Tag Archives: security

[$] Process tagging with ptags

Post Syndicated from corbet original https://lwn.net/Articles/741261/rss

For various reasons related to accounting and security, there is recurring
interest in having the kernel identify the container that holds any given
process. Attempts to implement that functionality tend to run into the
same roadblock, though: the kernel has no concept of what a “container” is,
and there is seemingly little desire to change that state of affairs. A
solution to this problem may exist in the form of a neglected
patch called “ptags”, which enables the attachment of arbitrary tags to
processes.

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/741257/rss

Security updates have been issued by Debian (chromium-browser, evince, pdns-recursor, and simplesamlphp), Fedora (ceph, dhcp, erlang, exim, fedora-arm-installer, firefox, libvirt, openssh, pdns-recursor, rubygem-yard, thunderbird, wordpress, and xen), Red Hat (rh-mysql57-mysql), SUSE (kernel), and Ubuntu (openssl).

Pioneers winners: only you can save us

Post Syndicated from Erin Brindley original https://www.raspberrypi.org/blog/pioneers-winners-only-you-can-save-us/

She asked for help, and you came to her aid. Pioneers, the winners of the Only you can save us challenge have been picked!

Can you see me? Only YOU can save us!

I need your help. This is a call out for those between 11- and 16-years-old in the UK and Republic of Ireland. Something has gone very, very wrong and only you can save us. I’ve collected together as much information for you as I can. You’ll find it at http://www.raspberrypi.org/pioneers.

The challenge

In August we intercepted an emergency communication from a lonesome survivor. She seemed to be in quite a bit of trouble, and asked all you young people aged 11 to 16 to come up with something to help tackle the oncoming crisis, using whatever technology you had to hand. You had ten weeks to work in teams of two to five with an adult mentor to fulfil your mission.

The judges

We received your world-saving ideas, and our savvy survivor pulled together a ragtag bunch of apocalyptic experts to help us judge which ones would be the winning entries.

Dr Shini Somara

Dr Shini Somara is an advocate for STEM education and a mechanical engineer. She was host of The Health Show and has appeared in documentaries for the BBC, PBS Digital, and Sky. You can check out her work hosting Crash Course Physics on YouTube.

Prof Lewis Dartnell is an astrobiologist and author of the book The Knowledge: How to Rebuild Our World From Scratch.

Emma Stephenson has a background in aeronautical engineering and currently works in the Shell Foundation’s Access to Energy and Sustainable Mobility portfolio.

Currently sifting through the entries with the other judges of #makeyourideas with @raspberrypifoundation @_raspberrypi_

151 Likes, 3 Comments – Shini Somara (@drshinisomara) on Instagram: “Currently sifting through the entries with the other judges of #makeyourideas with…”

The winners

Our survivor is currently putting your entries to good use repairing, rebuilding, and defending her base. Our judges chose the following projects as outstanding examples of world-saving digital making.

Theme winner: Computatron

Raspberry Pioneers 2017 – Nerfus Dislikus Killer Robot

This is our entry to the pioneers ‘Only you can save us’ competition. Our team name is Computatrum. Hope you enjoy!

Are you facing an unknown enemy whose only weakness is Nerf bullets? Then this is the robot for you! We loved the especially apocalyptic feel of the Computatron’s cleverly hacked and repurposed elements. The team even used an old floppy disc mechanism to help fire their bullets!

Technically brilliant: Robot Apocalypse Committee

Pioneers Apocalypse 2017 – RationalPi

Thousands of lines of code… Many sheets of acrylic… A camera, touchscreen and fingerprint scanner… This is our entry into the Raspberry Pi Pioneers2017 ‘Only YOU can Save Us’ theme. When zombies or other survivors break into your base, you want a secure way of storing your crackers.

The Robot Apocalypse Committee is back, and this time they’ve brought cheese! The crew designed a cheese- and cracker-dispensing machine complete with face and fingerprint recognition to ensure those rations last until the next supply drop.

Best explanation: Pi Chasers

Tala – Raspberry Pi Pioneers Project

Hi! We are PiChasers and we entered the Raspberry Pi Pionners challenge last time when the theme was “Make it Outdoors!” but now we’ve been faced with another theme “Apocolypse”. We spent a while thinking of an original thing that would help in an apocolypse and decided upon a ‘text-only phone’ which uses local radio communication rather than cellular.

This text-based communication device encased in a tupperware container could be a lifesaver in a crisis! And luckily, the Pi Chasers produced an excellent video and amazing GitHub repo, ensuring that any and all survivors will be able to build their own in the safety of their base.

Most inspiring journey: Three Musketeers

Pioneers Entry – The Apocalypse

Pioneers Entry Team Name: The Three Musketeers Team Participants: James, Zach and Tom

We all know that zombies are terrible at geometry, and the Three Musketeers used this fact to their advantage when building their zombie security system. We were impressed to see the team working together to overcome the roadblocks they faced along the way.

We appreciate what you’re trying to do: Zombie Trolls

Zombie In The Middle

Uploaded by CDA Bodgers on 2017-12-01.

Playing piggy in the middle with zombies sure is a unique way of saving humankind from total extinction! We loved this project idea, and although the Zombie Trolls had a little trouble with their motors, we’re sure with a little more tinkering this zombie-fooling contraption could save us all.

Most awesome

Our judges also wanted to give a special commendation to the following teams for their equally awesome apocalypse-averting ideas:

  • PiRates, for their multifaceted zombie-proofing defence system and the high production value of their video
  • Byte them Pis, for their beautiful zombie-detecting doormat
  • Unatecxon, for their impressive bunker security system
  • Team Crompton, for their pressure-activated door system
  • Team Ernest, for their adventures in LEGO

The prizes

All our winning teams have secured exclusive digital maker boxes. These are jam-packed with tantalising tech to satisfy all tinkering needs, including:

Our theme winners have also secured themselves a place at Coolest Projects 2018 in Dublin, Ireland!

Thank you to everyone who got involved in this round of Pioneers. Look out for your awesome submission swag arriving in the mail!

The post Pioneers winners: only you can save us appeared first on Raspberry Pi.

Remote Hack of a Boeing 757

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/remote_hack_of_.html

Last month, the DHS announced that it was able to remotely hack a Boeing 757:

“We got the airplane on Sept. 19, 2016. Two days later, I was successful in accomplishing a remote, non-cooperative, penetration,” said Robert Hickey, aviation program manager within the Cyber Security Division of the DHS Science and Technology (S&T) Directorate.

“[Which] means I didn’t have anybody touching the airplane, I didn’t have an insider threat. I stood off using typical stuff that could get through security and we were able to establish a presence on the systems of the aircraft.” Hickey said the details of the hack and the work his team are doing are classified, but said they accessed the aircraft’s systems through radio frequency communications, adding that, based on the RF configuration of most aircraft, “you can come to grips pretty quickly where we went” on the aircraft.

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

MQTT 5: Introduction to MQTT 5

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/mqtt-5-introduction-to-mqtt-5/

MQTT 5 Introduction

Introduction to MQTT 5

Welcome to our brand new blog post series MQTT 5 – Features and Hidden Gems. Without doubt, the MQTT protocol is the most popular and best received Internet of Things protocol as of today (see the Google Trends Chart below), supporting large scale use cases ranging from Connected Cars, Manufacturing Systems, Logistics, Military Use Cases to Enterprise Chat Applications, Mobile Apps and connecting constrained IoT devices. Of course, with huge amounts of production deployments, the wish list for future versions of the MQTT protocol grew bigger and bigger.

MQTT 5 is by far the most extensive and most feature-rich update to the MQTT protocol specification ever. We are going to explore all hidden gems and protocol features with use case discussion and useful background information – one blog post at a time.

Be sure to read the MQTT Essentials Blog Post series first before diving into our new MQTT 5 series. To get the most out of the new blog posts, it’s important to have a basic understanding of the MQTT 3.1.1 protocol as we are going to highlight key changes as well as all improvements.

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/741158/rss

Security updates have been issued by CentOS (postgresql), Debian (firefox-esr, kernel, libxcursor, optipng, thunderbird, wireshark, and xrdp), Fedora (borgbackup, ca-certificates, collectd, couchdb, curl, docker, erlang-jiffy, fedora-arm-installer, firefox, git, linux-firmware, mupdf, openssh, thunderbird, transfig, wildmidi, wireshark, xen, and xrdp), Mageia (firefox and optipng), openSUSE (erlang, libXfont, and OBS toolchain), Oracle (kernel), Slackware (openssl), and SUSE (kernel and OBS toolchain).

DAST vs SAST – Dynamic Application Security Testing vs Static

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/12/dast-vs-sast-dynamic-application-security-testing-vs-static/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

DAST vs SAST – Dynamic Application Security Testing vs Static

In security testing, much like most things technical there are two very contrary methods, Dynamic Application Security Testing or DAST and Static Application Security Testing or SAST.

Dynamic testing relying on a black-box external approach, attacking the application in it’s running state as a regular malicious attacker would.

Static testing is more white-box looking at the source-code of the application for potential flaws.

Personally, I don’t see them as ‘vs’ each other, but more like they compliment each other – it’s easy to have SAST tests as part of your CI/CD pipeline with tools like Code Climate.

Read the rest of DAST vs SAST – Dynamic Application Security Testing vs Static now! Only available at Darknet.

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/740997/rss

Security updates have been issued by Arch Linux (chromium and vlc), Debian (erlang), Mageia (ffmpeg, tor, and wireshark), openSUSE (chromium, opensaml, openssh, openvswitch, and php7), Oracle (postgresql), Red Hat (chromium-browser, postgresql, rh-postgresql94-postgresql, rh-postgresql95-postgresql, and rh-postgresql96-postgresql), SUSE (firefox, java-1_6_0-ibm, opensaml, and xen), and Ubuntu (kernel, linux, linux-aws, linux-kvm, linux-raspi2, linux-snapdragon, linux, linux-raspi2, linux-azure, linux-gcp, linux-hwe, linux-lts-trusty, linux-lts-xenial, linux-aws, and rsync).

Now Available: A New AWS Quick Start Reference Deployment for CJIS

Post Syndicated from Emil Lerch original https://aws.amazon.com/blogs/security/now-available-a-new-aws-quick-start-reference-deployment-for-cjis/

CJIS logo

As part of the AWS Compliance Quick Start program, AWS has published a new Quick Start reference deployment for customers who need to align with Criminal Justice Information Services (CJIS) Security Policy 5.6 and process Criminal Justice Information (CJI) in accordance with this policy. The new Quick Start is AWS Enterprise Accelerator – Compliance: CJIS, and it makes it easier for you to address the list of supported controls you will find in the security controls matrix that accompanies the Quick Start.

As all AWS Quick Starts do, this Quick Start helps you automate the building of a recommended architecture that, when deployed as a package, provides a baseline AWS configuration. The Quick Start uses sets of nested AWS CloudFormation templates and user data scripts to create an example environment with a two-VPC, multi-tiered web service.

The new Quick Start also includes:

The recommended architecture built by the Quick Start supports a wide variety of AWS best practices (all of which are detailed in the Quick Start), including the use of multiple Availability Zones, isolation using public and private subnets, load balancing, and Auto Scaling.

The Quick Start package also includes a deployment guide with detailed instructions and a security controls matrix that describes how the deployment addresses CJIS Security Policy 5.6 controls. You should have your IT security assessors and risk decision makers review the security controls matrix so that they can understand the extent of the implementation of the controls within the architecture. The matrix also identifies the specific resources in the CloudFormation templates that affect each control, and contains cross-references to the CJIS Security Policy 5.6 security controls.

If you have questions about this new Quick Start, contact the AWS Compliance Quick Start team. For more information about the AWS CJIS program, see CJIS Compliance.

– Emil

Security Vulnerabilities in Certificate Pinning

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/security_vulner_10.html

New research found that many banks offer certificate pinning as a security feature, but fail to authenticate the hostname. This leaves the systems open to man-in-the-middle attacks.

From the paper:

Abstract: Certificate verification is a crucial stage in the establishment of a TLS connection. A common security flaw in TLS implementations is the lack of certificate hostname verification but, in general, this is easy to detect. In security-sensitive applications, the usage of certificate pinning is on the rise. This paper shows that certificate pinning can (and often does) hide the lack of proper hostname verification, enabling MITM attacks. Dynamic (black-box) detection of this vulnerability would typically require the tester to own a high security certificate from the same issuer (and often same intermediate CA) as the one used by the app. We present Spinner, a new tool for black-box testing for this vulnerability at scale that does not require purchasing any certificates. By redirecting traffic to websites which use the relevant certificates and then analysing the (encrypted) network traffic we are able to determine whether the hostname check is correctly done, even in the presence of certificate pinning. We use Spinner to analyse 400 security-sensitive Android and iPhone apps. We found that 9 apps had this flaw, including two of the largest banks in the world: Bank of America and HSBC. We also found that TunnelBear, one of the most popular VPN apps was also vulnerable. These apps have a joint user base of tens of millions of users.

News article.

Is blockchain a security topic? (Opensource.com)

Post Syndicated from jake original https://lwn.net/Articles/740929/rss

At Opensource.com, Mike Bursell looks at blockchain security from the angle of trust. Unlike cryptocurrencies, which are pseudonymous typically, other kinds of blockchains will require mapping users to real-life identities; that raises the trust issue.

What’s really interesting is that, if you’re thinking about moving to a permissioned blockchain or distributed ledger with permissioned actors, then you’re going to have to spend some time thinking about trust. You’re unlikely to be using a proof-of-work system for making blocks—there’s little point in a permissioned system—so who decides what comprises a “valid” block that the rest of the system should agree on? Well, you can rotate around some (or all) of the entities, or you can have a random choice, or you can elect a small number of über-trusted entities. Combinations of these schemes may also work.

If these entities all exist within one trust domain, which you control, then fine, but what if they’re distributors, or customers, or partners, or other banks, or manufacturers, or semi-autonomous drones, or vehicles in a commercial fleet? You really need to ensure that the trust relationships that you’re encoding into your implementation/deployment truly reflect the legal and IRL [in real life] trust relationships that you have with the entities that are being represented in your system.

And the problem is that, once you’ve deployed that system, it’s likely to be very difficult to backtrack, adjust, or reset the trust relationships that you’ve designed.”

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/740883/rss

Security updates have been issued by CentOS (firefox, java-1.7.0-openjdk, kernel, liblouis, qemu-kvm, sssd, and thunderbird), Debian (heimdal and nova), openSUSE (shibboleth-sp), Oracle (java-1.7.0-openjdk), Red Hat (Red Hat OpenShift Enterprise), Scientific Linux (openafs), SUSE (kernel), and Ubuntu (rsync).

Looking Forward to 2018

Post Syndicated from Let's Encrypt - Free SSL/TLS Certificates original https://letsencrypt.org//2017/12/07/looking-forward-to-2018.html

Let’s Encrypt had a great year in 2017. We more than doubled the number of active (unexpired) certificates we service to 46 million, we just about tripled the number of unique domains we service to 61 million, and we did it all while maintaining a stellar security and compliance track record. Most importantly though, the Web went from 46% encrypted page loads to 67% according to statistics from Mozilla – a gain of 21% in a single year – incredible. We’re proud to have contributed to that, and we’d like to thank all of the other people and organizations who also worked hard to create a more secure and privacy-respecting Web.

While we’re proud of what we accomplished in 2017, we are spending most of the final quarter of the year looking forward rather than back. As we wrap up our own planning process for 2018, I’d like to share some of our plans with you, including both the things we’re excited about and the challenges we’ll face. We’ll cover service growth, new features, infrastructure, and finances.

Service Growth

We are planning to double the number of active certificates and unique domains we service in 2018, to 90 million and 120 million, respectively. This anticipated growth is due to continuing high expectations for HTTPS growth in general in 2018.

Let’s Encrypt helps to drive HTTPS adoption by offering a free, easy to use, and globally available option for obtaining the certificates required to enable HTTPS. HTTPS adoption on the Web took off at an unprecedented rate from the day Let’s Encrypt launched to the public.

One of the reasons Let’s Encrypt is so easy to use is that our community has done great work making client software that works well for a wide variety of platforms. We’d like to thank everyone involved in the development of over 60 client software options for Let’s Encrypt. We’re particularly excited that support for the ACME protocol and Let’s Encrypt is being added to the Apache httpd server.

Other organizations and communities are also doing great work to promote HTTPS adoption, and thus stimulate demand for our services. For example, browsers are starting to make their users more aware of the risks associated with unencrypted HTTP (e.g. Firefox, Chrome). Many hosting providers and CDNs are making it easier than ever for all of their customers to use HTTPS. Government agencies are waking up to the need for stronger security to protect constituents. The media community is working to Secure the News.

New Features

We’ve got some exciting features planned for 2018.

First, we’re planning to introduce an ACME v2 protocol API endpoint and support for wildcard certificates along with it. Wildcard certificates will be free and available globally just like our other certificates. We are planning to have a public test API endpoint up by January 4, and we’ve set a date for the full launch: Tuesday, February 27.

Later in 2018 we plan to introduce ECDSA root and intermediate certificates. ECDSA is generally considered to be the future of digital signature algorithms on the Web due to the fact that it is more efficient than RSA. Let’s Encrypt will currently sign ECDSA keys from subscribers, but we sign with the RSA key from one of our intermediate certificates. Once we have an ECDSA root and intermediates, our subscribers will be able to deploy certificate chains which are entirely ECDSA.

Infrastructure

Our CA infrastructure is capable of issuing millions of certificates per day with multiple redundancy for stability and a wide variety of security safeguards, both physical and logical. Our infrastructure also generates and signs nearly 20 million OCSP responses daily, and serves those responses nearly 2 billion times per day. We expect issuance and OCSP numbers to double in 2018.

Our physical CA infrastructure currently occupies approximately 70 units of rack space, split between two datacenters, consisting primarily of compute servers, storage, HSMs, switches, and firewalls.

When we issue more certificates it puts the most stress on storage for our databases. We regularly invest in more and faster storage for our database servers, and that will continue in 2018.

We’ll need to add a few additional compute servers in 2018, and we’ll also start aging out hardware in 2018 for the first time since we launched. We’ll age out about ten 2u compute servers and replace them with new 1u servers, which will save space and be more energy efficient while providing better reliability and performance.

We’ll also add another infrastructure operations staff member, bringing that team to a total of six people. This is necessary in order to make sure we can keep up with demand while maintaining a high standard for security and compliance. Infrastructure operations staff are systems administrators responsible for building and maintaining all physical and logical CA infrastructure. The team also manages a 24/7/365 on-call schedule and they are primary participants in both security and compliance audits.

Finances

We pride ourselves on being an efficient organization. In 2018 Let’s Encrypt will secure a large portion of the Web with a budget of only $3.0M. For an overall increase in our budget of only 13%, we will be able to issue and service twice as many certificates as we did in 2017. We believe this represents an incredible value and that contributing to Let’s Encrypt is one of the most effective ways to help create a more secure and privacy-respecting Web.

Our 2018 fundraising efforts are off to a strong start with Platinum sponsorships from Mozilla, Akamai, OVH, Cisco, Google Chrome and the Electronic Frontier Foundation. The Ford Foundation has renewed their grant to Let’s Encrypt as well. We are seeking additional sponsorship and grant assistance to meet our full needs for 2018.

We had originally budgeted $2.91M for 2017 but we’ll likely come in under budget for the year at around $2.65M. The difference between our 2017 expenses of $2.65M and the 2018 budget of $3.0M consists primarily of the additional infrastructure operations costs previously mentioned.

Support Let’s Encrypt

We depend on contributions from our community of users and supporters in order to provide our services. If your company or organization would like to sponsor Let’s Encrypt please email us at [email protected]. We ask that you make an individual contribution if it is within your means.

We’re grateful for the industry and community support that we receive, and we look forward to continuing to create a more secure and privacy-respecting Web!

About the Amazon Trust Services Migration

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/669-2/

Amazon Web Services is moving the certificates for our services—including Amazon SES—to use our own certificate authority, Amazon Trust Services. We have carefully planned this change to minimize the impact it will have on your workflow. Most customers will not have to take any action during this migration.

About the Certificates

The Amazon Trust Services Certificate Authority (CA) uses the Starfield Services CA, which has been valid since 2005. The Amazon Trust Services certificates are available in most major operating systems released in the past 10 years, and are also trusted by all modern web browsers.

If you send email through the Amazon SES SMTP interface using a mail server that you operate, we recommend that you confirm that the appropriate certificates are installed. You can test whether your server trusts the Amazon Trust Services CAs by visiting the following URLs (for example, by using cURL):

If you see a message stating that the certificate issuer is not recognized, then you should install the appropriate root certificate. You can download individual certificates from https://www.amazontrust.com/repository. The process of adding a trusted certificate to your server varies depending on the operating system you use. For more information, see “Adding New Certificates,” below.

AWS SDKs and CLI

Recent versions of the AWS SDKs and the AWS CLI are not impacted by this change. If you use an AWS SDK or a version of the AWS CLI released prior to February 5, 2015, you should upgrade to the latest version.

Potential Issues

If your system is configured to use a very restricted list of root CAs (for example, if you use certificate pinning), you may be impacted by this migration. In this situation, you must update your pinned certificates to include the Amazon Trust Services CAs.

Adding New Root Certificates

The following sections list the steps you can take to install the Amazon Root CA certificates on your systems if they are not already present.

macOS

To install a new certificate on a macOS server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain /path/to/certificatename.crt, replacing /path/to/certificatename.crt with the full path to the certificate file.

Windows Server

To install a new certificate on a Windows server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: certutil -addstore -f "ROOT" c:\path\to\certificatename.crt, replacing c:\path\to\certificatename.crt with the full path to the certificate file.

Ubuntu

To install a new certificate on an Ubuntu (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /usr/local/share/ca-certificates/
  4. At the command prompt, type the following command to update the certificate authority store: sudo update-ca-certificates

Red Hat Enterprise Linux/Fedora/CentOS

To install a new certificate on a Red Hat Enterprise Linux (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /etc/pki/ca-trust/source/anchors/
  4. At the command line, type the following command to enable dynamic certificate authority configuration: sudo update-ca-trust force-enable
  5. At the command line, type the following command to update the certificate authority store: sudo update-ca-trust extract

To learn more about this migration, see How to Prepare for AWS’s Move to Its Own Certificate Authority on the AWS Security Blog.