Tag Archives: open source

Artifex and Hancom Reach Settlement Over Ghostscript Open Source Dispute

Post Syndicated from ris original https://lwn.net/Articles/741182/rss

Artifex Software, Inc. and Hancom, Inc. have announced
a confidential agreement to settle their legal dispute. The case filed by
Artifex concerned the use of Artifex’s GPL licensed Ghostscript in Hancom’s
office product. “While the parties had their differences in the interpretation of the open source license, the companies were able to reach an amicable resolution based on their mutual respect for and recognition of the copyright protection and the open source philosophy.

Managing AWS Lambda Function Concurrency

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

Understanding concurrency in Lambda

Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
Yes, a magical pizza!

This magical pizza has some unique properties:

  • It has a fixed maximum number of slices, such as 8.
  • Slices automatically re-appear after they are consumed.
  • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
  • One person can take multiple slices at a time.
  • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

  • If any of them take too many slices at once, the others may not get as much as they want.
  • If they take too many slices, they might also eat too much and get sick.

One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

What can they do?

If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

Concurrency in Lambda

Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

  • Amazon S3
  • Amazon Kinesis
  • Amazon DynamoDB
  • Amazon Cognito

In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

  • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
  • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

Configuring per function concurrency limits

You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

Going back to the example of the consuming services, you could set throttles for the functions as follows:

Amazon S3 function = 350
Amazon Kinesis function = 200
Amazon DynamoDB function = 200
Amazon Cognito function = 150
Total = 900

With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
To create the example function

  1. Open the Lambda console.
  2. Choose Create Function.
  3. For Author from scratch, enter the following values:
    1. For Name, enter a value (such as concurrencyBlog01).
    2. For Runtime, choose Python 3.6.
    3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
  4. Choose Create function.
  5. The function is created with some basic example code. Replace that code with the following:

import time
from random import randint
seconds = randint(2, 5)

def lambda_handler(event, context):
time.sleep(seconds)
return {"statusCode": 200,
"body": ("Hello world, slept " + str(seconds) + " seconds"),
"headers":
{
"Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
"Access-Control-Allow-Methods": "GET,OPTIONS",
}}

  1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

  1. Choose Save at the top right.

At this point, your function is configured for this example. Test it and confirm this in the console:

  1. Choose Test.
  2. Enter a name (it doesn’t matter for this example).
  3. Choose Create.
  4. In the console, choose Test again.
  5. You should see output similar to the following:

Now configure API Gateway so that you have an HTTPS endpoint to test against.

  1. In the Lambda console, choose Configuration.
  2. Under Triggers, choose API Gateway.
  3. Open the API Gateway icon now shown as attached to your Lambda function:

  1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
  2. Choose Add, Save.

API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:


$ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Hello world, slept 2 seconds

Throwing load at the function

Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

After the EC2 instance is running, SSH into the host and run the following:


sudo yum install go
go get -u github.com/rakyll/hey

“hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

The output from “hey” tells you interesting bits of information:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

Summary:
Total: 381.9978 secs
Slowest: 9.4765 secs
Fastest: 0.0438 secs
Average: 3.2153 secs
Requests/sec: 13.0891
Total data: 140024 bytes
Size/request: 28 bytes

Response time histogram:
0.044 [1] |
0.987 [2] |
1.930 [0] |
2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
6.647 [13] |
7.590 [14] |
8.533 [9] |
9.477 [4] |

Latency distribution:
10% in 2.0224 secs
25% in 2.0267 secs
50% in 3.0251 secs
75% in 4.0269 secs
90% in 5.0279 secs
95% in 5.0414 secs
99% in 5.1871 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs

Status code distribution:
[200] 4997 responses
[502] 3 responses

You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

Configuring a concurrency reservation

Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

  1. In the console, choose Configure.
  2. Under Concurrency, for Reserve concurrency, enter 25.

  1. Click on Save in the top right corner.

You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:


$ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
{
"ReservedConcurrentExecutions": 25
}

Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01

While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

Here is the output from a new “hey” command:


$ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
Summary:
Total: 379.9922 secs
Slowest: 7.1486 secs
Fastest: 0.0102 secs
Average: 1.1897 secs
Requests/sec: 13.1582
Total data: 164608 bytes
Size/request: 32 bytes

Response time histogram:
0.010 [1] |
0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
1.438 [0] |
2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
2.866 [11] |
3.579 [566] |∎∎∎∎∎∎∎
4.293 [214] |∎∎∎
5.007 [1] |
5.721 [315] |∎∎∎∎
6.435 [4] |
7.149 [2] |

Latency distribution:
10% in 0.0130 secs
25% in 0.0147 secs
50% in 0.0205 secs
75% in 2.0344 secs
90% in 4.0229 secs
95% in 5.0248 secs
99% in 5.0629 secs

Details (average, fastest, slowest):
DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs

Status code distribution:
[502] 3076 responses
[200] 1924 responses

This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

Other uses

Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

  • Emergency kill switch
  • Cost controls

Emergency kill switch

On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

Cost controls

While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

Conclusion

Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

timeShift(GrafanaBuzz, 1w) Issue 25

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/12/08/timeshiftgrafanabuzz-1w-issue-25/

Welcome to TimeShift

This week, a few of us from Grafana Labs, along with 4,000 of our closest friends, headed down to chilly Austin, TX for KubeCon + CloudNativeCon North America 2017. We got to see a number of great talks and were thrilled to see Grafana make appearances in some of the presentations. We were also a sponsor of the conference and handed out a ton of swag (we overnighted some of our custom Grafana scarves, which came in handy for Thursday’s snow).

We also announced Grafana Labs has joined the Cloud Native Computing Foundation as a Silver member! We’re excited to share our expertise in time series data visualization and open source software with the CNCF community.


Latest Release

Grafana 4.6.2 is available and includes some bug fixes:

  • Prometheus: Fixes bug with new Prometheus alerts in Grafana. Make sure to download this version if you’re using Prometheus for alerting. More details in the issue. #9777
  • Color picker: Bug after using textbox input field to change/paste color string #9769
  • Cloudwatch: build using golang 1.9.2 #9667, thanks @mtanda
  • Heatmap: Fixed tooltip for “time series buckets” mode #9332
  • InfluxDB: Fixed query editor issue when using > or < operators in WHERE clause #9871

Download Grafana 4.6.2 Now


From the Blogosphere

Grafana Labs Joins the CNCF: Grafana Labs has officially joined the Cloud Native Computing Foundation (CNCF). We look forward to working with the CNCF community to democratize metrics and help unify traditionally disparate information.

Automating Web Performance Regression Alerts: Peter and his team needed a faster and easier way to find web performance regressions at the Wikimedia Foundation. Grafana 4’s alerting features were exactly what they needed. This post covers their journey on setting up alerts for both RUM and synthetic testing and shares the alerts they’ve set up on their dashboards.

How To Install Grafana on Ubuntu 17.10: As you probably guessed from the title, this article walks you through installing and configuring Grafana in the latest version of Ubuntu (or earlier releases). It also covers installing plugins using the Grafana CLI tool.

Prometheus: Starting the Server with Alertmanager, cAdvisor and Grafana: Learn how to monitor Docker from scratch using cAdvisor, Prometheus and Grafana in this detailed, step-by-step walkthrough.

Monitoring Java EE Servers with Prometheus and Payara: In this screencast, Adam uses firehose; a Java EE 7+ metrics gateway for Prometheus, to convert the JSON output into Prometheus statistics and visualizes the data in Grafana.

Monitoring Spark Streaming with InfluxDB and Grafana: This article focuses on how to monitor Apache Spark Streaming applications with InfluxDB and Grafana at scale.


GrafanaCon EU, March 1-2, 2018

We are currently reaching out to everyone who submitted a talk to GrafanaCon and will soon publish the final schedule at grafanacon.org.

Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

Lots of plugin updates and a new OpenNMS Helm App plugin to announce! To install or update any plugin in an on-prem Grafana instance, use the Grafana-cli tool, or install and update with 1 click on Hosted Grafana.

NEW PLUGIN

OpenNMS Helm App – The new OpenNMS Helm App plugin replaces the old OpenNMS data source. Helm allows users to create flexible dashboards using both fault management (FM) and performance management (PM) data from OpenNMS® Horizon™ and/or OpenNMS® Meridian™. The old data source is now deprecated.


Install Now

UPDATED PLUGIN

PNP Data Source – This data source plugin (that uses PNP4Nagios to access RRD files) received a small, but important update that fixes template query parsing.


Update

UPDATED PLUGIN

Vonage Status Panel – The latest version of the Status Panel comes with a number of small fixes and changes. Below are a few of the enhancements:

  • Threshold settings – removed Show Always option, and replaced it with 2 options:
    • Display Alias – Select when to show the metric alias.
    • Display Value – Select when to show the metric value.
  • Text format configuration (bold / italic) for warning / critical / disabled states.
  • Option to change the corner radius of the panel. Now you can change the panel’s shape to have rounded corners.

Update

UPDATED PLUGIN

Google Calendar Plugin – This plugin received a small update, so be sure to install version 1.0.4.


Update

UPDATED PLUGIN

Carpet Plot Panel – The Carpet Plot Panel received a fix for IE 11, and also added the ability to choose custom colors.


Update


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We also like to make sure we mention other Grafana-related events happening all over the world. If you’re putting on just such an event, let us know and we’ll list it here.

Docker Meetup @ Tuenti | Madrid, Spain – Dec 12, 2017: Javier Provecho: Intro to Metrics with Swarm, Prometheus and Grafana

Learn how to gain visibility in real time for your micro services. We’ll cover how to deploy a Prometheus server with persistence and Grafana, how to enable metrics endpoints for various service types (docker daemon, traefik proxy and postgres) and how to scrape, visualize and set up alarms based on those metrics.

RSVP

Grafana Lyon Meetup n ° 2 | Lyon, France – Dec 14, 2017: This meetup will cover some of the latest innovations in Grafana and discussion about automation. Also, free beer and chips, so – of course you’re going!

RSVP

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and we’ve heard there were some great talks submitted. There is no need to register; all are welcome.


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

We were thrilled to see our dashboards bigger than life at KubeCon + CloudNativeCon this week. Thanks for snapping a photo and sharing!


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

Hard to believe this is the 25th issue of Timeshift! I have a blast writing these roundups, but Let me know what you think. Submit a comment on this article below, or post something at our community forum. Find an article I haven’t included? Send it my way. Help us make timeShift better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

Diehl: Reflecting on Haskell in 2017

Post Syndicated from ris original https://lwn.net/Articles/740627/rss

Stephen Diehl looks back
at what happened in Haskell during the past year.
Haskell has had a great year and 2017 was defined by vast quantities of new code, including 14,000 new Haskell projects on Github . The amount of writing this year was voluminous and my list of interesting work is eight times as large as last year. At least seven new companies came into existence and many existing firms unexpectedly dropped large open source Haskell projects into the public sphere. Driven by a lot of software catastrophes, the intersection of security, software correctness and formal methods have been become quite an active area of investment and research across both industry and academia. It’s really never been an easier and more exciting time to be programming professionally in the world’s most advanced (yet usable) statically typed language.

Mozilla releases its speech-recognition system

Post Syndicated from corbet original https://lwn.net/Articles/740611/rss

Mozilla has announced
the initial releases from its “Project DeepSpeech” and “Project Common
Voice” efforts. “I’m excited to announce the initial release of
Mozilla’s open source speech recognition model that has an accuracy
approaching what humans can perceive when listening to the same
recordings. We are also releasing the world’s second largest publicly
available voice dataset, which was contributed to by nearly 20,000 people
globally.

timeShift(GrafanaBuzz, 1w) Issue 24

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/12/01/timeshiftgrafanabuzz-1w-issue-24/

Welcome to TimeShift

It’s hard to believe it’s already December. Here at Grafana Labs we’ve been spending a lot of time working on new features and enhancements for Grafana v5, and finalizing our selections for GrafanaCon EU. This week we have some interesting articles to share and a number of plugin updates. Enjoy!


Latest Release

Grafana 4.6.2 is now available and includes some bug fixes:

  • Prometheus: Fixes bug with new Prometheus alerts in Grafana. Make sure to download this version if you’re using Prometheus for alerting. More details in the issue. #9777
  • Color picker: Bug after using textbox input field to change/paste color string #9769
  • Cloudwatch: build using golang 1.9.2 #9667, thanks @mtanda
  • Heatmap: Fixed tooltip for “time series buckets” mode #9332
  • InfluxDB: Fixed query editor issue when using > or < operators in WHERE clause #9871

Download Grafana 4.6.2 Now


From the Blogosphere

Monitoring Camel with Prometheus in Red Hat OpenShift: This in-depth walk-through will show you how to build an Apache Camel application from scratch, deploy it in a Kubernetes environment, gather metrics using Prometheus and display them in Grafana.

How to run Grafana with DeviceHive: We see more and more examples of people using Grafana in IoT. This article discusses how to gather data from the IoT platform, DeviceHive, and build useful dashboards.

How to Install Grafana on Linux Servers: Pretty self-explanatory, but this tutorial walks you installing Grafana on Ubuntu 16.04 and CentOS 7. After installation, it covers configuration and plugin installation. This is the first article in an upcoming series about Grafana.

Monitoring your AKS cluster with Grafana: It’s important to know how your application is performing regardless of where it lives; the same applies to Kubernetes. This article focuses on aggregating data from Kubernetes with Heapster and feeding it to a backend for Grafana to visualize.

CoinStatistics: With the price of Bitcoin skyrocketing, more and more people are interested in cryptocurrencies. This is a cool dashboard that has a lot of stats about popular cryptocurrencies, and has a calculator to let you know when you can buy that lambo.

Using OpenNTI As A Collector For Streaming Telemetry From Juniper Devices: Part 1: This series will serve as a quick start guide for getting up and running with streaming real-time telemetry data from Juniper devices. This first article covers some high-level concepts and installation, while part 2 covers configuration options.

How to Get Metrics for Advance Alerting to Prevent Trouble: What good is performance monitoring if you’re never told when something has gone wrong? This article suggests ways to be more proactive to prevent issues and avoid the scramble to troubleshoot issues.

Thoughtworks: Technology Radar: We got a shout-out in the latest Technology Radar in the Tools section, as the dashboard visualization tool of choice for Prometheus!


GrafanaCon Tickets are Going Fast

Tickets are going fast for GrafanaCon EU, but we still have a seat reserved for you. Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

We have a number of plugin updates to highlight this week. Authors improve plugins regularly to fix bugs and improve performance, so it’s important to keep your plugins up to date. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you’re using Hosted Grafana.

UPDATED PLUGIN

Clickhouse Data Source – The Clickhouse Data Source received a substantial update this week. It now has support for Ace Editor, which has a reformatting function for the query editor that automatically formats your sql. If you’re using Clickhouse then you should also have a look at CHProxy – see the plugin readme for more details.


Update

UPDATED PLUGIN

Influx Admin Panel – This panel received a number of small fixes. A new version will be coming soon with some new features.

Some of the changes (see the release notes) for more details):

  • Fix issue always showing query results
  • When there is only one row, swap rows/cols (ie: SHOW DIAGNOSTICS)
  • Improve auto-refresh behavior
  • Show ‘message’ response. (ie: please use POST)
  • Fix query time sorting
  • Show ‘status’ field (killed, etc)

Update

UPDATED PLUGIN

Gnocchi Data Source – The latest version of the Gnocchi Data Source adds support for dynamic aggregations.


Update

UPDATED PLUGINS

BT Plugins – All of the BT panel plugins received updates this week.


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks and events coming soon. Hope to see you at one of these!

KubeCon | Austin, TX – Dec. 6-8, 2017: We’re sponsoring KubeCon 2017! This is the must-attend conference for cloud native computing professionals. KubeCon + CloudNativeCon brings together leading contributors in:

  • Cloud native applications and computing
  • Containers
  • Microservices
  • Central orchestration processing
  • And more

Buy Tickets

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and we’ve heard there were some great talks submitted. There is no need to register; all are welcome.


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

YIKES! Glad it’s not – there’s good attention and bad attention.


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

Let us know if you’re finding these weekly roundups valuable. Submit a comment on this article below, or post something at our community forum. Find an article I haven’t included? Send it my way. Help us make timeShift better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.

AWS Cloud9 – Cloud Developer Environments

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-cloud9-cloud-developer-environments/

One of the first things you learn when you start programming is that, just like any craftsperson, your tools matter. Notepad.exe isn’t going to cut it. A powerful editor and testing pipeline supercharge your productivity. I still remember learning to use Vim for the first time and being able to zip around systems and complex programs. Do you remember how hard it was to setup all your compilers and dependencies on a new machine? How many cycles have you wasted matching versions, tinkering with configs, and then writing documentation to onboard a new developer to a project?

Today we’re launching AWS Cloud9, an Integrated Development Environment (IDE) for writing, running, and debugging code, all from your web browser. Cloud9 comes prepackaged with essential tools for many popular programming languages (Javascript, Python, PHP, etc.) so you don’t have to tinker with installing various compilers and toolchains. Cloud9 also provides a seamless experience for working with serverless applications allowing you to quickly switch between local and remote testing or debugging. Based on the popular open source Ace Editor and c9.io IDE (which we acquired last year), AWS Cloud9 is designed to make collaborative cloud development easy with extremely powerful pair programming features. There are more features than I could ever cover in this post but to give a quick breakdown I’ll break the IDE into 3 components: The editor, the AWS integrations, and the collaboration.

Editing


The Ace Editor at the core of Cloud9 is what lets you write code quickly, easily, and beautifully. It follows a UNIX philosophy of doing one thing and doing it well: writing code.

It has all the typical IDE features you would expect: live syntax checking, auto-indent, auto-completion, code folding, split panes, version control integration, multiple cursors and selections, and it also has a few unique features I want to highlight. First of all, it’s fast, even for large (100000+ line) files. There’s no lag or other issues while typing. It has over two dozen themes built-in (solarized!) and you can bring all of your favorite themes from Sublime Text or TextMate as well. It has built-in support for 40+ language modes and customizable run configurations for your projects. Most importantly though, it has Vim mode (or emacs if your fingers work that way). It also has a keybinding editor that allows you to bend the editor to your will.

The editor supports powerful keyboard navigation and commands (similar to Sublime Text or vim plugins like ctrlp). On a Mac, with ⌘+P you can open any file in your environment with fuzzy search. With ⌘+. you can open up the command pane which allows you to do invoke any of the editor commands by typing the name. It also helpfully displays the keybindings for a command in the pane, for instance to open to a terminal you can press ⌥+T. Oh, did I mention there’s a terminal? It ships with the AWS CLI preconfigured for access to your resources.

The environment also comes with pre-installed debugging tools for many popular languages – but you’re not limited to what’s already installed. It’s easy to add in new programs and define new run configurations.

The editor is just one, admittedly important, component in an IDE though. I want to show you some other compelling features.

AWS Integrations

The AWS Cloud9 IDE is the first IDE I’ve used that is truly “cloud native”. The service is provided at no additional charge, and you only charged for the underlying compute and storage resources. When you create an environment you’re prompted for either: an instance type and an auto-hibernate time, or SSH access to a machine of your choice.

If you’re running in AWS the auto-hibernate feature will stop your instance shortly after you stop using your IDE. This can be a huge cost savings over running a more permanent developer desktop. You can also launch it within a VPC to give it secure access to your development resources. If you want to run Cloud9 outside of AWS, or on an existing instance, you can provide SSH access to the service which it will use to create an environment on the external machine. Your environment is provisioned with automatic and secure access to your AWS account so you don’t have to worry about copying credentials around. Let me say that again: you can run this anywhere.

Serverless Development with AWS Cloud9

I spend a lot of time on Twitch developing serverless applications. I have hundreds of lambda functions and APIs deployed. Cloud9 makes working with every single one of these functions delightful. Let me show you how it works.


If you look in the top right side of the editor you’ll see an AWS Resources tab. Opening this you can see all of the lambda functions in your region (you can see functions in other regions by adjusting your region preferences in the AWS preference pane).

You can import these remote functions to your local workspace just by double-clicking them. This allows you to edit, test, and debug your serverless applications all locally. You can create new applications and functions easily as well. If you click the Lambda icon in the top right of the pane you’ll be prompted to create a new lambda function and Cloud9 will automatically create a Serverless Application Model template for you as well. The IDE ships with support for the popular SAM local tool pre-installed. This is what I use in most of my local testing and serverless development. Since you have a terminal, it’s easy to install additional tools and use other serverless frameworks.

 

Launching an Environment from AWS CodeStar

With AWS CodeStar you can easily provision an end-to-end continuous delivery toolchain for development on AWS. Codestar provides a unified experience for building, testing, deploying, and managing applications using AWS CodeCommit, CodeBuild, CodePipeline, and CodeDeploy suite of services. Now, with a few simple clicks you can provision a Cloud9 environment to develop your application. Your environment will be pre-configured with the code for your CodeStar application already checked out and git credentials already configured.

You can easily share this environment with your coworkers which leads me to another extremely useful set of features.

Collaboration

One of the many things that sets AWS Cloud9 apart from other editors are the rich collaboration tools. You can invite an IAM user to your environment with a few clicks.

You can see what files they’re working on, where their cursors are, and even share a terminal. The chat features is useful as well.

Things to Know

  • There are no additional charges for this service beyond the underlying compute and storage.
  • c9.io continues to run for existing users. You can continue to use all the features of c9.io and add new team members if you have a team account. In the future, we will provide tools for easy migration of your c9.io workspaces to AWS Cloud9.
  • AWS Cloud9 is available in the US West (Oregon), US East (Ohio), US East (N.Virginia), EU (Ireland), and Asia Pacific (Singapore) regions.

I can’t wait to see what you build with AWS Cloud9!

Randall

Announcing FreeRTOS Kernel Version 10 (AWS Open Source Blog)

Post Syndicated from jake original https://lwn.net/Articles/740372/rss

Amazon has announced the release of FreeRTOS kernel version 10, with a new license: “FreeRTOS was created in 2003 by Richard Barry. It rapidly became popular, consistently ranking very high in EETimes surveys on embedded operating systems. After 15 years of maintaining this critical piece of software infrastructure with very limited human resources, last year Richard joined Amazon.

Today we are releasing the core open source code as FreeRTOS kernel version 10, now under the MIT license (instead of its previous modified GPLv2 license). Simplified licensing has long been requested by the FreeRTOS community. The specific choice of the MIT license was based on the needs of the embedded systems community: the MIT license is commonly used in open hardware projects, and is generally whitelisted for enterprise use.” While the modified GPLv2 was removed, it was replaced with a slightly modified MIT license that adds: “If you wish to use our Amazon FreeRTOS name, please do so in a
fair use way that does not cause confusion.
” There is concern that change makes it a different license; the Open Source Initiative and Amazon open-source folks are working on clarifying that.

[$] Tools for porting drivers

Post Syndicated from jake original https://lwn.net/Articles/739578/rss

Out-of-tree drivers are a maintenance headache, since customers may want to
use them in newer kernels.
But even those drivers that get
merged into the mainline may need to be backported at times. Coccinelle developer Julia Lawall
introduced the audience at Open Source Summit Europe to some new tools
that can help make both forward-porting and backporting drivers easier.

Several companies clarify GPL enforcement policies

Post Syndicated from corbet original https://lwn.net/Articles/740017/rss

Here is a
press release
from Red Hat on GPL enforcement: “To provide
greater predictability to users of open source software, Red Hat, Facebook,
Google and IBM today each committed to extending the GPLv3 approach for
license compliance errors to the software code that each licenses under
GPLv2 and LGPLv2.1 and v2.
” This is, in effect, a reiteration of
the approach to enforcement recently
adopted by many kernel developers, but it extends to all GPLv2-licensed
software contributed by those companies.

UI Testing at Scale with AWS Lambda

Post Syndicated from Stas Neyman original https://aws.amazon.com/blogs/devops/ui-testing-at-scale-with-aws-lambda/

This is a guest blog post by Wes Couch and Kurt Waechter from the Blackboard Internal Product Development team about their experience using AWS Lambda.

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Here’s how we did it.

The backstory:

Blackboard is a global leader in delivering robust and innovative education software and services to clients in higher education, government, K12, and corporate training. We have a large product development team working across the globe in at least 10 different time zones, with an internal tools team providing support for quality and workflows. We have been using Selenium Webdriver to perform automated cross-browser UI testing since 2007. Because we are now practicing continuous delivery, the automated UI testing challenge has grown due to the faster release schedule. On top of that, every commit made to each branch triggers an execution of our automated UI test suite. If you have ever implemented an automated UI testing infrastructure, you know that it can be very challenging to scale and maintain. Although there are services that are useful for testing different browser/OS combinations, they don’t meet our scale needs.

It used to take three hours to synchronously run our functional UI suite, which revealed the obvious need for parallel execution. Previously, we used Mesos to orchestrate a Selenium Grid Docker container for each test run. This way, we were able to run eight concurrent threads for test execution, which took an average of 16 minutes. Although this setup is fine for a single workflow, the cracks started to show when we reached the scale required for Blackboard’s mature product lines. Going beyond eight concurrent sessions on a single container introduced performance problems that impact the reliability of tests (for example, issues in Webdriver or the browser popping up frequently). We tried Mesos and considered Kubernetes for Selenium Grid orchestration, but the answer to scaling a Selenium Grid was to think smaller, not larger. This led to our breakthrough with AWS Lambda.

The solution:

We started using AWS Lambda for UI testing because it doesn’t require costly infrastructure or countless man hours to maintain. The steps we outline in this blog post took one work day, from inception to implementation. By simply packaging the UI test suite into a Lambda function, we can execute these tests in parallel on a massive scale. We use a custom JUnit test runner that invokes the Lambda function with a request to run each test from the suite. The runner then aggregates the results returned from each Lambda test execution.

Selenium is the industry standard for testing UI at scale. Although there are other options to achieve the same thing in Lambda, we chose this mature suite of tools. Selenium is backed by Google, Firefox, and others to help the industry drive their browsers with code. This makes Lambda and Selenium a compelling stack for achieving UI testing at scale.

Making Chrome Run in Lambda

Currently, Chrome for Linux will not run in Lambda due to an absent mount point. By rebuilding Chrome with a slight modification, as Marco Lüthy originally demonstrated, you can run it inside Lambda anyway! It took about two hours to build the current master branch of Chromium to build on a c4.4xlarge. Unfortunately, the current version of ChromeDriver, 2.33, does not support any version of Chrome above 62, so we’ll be using Marco’s modified version of version 60 for the near future.

Required System Libraries

The Lambda runtime environment comes with a subset of common shared libraries. This means we need to include some extra libraries to get Chrome and ChromeDriver to work. Anything that exists in the java resources folder during compile time is included in the base directory of the compiled jar file. When this jar file is deployed to Lambda, it is placed in the /var/task/ directory. This allows us to simply place the libraries in the java resources folder under a folder named lib/ so they are right where they need to be when the Lambda function is invoked.

To get these libraries, create an EC2 instance and choose the Amazon Linux AMI.

Next, use ssh to connect to the server. After you connect to the new instance, search for the libraries to find their locations.

sudo find / -name libgconf-2.so.4
sudo find / -name libORBit-2.so.0

Now that you have the locations of the libraries, copy these files from the EC2 instance and place them in the java resources folder under lib/.

Packaging the Tests

To deploy the test suite to Lambda, we used a simple Gradle tool called ShadowJar, which is similar to the Maven Shade Plugin. It packages the libraries and dependencies inside the jar that is built. Usually test dependencies and sources aren’t included in a jar, but for this instance we want to include them. To include the test dependencies, add this section to the build.gradle file.

shadowJar {
   from sourceSets.test.output
   configurations = [project.configurations.testRuntime]
}

Deploying the Test Suite

Now that our tests are packaged with the dependencies in a jar, we need to get them into a running Lambda function. We use  simple SAM  templates to upload the packaged jar into S3, and then deploy it to Lambda with our settings.

{
   "AWSTemplateFormatVersion": "2010-09-09",
   "Transform": "AWS::Serverless-2016-10-31",
   "Resources": {
       "LambdaTestHandler": {
           "Type": "AWS::Serverless::Function",
           "Properties": {
               "CodeUri": "./build/libs/your-test-jar-all.jar",
               "Runtime": "java8",
               "Handler": "com.example.LambdaTestHandler::handleRequest",
               "Role": "<YourLambdaRoleArn>",
               "Timeout": 300,
               "MemorySize": 1536
           }
       }
   }
}

We use the maximum timeout available to ensure our tests have plenty of time to run. We also use the maximum memory size because this ensures our Lambda function can support Chrome and other resources required to run a UI test.

Specifying the handler is important because this class executes the desired test. The test handler should be able to receive a test class and method. With this information it will then execute the test and respond with the results.

public LambdaTestResult handleRequest(TestRequest testRequest, Context context) {
   LoggerContainer.LOGGER = new Logger(context.getLogger());
  
   BlockJUnit4ClassRunner runner = getRunnerForSingleTest(testRequest);
  
   Result result = new JUnitCore().run(runner);

   return new LambdaTestResult(result);
}

Creating a Lambda-Compatible ChromeDriver

We provide developers with an easily accessible ChromeDriver for local test writing and debugging. When we are running tests on AWS, we have configured ChromeDriver to run them in Lambda.

To configure ChromeDriver, we first need to tell ChromeDriver where to find the Chrome binary. Because we know that ChromeDriver is going to be unzipped into the root task directory, we should point the ChromeDriver configuration at that location.

The settings for getting ChromeDriver running are mostly related to Chrome, which must have its working directories pointed at the tmp/ folder.

Start with the default DesiredCapabilities for ChromeDriver, and then add the following settings to enable your ChromeDriver to start in Lambda.

public ChromeDriver createLambdaChromeDriver() {
   ChromeOptions options = new ChromeOptions();

   // Set the location of the chrome binary from the resources folder
   options.setBinary("/var/task/chrome");

   // Include these settings to allow Chrome to run in Lambda
   options.addArguments("--disable-gpu");
   options.addArguments("--headless");
   options.addArguments("--window-size=1366,768");
   options.addArguments("--single-process");
   options.addArguments("--no-sandbox");
   options.addArguments("--user-data-dir=/tmp/user-data");
   options.addArguments("--data-path=/tmp/data-path");
   options.addArguments("--homedir=/tmp");
   options.addArguments("--disk-cache-dir=/tmp/cache-dir");
  
   DesiredCapabilities desiredCapabilities = DesiredCapabilities.chrome();
   desiredCapabilities.setCapability(ChromeOptions.CAPABILITY, options);
  
   return new ChromeDriver(desiredCapabilities);
}

Executing Tests in Parallel

You can approach parallel test execution in Lambda in many different ways. Your approach depends on the structure and design of your test suite. For our solution, we implemented a custom test runner that uses reflection and JUnit libraries to create a list of test cases we want run. When we have the list, we create a TestRequest object to pass into the Lambda function that we have deployed. In this TestRequest, we place the class name, test method, and the test run identifier. When the Lambda function receives this TestRequest, our LambdaTestHandler generates and runs the JUnit test. After the test is complete, the test result is sent to the test runner. The test runner compiles a result after all of the tests are complete. By executing the same Lambda function multiple times with different test requests, we can effectively run the entire test suite in parallel.

To get screenshots and other test data, we pipe those files during test execution to an S3 bucket under the test run identifier prefix. When the tests are complete, we link the files to each test execution in the report generated from the test run. This lets us easily investigate test executions.

Pro Tip: Dynamically Loading Binaries

AWS Lambda has a limit of 250 MB of uncompressed space for packaged Lambda functions. Because we have libraries and other dependencies to our test suite, we hit this limit when we tried to upload a function that contained Chrome and ChromeDriver (~140 MB). This test suite was not originally intended to be used with Lambda. Otherwise, we would have scrutinized some of the included libraries. To get around this limit, we used the Lambda functions temporary directory, which allows up to 500 MB of space at runtime. Downloading these binaries at runtime moves some of that space requirement into the temporary directory. This allows more room for libraries and dependencies. You can do this by grabbing Chrome and ChromeDriver from an S3 bucket and marking them as executable using built-in Java libraries. If you take this route, be sure to point to the new location for these executables in order to create a ChromeDriver.

private static void downloadS3ObjectToExecutableFile(String key) throws IOException {
   File file = new File("/tmp/" + key);

   GetObjectRequest request = new GetObjectRequest("s3-bucket-name", key);

   FileUtils.copyInputStreamToFile(s3client.getObject(request).getObjectContent(), file);
   file.setExecutable(true);
}

Lambda-Selenium Project Source

We have compiled an open source example that you can grab from the Blackboard Github repository. Grab the code and try it out!

https://blackboard.github.io/lambda-selenium/

Conclusion

One year ago, one of our UI test suites took hours to run. Last month, it took 16 minutes. Today, it takes 39 seconds. Thanks to AWS Lambda, we can reduce our build times and perform automated UI testing at scale!

Ultimate 3D printer control with OctoPrint

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/octoprint/

Control and monitor your 3D printer remotely with a Raspberry Pi and OctoPrint.

Timelapse of OctoPrint Ornament

Printed on a bq Witbox STL file can be found here: http://www.thingiverse.com/thing:191635 OctoPrint is located here: http://www.octoprint.org

3D printing

Whether you have a 3D printer at home or use one at your school or local makerspace, it’s fair to assume you’ve had a failed print or two in your time. Filament knotting or running out, your print peeling away from the print bed — these are common issues for all 3D printing enthusiasts, and they can be costly if they’re discovered too late.

OctoPrint

OctoPrint is a free open-source software, created and maintained by Gina Häußge, that performs a multitude of useful 3D printing–related tasks, including remote control of your printer, live video, and data collection.

The OctoPrint logo

Control and monitoring

To control the print process, use OctoPrint on a Raspberry Pi connected to your 3D printer. First, ensure a safe uninterrupted run by using the software to restrict who can access the printer. Then, before starting your print, use the web app to work on your STL file. The app also allows you to reposition the print head at any time, as well as pause or stop printing if needed.

Live video streaming

Since OctoPrint can stream video of your print as it happens, you can watch out for any faults that may require you to abort and restart. Proud of your print? Record the entire process from start to finish and upload the time-lapse video to your favourite social media platform.

OctoPrint software graphic user interface screenshot

Data capture

Octoprint records real-time data, such as the temperature, giving you another way to monitor your print to ensure a smooth, uninterrupted process. Moreover, the records will help with troubleshooting if there is a problem.

OctoPrint software graphic user interface screenshot

Print the Millenium Falcon

OK, you can print anything you like. However, this design definitely caught our eye this week.

3D-Printed Fillenium Malcon (Timelapse)

This is a Timelapse of my biggest print project so far on my own designed/built printer. It’s 500x170x700(mm) and weights 3 Kilograms of Filament.

You can support the work of Gina and OctoPrint by visiting her Patreon account and following OctoPrint on Twitter, Facebook, or G+. And if you’ve set up a Raspberry Pi to run OctoPrint, or you’ve created some cool Pi-inspired 3D prints, make sure to share them with us on our own social media channels.

The post Ultimate 3D printer control with OctoPrint appeared first on Raspberry Pi.

Kodi-Addon Developer Launches Fundraiser to Fight “Copyright Bullies”

Post Syndicated from Ernesto original https://torrentfreak.com/kodi-addon-developer-launches-fundraiser-to-fight-copyright-bullies-171120/

Earlier this year, American satellite and broadcast provider Dish Network targeted two well-known players in the third-party Kodi add-on ecosystem.

In a complaint filed in a federal court in Texas, add-on ZemTV and the TVAddons library were accused of copyright infringement. As a result, both are facing up to $150,000 for each offense.

While the case was filed in Texas, neither of the defendants live there, or even in the United States. The owner and operator of TVAddons is Adam Lackman, who resides in Montreal, Canada. ZemTV’s developer Shahjahan Durrani is even further away in London, UK.

Over the past few months, Lackman has spoken out in public on several occasions, but little was known about the man behind ZemTV. Today, however, he also decided to open up, asking for support in his legal battle against the Dish Network.

Shahjahan Durrani, Shani for short, doesn’t hide the fact that he was the driving force behind the Kodi-addons ZemTV, LiveStreamsPro, and F4MProxy. While the developer has never set foot in Texas, he is willing to defend himself. Problem is, he lacks the funds to do so.

“I’ve never been to Texas in my life, I’m from London, England,” Shani explains. “Somehow a normal chap like me is expected to defend himself against a billion dollar media giant. I don’t have the money to fight this on my own, and hope my friends will help support my fight against the expansion of copyright liability.”

Shani’s fundraiser went live a few hours ago and the first donations are now starting to come in. He has set a target of $8,500 set for his defense fund so there is still a long way to go.

Speaking with TorrentFreak, Shani explains that he got into Kodi addon development to broaden his coding skills and learn Python. ZemTV was a tool to watch recorded shows from zemtv.com, which he always assumed were perfectly legal, on his Apple TV. Then, he decided to help others to do the same.

“The reason why I published the addon was that I saw it as a community helping each other out, and this was my way to give back. I never received any money from anybody and I wanted to keep it pure and free,” Shani tells us.

ZemTV was a passive service, simply scraping content from a third party source, he explains. The addon provided an interface but did not host or control any allegedly infringing content directly.

“I had no involvement nor control over any of the websites or content sources that were allegedly accessible through ZemTV. I did not host nor take part in the sharing of any form of streaming media. As an open source developer, I should not be held liable for the potential abuse of my code,” the developer stresses.

Dish Network sees things differently, of course. In its complaint, the company accused Shani of illegally retransmitting their copyright protected channels while asking for donations to maintain the project.

The case is perhaps not as straightforward as either side presents it. However, it is in the best interests of the general public that both sides are properly heard. This is the first case against a Kodi-addon developer and the outcome will set an important precedent.

“This lawsuit is part of a targeted effort to destroy the Kodi addon community. The fight is rigged against the little guy, they are trying to make something illegal that shouldn’t be illegal. They tried to do it with the VCR, and now years and years later they are trying to do it with Kodi.

“Since I am the only addon developer to date who is actually fighting the wrath of big media bullies, it is crucial that I win my case,” Shani adds.

Going forward, the ZemTV developer believes that copyright holders are better off going after the content providers directly. If the sources are down, any problematic addons will also stop working. Rightholders can even work with addon developers and use addons to find infringing content providers.

“I think the copyright holders should target the sources, it’s as simple as that,” Shani tells us.

The fundraiser campaign is now public on Generosity.com. At the time of writing the ticker sits at $50, so there is still a long way to go before the developer can organize a proper defense.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Introducing container-diff, a tool for quickly comparing container images (Google Open Source Blog)

Post Syndicated from jake original https://lwn.net/Articles/739384/rss

Google has announced that it has released its container-diff tool under the Apache v2 license.
container-diff helps users investigate image changes by computing semantic diffs between images. What this means is that container-diff figures out on a low-level what data changed, and then combines this with an understanding of package manager information to output this information in a format that’s actually readable to users. The tool can find differences in system packages, language-level packages, and files in a container image.

Users can specify images in several formats – from local Docker daemon (using the prefix `daemon://` on the image path), a remote registry (using the prefix `remote://`), or a file in the .tar in the format exported by “docker save” command. You can also combine these formats to compute the diff between a local version of an image and a remote version.”

timeShift(GrafanaBuzz, 1w) Issue 22

Post Syndicated from Blogs on Grafana Labs Blog original https://grafana.com/blog/2017/11/17/timeshiftgrafanabuzz-1w-issue-22/

Welome to TimeShift

We hope you liked our recent article with videos and slides from the events we’ve participated in recently. With Thanksgiving right around the corner, we’re getting a breather from work-related travel, but only a short one. We have some events in the coming weeks, and of course are busy filling in the details for GrafanaCon EU.

This week we have a lot of articles, videos and presentations to share, as well as some important plugin updates. Enjoy!


Latest Release

Grafana 4.6.2 is now available and includes some bug fixes:

  • Prometheus: Fixes bug with new Prometheus alerts in Grafana. Make sure to download this version if your using Prometheus for alerting. More details in the issue. #9777
  • Color picker: Bug after using textbox input field to change/paste color string #9769
  • Cloudwatch: build using golang 1.9.2 #9667, thanks @mtanda
  • Heatmap: Fixed tooltip for “time series buckets” mode #9332
  • InfluxDB: Fixed query editor issue when using > or < operators in WHERE clause #9871

Download Grafana 4.6.2 Now


From the Blogosphere

Cloud Tech 10 – 13th November 2017 – Grafana, Linux FUSE Adapter, Azure Stack and more!: Mark Whitby is a Cloud Solution Architect at Microsoft UK. Each week he prodcues a video reviewing new developments with Microsoft Azure. This week Mark covers the new Azure Monitoring Plugin we recently announced. He also shows you how to get up and running with Grafana quickly using the Azure Marketplace.

Using Prometheus and Grafana to Monitor WebLogic Server on Kubernetes: Oracle published an article on monitoring WebLogic server on Kubernetes. To do this, you’ll use the WebLogic Monitoring Exporter to scrape the server metrics and feed them to Prometheus, then visualize the data in Grafana. Marina goes into a lot of detail and provides sample files and configs to help you get going.

Getting Started with Prometheus: Will Robinson has started a new series on monitoring with Prometheus from someone who has never touched it before. Part 1 introduces a number of monitoring tools and concepts, and helps define a number of monitoring terms. Part 2 teaches you how to spin up Prometheus in a Docker container, and takes a look at writing queries. Looking forward to the third post, when he dives into the visualization aspect.

Monitoring with Prometheus: Alexander Schwartz has made the slides from his most recent presentation from the Continuous Lifcycle Conference in Germany available. In his talk, he discussed getting started with Prometheus, how it differs from other monitoring concepts, and provides examples of how to monitor and alert. We’ll link to the video of the talk when it’s available.

Using Grafana with SiriDB: Jeroen van der Heijden has written an in-depth tutorial to help you visualize data from the open source TSDB, SiriDB in Grafana. This tutorial will get you familiar with setting up SiriDB and provides a sample dashboard to help you get started.

Real-Time Monitoring with Grafana, StatsD and InfluxDB – Artur Caliendo Prado: This is a video from a talk at The Conf, held in Brazil. Artur’s presentation focuses on the experiences they had building a monitoring stack at Youse, how their monitoring became more complex as they scaled, and the platform they built to make sense of their data.

Using Grafana & Inlfuxdb to view XIV Host Performance Metrics – Part 4 Array Stats: This is the fourth part in a series of posts about host performance metrics. This post dives in to array stats to identify workloads and maintain balance across ports. Check out part 1, part 2 and part 3.


GrafanaCon Tickets are Going Fast

Tickets are going fast for GrafanaCon EU, but we still have a seat reserved for you. Join us March 1-2, 2018 in Amsterdam for 2 days of talks centered around Grafana and the surrounding monitoring ecosystem including Graphite, Prometheus, InfluxData, Elasticsearch, Kubernetes, and more.

Get Your Ticket Now


Grafana Plugins

Plugin authors are often adding new features and fixing bugs, which will make your plugin perform better – so it’s important to keep your plugins up to date. We’ve made updating easy; for on-prem Grafana, use the Grafana-cli tool, or update with 1 click if you’re using Hosted Grafana.

UPDATED PLUGIN

Hawkular data source – There is an important change in this release – as this datasource is now able to fetch not only Hawkular Metrics but also Hawkular Alerts, the server URL in the datasource configuration must be updated: http://myserver:123/hawkular/metrics must be changed to http://myserver:123/hawkular

Some of the changes (see the release notes) for more details):

  • Allow per-query tenant configuration
  • Annotations can now be configured out of Availability metrics and Hawkular Alerts events in addition to string metrics
  • allows dot character in tag names

Update

UPDATED PLUGIN

Diagram Panel – This is the first release in a while for the popular Diagram Panel plugin.

In addition to these changes, there are also a number of bug fixes:

Update

UPDATED PLUGIN

Influx Admin Panel – received a number of improvements:

  • Fix issue always showing query results
  • When there is only one row, swap rows/cols (ie: SHOW DIAGNOSTICS)
  • Improved auto-refresh behavior
  • Fix query time sorting
  • show ‘status’ field (killed, etc)

Update


Upcoming Events:

In between code pushes we like to speak at, sponsor and attend all kinds of conferences and meetups. We have some awesome talks and events coming soon. Hope to see you at one of these!

How to Use Open Source Projects for Performance Monitoring | Webinar
Nov. 29, 1pm EST
:
Check out how you can use popular open source projects, for performance monitoring of your Infrastructure, Application, and Cloud faster, easier, and to scale. In this webinar, Daniel Lee from Grafana Labs, and Chris Churilo from InfluxData, will provide you with step by step instruction from download & configure, to collecting metrics and building dashboards and alerts.

RSVP

KubeCon | Austin, TX – Dec. 6-8, 2017: We’re sponsoring KubeCon 2017! This is the must-attend conference for cloud native computing professionals. KubeCon + CloudNativeCon brings together leading contributors in:

  • Cloud native applications and computing
  • Containers
  • Microservices
  • Central orchestration processing
  • And more

Buy Tickets

FOSDEM | Brussels, Belgium – Feb 3-4, 2018: FOSDEM is a free developer conference where thousands of developers of free and open source software gather to share ideas and technology. Carl Bergquist is managing the Cloud and Monitoring Devroom, and the CFP is now open. There is no need to register; all are welcome. If you’re interested in speaking at FOSDEM, submit your talk now!


Tweet of the Week

We scour Twitter each week to find an interesting/beautiful dashboard and show it off! #monitoringLove

We were glad to be a part of InfluxDays this year, and looking forward to seeing the InfluxData team in NYC in February.


Grafana Labs is Hiring!

We are passionate about open source software and thrive on tackling complex challenges to build the future. We ship code from every corner of the globe and love working with the community. If this sounds exciting, you’re in luck – WE’RE HIRING!

Check out our Open Positions


How are we doing?

I enjoy writing these weekly roudups, but am curious how I can improve them. Submit a comment on this article below, or post something at our community forum. Help us make these weekly roundups better!

Follow us on Twitter, like us on Facebook, and join the Grafana Labs community.