Tag Archives: AWS re:Invent

AWS re:Invent 2018 is Coming – Are You Ready?

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/reinvent-2018-is-coming-are-you-ready/

As I write this, there are just 138 days until re:Invent 2018. My colleagues on the events team are going all-out to make sure that you, our customer, will have the best possible experience in Las Vegas. After meeting with them, I decided to write this post so that you can have a better understanding of what we have in store, know what to expect, and have time to plan and to prepare.

Dealing with Scale
We started out by talking about some of the challenges that come with scale. Approximately 43,000 people (AWS customers, partners, members of the press, industry analysts, and AWS employees) attended in 2017 and we are expecting an even larger crowd this year. We are applying many of the scaling principles and best practices that apply to cloud architectures to the physical, logistical, and communication challenges that are part-and-parcel of an event that is this large and complex.

We want to make it easier for you to move from place to place, while also reducing the need for you to do so! Here’s what we are doing:

Campus Shuttle – In 2017, hundreds of buses traveled on routes that took them to a series of re:Invent venues. This added a lot of latency to the system and we were not happy about that. In 2018, we are expanding the fleet and replacing the multi-stop routes with a larger set of point-to-point connections, along with additional pick-up and drop-off points at each venue. You will be one hop away from wherever you need to go.

Ride Sharing – We are partnering with Lyft and Uber (both powered by AWS) to give you another transportation option (download the apps now to be prepared). We are partnering with the Las Vegas Monorail and the taxi companies, and are also working on a teleportation service, but do not expect it to be ready in time.

Session Access – We are setting up a robust overflow system that spans multiple re:Invent venues, and are also making sure that the most popular sessions are repeated in more than one venue.

Improved Mobile App – The re:Invent mobile app will be more lively and location-aware. It will help you to find sessions with open seats, tell you what is happening around you, and keep you informed of shuttle and other transportation options.

Something for Everyone
We want to make sure that re:Invent is a warm and welcoming place for every attendee, with business and social events that we hope are progressive and inclusive. Here’s just some of what we have in store:

You can also take advantage of our mother’s rooms, gender-neutral restrooms, and reflection rooms. Check out the community page to learn more!

Getting Ready
Now it is your turn! Here are some suggestions to help you to prepare for re:Invent:

  • Register – Registration is now open! Every year I get email from people I have not talked to in years, begging me for last-minute access after re:Invent sells out. While it is always good to hear from them, I cannot always help, even if we were in first grade together.
  • Watch – We’re producing a series of How to re:Invent webinars to help you get the most from re:Invent. Watch What’s New and Breakout Content Secret Sauce ASAP, and stay tuned for more.
  • Plan – The session catalog is now live! View the session catalog to see the initial list of technical sessions. Decide on the topics of interest to you and to your colleagues, and choose your breakout sessions, taking care to pay attention to the locations. There will be over 2,000 sessions so choose with care and make this a team effort.
  • Pay Attention – We are putting a lot of effort into preparatory content – this blog post, the webinars, and more. Watch, listen, and learn!
  • Train – Get to work on your cardio! You can easily walk 10 or more miles per day, so bring good shoes and arrive in peak condition.

Partners and Sponsors
Participating sponsors are a core part of the learning, networking, and after hours activities at re:Invent.

For APN Partners, re:Invent is the single largest opportunity to interact with AWS customers, delivering both business development and product differentiation. If you are interested in becoming a re:Invent sponsor, read the re:Invent Sponsorship Prospectus.

For re:Invent attendees, I urge you to take time to meet with Sponsoring APN Partners in both the Venetian and Aria Expo halls. Sponsors offer diverse skills, Competencies, services and expertise to help attendees solve a variety of different business challenges. Check out the list of re:Invent Sponsors to learn more.

See You There
Once you are on site, be sure to take advantage of all that re:Invent has to offer.

If you are not sure where to go or what to do next, we’ll have some specially trained content experts to guide you.

I am counting down the days, gearing up to crank out a ton of blog posts for re:Invent, and looking forward to saying hello to friends new and old.

Jeff;

PS – We will be adding new sessions to the session catalog over the summer, so be sure to check back every week!

 

AWS Online Tech Talks – July 2018

Post Syndicated from Sara Rodas original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-july-2018/

Join us this month to learn about AWS services and solutions featuring topics on Amazon EMR, Amazon SageMaker, AWS Lambda, Amazon S3, Amazon WorkSpaces, Amazon EC2 Fleet and more! We also have our third episode of the “How to re:Invent” where we’ll dive deep with the AWS Training and Certification team on Bootcamps, Hands-on Labs, and how to get AWS Certified at re:Invent. Register now! We look forward to seeing you. Please note – all sessions are free and in Pacific Time.

 

Tech talks featured this month:

 

Analytics & Big Data

July 23, 2018 | 11:00 AM – 12:00 PM PT – Large Scale Machine Learning with Spark on EMR – Learn how to do large scale machine learning on Amazon EMR.

July 25, 2018 | 01:00 PM – 02:00 PM PT – Introduction to Amazon QuickSight: Business Analytics for Everyone – Get an introduction to Amazon Quicksight, Amazon’s BI service.

July 26, 2018 | 11:00 AM – 12:00 PM PT – Multi-Tenant Analytics on Amazon EMR – Discover how to make an Amazon EMR cluster multi-tenant to have different processing activities on the same data lake.

 

Compute

July 31, 2018 | 11:00 AM – 12:00 PM PT – Accelerate Machine Learning Workloads Using Amazon EC2 P3 Instances – Learn how to use Amazon EC2 P3 instances, the most powerful, cost-effective and versatile GPU compute instances available in the cloud.

August 1, 2018 | 09:00 AM – 10:00 AM PT – Technical Deep Dive on Amazon EC2 Fleet – Learn how to launch workloads across instance types, purchase models, and AZs with EC2 Fleet to achieve the desired scale, performance and cost.

 

Containers

July 25, 2018 | 11:00 AM – 11:45 AM PT – How Harry’s Shaved Off Their Operational Overhead by Moving to AWS Fargate – Learn how Harry’s migrated their messaging workload to Fargate and reduced message processing time by more than 75%.

 

Databases

July 23, 2018 | 01:00 PM – 01:45 PM PT – Purpose-Built Databases: Choose the Right Tool for Each Job – Learn about purpose-built databases and when to use which database for your application.

July 24, 2018 | 11:00 AM – 11:45 AM PT – Migrating IBM Db2 Databases to AWS – Learn how to migrate your IBM Db2 database to the cloud database of your choice.

 

DevOps

July 25, 2018 | 09:00 AM – 09:45 AM PT – Optimize Your Jenkins Build Farm – Learn how to optimize your Jenkins build farm using the plug-in for AWS CodeBuild.

 

Enterprise & Hybrid

July 31, 2018 | 09:00 AM – 09:45 AM PT – Enable Developer Productivity with Amazon WorkSpaces – Learn how your development teams can be more productive with Amazon WorkSpaces.

August 1, 2018 | 11:00 AM – 11:45 AM PT – Enterprise DevOps: Applying ITIL to Rapid Innovation – Innovation doesn’t have to equate to more risk for your organization. Learn how Enterprise DevOps delivers agility while maintaining governance, security and compliance.

 

IoT

July 30, 2018 | 01:00 PM – 01:45 PM PT – Using AWS IoT & Alexa Skills Kit to Voice-Control Connected Home Devices – Hands-on workshop that covers how to build a simple backend service using AWS IoT to support an Alexa Smart Home skill.

 

Machine Learning

July 23, 2018 | 09:00 AM – 09:45 AM PT – Leveraging ML Services to Enhance Content Discovery and Recommendations – See how customers are using computer vision and language AI services to enhance content discovery & recommendations.

July 24, 2018 | 09:00 AM – 09:45 AM PT – Hyperparameter Tuning with Amazon SageMaker’s Automatic Model Tuning – Learn how to use Automatic Model Tuning with Amazon SageMaker to get the best machine learning model for your datasets, to tune hyperparameters.

July 26, 2018 | 09:00 AM – 10:00 AM PT – Build Intelligent Applications with Machine Learning on AWS – Learn how to accelerate development of AI applications using machine learning on AWS.

 

re:Invent

July 18, 2018 | 08:00 AM – 08:30 AM PT – Episode 3: Training & Certification Round-Up – Join us as we dive deep with the AWS Training and Certification team on Bootcamps, Hands-on Labs, and how to get AWS Certified at re:Invent.

 

Security, Identity, & Compliance

July 30, 2018 | 11:00 AM – 11:45 AM PT – Get Started with Well-Architected Security Best Practices – Discover and walk through essential best practices for securing your workloads using a number of AWS services.

 

Serverless

July 24, 2018 | 01:00 PM – 02:00 PM PT – Getting Started with Serverless Computing Using AWS Lambda – Get an introduction to serverless and how to start building applications with no server management.

 

Storage

July 30, 2018 | 09:00 AM – 09:45 AM PT – Best Practices for Security in Amazon S3 – Learn about Amazon S3 security fundamentals and lots of new features that help make security simple.

AWS Online Tech Talks – June 2018

Post Syndicated from Devin Watson original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-june-2018/

AWS Online Tech Talks – June 2018

Join us this month to learn about AWS services and solutions. New this month, we have a fireside chat with the GM of Amazon WorkSpaces and our 2nd episode of the “How to re:Invent” series. We’ll also cover best practices, deep dives, use cases and more! Join us and register today!

Note – All sessions are free and in Pacific Time.

Tech talks featured this month:

 

Analytics & Big Data

June 18, 2018 | 11:00 AM – 11:45 AM PTGet Started with Real-Time Streaming Data in Under 5 Minutes – Learn how to use Amazon Kinesis to capture, store, and analyze streaming data in real-time including IoT device data, VPC flow logs, and clickstream data.
June 20, 2018 | 11:00 AM – 11:45 AM PT – Insights For Everyone – Deploying Data across your Organization – Learn how to deploy data at scale using AWS Analytics and QuickSight’s new reader role and usage based pricing.

 

AWS re:Invent
June 13, 2018 | 05:00 PM – 05:30 PM PTEpisode 2: AWS re:Invent Breakout Content Secret Sauce – Hear from one of our own AWS content experts as we dive deep into the re:Invent content strategy and how we maintain a high bar.
Compute

June 25, 2018 | 01:00 PM – 01:45 PM PTAccelerating Containerized Workloads with Amazon EC2 Spot Instances – Learn how to efficiently deploy containerized workloads and easily manage clusters at any scale at a fraction of the cost with Spot Instances.

June 26, 2018 | 01:00 PM – 01:45 PM PTEnsuring Your Windows Server Workloads Are Well-Architected – Get the benefits, best practices and tools on running your Microsoft Workloads on AWS leveraging a well-architected approach.

 

Containers
June 25, 2018 | 09:00 AM – 09:45 AM PTRunning Kubernetes on AWS – Learn about the basics of running Kubernetes on AWS including how setup masters, networking, security, and add auto-scaling to your cluster.

 

Databases

June 18, 2018 | 01:00 PM – 01:45 PM PTOracle to Amazon Aurora Migration, Step by Step – Learn how to migrate your Oracle database to Amazon Aurora.
DevOps

June 20, 2018 | 09:00 AM – 09:45 AM PTSet Up a CI/CD Pipeline for Deploying Containers Using the AWS Developer Tools – Learn how to set up a CI/CD pipeline for deploying containers using the AWS Developer Tools.

 

Enterprise & Hybrid
June 18, 2018 | 09:00 AM – 09:45 AM PTDe-risking Enterprise Migration with AWS Managed Services – Learn how enterprise customers are de-risking cloud adoption with AWS Managed Services.

June 19, 2018 | 11:00 AM – 11:45 AM PTLaunch AWS Faster using Automated Landing Zones – Learn how the AWS Landing Zone can automate the set up of best practice baselines when setting up new

 

AWS Environments

June 21, 2018 | 11:00 AM – 11:45 AM PTLeading Your Team Through a Cloud Transformation – Learn how you can help lead your organization through a cloud transformation.

June 21, 2018 | 01:00 PM – 01:45 PM PTEnabling New Retail Customer Experiences with Big Data – Learn how AWS can help retailers realize actual value from their big data and deliver on differentiated retail customer experiences.

June 28, 2018 | 01:00 PM – 01:45 PM PTFireside Chat: End User Collaboration on AWS – Learn how End User Compute services can help you deliver access to desktops and applications anywhere, anytime, using any device.
IoT

June 27, 2018 | 11:00 AM – 11:45 AM PTAWS IoT in the Connected Home – Learn how to use AWS IoT to build innovative Connected Home products.

 

Machine Learning

June 19, 2018 | 09:00 AM – 09:45 AM PTIntegrating Amazon SageMaker into your Enterprise – Learn how to integrate Amazon SageMaker and other AWS Services within an Enterprise environment.

June 21, 2018 | 09:00 AM – 09:45 AM PTBuilding Text Analytics Applications on AWS using Amazon Comprehend – Learn how you can unlock the value of your unstructured data with NLP-based text analytics.

 

Management Tools

June 20, 2018 | 01:00 PM – 01:45 PM PTOptimizing Application Performance and Costs with Auto Scaling – Learn how selecting the right scaling option can help optimize application performance and costs.

 

Mobile
June 25, 2018 | 11:00 AM – 11:45 AM PTDrive User Engagement with Amazon Pinpoint – Learn how Amazon Pinpoint simplifies and streamlines effective user engagement.

 

Security, Identity & Compliance

June 26, 2018 | 09:00 AM – 09:45 AM PTUnderstanding AWS Secrets Manager – Learn how AWS Secrets Manager helps you rotate and manage access to secrets centrally.
June 28, 2018 | 09:00 AM – 09:45 AM PTUsing Amazon Inspector to Discover Potential Security Issues – See how Amazon Inspector can be used to discover security issues of your instances.

 

Serverless

June 19, 2018 | 01:00 PM – 01:45 PM PTProductionize Serverless Application Building and Deployments with AWS SAM – Learn expert tips and techniques for building and deploying serverless applications at scale with AWS SAM.

 

Storage

June 26, 2018 | 11:00 AM – 11:45 AM PTDeep Dive: Hybrid Cloud Storage with AWS Storage Gateway – Learn how you can reduce your on-premises infrastructure by using the AWS Storage Gateway to connecting your applications to the scalable and reliable AWS storage services.
June 27, 2018 | 01:00 PM – 01:45 PM PTChanging the Game: Extending Compute Capabilities to the Edge – Discover how to change the game for IIoT and edge analytics applications with AWS Snowball Edge plus enhanced Compute instances.
June 28, 2018 | 11:00 AM – 11:45 AM PTBig Data and Analytics Workloads on Amazon EFS – Get best practices and deployment advice for running big data and analytics workloads on Amazon EFS.

Amazon Neptune Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-neptune-generally-available/

Amazon Neptune is now Generally Available in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland). Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. At the core of Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with millisecond latencies. Neptune supports two popular graph models, Property Graph and RDF, through Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune can be used to power everything from recommendation engines and knowledge graphs to drug discovery and network security. Neptune is fully-managed with automatic minor version upgrades, backups, encryption, and fail-over. I wrote about Neptune in detail for AWS re:Invent last year and customers have been using the preview and providing great feedback that the team has used to prepare the service for GA.

Now that Amazon Neptune is generally available there are a few changes from the preview:

Launching an Amazon Neptune Cluster

Launching a Neptune cluster is as easy as navigating to the AWS Management Console and clicking create cluster. Of course you can also launch with CloudFormation, the CLI, or the SDKs.

You can monitor your cluster health and the health of individual instances through Amazon CloudWatch and the console.

Additional Resources

We’ve created two repos with some additional tools and examples here. You can expect continuous development on these repos as we add additional tools and examples.

  • Amazon Neptune Tools Repo
    This repo has a useful tool for converting GraphML files into Neptune compatible CSVs for bulk loading from S3.
  • Amazon Neptune Samples Repo
    This repo has a really cool example of building a collaborative filtering recommendation engine for video game preferences.

Purpose Built Databases

There’s an industry trend where we’re moving more and more onto purpose-built databases. Developers and businesses want to access their data in the format that makes the most sense for their applications. As cloud resources make transforming large datasets easier with tools like AWS Glue, we have a lot more options than we used to for accessing our data. With tools like Amazon Redshift, Amazon Athena, Amazon Aurora, Amazon DynamoDB, and more we get to choose the best database for the job or even enable entirely new use-cases. Amazon Neptune is perfect for workloads where the data is highly connected across data rich edges.

I’m really excited about graph databases and I see a huge number of applications. Looking for ideas of cool things to build? I’d love to build a web crawler in AWS Lambda that uses Neptune as the backing store. You could further enrich it by running Amazon Comprehend or Amazon Rekognition on the text and images found and creating a search engine on top of Neptune.

As always, feel free to reach out in the comments or on twitter to provide any feedback!

Randall

AWS IoT 1-Click – Use Simple Devices to Trigger Lambda Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-iot-1-click-use-simple-devices-to-trigger-lambda-functions/

We announced a preview of AWS IoT 1-Click at AWS re:Invent 2017 and have been refining it ever since, focusing on simplicity and a clean out-of-box experience. Designed to make IoT available and accessible to a broad audience, AWS IoT 1-Click is now generally available, along with new IoT buttons from AWS and AT&T.

I sat down with the dev team a month or two ago to learn about the service so that I could start thinking about my blog post. During the meeting they gave me a pair of IoT buttons and I started to think about some creative ways to put them to use. Here are a few that I came up with:

Help Request – Earlier this month I spent a very pleasant weekend at the HackTillDawn hackathon in Los Angeles. As the participants were hacking away, they occasionally had questions about AWS, machine learning, Amazon SageMaker, and AWS DeepLens. While we had plenty of AWS Solution Architects on hand (decked out in fashionable & distinctive AWS shirts for easy identification), I imagined an IoT button for each team. Pressing the button would alert the SA crew via SMS and direct them to the proper table.

Camera ControlTim Bray and I were in the AWS video studio, prepping for the first episode of Tim’s series on AWS Messaging. Minutes before we opened the Twitch stream I realized that we did not have a clean, unobtrusive way to ask the camera operator to switch to a closeup view. Again, I imagined that a couple of IoT buttons would allow us to make the request.

Remote Dog Treat Dispenser – My dog barks every time a stranger opens the gate in front of our house. While it is great to have confirmation that my Ring doorbell is working, I would like to be able to press a button and dispense a treat so that Luna stops barking!

Homes, offices, factories, schools, vehicles, and health care facilities can all benefit from IoT buttons and other simple IoT devices, all managed using AWS IoT 1-Click.

All About AWS IoT 1-Click
As I said earlier, we have been focusing on simplicity and a clean out-of-box experience. Here’s what that means:

Architects can dream up applications for inexpensive, low-powered devices.

Developers don’t need to write any device-level code. They can make use of pre-built actions, which send email or SMS messages, or write their own custom actions using AWS Lambda functions.

Installers don’t have to install certificates or configure cloud endpoints on newly acquired devices, and don’t have to worry about firmware updates.

Administrators can monitor the overall status and health of each device, and can arrange to receive alerts when a device nears the end of its useful life and needs to be replaced, using a single interface that spans device types and manufacturers.

I’ll show you how easy this is in just a moment. But first, let’s talk about the current set of devices that are supported by AWS IoT 1-Click.

Who’s Got the Button?
We’re launching with support for two types of buttons (both pictured above). Both types of buttons are pre-configured with X.509 certificates, communicate to the cloud over secure connections, and are ready to use.

The AWS IoT Enterprise Button communicates via Wi-Fi. It has a 2000-click lifetime, encrypts outbound data using TLS, and can be configured using BLE and our mobile app. It retails for $19.99 (shipping and handling not included) and can be used in the United States, Europe, and Japan.

The AT&T LTE-M Button communicates via the LTE-M cellular network. It has a 1500-click lifetime, and also encrypts outbound data using TLS. The device and the bundled data plan is available an an introductory price of $29.99 (shipping and handling not included), and can be used in the United States.

We are very interested in working with device manufacturers in order to make even more shapes, sizes, and types of devices (badge readers, asset trackers, motion detectors, and industrial sensors, to name a few) available to our customers. Our team will be happy to tell you about our provisioning tools and our facility for pushing OTA (over the air) updates to large fleets of devices; you can contact them at [email protected].

AWS IoT 1-Click Concepts
I’m eager to show you how to use AWS IoT 1-Click and the buttons, but need to introduce a few concepts first.

Device – A button or other item that can send messages. Each device is uniquely identified by a serial number.

Placement Template – Describes a like-minded collection of devices to be deployed. Specifies the action to be performed and lists the names of custom attributes for each device.

Placement – A device that has been deployed. Referring to placements instead of devices gives you the freedom to replace and upgrade devices with minimal disruption. Each placement can include values for custom attributes such as a location (“Building 8, 3rd Floor, Room 1337”) or a purpose (“Coffee Request Button”).

Action – The AWS Lambda function to invoke when the button is pressed. You can write a function from scratch, or you can make use of a pair of predefined functions that send an email or an SMS message. The actions have access to the attributes; you can, for example, send an SMS message with the text “Urgent need for coffee in Building 8, 3rd Floor, Room 1337.”

Getting Started with AWS IoT 1-Click
Let’s set up an IoT button using the AWS IoT 1-Click Console:

If I didn’t have any buttons I could click Buy devices to get some. But, I do have some, so I click Claim devices to move ahead. I enter the device ID or claim code for my AT&T button and click Claim (I can enter multiple claim codes or device IDs if I want):

The AWS buttons can be claimed using the console or the mobile app; the first step is to use the mobile app to configure the button to use my Wi-Fi:

Then I scan the barcode on the box and click the button to complete the process of claiming the device. Both of my buttons are now visible in the console:

I am now ready to put them to use. I click on Projects, and then Create a project:

I name and describe my project, and click Next to proceed:

Now I define a device template, along with names and default values for the placement attributes. Here’s how I set up a device template (projects can contain several, but I just need one):

The action has two mandatory parameters (phone number and SMS message) built in; I add three more (Building, Room, and Floor) and click Create project:

I’m almost ready to ask for some coffee! The next step is to associate my buttons with this project by creating a placement for each one. I click Create placements to proceed. I name each placement, select the device to associate with it, and then enter values for the attributes that I established for the project. I can also add additional attributes that are peculiar to this placement:

I can inspect my project and see that everything looks good:

I click on the buttons and the SMS messages appear:

I can monitor device activity in the AWS IoT 1-Click Console:

And also in the Lambda Console:

The Lambda function itself is also accessible, and can be used as-is or customized:

As you can see, this is the code that lets me use {{*}}include all of the placement attributes in the message and {{Building}} (for example) to include a specific placement attribute.

Now Available
I’ve barely scratched the surface of this cool new service and I encourage you to give it a try (or a click) yourself. Buy a button or two, build something cool, and let me know all about it!

Pricing is based on the number of enabled devices in your account, measured monthly and pro-rated for partial months. Devices can be enabled or disabled at any time. See the AWS IoT 1-Click Pricing page for more info.

To learn more, visit the AWS IoT 1-Click home page or read the AWS IoT 1-Click documentation.

Jeff;

 

Amazon Sumerian – Now Generally Available

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-sumerian-now-generally-available/

We announced Amazon Sumerian at AWS re:Invent 2017. As you can see from Tara‘s blog post (Presenting Amazon Sumerian: An Easy Way to Create VR, AR, and 3D Experiences), Sumerian does not require any specialized programming or 3D graphics expertise. You can build VR, AR, and 3D experiences for a wide variety of popular hardware platforms including mobile devices, head-mounted displays, digital signs, and web browsers.

I’m happy to announce that Sumerian is now generally available. You can create realistic virtual environments and scenes without having to acquire or master specialized tools for 3D modeling, animation, lighting, audio editing, or programming. Once built, you can deploy your finished creation across multiple platforms without having to write custom code or deal with specialized deployment systems and processes.

Sumerian gives you a web-based editor that you can use to quickly and easily create realistic, professional-quality scenes. There’s a visual scripting tool that lets you build logic to control how objects and characters (Sumerian Hosts) respond to user actions. Sumerian also lets you create rich, natural interactions powered by AWS services such as Amazon Lex, Polly, AWS Lambda, AWS IoT, and Amazon DynamoDB.

Sumerian was designed to work on multiple platforms. The VR and AR apps that you create in Sumerian will run in browsers that supports WebGL or WebVR and on popular devices such as the Oculus Rift, HTC Vive, and those powered by iOS or Android.

During the preview period, we have been working with a broad spectrum of customers to put Sumerian to the test and to create proof of concept (PoC) projects designed to highlight an equally broad spectrum of use cases, including employee education, training simulations, field service productivity, virtual concierge, design and creative, and brand engagement. Fidelity Labs (the internal R&D unit of Fidelity Investments), was the first to use a Sumerian host to create an engaging VR experience. Cora (the host) lives within a virtual chart room. She can display stock quotes, pull up company charts, and answer questions about a company’s performance. This PoC uses Amazon Polly to implement text to speech and Amazon Lex for conversational chatbot functionality. Read their blog post and watch the video inside to see Cora in action:

Now that Sumerian is generally available, you have the power to create engaging AR, VR, and 3D experiences of your own. To learn more, visit the Amazon Sumerian home page and then spend some quality time with our extensive collection of Sumerian Tutorials.

Jeff;

 

AWS AppSync – Production-Ready with Six New Features

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-appsync-production-ready-with-six-new-features/

If you build (or want to build) data-driven web and mobile apps and need real-time updates and the ability to work offline, you should take a look at AWS AppSync. Announced in preview form at AWS re:Invent 2017 and described in depth here, AWS AppSync is designed for use in iOS, Android, JavaScript, and React Native apps. AWS AppSync is built around GraphQL, an open, standardized query language that makes it easy for your applications to request the precise data that they need from the cloud.

I’m happy to announce that the preview period is over and that AWS AppSync is now generally available and production-ready, with six new features that will simplify and streamline your application development process:

Console Log Access – You can now see the CloudWatch Logs entries that are created when you test your GraphQL queries, mutations, and subscriptions from within the AWS AppSync Console.

Console Testing with Mock Data – You can now create and use mock context objects in the console for testing purposes.

Subscription Resolvers – You can now create resolvers for AWS AppSync subscription requests, just as you can already do for query and mutate requests.

Batch GraphQL Operations for DynamoDB – You can now make use of DynamoDB’s batch operations (BatchGetItem and BatchWriteItem) across one or more tables. in your resolver functions.

CloudWatch Support – You can now use Amazon CloudWatch Metrics and CloudWatch Logs to monitor calls to the AWS AppSync APIs.

CloudFormation Support – You can now define your schemas, data sources, and resolvers using AWS CloudFormation templates.

A Brief AppSync Review
Before diving in to the new features, let’s review the process of creating an AWS AppSync API, starting from the console. I click Create API to begin:

I enter a name for my API and (for demo purposes) choose to use the Sample schema:

The schema defines a collection of GraphQL object types. Each object type has a set of fields, with optional arguments:

If I was creating an API of my own I would enter my schema at this point. Since I am using the sample, I don’t need to do this. Either way, I click on Create to proceed:

The GraphQL schema type defines the entry points for the operations on the data. All of the data stored on behalf of a particular schema must be accessible using a path that begins at one of these entry points. The console provides me with an endpoint and key for my API:

It also provides me with guidance and a set of fully functional sample apps that I can clone:

When I clicked Create, AWS AppSync created a pair of Amazon DynamoDB tables for me. I can click Data Sources to see them:

I can also see and modify my schema, issue queries, and modify an assortment of settings for my API.

Let’s take a quick look at each new feature…

Console Log Access
The AWS AppSync Console already allows me to issue queries and to see the results, and now provides access to relevant log entries.In order to see the entries, I must enable logs (as detailed below), open up the LOGS, and check the checkbox. Here’s a simple mutation query that adds a new event. I enter the query and click the arrow to test it:

I can click VIEW IN CLOUDWATCH for a more detailed view:

To learn more, read Test and Debug Resolvers.

Console Testing with Mock Data
You can now create a context object in the console where it will be passed to one of your resolvers for testing purposes. I’ll add a testResolver item to my schema:

Then I locate it on the right-hand side of the Schema page and click Attach:

I choose a data source (this is for testing and the actual source will not be accessed), and use the Put item mapping template:

Then I click Select test context, choose Create New Context, assign a name to my test content, and click Save (as you can see, the test context contains the arguments from the query along with values to be returned for each field of the result):

After I save the new Resolver, I click Test to see the request and the response:

Subscription Resolvers
Your AWS AppSync application can monitor changes to any data source using the @aws_subscribe GraphQL schema directive and defining a Subscription type. The AWS AppSync client SDK connects to AWS AppSync using MQTT over Websockets and the application is notified after each mutation. You can now attach resolvers (which convert GraphQL payloads into the protocol needed by the underlying storage system) to your subscription fields and perform authorization checks when clients attempt to connect. This allows you to perform the same fine grained authorization routines across queries, mutations, and subscriptions.

To learn more about this feature, read Real-Time Data.

Batch GraphQL Operations
Your resolvers can now make use of DynamoDB batch operations that span one or more tables in a region. This allows you to use a list of keys in a single query, read records multiple tables, write records in bulk to multiple tables, and conditionally write or delete related records across multiple tables.

In order to use this feature the IAM role that you use to access your tables must grant access to DynamoDB’s BatchGetItem and BatchPutItem functions.

To learn more, read the DynamoDB Batch Resolvers tutorial.

CloudWatch Logs Support
You can now tell AWS AppSync to log API requests to CloudWatch Logs. Click on Settings and Enable logs, then choose the IAM role and the log level:

CloudFormation Support
You can use the following CloudFormation resource types in your templates to define AWS AppSync resources:

AWS::AppSync::GraphQLApi – Defines an AppSync API in terms of a data source (an Amazon Elasticsearch Service domain or a DynamoDB table).

AWS::AppSync::ApiKey – Defines the access key needed to access the data source.

AWS::AppSync::GraphQLSchema – Defines a GraphQL schema.

AWS::AppSync::DataSource – Defines a data source.

AWS::AppSync::Resolver – Defines a resolver by referencing a schema and a data source, and includes a mapping template for requests.

Here’s a simple schema definition in YAML form:

  AppSyncSchema:
    Type: "AWS::AppSync::GraphQLSchema"
    DependsOn:
      - AppSyncGraphQLApi
    Properties:
      ApiId: !GetAtt AppSyncGraphQLApi.ApiId
      Definition: |
        schema {
          query: Query
          mutation: Mutation
        }
        type Query {
          singlePost(id: ID!): Post
          allPosts: [Post]
        }
        type Mutation {
          putPost(id: ID!, title: String!): Post
        }
        type Post {
          id: ID!
          title: String!
        }

Available Now
These new features are available now and you can start using them today! Here are a couple of blog posts and other resources that you might find to be of interest:

Jeff;

 

 

Amazon Transcribe Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-transcribe-now-generally-available/


At AWS re:Invent 2017 we launched Amazon Transcribe in private preview. Today we’re excited to make Amazon Transcribe generally available for all developers. Amazon Transcribe is an automatic speech recognition service (ASR) that makes it easy for developers to add speech to text capabilities to their applications. We’ve iterated on customer feedback in the preview to make a number of enhancements to Amazon Transcribe.

New Amazon Transcribe Features in GA

To start off we’ve made the SampleRate parameter optional which means you only need to know the file type of your media and the input language. We’ve added two new features – the ability to differentiate multiple speakers in the audio to provide more intelligible transcripts (“who spoke when”), and a custom vocabulary to improve the accuracy of speech recognition for product names, industry-specific terminology, or names of individuals. To refresh our memories on how Amazon Transcribe works lets look at a quick example. I’ll convert this audio in my S3 bucket.

import boto3
transcribe = boto3.client("transcribe")
transcribe.start_transcription_job(
    TranscriptionJobName="TranscribeDemo",
    LanguageCode="en-US",
    MediaFormat="mp3",
    Media={"MediaFileUri": "https://s3.amazonaws.com/randhunt-transcribe-demo-us-east-1/out.mp3"}
)

This will output JSON similar to this (I’ve stripped out most of the response) with indidivudal speakers identified:

{
  "jobName": "reinvent",
  "accountId": "1234",
  "results": {
    "transcripts": [
      {
        "transcript": "Hi, everybody, i'm randall ..."
      }
    ],
    "speaker_labels": {
      "speakers": 2,
      "segments": [
        {
          "start_time": "0.000000",
          "speaker_label": "spk_0",
          "end_time": "0.010",
          "items": []
        },
        {
          "start_time": "0.010000",
          "speaker_label": "spk_1",
          "end_time": "4.990",
          "items": [
            {
              "start_time": "1.000",
              "speaker_label": "spk_1",
              "end_time": "1.190"
            },
            {
              "start_time": "1.190",
              "speaker_label": "spk_1",
              "end_time": "1.700"
            }
          ]
        }
      ]
    },
    "items": [
      {
        "start_time": "1.000",
        "end_time": "1.190",
        "alternatives": [
          {
            "confidence": "0.9971",
            "content": "Hi"
          }
        ],
        "type": "pronunciation"
      },
      {
        "alternatives": [
          {
            "content": ","
          }
        ],
        "type": "punctuation"
      },
      {
        "start_time": "1.190",
        "end_time": "1.700",
        "alternatives": [
          {
            "confidence": "1.0000",
            "content": "everybody"
          }
        ],
        "type": "pronunciation"
      }
    ]
  },
  "status": "COMPLETED"
}

Custom Vocabulary

Now if I needed to have a more complex technical discussion with a colleague I could create a custom vocabulary. A custom vocabulary is specified as an array of strings passed to the CreateVocabulary API and you can include your custom vocabulary in a transcription job by passing in the name as part of the Settings in a StartTranscriptionJob API call. An individual vocabulary can be as large as 50KB and each phrase must be less than 256 characters. If I wanted to transcribe the recordings of my highschool AP Biology class I could create a custom vocabulary in Python like this:

import boto3
transcribe = boto3.client("transcribe")
transcribe.create_vocabulary(
LanguageCode="en-US",
VocabularyName="APBiology"
Phrases=[
    "endoplasmic-reticulum",
    "organelle",
    "cisternae",
    "eukaryotic",
    "ribosomes",
    "hepatocyes",
    "cell-membrane"
]
)

I can refer to this vocabulary later on by the name APBiology and update it programatically based on any errors I may find in the transcriptions.

Available Now

Amazon Transcribe is available now in US East (N. Virginia), US West (Oregon), US East (Ohio) and EU (Ireland). Transcribe’s free tier gives you 60 minutes of transcription for free per month for the first 12 months with a pay-as-you-go model of $0.0004 per second of transcribed audio after that, with a minimum charge of 15 seconds.

When combined with other tools and services I think transcribe opens up a entirely new opportunities for application development. I’m excited to see what technologies developers build with this new service.

Randall

Amazon Translate Now Generally Available

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/amazon-translate-now-generally-available/


Today we’re excited to make Amazon Translate generally available. Late last year at AWS re:Invent my colleague Tara Walker wrote about a preview of a new AI service, Amazon Translate. Starting today you can access Amazon Translate in US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) with a 2 million character monthly free tier for the first 12 months and $15 per million characters after that. There are a number of new features available in GA: automatic source language inference, Amazon CloudWatch support, and up to 5000 characters in a single TranslateText call. Let’s take a quick look at the service in general availability.

Amazon Translate New Features

Since Tara’s post already covered the basics of the service I want to point out some of the new features of the service released today. Let’s start with a code sample:

import boto3
translate = boto3.client("translate")
resp = translate.translate_text(
    Text="🇫🇷Je suis très excité pour Amazon Traduire🇫🇷",
    SourceLanguageCode="auto",
    TargetLanguageCode="en"
)
print(resp['TranslatedText'])

Since I have specified my source language as auto, Amazon Translate will call Amazon Comprehend on my behalf to determine the source language used in this text. If you couldn’t guess it, we’re writing some French and the output is 🇫🇷I'm very excited about Amazon Translate 🇫🇷. You’ll notice that our emojis are preserved in the output text which is definitely a bonus feature for Millennials like me.

The Translate console is a great way to get started and see some sample response.

Translate is extremely easy to use in AWS Lambda functions which allows you to use it with almost any AWS service. There are a number of examples in the Translate documentation showing how to do everything from translate a web page to a Amazon DynamoDB table. Paired with other ML services like Amazon Comprehend and [transcribe] you can build everything from closed captioning to real-time chat translation to a robust text analysis pipeline for call centers transcriptions and other textual data.

New Languages Coming Soon

Today, Amazon Translate allows you to translate text to or from English, to any of the following languages: Arabic, Chinese (Simplified), French, German, Portuguese, and Spanish. We’ve announced support for additional languages coming soon: Japanese (go JAWSUG), Russian, Italian, Chinese (Traditional), Turkish, and Czech.

Amazon Translate can also be used to increase professional translator efficiency, and reduce costs and turnaround times for their clients. We’ve already partnered with a number of Language Service Providers (LSPs) to offer their customers end-to-end translation services at a lower cost by allowing Amazon Translate to produce a high-quality draft translation that’s then edited by the LSP for a guaranteed human quality result.

I’m excited to see what applications our customers are able to build with high quality machine translation just one API call away.

Randall

New – Amazon DynamoDB Continuous Backups and Point-In-Time Recovery (PITR)

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/new-amazon-dynamodb-continuous-backups-and-point-in-time-recovery-pitr/

The Amazon DynamoDB team is back with another useful feature hot on the heels of encryption at rest. At AWS re:Invent 2017 we launched global tables and on-demand backup and restore of your DynamoDB tables and today we’re launching continuous backups with point-in-time recovery (PITR).

You can enable continuous backups with a single click in the AWS Management Console, a simple API call, or with the AWS Command Line Interface (CLI). DynamoDB can back up your data with per-second granularity and restore to any single second from the time PITR was enabled up to the prior 35 days. We built this feature to protect against accidental writes or deletes. If a developer runs a script against production instead of staging or if someone fat-fingers a DeleteItem call, PITR has you covered. We also built it for the scenarios you can’t normally predict. You can still keep your on-demand backups for as long as needed for archival purposes but PITR works as additional insurance against accidental loss of data. Let’s see how this works.

Continuous Backup

To enable this feature in the console we navigate to our table and select the Backups tab. From there simply click Enable to turn on the feature. I could also turn on continuous backups via the UpdateContinuousBackups API call.

After continuous backup is enabled we should be able to see an Earliest restore date and Latest restore date

Let’s imagine a scenario where I have a lot of old user profiles that I want to delete.

I really only want to send service updates to our active users based on their last_update date. I decided to write a quick Python script to delete all the users that haven’t used my service in a while.

import boto3
table = boto3.resource("dynamodb").Table("VerySuperImportantTable")
items = table.scan(
    FilterExpression="last_update >= :date",
    ExpressionAttributeValues={":date": "2014-01-01T00:00:00"},
    ProjectionExpression="ImportantId"
)['Items']
print("Deleting {} Items! Dangerous.".format(len(items)))
with table.batch_writer() as batch:
    for item in items:
        batch.delete_item(Key=item)

Great! This should delete all those pesky non-users of my service that haven’t logged in since 2013. So,— CTRL+C CTRL+C CTRL+C CTRL+C (interrupt the currently executing command).

Yikes! Do you see where I went wrong? I’ve just deleted my most important users! Oh, no! Where I had a greater-than sign, I meant to put a less-than! Quick, before Jeff Barr can see, I’m going to restore the table. (I probably could have prevented that typo with Boto 3’s handy DynamoDB conditions: Attr("last_update").lt("2014-01-01T00:00:00"))

Restoring

Luckily for me, restoring a table is easy. In the console I’ll navigate to the Backups tab for my table and click Restore to point-in-time.

I’ll specify the time (a few seconds before I started my deleting spree) and a name for the table I’m restoring to.

For a relatively small and evenly distributed table like mine, the restore is quite fast.

The time it takes to restore a table varies based on multiple factors and restore times are not neccesarily coordinated with the size of the table. If your dataset is evenly distributed across your primary keys you’ll be able to take advanatage of parallelization which will speed up your restores.

Learn More & Try It Yourself
There’s plenty more to learn about this new feature in the documentation here.

Pricing for continuous backups varies by region and is based on the current size of the table and all indexes.

A few things to note:

  • PITR works with encrypted tables.
  • If you disable PITR and later reenable it, you reset the start time from which you can recover.
  • Just like on-demand backups, there are no performance or availability impacts to enabling this feature.
  • Stream settings, Time To Live settings, PITR settings, tags, Amazon CloudWatch alarms, and auto scaling policies are not copied to the restored table.
  • Jeff, it turns out, knew I restored the table all along because every PITR API call is recorded in AWS CloudTrail.

Let us know how you’re going to use continuous backups and PITR on Twitter and in the comments.
Randall

AWS Summit Season is Almost Here – Get Ready to Register!

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-summit-season-is-almost-here-get-ready-to-register/

I’m writing this post from my hotel room in Tokyo while doing my best to fight jet lag! I’m here to speak at JAWS Days and Startup Day, and to meet with some local customers.

I do want to remind you that the AWS Global Summit series is just about to start! With events planned for North America, Latin America, Japan and the rest of Asia, Europe, the Middle East, Africa, and Greater China, odds are that there’s one not too far from you. You can register for the San Francisco Summit today and you can ask to be notified as soon as registration for the other 30+ cities opens up.

The Summits are offered at no charge and are an excellent way for you to learn more about AWS. You’ll get to hear from our leaders and tech teams, our partners, and from other customers. You can also participate in hands-on workshops, labs, and team challenges.

Because the events are multi-track, you may want to bring a colleague or two in order to make sure that you don’t miss something of interest to your organization.

Jeff;

PS – I keep meaning to share this cool video that my friend Mike Selinker took at AWS re:Invent. Check it out!

New – Encryption at Rest for DynamoDB

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/new-encryption-at-rest-for-dynamodb/

At AWS re:Invent 2017, Werner encouraged his audience to “Dance like nobody is watching, and to encrypt like everyone is:

The AWS team is always eager to add features that make it easier for you to protect your sensitive data and to help you to achieve your compliance objectives. For example, in 2017 we launched encryption at rest for SQS and EFS, additional encryption options for S3, and server-side encryption of Kinesis Data Streams.

Today we are giving you another data protection option with the introduction of encryption at rest for Amazon DynamoDB. You simply enable encryption when you create a new table and DynamoDB takes care of the rest. Your data (tables, local secondary indexes, and global secondary indexes) will be encrypted using AES-256 and a service-default AWS Key Management Service (KMS) key. The encryption adds no storage overhead and is completely transparent; you can insert, query, scan, and delete items as before. The team did not observe any changes in latency after enabling encryption and running several different workloads on an encrypted DynamoDB table.

Creating an Encrypted Table
You can create an encrypted table from the AWS Management Console, API (CreateTable), or CLI (create-table). I’ll use the console! I enter the name and set up the primary key as usual:

Before proceeding, I uncheck Use default settings, scroll down to the Encrypytion section, and check Enable encryption. Then I click Create and my table is created in encrypted form:

I can see the encryption setting for the table at a glance:

When my compliance team asks me to show them how DynamoDB uses the key to encrypt the data, I can create a AWS CloudTrail trail, insert an item, and then scan the table to see the calls to the AWS KMS API. Here’s an extract from the trail:

{
  "eventTime": "2018-01-24T00:06:34Z",
  "eventSource": "kms.amazonaws.com",
  "eventName": "Decrypt",
  "awsRegion": "us-west-2",
  "sourceIPAddress": "dynamodb.amazonaws.com",
  "userAgent": "dynamodb.amazonaws.com",
  "requestParameters": {
    "encryptionContext": {
      "aws:dynamodb:tableName": "reg-users",
      "aws:dynamodb:subscriberId": "1234567890"
    }
  },
  "responseElements": null,
  "requestID": "7072def1-009a-11e8-9ab9-4504c26bd391",
  "eventID": "3698678a-d04e-48c7-96f2-3d734c5c7903",
  "readOnly": true,
  "resources": [
    {
      "ARN": "arn:aws:kms:us-west-2:1234567890:key/e7bd721d-37f3-4acd-bec5-4d08c765f9f5",
      "accountId": "1234567890",
      "type": "AWS::KMS::Key"
    }
  ]
}

Available Now
This feature is available now in the US East (N. Virginia), US East (Ohio), US West (Oregon), and EU (Ireland) Regions and you can start using it today.

There’s no charge for the encryption; you will be charged for the calls that DynamoDB makes to AWS KMS on your behalf.

Jeff;

 

Give Your WordPress Blog a Voice With Our New Amazon Polly Plugin

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/give-your-wordpress-blog-a-voice-with-our-new-amazon-polly-plugin/

I first told you about Polly in late 2016 in my post Amazon Polly – Text to Speech in 47 Voices and 24 Languages. After that AWS re:Invent launch, we added support for Korean, five new voices, and made Polly available in all Regions in the aws partition. We also added whispering, speech marks, a timbre effect, and dynamic range compression.

New WordPress Plugin
Today we are launching a WordPress plugin that uses Polly to create high-quality audio versions of your blog posts. You can access the audio from within the post or in podcast form using a feature that we call Amazon Pollycast! Both options make your content more accessible and can help you to reach a wider audience. This plugin was a joint effort between the AWS team our friends at AWS Advanced Technology Partner WP Engine.

As you will see, the plugin is easy to install and configure. You can use it with installations of WordPress that you run on your own infrastructure or on AWS. Either way, you have access to all of Polly’s voices along with a wide variety of configuration options. The generated audio (an MP3 file for each post) can be stored alongside your WordPress content, or in Amazon Simple Storage Service (S3), with optional support for content distribution via Amazon CloudFront.

Installing the Plugin
I did not have an existing WordPress-powered blog, so I begin by launching a Lightsail instance using the WordPress 4.8.1 blueprint:

Then I follow these directions to access my login credentials:

Credentials in hand, I log in to the WordPress Dashboard:

The plugin makes calls to AWS, and needs to have credentials in order to do so. I hop over to the IAM Console and created a new policy. The policy allows the plugin to access a carefully selected set of S3 and Polly functions (find the full policy in the README):

Then I create an IAM user (wp-polly-user). I enter the name and indicate that it will be used for Programmatic Access:

Then I attach the policy that I just created, and click on Review:

I review my settings (not shown) and then click on Create User. Then I copy the two values (Access Key ID and Secret Access Key) into a secure location. Possession of these keys allows the bearer to make calls to AWS so I take care not to leave them lying around.

Now I am ready to install the plugin! I go back to the WordPress Dashboard and click on Add New in the Plugins menu:

Then I click on Upload Plugin and locate the ZIP file that I downloaded from the WordPress Plugins site. After I find it I click on Install Now to proceed:

WordPress uploads and installs the plugin. Now I click on Activate Plugin to move ahead:

With the plugin installed, I click on Settings to set it up:

I enter my keys and click on Save Changes:

The General settings let me control the sample rate, voice, player position, the default setting for new posts, and the autoplay option. I can leave all of the settings as-is to get started:

The Cloud Storage settings let me store audio in S3 and to use CloudFront to distribute the audio:

The Amazon Pollycast settings give me control over the iTunes parameters that are included in the generated RSS feed:

Finally, the Bulk Update button lets me regenerate all of the audio files after I change any of the other settings:

With the plugin installed and configured, I can create a new post. As you can see, the plugin can be enabled and customized for each post:

I can see how much it will cost to convert to audio with a click:

When I click on Publish, the plugin breaks the text into multiple blocks on sentence boundaries, calls the Polly SynthesizeSpeech API for each block, and accumulates the resulting audio in a single MP3 file. The published blog post references the file using the <audio> tag. Here’s the post:

I can’t seem to use an <audio> tag in this post, but you can download and play the MP3 file yourself if you’d like.

The Pollycast feature generates an RSS file with links to an MP3 file for each post:

Pricing
The plugin will make calls to Amazon Polly each time the post is saved or updated. Pricing is based on the number of characters in the speech requests, as described on the Polly Pricing page. Also, the AWS Free Tier lets you process up to 5 million characters per month at no charge, for a period of one year that starts when you make your first call to Polly.

Going Further
The plugin is available on GitHub in source code form and we are looking forward to your pull requests! Here are a couple of ideas to get you started:

Voice Per Author – Allow selection of a distinct Polly voice for each author.

Quoted Text – For blogs that make frequent use of embedded quotes, use a distinct voice for the quotes.

Translation – Use Amazon Translate to translate the texts into another language, and then use Polly to generate audio in that language.

Other Blogging Engines – Build a similar plugin for your favorite blogging engine.

SSML Support – Figure out an interesting way to use Polly’s SSML tags to add additional character to the audio.

Let me know what you come up with!

Jeff;

 

Recent EC2 Goodies – Launch Templates and Spread Placement

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/recent-ec2-goodies-launch-templates-and-spread-placement/

We launched some important new EC2 instance types and features at AWS re:Invent. I’ve already told you about the M5, H1, T2 Unlimited and Bare Metal instances, and about Spot features such as Hibernation and the New Pricing Model. Randall told you about the Amazon Time Sync Service. Today I would like to tell you about two of the features that we launched: Spread placement groups and Launch Templates. Both features are available in the EC2 Console and from the EC2 APIs, and can be used in all of the AWS Regions in the “aws” partition:

Launch Templates
You can use launch templates to store the instance, network, security, storage, and advanced parameters that you use to launch EC2 instances, and can also include any desired tags. Each template can include any desired subset of the full collection of parameters. You can, for example, define common configuration parameters such as tags or network configurations in a template, and allow the other parameters to be specified as part of the actual launch.

Templates give you the power to set up a consistent launch environment that spans instances launched in On-Demand and Spot form, as well as through EC2 Auto Scaling and as part of a Spot Fleet. You can use them to implement organization-wide standards and to enforce best practices, and you can give your IAM users the ability to launch instances via templates while withholding the ability to do so via the underlying APIs.

Templates are versioned and you can use any desired version when you launch an instance. You can create templates from scratch, base them on the previous version, or copy the parameters from a running instance.

Here’s how you create a launch template in the Console:

Here’s how to include network interfaces, storage volumes, tags, and security groups:

And here’s how to specify advanced and specialized parameters:

You don’t have to specify values for all of these parameters in your templates; enter the values that are common to multiple instances or launches and specify the rest at launch time.

When you click Create launch template, the template is created and can be used to launch On-Demand instances, create Auto Scaling Groups, and create Spot Fleets:

The Launch Instance button now gives you the option to launch from a template:

Simply choose the template and the version, and finalize all of the launch parameters:

You can also manage your templates and template versions from the Console:

To learn more about this feature, read Launching an Instance from a Launch Template.

Spread Placement Groups
Spread placement groups indicate that you do not want the instances in the group to share the same underlying hardware. Applications that rely on a small number of critical instances can launch them in a spread placement group to reduce the odds that one hardware failure will impact more than one instance. Here are a couple of things to keep in mind when you use spread placement groups:

  • Availability Zones – A single spread placement group can span multiple Availability Zones. You can have a maximum of seven running instances per Availability Zone per group.
  • Unique Hardware – Launch requests can fail if there is insufficient unique hardware available. The situation changes over time as overall usage changes and as we add additional hardware; you can retry failed requests at a later time.
  • Instance Types – You can launch a wide variety of M4, M5, C3, R3, R4, X1, X1e, D2, H1, I2, I3, HS1, F1, G2, G3, P2, and P3 instances types in spread placement groups.
  • Reserved Instances – Instances launched into a spread placement group can make use of reserved capacity. However, you cannot currently reserve capacity for a placement group and could receive an ICE (Insufficient Capacity Error) even if you have some RI’s available.
  • Applicability – You cannot use spread placement groups in conjunction with Dedicated Instances or Dedicated Hosts.

You can create and use spread placement groups from the AWS Management Console, the AWS Command Line Interface (CLI), the AWS Tools for Windows PowerShell, and the AWS SDKs. The console has a new feature that will help you to learn how to use the command line:

You can specify an existing placement group or create a new one when you launch an EC2 instance:

To learn more, read about Placement Groups.

Jeff;