applications presenting their projects will be invited to take part.

Astro_Pi_Homepage_Cover

Astro Pi is one of many Principia activities

You certainly don’t need to have won one of the Principia competitions to be invited to participate: the organisers want to see all kinds of work linked with Tim’s mission. They want your application to tell the story behind what you did, describe what you’ve learned by carrying out the project, and explain what long-term effects the work has had on your school. We expect the conferences will include students presenting a huge variety of work, from activities linked to official competitions to creative ideas that students and teachers have generated themselves.

To illustrate the kind of applications we’re hoping to see, it’s worth mentioning the testimonial about Astro Pi that maths teacher Gillian Greig, from The Priory School in Hitchin, wrote last year. We think it’s a great example of the kind of story the organisers will enjoy seeing. Gillian, we hope you and your students will apply!

Of course, we’d love to see a strong Astro Pi contingent at both conferences, so we strongly encourage anyone who engaged with Astro Pi to apply. You can apply as an individual, a group, a class, or even an entire school. The applications will be judged by a panel who will select projects that show dedication and thoughtfulness.

Laser-etched Astro Pi

Flight equivalent Astro Pi units will be available at the conferences

Dave Honess, who manages Astro Pi, will be at both conferences with a number of flight equivalent Astro Pi units that can be used by attendees for their presentations.

The deadline for applications is Thursday 15 September 2016 at 12 noon. Apply here!

You can find more details about the application process, the conference venues, and arrangements for travel and accommodation on the Principia website. And if you have any questions, feel free to post them below – we’ll do our best to answer them.

Good luck!

The post Principia schools conferences appeared first on Raspberry Pi.

Astro Pi: Coding Challenges Results!

Post Syndicated from David Honess original https://www.raspberrypi.org/blog/astro-pi-coding-challenges-results/

Astro_Pi_Logo_WEB-300px

Back in early February we announced a new opportunity for young programmers to send their code up the International Space Station to be used by British ESA Astronaut Tim Peake.

Two challenges were on offer. The first required you to write Python Sense HAT code to turn Ed and Izzy (the Astro Pi computers) into an MP3 player, so that Tim can plug in his headphones and listen to music. The second required you to code Sonic Pi music for Tim to listen to via the MP3 player.

The competition closed on March 31st and the judging took place at Pi Towers in Cambridge last week. With the assistance of Flat Tim!

The judges were selected from companies who have contributed to the Astro Pi mission so far. These were;

12omdfin_(live)-600x0

Orchestral Manoeuvres In the Dark (Andy McCluskey and Paul Humphreys)

We also wanted to have some judges to provide musical talent to balance the science and technology expertise from the aerospace people. Thanks to Carl Walker at ESA we were able to connect with synthpop giants OMD (Enola Gay, Electricity, Maid of Orleans) and British/French film composer Ilan Eshkeri (Stardust, Layer Cake, Shaun the Sheep).

ilanEshkeri_composing_Stardust

Ilan Eshkeri working on the Stardust soundtrack

We also secured Sam Aaron, the author of Sonic Pi and Overtone, a live coder who regularly performs in clubs across the UK.

sam-aaron

Sam Aaron at TEDx Newcastle

Entries were received from all over the UK and were judged across four age categories; 11 and under, 11 to 13, 14 to 16 and 17 to 18. So the outcome is that four MP3 players and four songs will be going up to the ISS for Tim to use. Note that the Sonic Pi tunes will be converted to MP3 so that the MP3 player programs can load and play the audio to Tim.

The judging took two days to complete: one full day for the MP3 players and one day for the Sonic Pi tunes. So without further ado, let’s see who the winners are!

MP3 Player Winners

11 and under

11 to 13

14 to 16

  • Winner: Joe Speers
  • School: n/a (Independent entry)
  • Teacher/Adult: Craig Speers
  • Code on Github

17 to 18

Sonic Pi Winners

11 and under

11 to 13

  • Winner: Isaac Ingram
  • School: Knox Academy
  • Teacher/Adult: Karl Ingram

14 to 16

17 to 18

Congratulations to you all. The judges had a lot of fun with your entries and they will very soon be uploaded to the International Space Station for Tim Peake. The Astro Pi Twitter account will post a tweet to indicate when Tim is listening to the music.

The Raspberry Pi Foundation would like to thank all the judges who contributed to this competition, and especially our special judges: Andy McCluskey and Paul Humphreys from OMD, Ilan Eshkeri and Sam Aaron.

The post Astro Pi: Coding Challenges Results! appeared first on Raspberry Pi.