Tag Archives: Architecture

Automated Disaster Recovery using CloudEndure

Post Syndicated from Ryan Jaeger original https://aws.amazon.com/blogs/architecture/automated-disaster-recovery-using-cloudendure/

There are any number of events that cause IT outages and impact business continuity. These could include the unexpected infrastructure or application outages caused by flooding, earthquakes, fires, hardware failures, or even malicious attacks. Cloud computing opens a new door to support disaster recovery strategies, with benefits such as elasticity, agility, speed to innovate, and cost savings—all which aid new disaster recovery solutions.

With AWS, organizations can acquire IT resources on-demand, and pay only for the resources they use. Automating disaster recovery (DR) has always been challenging. This blog post shows how you can use automation to allow the orchestration of recovery to eliminate manual processes. CloudEndure Disaster Recovery, an AWS Company, Amazon Route 53, and AWS Lambda are the building blocks to deliver a cost-effective automated DR solution. The example in this post demonstrates how you can recover a production web application with sub-second Recovery Point Objects (RPOs) and Recovery Time Objectives (RTOs) in minutes.

As part of a DR strategy, knowing RPOs and RTOs will determine what kind of solution architecture you need. The RPO represents the point in time of the last recoverable data point (for example, the “last backup”). Any disaster after that point would result in data loss.

The time from the outage to restoration is the RTO. Minimizing RTO and RPO is a cost tradeoff. Restoring from backups and recreating infrastructure after the event is the lowest cost but highest RTO. Conversely, the highest cost and lowest RTO is a solution running a duplicate auto-failover environment.

Solution Overview

CloudEndure is an automated IT resilience solution that lets you recover your environment from unexpected infrastructure or application outages, data corruption, ransomware, or other malicious attacks. It utilizes block-level Continuous Data Replication (CDP), which ensures that target machines are spun up in their most current state during a disaster or drill, so that you can achieve sub-second RPOs. In the event of a disaster, CloudEndure triggers a highly automated machine conversion process and a scalable orchestration engine that can spin up machines in the target AWS Region within minutes. This process enables you to achieve RTOs in minutes. The CloudEndure solution uses a software agent that installs on physical or virtual servers. It connects to a self-service, web-based use console, which then issues an API call to the selected AWS target Region to create a Staging Area in the customer’s AWS account designated to receive the source machine’s replicated data.

Architecture

In the above example, a webserver and database server have the CloudEndure Agent installed, and the disk volumes on each server replicated to a staging environment in the customer’s AWS account. The CloudEndure Replication Server receives the encrypted data replication traffic and writes to the appropriate corresponding EBS volumes. It’s also possible to configure data replication traffic to use VPN or AWS Direct Connect.

With this current setup, if an infrastructure or application outage occurs, a failover to AWS is executed by manually starting the process from the CloudEndure Console. When this happens, CloudEndure creates EC2 instances from the synchronized target EBS volumes. After the failover completes, additional manual steps are needed to change the website’s DNS entry to point to the IP address of the failed over webserver.

Could the CloudEndure failover and DNS update be automated? Yes.

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service with three main functions: domain registration, DNS routing, and health checking. A configured Route 53 health check monitors the endpoint of a webserver. If the health check fails over a specified period, an alarm is raised to execute an AWS Lambda function to start the CloudEndure failover process. In addition to health checks, Route 53 DNS Failover allows the DNS record for the webserver to be automatically update based on a healthy endpoint. Now the previously manual process of updating the DNS record to point to the restored web server is automated. You can also build Route 53 DNS Failover configurations to support decision trees to handle complex configurations.

To illustrate this, the following builds on the example by having a primary, secondary, and tertiary DNS Failover choice for the web application:

How Health Checks Work in Complex Amazon Route 53 Configurations

When the CloudEndure failover action executes, it takes several minutes until the target EC2 is launched and configured by CloudEndure. An S3 static web page can be returned to the end-user to improve communication while the failover is happening.

To support this example, Amazon Route 53 DNS failover decision tree can be configured to have a primary, secondary, and tertiary failover. The decision tree logic to support the scenario is the following:

  1. If the primary health check passes, return the primary webserver.
  2. Else, if the secondary health check passes, return the failover webserver.
  3. Else, return the S3 static site.

When the Route 53 health check fails when monitoring the primary endpoint for the webserver, a CloudWatch alarm is configured to ALARM after a set time. This CloudWatch alarm then executes a Lambda function that calls the CloudEndure API to begin the failover.

In the screenshot below, both health checks are reporting “Unhealthy” while the primary health check is in a state of ALARM. At the point, the DNS failover logic should be returning the path to the static S3 site, and the Lambda function executed to start the CloudEndure failover.

The following architecture illustrates the completed scenario:

Conclusion

Having a disaster recovery strategy is critical for business continuity. The benefits of AWS combined with CloudEndure Disaster Recovery creates a non-disruptive DR solution that provides minimal RTO and RPO while reducing total cost of ownership for customers. Leveraging CloudWatch Alarms combined with AWS Lambda for serverless computing are building blocks for a variety of automation scenarios.

 

 

New Zealand Internet Connectivity to AWS

Post Syndicated from Cameron Tod original https://aws.amazon.com/blogs/architecture/new-zealand-internet-connectivity-to-aws/

Amazon Web Services (AWS) serves more than a million private and public sector organizations all over the world from its extensive and expanding global infrastructure.

Like other countries, organizations all around New Zealand are using AWS to change the way they operate. For example, Xero, a Wellington-based online accountancy software vendor, now serves customers in more than 100 countries, while the Department of Conservation provides its end users with virtual desktops running in Amazon Workspaces.

New Zealand doesn’t currently have a dedicated AWS Region. Geographically, the closest is Asia Pacific (Sydney), which is 2,000 kilometers (km) away, across a deep sea. While customers rely on AWS for business-critical workloads, they are well-served by New Zealand’s international connectivity.

To connect to Amazon’s network, our New Zealand customers have a range of options:

  • Public internet endpoints
  • Managed or software Virtual Private Networks (VPN)
  • AWS Direct Connect (DX).

All rely on the extensive internet infrastructure connecting New Zealand to the world.

International Connectivity

The vast majority of internet traffic is carried over physical cables, while the percentage of traffic moving over satellite or wireless links is small by comparison.

Historically, cables were funded and managed by consortia of telecommunication providers. More recently, large infrastructure and service providers like AWS have contributed to or are building their own cable networks.

There are currently about 400 submarine cables in service globally. Modern submarine cables are fiber-optic, run for thousands of kilometers, and are protected by steel strands, plastic sheathing, copper, and a chemical water barrier. Over that distance, the signal can weaken—or attenuate—so signal repeaters are installed approximately every 50km to mitigate attenuation. Repeaters are powered by a charge running over the copper sheathing in the cable.

An example of submarine cable composition.. S

An example of submarine cable composition.. Source: WikiMedia Commons

For most of their run, these cables are about as thick as a standard garden hose. They are thicker, however, closer to shore and in areas where there’s a greater risk of damage by fishing nets, boat anchors, etc.

Cables can—and do—break, but redundancy is built into the network. According to Telegeography, there are 100 submarine cable faults globally every year. However, most faults don’t impact users meaningfully.

New Zealand is served by four main cables:

  1. Hawaiki : Sydney -> Mangawhai (Northland, NZ) -> Kapolei (Hawaii, USA) -> Hilsboro, Oregon (USA) – 44 Terabits per second (Tbps)
  2. Tasman Global Access: Raglan (Auckland, New Zealand) -> Narabeen (NSW, Australia) – 20 Tbps
  3. Southern Cross A: Whenuapai (Auckland, New Zealand) -> Alexandria (NSW, Australia) – 1.2 Tbps
  4. Southern Cross B: Takapuna (Auckland, New Zealand) -> Spencer Beach (Hawaii, USA) – 1.2 Tbps
A map of major submarine cables connecting to New Zealand.

A map of major submarine cables connecting to New Zealand. Source submarinecablemap.com

The four cables combined currently deliver 66 Tbps of available capacity. The Southern Cross NEXT cable is due to come online in 2020, which will add another 72 Tbps. These are, of course, potential capacities; it’s likely the “lit” capacity—the proportion of the cables’ overall capacity that is actually in use—is much lower.

Connecting to AWS from New Zealand

While understanding the physical infrastructure is important in practice, these details are not shared with customers. Connectivity options are evaluated on the basis of partner and AWS offerings, which include connectivity.

Customers connect to AWS in three main ways: over public endpoints, via site-to-site VPNs, and via Direct Connect (DX), all typically provided by partners.

Public Internet Endpoints

Customers can connect to public endpoints for AWS services over the public internet. Some services, like Amazon CloudFront, Amazon API Gateway, and Amazon WorkSpaces are generally used in this way.

Network-level access can be controlled via various means depending on the service, whether that is Endpoint Policies for API Gateway, Security Groups, and Network Access Control Lists for Amazon Virtual Private Cloud (VPC), or Resource Policies for services such as Amazon S3, Amazon Simple Queue Service (SQS), or Amazon Key Management Service (KMS).

All services offer TLS or IPsec connectivity for secure encryption-in-motion.

Site-to-Site Virtual Private Network

Many organizations use a VPN to connect to AWS. It’s the simplest and lowest cost entry point to expose resources deployed in private ranges in an Amazon VPC. Amazon VPC allows customers to provision a logically isolated network segment, with fine-grained control of IP ranges, filtering rules, and routing.

AWS offers a managed site-to-site VPN service, which creates secure, redundant Internet Protocol Security (IPSec) VPNs, and also handles maintenance and high-availability while integrating with Amazon CloudWatch for robust monitoring.

If using an AWS managed VPN, the AWS endpoints have publicly routable IPs. They can be connected to over the public internet or via a Public Virtual Interface over DX (outlined below).

Customers can also deploy VPN appliances onto Amazon Elastic Compute Cloud (EC2) instances running in their VPC. These may be self-managed or provided by Amazon Marketplace sellers.

AWS also offers AWS Client VPN, for direct user access to AWS resources.

AWS Direct Connect

While connectivity over the internet is secure and flexible, it has one major disadvantage: it’s unpredictable. By design, traffic traversing the internet can take any path to reach its destination. Most of the time it works but occasionally routing conditions may reduce capacity or increase latency.

DX connections are either 1 or 10 Gigabits per second (Gbps). This capacity is dedicated to the customer; it isn’t shared, as other network users are never routed over the connection. This means customers can rely on consistent latency and bandwidth. The DX per-Gigabit transfer cost is lower than other egress mechanisms. For customers transferring large volumes of data, DX may be more cost effective than other means of connectivity.

Customers may publish their own 802.11q Virtual Local Area Network (VLAN) tags across the DX, and advertise routes via Border Gateway Protocol (BGP). A dedicated connection supports up to 50 private or public virtual interfaces. New Zealand does not have a physical point-of-presence for DX—users must procure connectivity to our Sydney Region. Many AWS Partner Network (APN) members in New Zealand offer this connectivity.

For customers who don’t want or need to manage VLANs to AWS—or prefer 1 Gbps or smaller links —APN partners offer hosted connections or hosted virtual interfaces.  For more detail, please review our AWS Direct Connect Partners page.

Performance

There are physical limits to latency dictated by the speed of light, and the medium through which optical signals travel. Southern Cross publishes latency statistics, and it sees one-way latency of approximately 11 milliseconds (ms) over the 2,276km Alexandria to Whenuapai link. Double that for a round-trip to 22 ms.

In practice, we see customers achieving round-trip times from user workstations to Sydney in approximately 30-50 ms, assuming fair-weather internet conditions or DX links. Latency in Auckland (the largest city) tends to be on the lower end of that spectrum, while the rest of the country tends towards the higher end.

Bandwidth constraints are more often dictated by client hardware, but AWS and our partners offer up to 10 Gbps links, or smaller as required. For customers that require more than 10 Gbps over a single link, AWS supports Link Aggregation Groups (LAG).

As outlined above, there are a range of ways for customers to adopt AWS via secure, reliable, and performant networks. To discuss your use case, please contact an AWS Solutions Architect.

 

New Issue of Architecture Monthly: Games

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/new-issue-of-architecture-monthly-games/

Architecture Monthyl Magazine - September 2019 (Games)This month’s Architecture Monthly magazine is all about games—not Scrabble, not Uno, not Twister, and certainly not hide-and-seek.

No, we’re talking the big business of online, multiplayer games. And did you know that approximately 90% of large, public game companies are running on the AWS cloud? Yep, I’m talking Epic (ever heard of Fortnite?), Ubisoft, Nintendo, and more. I had the opportunity to sit down with a senior tech leader for AWS Games, who talked about why companies are moving to the cloud from on-premise, and it’s about a whole lot more than just games for entertainment. We got into the big-money world of competitive eSports as well as the gamification of learning processes and economics.

Consider Twitch, often defined as Amazon’s live streaming platform for gamers. But Twitch is much more than a gaming platform. For example, AWS Live Video on Twitch offers live streaming about everything from how to develop serverless apps and robots to interactive quiz shows that help you prepare for AWS Certification exams. And of course, you can also learn about the technology that powers your favorite video games.

September’s Issue

For September’s issue, we’ve assembled architectural best practices about games from all over AWS, and we’ve made sure that a broad audience can appreciate it.

How to Access the Magazine

We hope you’re enjoying Architecture Monthly, and we’d like to hear from you—leave us star rating and comment on the Amazon Kindle page or contact us anytime at [email protected].

One to Many: Evolving VPC Design

Post Syndicated from Androski Spicer original https://aws.amazon.com/blogs/architecture/one-to-many-evolving-vpc-design/

Since its inception, the Amazon Virtual Private Cloud (VPC) has acted as the embodiment of security and privacy for customers who are looking to run their applications in a controlled, private, secure, and isolated environment.

This logically isolated space has evolved, and in its evolution has increased the avenues that customers can take to create and manage multi-tenant environments with multiple integration points for access to resources on-premises.

This blog is a two-part series that begins with a look at the Amazon VPC as a single unit of networking in the AWS Cloud but eventually takes you to a world in which simplified architectures for establishing a global network of VPCs are possible.

From One VPC: Single Unit of Networking

To be successful with the AWS Virtual Private Cloud you first have to define success for today and what success might look like as your organization’s adoption of the AWS cloud increases and matures. In essence, your VPCs should be designed to satisfy the needs of your applications today and must be scalable to accommodate future needs.

Classless Inter-Domain Routing (CIDR) notations are used to denote the size of your VPC. AWS allows you specify a CIDR block between /16 and /28. The largest, /16, provides you with 65,536 IP addresses and the smallest possible allowed CIDR block, /28, provides you with 16 IP addresses. Note, the first four IP addresses and the last IP address in each subnet CIDR block are not available for you to use, and cannot be assigned to an instance.

AWS VPC supports both IPv4 and IPv6. It is required that you specify an IPv4 CIDR range when creating a VPC. Specifying an IPv6 range is optional.

Customers can specify ANY IPv4 address space for their VPC. This includes but is not limited to RFC 1918 addresses.

After creating your VPC, you divide it into subnets. In an AWS VPC, subnets are not isolation boundaries around your application. Rather, they are containers for routing policies.

Isolation is achieved by attaching an AWS Security Group (SG) to the EC2 instances that host your application. SGs are stateful firewalls, meaning that connections are tracked to ensure return traffic is allowed. They control inbound and outbound access to the elastic network interfaces that are attached to an EC2 instance. These should be tightly configured, only allowing access as needed.

It is our best practice that subnets should be created in categories. There two main categories; public subnets and private subnets. At minimum they should be designed as outlined in the below diagrams for IPv4 and IPv6 subnet design.

Recommended IPv4 subnet design pattern

Recommended IPv6 subnet design pattern

Subnet types are denoted by the ability and inability for applications and users on the internet to directly initiate access to infrastructure within a subnet.

Public Subnets

Public subnets are attached to a route table that has a default route to the Internet via an Internet gateway.

Resources in a public subnet can have a public IP or Elastic IP (EIP) that has a NAT to the Elastic Network Interface (ENI) of the virtual machines or containers that hosts your application(s). This is a one-to-one NAT that is performed by the Internet gateway.

Illustration of public subnet access path to the Internet through the Internet Gateway (IGW)

Private Subnets

A private subnet contains infrastructure that isn’t directly accessible from the Internet. Unlike the public subnet, this infrastructure only has private IPs.

Infrastructure in a private subnet gain access to resources or users on the Internet through a NAT infrastructure of sorts.

AWS natively provides NAT capability through the use of the NAT Gateway service. Customers can also create NAT instances that they manage or leverage third-party NAT appliances from the AWS Marketplace.

In most scenarios, it is recommended to use the AWS NAT Gateway as it is highly available (in a single Availability Zone) and is provided as a managed service by AWS. It supports 5 Gbps of bandwidth per NAT gateway and automatically scales up to 45 Gbps.

An AWS NAT gateway’s high availability is confined to a single Availability Zone. For high availability across AZs, it is recommended to have a minimum of two NAT gateways (in different AZs). This allows you to switch to an available NAT gateway in the event that one should become unavailable.

This approach allows you to zone your Internet traffic, reducing cross Availability Zone connections to the Internet. More details on NAT gateway are available here.

Illustration of an environment with a single NAT Gateway (NAT-GW)

Illustration of high availability with a multiple NAT Gateways (NAT-GW) attached to their own route table

Illustration of the failure of one NAT Gateway and the fail over to an available NAT Gateway by the manual changing of the default route next hop in private subnet A route table

AWS allocated IPv6 addresses are Global Unicast Addresses by default. That said, you can privatize these subnets by using an Egress-Only Internet Gateway (E-IGW), instead of a regular Internet gateway. E-IGWs are purposely built to prevents users and applications on the Internet from initiating access to infrastructure in your IPv6 subnet(s).

Illustration of internet access for hybrid IPv6 subnets through an Egress-Only Internet Gateway (E-IGW)

Applications hosted on instances living within a private subnet can have different access needs. Some require access to the Internet while others require access to databases, applications, and users that are on-premises. For this type of access, AWS provides two avenues: the Virtual Gateway and the Transit Gateway. The Virtual Gateway can only support a single VPC at a time, while the Transit Gateway is built to simplify the interconnectivity of tens to hundreds of VPCs and then aggregating their connectivity to resources on-premises. Given that we are looking at the VPC as a single unit of networking, all diagrams below contain illustrations of the Virtual Gateway which acts a WAN concentrator for your VPC.

Illustration of private subnets connecting to data center via a Virtual Gateway (VGW)

 

Illustration of private subnets connecting to Data Center via a VGW

 

Illustration of private subnets connecting to Data Center using AWS Direct Connect as primary and IPsec as backup

The above diagram illustrates a WAN connection between a VGW attached to a VPC and a customer’s data center.

AWS provides two options for establishing a private connectivity between your VPC and on-premises network: AWS Direct Connect and AWS Site-to-Site VPN.

AWS Site-to-Site VPN configuration leverages IPSec with each connection providing two redundant IPSec tunnels. AWS support both static routing and dynamic routing (through the use of BGP).

BGP is recommended, as it allows dynamic route advertisement, high availability through failure detection, and fail over between tunnels in addition to decreased management complexity.

VPC Endpoints: Gateway & Interface Endpoints

Applications running inside your subnet(s) may need to connect to AWS public services (like Amazon S3, Amazon Simple Notification Service (SNS), Amazon Simple Queue Service (SQS), Amazon API Gateway, etc.) or applications in another VPC that lives in another account. For example, you may have a database in another account that you would like to expose applications that lives in a completely different account and subnet.

For these scenarios you have the option to leverage an Amazon VPC Endpoint.

There are two types of VPC Endpoints: Gateway Endpoints and Interface Endpoints.

Gateway Endpoints only support Amazon S3 and Amazon DynamoDB. Upon creation, a gateway is added to your specified route table(s) and acts as the destination for all requests to the service it is created for.

Interface Endpoints differ significantly and can only be created for services that are powered by AWS PrivateLink.

Upon creation, AWS creates an interface endpoint consisting of one or more Elastic Network Interfaces (ENIs). Each AZ can support one interface endpoint ENI. This acts as a point of entry for all traffic destined to a specific PrivateLink service.

When an interface endpoint is created, associated DNS entries are created that point to the endpoint and each ENI that the endpoint contains. To access the PrivateLink service you must send your request to one of these hostnames.

As illustrated below, ensure the Private DNS feature is enabled for AWS public and Marketplace services:

Since interface endpoints leverage ENIs, customers can use cloud techniques they are already familiar with. The interface endpoint can be configured with a restrictive security group. These endpoints can also be easily accessed from both inside and outside the VPC. Access from outside a VPC can be accomplished through Direct Connect and VPN.

Illustration of a solution that leverages an interface and gateway endpoint

Customers can also create AWS Endpoint services for their applications or services running on-premises. This allows access to these services via an interface endpoint which can be extended to other VPCs (even if the VPCs themselves do not have Direct Connect configured).

VPC Sharing

At re:Invent 2018, AWS launched the feature VPC sharing, which helps customers control VPC sprawl by decoupling the boundary of an AWS account from the underlying VPC network that supports its infrastructure.

VPC sharing uses Amazon Resource Access Manager (RAM) to share subnets across accounts within the same AWS organization.

VPC sharing is defined as:

VPC sharing allows customers to centralize the management of network, its IP space and the access paths to resources external to the VPC. This method of centralization and reuse (of VPC components such as NAT Gateway and Direct Connect connections) results in a reduction of cost to manage and maintain this environment.

Great, but there are times when a customer needs to build networks with multiple VPCs in and across AWS regions. How should this be done and what are the best practices?

This will be answered in part two of this blog.

 

 

Building a Serverless FHIR Interface on AWS

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/building-a-serverless-fhir-interface-on-aws/

This post is courtesy of Mithun Mallick, Senior Solutions Architect (Messaging), and Navneet Srivastava, Senior Solutions Architect.

Technology is revolutionizing the healthcare industry but it can be a challenge for healthcare providers to take full advantage because of software systems that don’t easily communicate with each other. A single patient visit involves multiple systems such as practice management, electronic health records, and billing. When these systems can’t operate together, it’s harder to leverage them to improve patient care.

To help make it easier to exchange data between these systems, Health Level Seven International (HL7) developed the Fast Healthcare Interoperability Resources (FHIR), an interoperability standard for the electronic exchange of healthcare information. In this post, I will show you the AWS services you use to build a serverless FHIR interface on the cloud.

In FHIR, resources are your basic building blocks. A resource is an exchangeable piece of content that has a common way to define and represent it, a set of common metadata, and a human readable part. Each resource type has the same set of operations, called interactions, that you use to manage the resources in a granular fashion. For more information, see the FHIR overview.

FHIR Serverless Architecture

My FHIR architecture features a server with its own data repository and a simple consumer application that displays Patient and Observation data. To make it easier to build, my server only supports the JSON content type over HTTPs, and it only supports the Bundle, Patient, and Observation FHIR resource types. In a production environment, your server should support all resource types.

For this architecture, the server supports the following interactions:

  • Posting bundles as collections of Patients and Observations
  • Searching Patients and Observations
  • Updating and reading Patients
  • Creating a CapabilityStatement

You can expand this architecture to support all FHIR resource types, interactions, and data formats.

The following diagram shows how the described services work together to create a serverless FHIR messaging interface.

 

Services work together to create a serverless FHIR messaging interface.

 

Amazon API Gateway

In Amazon API Gateway, you create the REST API that acts as a “front door” for the consumer application to access the data and business logic of this architecture. I used API Gateway to host the API endpoints. I created the resource definitions and API methods in the API Gateway.

For this architecture, the FHIR resources map to the resource definitions in API Gateway. The Bundle FHIR resource type maps to the Bundle API Gateway resource. The observation FHIR resource type maps to the observation API Gateway resource. And, the Patient FHIR resource type maps to the Patient API Gateway resource.

To keep the API definitions simple, I used the ANY method. The ANY method handles the various URL mappings in the AWS Lambda code, and uses Lambda proxy integration to send requests to the Lambda function.

You can use the ANY method to handle HTTP methods, such as:

  • POST to represent the interaction to create a Patient resource type
  • GET to read a Patient instance based on a patient ID, or to search based on predefined parameters

We chose Amazon DynamoDB because it provides the input data representation and query patterns necessary for a FHIR data repository. For this architecture, each resource type is stored in its own Amazon DynamoDB table. Metadata for resources stored in the repository is also stored in its own table.

We set up global secondary indexes on the patient and observations tables in order to perform searches and retrieve observations for a patient. In this architecture, the patient id is stored as a patient reference id in the observation table. The patientRefid-index allows you to retrieve observations based on the patient id without performing a full scan of the table.

We chose Amazon S3 to store archived FHIR messages because of its low cost and high durability.

Processing FHIR Messages

Each Amazon API Gateway request in this architecture is backed by an AWS Lambda function containing the Jersey RESTful web services framework, the AWS serverless Java container framework, and the HAPI FHIR library.

The AWS serverless Java framework provides a base implementation for the handleRequest method in LambdaHandler class. It uses the serverless Java container initialized in the global scope to proxy requests to our jersey application.

The handler method calls a proxy class and passes the stream classes along with the context.

This source code from the LambdaHandler class shows the handleRequest method:

// Main entry point of the Lambda function, uses the serverless-java-container initialized in the global scope
// to proxy requests to our jersey application
public void handleRequest(InputStream inputStream, OutputStream outputStream, Context context) 
    throws IOException {
    	
        handler.proxyStream(inputStream, outputStream, context);

        // just in case it wasn't closed by the map	per
        outputStream.close();
}

The resource implementations classes are in the com.amazonaws.lab.resources package. This package defines the URL mappings necessary for routing the REST API calls.

The following method from the PatientResource class implements the GET patient interaction based on a patient id. The annotations describe the HTTP method called, as well as the path that is used to make the call. This method is invoked when a request is sent with the URL pattern: Patient/{id}. It retrieves the Patient resource type based on the id sent as part of the URL.

	@GET
	@Path("/{id}")
public Response gETPatientid(@Context SecurityContext securityContext,
			@ApiParam(value = "", required = true) @PathParam("id") String id, @HeaderParam("Accept") String accepted) {
…
}

Deploying the FHIR Interface

To deploy the resources for this architecture, we used an AWS Serverless Application Model (SAM) template. During deployment, SAM templates are expanded and transformed into AWS CloudFormation syntax. The template launches and configures all the services that make up the architecture.

Building the Consumer Application

For out architecture, we wrote a simple Node.JS client application that calls the APIs on FHIR server to get a list of patients and related observations. You can build more advanced applications for this architecture. For example, you could build a patient-focused application that displays vitals and immunization charts. Or, you could build a backend/mid-tier application that consumes a large number of messages and transforms them for downstream analytics.

This is the code we used to get the token from Amazon Cognito:

token = authcognito.token();

//Setting url to call FHIR server

     var options = {
       url: "https://<FHIR SERVER>",
       host: "FHIR SERVER",
       path: "Prod/Patient",
       method: "GET",
       headers: {
         "Content-Type": "application/json",
         "Authorization": token
         }
       }

This is the code we used to call the FHIR server:

request(options, function(err, response, body) {
     if (err) {
       console.log("In error  ");
       console.log(err);

}
else {
     let patientlist = JSON.parse(body);

     console.log(patientlist);
     res.json(patientlist["entry"]);
}
});
 

We used AWS CloudTrail and AWS X-Ray for logging and debugging.

The screenshots below display the results:

Conclusion

In this post, we demonstrated how to build a serverless FHIR architecture. We used Amazon API Gateway and AWS Lambda to ingest and process FHIR resources, and Amazon DynamoDB and Amazon S3 to provide a repository for the resources. Amazon Cognito provides secure access to the API Gateway. We also showed you how to build a simple consumer application that displays patient and observation data. You can modify this architecture for your individual use case.

About the authors

Mithun MallickMithun is a Sr. Solutions Architect and is responsible for helping customers in the HCLS industry build secure, scalable and cost-effective solutions on AWS. Mithun helps develop and implement strategic plan to engage customers and partners in the industry and works with the community of technically focused HCLS specialists within AWS. He has hands on experience on messaging standards like X12, HL7 and FHIR. Mithun has a M.B.A from CSU (Ft. Collins, CO) and a bachelors in Computer Engineering. He holds several associate and professional certifications for architecting on AWS.

 

 

Navneet SrivastavaNavneet, a Sr. Solutions Architect, is responsible for helping provider organizations and healthcare companies to deploy electronic medical records, devices, and AI/ML-based applications while educating customers about how to build secure, scalable, and cost-effective AWS solutions. He develops strategic plans to engage customers and partners, and works with a community of technically focused HCLS specialists within AWS. He is skilled AI, ML, Big Data, and healthcare related technologies. Navneet has a M.B.A from NYIT and a bachelors in software Engineering and holds several associate and professional certifications for architecting on AWS.

Top Resources for API Architects and Developers

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/top-resources-for-api-architects-and-developers/

We hope you’ve enjoyed reading our series on API architecture and development. We wrote about best practices for REST APIs with Amazon API Gateway  and GraphQL APIs with AWS AppSync. This post will cover the top resources that all API developers should be aware of.

Tech Talks, Webinars, and Twitch Live Stream

The technical staff at AWS have produced a variety of digital media that cover new service launches, best practices, and customer questions. Be sure to review these videos for tips and tricks on building APIs:

  • Happy Little APIs: This is a multi part series produced by our awesome Developer Advocate, Eric Johnson. He leads a series of talks that demonstrate how to build a real world API.
  • API Gateway’s WebSocket webinar: API Gateway now supports real time APIs with Websockets. This webinar covers how to use this feature and why you should let API Gateway manage your realtime APIs.
  • Best practices for building enterprise grade APIs: API Gateway reduces the time it takes to build and deploy REST development but there are strategies that can make development, security, and management easier.
  • An Intro to AWS AppSync and GraphQL: AppSync helps you build sophisticated data applications with realtime and offline capabilities.

Gain Experience With Hands-On Workshops and Examples

One of the easiest ways to get started with Serverless REST API development is to use the Serverless Application Model (SAM). SAM lets you run APIs and Lambda functions locally on your machine for easy development and testing.

For example, you can configure API Gateway as an Event source for Lambda with just a few lines of code:

Type: Api
Properties:
Path: /photos
Method: post

There are many great examples on our GitHub page to help you get started with Authorization (IAMCognito), Request, Response,  various policies , and CORS configurations for API Gateway.

If you’re working with GraphQL, you should review the Amplify Framework. This is an official AWS project that helps you quickly build Web Applications with built in AuthN and backend APIs using REST or GraphQL. With just a few lines of code, you can have Amplify add all required configurations for your GraphQL API. You have two options to integrate your application with an AppSync API:

  1. Directly using the Amplify GraphQL Client
  2. Using the AWS AppSync SDK

An excellent walk through of the Amplify toolkit is available here, including an example showing how to create a single page web app using ReactJS powered by an AppSync GraphQL API.

Finally, if you are interested in a full hands on experience, take a look at:

  • The Amazon API Gateway WildRydes workshop. This workshop teaches you how to build a functional single page web app with a REST backend, powered by API Gateway.
  • The AWS AppSync GraphQL Photo Workshop. This workshop teaches you how to use Amplify to quickly build a Photo sharing web app, powered by AppSync.

Useful Documentation

The official AWS documentation is the source of truth for architects and developers. Get started with the API Gateway developer guide. API Gateway is currently has two APIs (V1 and V2) for managing the service. Here is where you can view the SDK and CLI reference.

Get started with the AppSync developer guide, and review the AppSync management API.

Summary

As an API architect, your job is not only to design and implement the best API for your use case, but your job is also to figure out which type of API is most cost effective for your product. For example, an application with high request volume (“chatty“) may benefit from a GraphQL implementation instead of REST.

API Gateway currently charges $3.50 / million requests and provides a free tier of 1 Million requests per month. There is tiered pricing that will reduce your costs as request volume rises. AppSync currently charges $4.00 / million for Query and Mutation requests.

While AppSync pricing per request is slightly higher, keep in mind that the nature of GraphQL APIs typically result in significantly fewer overall request numbers.

Finally, we encourage you to join us in the coming weeks — we will be starting a series of posts covering messaging best practices.

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

Wag!: Why Even Your Dog Loves a Canary Deployment

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/wag-why-even-your-dog-loves-a-canary-deployment/

Since August 26 was National Dog Day, we thought it might be a great time to talk about why Wag!,an on-demand dog-walking, boarding, and pet-setting service that’s available in 43 states and 100 cities, deployed blue-green (or canary) architecture for increased availability and reduced risk using Amazon ECS.

Last June, Dave Bullock, Director of Engineering from Wag Labs Inc., talked with AWS Senior Solutions Architect Peter Tilsen about how the company needed to find a faster solution for updates and rollbacks than what the previously solution, AWS OpsWorks, could provide. What used to take up to 10 minutes for a rolling deployment for all of their cluster instances, now is done in a few minutes.

Listen to Dave as he shows us how Wag! runs canary deployments (a technique for releasing applications by shifting traffic between two identical environments running different versions of the application) of containerized applications with ECS.

*Check out more This Is My Architecture video series.

About the author

Annik StahlAnnik Stahl is a Senior Program Manager in AWS, specializing in blog and magazine content as well as customer ratings and satisfaction. Having been the face of Microsoft Office for 10 years as the Crabby Office Lady columnist, she loves getting to know her customers and wants to hear from you.

Improve Productivity and Reduce Overhead Expenses with Red Hat OpenShift Dedicated on AWS

Post Syndicated from Ryan Niksch original https://aws.amazon.com/blogs/architecture/improve-productivity-and-reduce-overhead-expenses-with-red-hat-openshift-dedicated-on-aws/

Red Hat OpenShift on AWS helps you develop, deploy, and manage container-based applications across on-premises and cloud environments. A recent case study from Cathay Pacific Airways proved that the use of the Red Hat OpenShift application platform can significantly improve developer productivity and reduce operational overhead by automating infrastructure, application deployment, and scaling. In this post, I explore how the architectural implementation and customization options of Red Hat OpenShift dedicated on AWS can cater to a variety of customer needs.

Red Hat OpenShift is a turn key solution providing  a container runtime, Kubernetes orchestration, container image repositories, pipeline, build process, monitoring, logging, role-based access control, granular policy-based control, and abstractions to simplify functions. Deploying a single turnkey solution, instead of building and integrating a collection of independent solutions or services, allows you to invest more time and effort in building meaningful applications for your business.

In the past, Red Hat OpenShift deployed on Amazon EC2 using an automated provisioning process with an open source solution, like the Red Hat OpenShift on AWS Quick Start. The Red Hat OpenShift Quick Start is an infrastructure as code solution which accelerates customer provisioning of Red Hat OpenShift on AWS. The OpenShift Quick Start adheres to the reference architecture to deploy Red Hat OpenShift on AWS in a resilient, scalable, well-architected manner. This reference architecture sees the control plane as a collection of load balanced master nodes for traffic routing, session state, scheduling, and monitoring. It also contains the application nodes where the customer’s containerized workloads run. This solution allowed customers to get up and running within three hours; however, it did not reduce management overhead because customers were required to monitor and maintain the infrastructure of the Red Hat OpenShift cluster.

Red Hat and AWS listened to customer feedback and created Red Hat OpenShift dedicated, a fully managed OpenShift implementation running exclusively on AWS. This implementation monitors the layers and functions, scales the layers to cater to consumption needs, and addresses operational concerns.

Customers now have access to a platform that helps manage control planes for business-critical solutions, like their developer and operational platforms.

Red Hat OpenShift Dedicated Infrastructure on AWS

You can purchase Red Hat OpenShift dedicated through the Red Hat account team. Red Hat OpenShift dedicated comes in two varieties: the Standard edition and the Cloud Choice edition (bring your own cloud).

redhar-openshit options

Figure 1: Red Hat OpenShift architecture illustrating master and infrastructure nodes spread over three Availability Zones and placed behind elastic load balancers.

Red Hat OpenShift dedicated adheres to the reference architecture defined by AWS and Red Hat. Master and infrastructure layers are spread across three AWS availability zones providing resilience within the OpenShift solution, as well as the underlying infrastructure.

Red Hat OpenShift Dedicated Standard Edition

In the Red Hat OpenShift dedicated standard edition, Red Hat deploys the OpenShift cluster into an AWS account owned and managed by Red Hat. Red Hat provides an aggregated bill for the OpenShift subscription fees, management fees, and AWS billing. This edition is ideal for customers who want everything to be managed for them. The Red Hat site reliability engineering  team (SRE) will monitor and manage healing, scaling, and patching of the cluster.

Red Hat OpenShift Cloud Choice Edition

The cloud choice edition allows customers to create their own AWS account, and then have the Red Hat OpenShift dedicated infrastructure provisioned into their existing account. The Red Hat SRE team provisions the Red Hat OpenShift cluster into the customer owned AWS account and manages the solution via IAM roles.

Figure 2: Red Hat OpenShift Cloud Choice IAM role separation

Red Hat provides billing for the Red Hat OpenShift Cloud Choice subscription and management fees, and AWS provides billing for the AWS resources. Keeping the Red Hat OpenShift infrastructure within your AWS account allows better cost controls.

Red Hat OpenShift Cloud Choice provides visibility into the resources running in your account; which is desirable if you have regulatory and auditing concerns. You can inspect, monitor, and audit resources within the AWS account — taking advantage of the rich AWS service set (AWS CloudTrail, AWS config, AWS CloudWatch, and AWS cost explorer).

You can also take advantage of cost management solutions like AWS organizations and consolidated billing. Customers with multiple business units using AWS can combine the usage across their accounts to share the volume pricing discounts resulting in cost savings for projects, departments, and companies.

Red Hat OpenShift Cloud Choice dedicated cannot be deployed into an account currently hosting other applications and resources. In order to maintain separation of control with the managed service, Red Hat OpenShift Cloud Choice dedicated requires an AWS account dedicated to the managed Red Hat OpenShift solution.

You can take advantage of cost reductions of up to 70% using Reserved Instances, which match the pervasive running instances. This is ideal for the master and infrastructure nodes of the Red Hat OpenShift solutions running in your account. The reference architecture for Red Hat OpenShift on AWS recommends spanning  nodes over three availability zones, which translates to three master instances. The master and infrastructure nodes scale differently; so, there will be three additional instances for the infrastructure nodes. Purchasing reserved instances to offset the costs of the master nodes and the infrastructure nodes can free up funds for your next project.

Interactions

DevOps teams using either edition of Red Hat OpenShift dedicated have a rich console experience providing control over networking between application workloads, storage, and monitoring. Granular drill down consoles enable operations teams to focus on what is most critical to their organization.

Each interface is controlled through granular role-based access control. Teams have visibility of high-level cluster overviews where they are able to see visualizations of the overall health of the cluster; and they have access to more granular overviews of views of hosts, nodes, and containers. Application owners, key stake holders, and operations teams have access to a customizable dashboard displaying the running state. Teams can drill down to the underlying nodes, and further into the PODs and containers, should they wish to explore the status or overall health of the containerized micro services. The cluster-wide event stream provides the same drill down experience to logging events.

The drill down console menu options are illustrated in the screenshots below:

In summary, the partnership of Red Hat and AWS created a fully managed solution which directly answers customer feedback requests for a fully managed application platform running on the availability, scalability, and cost benefits of AWS. The solution allows visibility and control whenever and wherever you need it.

About the author

Ryan Niksch

Ryan Niksch is a Partner Solutions Architect focusing on application platforms, hybrid application solutions, and modernization. Ryan has worn many hats in his life and has a passion for tinkering and a desire to leave everything he touches a little better than when he found it.

Things to Consider When You Build REST APIs with Amazon API Gateway

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/things-to-consider-when-you-build-rest-apis-with-amazon-api-gateway/

A few weeks ago, we kicked off this series with a discussion on REST vs GraphQL APIs. This post will dive deeper into the things an API architect or developer should consider when building REST APIs with Amazon API Gateway.

Request Rate (a.k.a. “TPS”)

Request rate is the first thing you should consider when designing REST APIs. By default, API Gateway allows for up to 10,000 requests per second. You should use the built in Amazon CloudWatch metrics to review how your API is being used. The Count metric in particular can help you review the total number of API requests in a given period.

It’s important to understand the actual request rate that your architecture is capable of supporting. For example, consider this architecture:

REST API 1

This API accepts GET requests to retrieve a user’s cart by using a Lambda function to perform SQL queries against a relational database managed in RDS.  If you receive a large burst of traffic, both API Gateway and Lambda will scale in response to the traffic. However, relational databases typically have limited memory/cpu capacity and will quickly exhaust the total number of connections.

As an API architect, you should design your APIs to protect your down stream applications.  You can start by defining API Keys and requiring your clients to deliver a key with incoming requests. This lets you track each application or client who is consuming your API.  This also lets you create Usage Plans and throttle your clients according to the plan you define.  For example, you if you know your architecture is capable of of sustaining 200 requests per second, you should define a Usage plan that sets a rate of 200 RPS and optionally configure a quota to allow a certain number of requests by day, week, or month.

Additionally, API Gateway lets you define throttling settings for the whole stage or per method. If you know that a GET operation is less resource intensive than a POST operation you can override the stage settings and set different throttling settings for each resource.

Integrations and Design patterns

The example above describes a synchronous, tightly coupled architecture where the request must wait for a response from the backend integration (RDS in this case). This results in system scaling characteristics that are the lowest common denominator of all components. Instead, you should look for opportunities to design an asynchronous, loosely coupled architecture. A decoupled architecture separates the data ingestion from the data processing and allows you to scale each system separately. Consider this new architecture:

REST API 2

This architecture enables ingestion of orders directly into a highly scalable and durable data store such as Amazon Simple Queue Service (SQS).  Your backend can process these orders at any speed that is suitable for your business requirements and system ability.  Most importantly,  the health of the backend processing system does not impact your ability to continue accepting orders.

Security

Security with API Gateway falls into three major buckets, and I’ll outline them below. Remember, you should enable all three options to combine multiple layers of security.

Option 1 (Application Firewall)

You can enable AWS Web Application Firewall (WAF) for your entire API. WAF will inspect all incoming requests and block requests that fail your inspection rules. For example, WAF can inspect requests for SQL Injection, Cross Site Scripting, or whitelisted IP addresses.

Option 2 (Resource Policy)

You can apply a Resource Policy that protects your entire API. This is an IAM policy that is applied to your API and you can use this to white/black list client IP ranges or allow AWS accounts and AWS principals to access your API.

Option 3 (AuthZ)

  1. IAM:This AuthZ option requires clients to sign requests with the AWS v4 signing process. The associated IAM role or user must have permissions to perform the execute-api:Invoke action against the API.
  2. Cognito: This AuthZ option requires clients to login into Cognito and then pass the returned ID or Access JWT token in the Authentication header.
  3. Lambda Auth: This AuthZ option is the most flexible and lets you execute a Lambda function to perform any custom auth strategy needed. A common use case for this is OpenID Connect.

A Couple of Tips

Tip #1: Use Stage variables to avoid hard coding your backend Lambda and HTTP integrations. For example, you probably have multiple stages such as “QA” and “PROD” or “V1” and “V2.” You can define the same variable in each stage and specify different values. For example, you might an API that executes a Lambda function. In each stage, define the same variable called functionArn. You can reference this variable as your Lambda ARN during your integration configuration using this notation: ${stageVariables.functionArn}. API Gateway will inject the corresponding value for the stage dynamically at runtime, allowing you to execute different Lambda functions by stage.

Tip #2: Use Path and Query variables to inject dynamic values into your HTTP integrations. For example, your cart API may define a userId Path variable that is used to lookup a user’s cart: /cart/profile/{userId}. You can inject this variable directly into your backend HTTP integration URL settings like this: http://myapi.someds.com/cart/profile/{userId}

Summary

This post covered strategies you should use to ensure your REST API architectures are scalable and easy to maintain.  I hope you’ve enjoyed this post and our next post will cover GraphQL API architectures with AWS AppSync.

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

Architecture Monthly Magazine for July: Machine Learning

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/architecture-monthly-magazine-for-july-machine-learning/

Every month, AWS publishes the AWS Architecture Monthly Magazine (available for free on Kindle and Flipboard) that curates some of the best technical and video content from around AWS.

In the June edition, we offered several pieces of content related to Internet of Things (IoT). This month we’re talking about artificial intelligence (AI), namely machine learning.

Machine Learning: Let’s Get it Started

Alan Turing, the British mathematician whose life and work was documented in the movie The Imitation Game, was a pioneer of theoretical computer science and AI. He was the first to put forth the idea that machines can think.

Jump ahead 80 years to this month when researchers asked four-time World Poker Tour title holder Darren Elias to play Texas Hold’em with Pluribus, a poker-playing bot (actually, five of these bots were at the table). Pluribus learns by playing against itself over and over and remembering which strategies worked best. The bot became world-class-level poker player in a matter of days. Read about it in the journal Science.

If AI is making a machine more human, AI’s subset, machine learning, involves the techniques that allow these machines to make sense of the data we feed them. Machine learning is mimicking how humans learn, and Pluribus is actually learning from itself.

From self-driving cars, medical diagnostics, and facial recognition to our helpful (and sometimes nosy) pals Siri, Alexa, and Cortana, all these smart machines are constantly improving from the moment we unbox them. We humans are teaching the machines to think like us.

For July’s magazine, we assembled architectural best practices about machine learning from all over AWS, and we’ve made sure that a broad audience can appreciate it.

  • Interview: Mahendra Bairagi, Solutions Architect, Artificial Intelligence
  • Training: Getting in the Voice Mindset
  • Quick Start: Predictive Data Science with Amazon SageMaker and a Data Lake on AWS
  • Blog post: Amazon SageMaker Neo Helps Detect Objects and Classify Images on Edge Devices
  • Solution: Fraud Detection Using Machine Learning
  • Video: Viz.ai Uses Deep Learning to Analyze CT Scans and Save Lives
  • Whitepaper: Power Machine Learning at Scale

We hope you find this edition of Architecture Monthly useful, and we’d like your feedback. Please give us a star rating and your comments on Amazon. You can also reach out to [email protected] anytime. Check back in a month to discover what the August magazine will offer.

How to Architect APIs for Scale and Security

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/how-to-architect-apis-for-scale-and-security/

We hope you’ve enjoyed reading our posts on best practices for your serverless applications. This series of posts will focus on best practices and concepts you should be familiar with when you architect APIs for your applications. We’ll kick this first post off with a comparison between REST and GraphQL API architectures.

Introduction

Developers have been creating RESTful APIs for a long time, typically using HTTP methods, such as GET, POST, DELETE to perform operations against the API. Amazon API Gateway is designed to make it easy for developers to create APIs at any scale without managing any servers. API Gateway will handle all of the heavy lifting needed including traffic management, security, monitoring, and version/environment management.

GraphQL APIs are relatively new, with a primary design goal of allowing clients to define the structure of the data that they require. AWS AppSync allows you to create flexible APIs that access and combine multiple data sources.

REST APIs

Architecting a REST API is structured around creating combinations of resources and methods.  Resources are paths  that are present in the request URL and methods are HTTP actions that you take against the resource. For example, you may define a resource called “cart”: http://myapi.somecompany.com/cart. The cart resource can respond to HTTP POSTs for adding items to a shopping cart or HTTP GETs for retrieving the items in your cart. With API Gateway, you would implement the API like this:

Behind the scenes, you can integrate with nearly any backend to provide the compute logic, data persistence, or business work flows.  For example, you can configure an AWS Lambda function to perform the addition of an item to a shopping cart (HTTP POST).  You can also use API Gateway to directly interact with AWS services like Amazon DynamoDB.  An example is using API Gateway to retrieve items in a cart from DynamoDB (HTTP GET).

RESTful APIs tend to use Path and Query parameters to inject dynamic values into APIs. For example, if you want to retreive a specific cart with an id of abcd123, you could design the API to accept a query or path parameter that specifies the cartID:

/cart?cartId=abcd123 or /cart/abcd123

Finally, when you need to add functionality to your API, the typical approach would be to add additional resources.  For example, to add a checkout function, you could add a resource called /cart/checkout.

GraphQL APIs

Architecting GraphQL APIs is not structured around resources and HTTP verbs, instead you define your data types and configure where the operations will retrieve data through a resolver. An operation is either a query or a mutation. Queries simply retrieve data while mutations are used when you want to modify data. If we use the same example from above, you could define a cart data type as follows:

type Cart {

  cartId: ID!

  customerId: String

  name: String

  email: String

  items: [String]

}

Next, you configure the fields in the Cart to map to specific data sources. AppSync is then responsible for executing resolvers to obtain appropriate information. Your client will send a HTTP POST to the AppSync endpoint with the exact shape of the data they require. AppSync is responsible for executing all configured resolvers to obtain the requested data and return a single response to the client.

Rest API

With GraphQL, the client can change their query to specify the exact data that is needed. The above example shows two queries that ask for different sets of information. The first getCart query asks for all of the static customer (customerId, name, email) and a list of items in the cart. The second query just asks for the customer’s static information. Based on the incoming query, AppSync will execute the correct resolver(s) to obtain the data. The client submits the payload via a HTTP POST to the same endpoint in both cases. The payload of the POST body is the only thing that changes.

As we saw above, a REST based implementation would require the API to define multiple HTTP resources and methods or path/query parameters to accomplish this.

AppSync also provides other powerful features that are not possible with REST APIs such as real-time data synchronization and multiple methods of authentication at the field and operation level.

Summary

As you can see, these are two different approaches to architecting your API. In our next few posts, we’ll cover specific features and architecture details you should be aware of when choosing between API Gateway (REST) and AppSync (GraphQL) APIs. In the meantime, you can read more about working with API Gateway and Appsync.

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

Ten Things Serverless Architects Should Know

Post Syndicated from Justin Pirtle original https://aws.amazon.com/blogs/architecture/ten-things-serverless-architects-should-know/

Building on the first three parts of the AWS Lambda scaling and best practices series where you learned how to design serverless apps for massive scale, AWS Lambda’s different invocation models, and best practices for developing with AWS Lambda, we now invite you to take your serverless knowledge to the next level by reviewing the following 10 topics to deepen your serverless skills.

1: API and Microservices Design

With the move to microservices-based architectures, decomposing monothlic applications and de-coupling dependencies is more important than ever. Learn more about how to design and deploy your microservices with Amazon API Gateway:

Get hands-on experience building out a serverless API with API Gateway, AWS Lambda, and Amazon DynamoDB powering a serverless web application by completing the self-paced Wild Rydes web application workshop.

Figure 1: WildRydes serverless web application workshop

2: Event-driven Architectures and Asynchronous Messaging Patterns

When building event-driven architectures, whether you’re looking for simple queueing and message buffering or a more intricate event-based choreography pattern, it’s valuable to learn about the mechanisms to enable asynchronous messaging and integration. These are enabled primarily through the use of queues or streams as a message buffer and topics for pub/sub messaging. Understand when to use each and the unique advantages and features of all three:

Gets hands-on experience building a real-time data processing application using Amazon Kinesis Data Streams and AWS Lambda by completing the self-paced Wild Rydes data processing workshop.

3: Workflow Orchestration in a Distributed, Microservices Environment

In distributed microservices architectures, you must design coordinated transactions in different ways than traditional database-based ACID transactions, which are typically implemented using a monolithic relational database. Instead, you must implement coordinated sequenced invocations across services along with rollback and retry mechanisms. For workloads where there a significant orchestration logic is required and you want to use more of an orchestrator pattern than the event choreography pattern mentioned above, AWS Step Functions enables the building complex workflows and distributed transactions through integration with a variety of AWS services, including AWS Lambda. Learn about the options you have to build your business workflows and keep orchestration logic out of your AWS Lambda code:

Get hands-on experience building an image processing workflow using computer vision AI services with AWS Rekognition and AWS Step Functions to orchestrate all logic and steps with the self-paced Serverless image processing workflow workshop.

Figure 2: Several AWS Lambda functions managed by an AWS Step Functions state machine

4: Lambda Computing Environment and Programming Model

Though AWS Lambda is a service that is quick to get started, there is value in learning more about the AWS Lambda computing environment and how to take advantage of deeper performance and cost optimization strategies with the AWS Lambda runtime. Take your understanding and skills of AWS Lambda to the next level:

5: Serverless Deployment Automation and CI/CD Patterns

When dealing with a large number of microservices or smaller components—such as AWS Lambda functions all working together as part of a broader application—it’s critical to integrate automation and code management into your application early on to efficiently create, deploy, and version your serverless architectures. AWS offers several first-party deployment tools and frameworks for Serverless architectures, including the AWS Serverless Application Model (SAM), the AWS Cloud Development Kit (CDK), AWS Amplify, and AWS Chalice. Additionally, there are several third party deployment tools and frameworks available, such as the Serverless Framework, Claudia.js, Sparta, or Zappa. You can also build your own custom-built homegrown framework. The important thing is to ensure your automation strategy works for your use case and team, and supports your planned data source integrations and development workflow. Learn more about the available options:

Learn how to build a full CI/CD pipeline and other DevOps deployment automation with the following workshops:

6: Serverless Identity Management, Authentication, and Authorization

Modern application developers need to plan for and integrate identity management into their applications while implementing robust authentication and authorization functionality. With Amazon Cognito, you can deploy serverless identity management and secure sign-up and sign-in directly into your applications. Beyond authentication, Amazon API Gateway also allows developers to granularly manage authorization logic at the gateway layer and authorize requests directly, without exposing their using several types of native authorization.

Learn more about the options and benefits of each:

Get hands-on experience working with Amazon Cognito, AWS Identity and Access Management (IAM), and Amazon API Gateway with the Serverless Identity Management, Authentication, and Authorization Workshop.

Figure 3: Serverless Identity Management, Authentication, and Authorization Workshop

7: End-to-End Security Techniques

Beyond identity and authentication/authorization, there are many other areas to secure in a serverless application. These include:

  • Input and request validation
  • Dependency and vulnerability management
  • Secure secrets storage and retrieval
  • IAM execution roles and invocation policies
  • Data encryption at-rest/in-transit
  • Metering and throttling access
  • Regulatory compliance concerns

Thankfully, there are AWS offerings and integrations for each of these areas. Learn more about the options and benefits of each:

Get hands-on experience adding end-to-end security with the techniques mentioned above into a serverless application with the Serverless Security Workshop.

8: Application Observability with Comprehensive Logging, Metrics, and Tracing

Before taking your application to production, it’s critical that you ensure your application is fully observable, both at a microservice or component level, as well as overall through comprehensive logging, metrics at various granularity, and tracing to understand distributed system performance and end user experiences end-to-end. With many different components making up modern architectures, having centralized visibility into all of your key logs, metrics, and end-to-end traces will make it much easier to monitor and understand your end users’ experiences. Learn more about the options for observability of your AWS serverless application:

9. Ensuring Your Application is Well-Architected

Adding onto the considerations mentioned above, we suggest architecting your applications more holistically to the AWS Well-Architected framework. This framework includes the five key pillars: security, reliability, performance efficiency, cost optimization, and operational excellence. Additionally, there is a serverless-specific lens to the Well-Architected framework, which more specifically looks at key serverless scenarios/use cases such as RESTful microservices, Alexa skills, mobile backends, stream processing, and web applications, and how they can implement best practices to be Well-Architected. More information:

10. Continuing your Learning as Serverless Computing Continues to Evolve

As we’ve discussed, there are many opportunities to dive deeper into serverless architectures in a variety of areas. Though the resources shared above should be helpful in familiarizing yourself with key concepts and techniques, there’s nothing better than continued learning from others over time as new advancements come out and patterns evolve.

Finally, we encourage you to check back often as we’ll be continuing further blog post series on serverless architectures, with the next series focusing on API design patterns and best practices.

About the author

Justin PritleJustin Pirtle is a specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. He’s responsible for helping customers design, deploy, and scale serverless applications using services such as AWS Lambda, Amazon API Gateway, Amazon Cognito, and Amazon DynamoDB. He is a regular speaker at AWS conferences, including re:Invent, as well as other AWS events. Justin holds a bachelor’s degree in Management Information Systems from the University of Texas at Austin and a master’s degree in Software Engineering from Seattle University.

Intuit: Serving Millions of Global Customers with Amazon Connect

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/intuit-serving-millions-of-global-customers-with-amazon-connect/

Recently, Bill Schuller, Intuit Contact Center Domain Architect met with AWS’s Simon Elisha to discuss how Intuit manages its customer contact centers with AWS Connect.

As a 35-year-old company with an international customer base, Intuit is widely known as the maker of Quick Books and Turbo Tax, among other software products. Its 50 million customers can access its global contact centers not just for password resets and feature explanations, but for detailed tax interpretation and advice. As you can imagine, this presents a challenge of scale.

Using Amazon Connect, a self-service, cloud-based contact center service, Intuit has been able to provide a seamless call-in experience to Intuit customers from around the globe. When a customer calls in to Amazon Connect, Intuit is able to do a “data dip” through AWS Lambda out to the company’s CRM system (in this case, SalesForce) in order to get more information from the customer. At this point, Intuit can leverage other services like Amazon Lex for national language feedback and then get the customer to the right person who can help. When the call is over, instead of having that important recording of the call locked up in a proprietary system, the audio is moved into an S3 bucket, where Intuit can do some post-call processing. It can also be sent it out to third parties for analysis, or Intuit can use Amazon Transcribe or Amazon Comprehend to get a transcription or sentiment analysis to understand more about what happened during that particular call.

Watch the video below to understand the reasons why Intuit decided on this set of AWS services (hint: it has to do with the ability to experiment with speed and scale but without the cost overhead).

*Check out more This Is My Architecture video series.

About the author

Annik StahlAnnik Stahl is a Senior Program Manager in AWS, specializing in blog and magazine content as well as customer ratings and satisfaction. Having been the face of Microsoft Office for 10 years as the Crabby Office Lady columnist, she loves getting to know her customers and wants to hear from you.

Best Practices for Developing on AWS Lambda

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/best-practices-for-developing-on-aws-lambda/

In our previous post we discussed the various ways you can invoke AWS Lambda functions. In this post, we’ll provide some tips and best practices you can use when building your AWS Lambda functions.

One of the benefits of using Lambda, is that you don’t have to worry about server and infrastructure management. This means AWS will handle the heavy lifting needed to execute your Lambda functions. You should take advantage of this architecture with the tips below.

Tip #1: When to VPC-Enable a Lambda Function

Lambda functions always operate from an AWS-owned VPC. By default, your function has full ability to make network requests to any public internet address — this includes access to any of the public AWS APIs. For example, your function can interact with AWS DynamoDB APIs to PutItem or Query for records. You should only enable your functions for VPC access when you need to interact with a private resource located in a private subnet. An RDS instance is a good example.

RDS instance: When to VPC enable a Lambda function

Once your function is VPC-enabled, all network traffic from your function is subject to the routing rules of your VPC/Subnet. If your function needs to interact with a public resource, you will need a route through a NAT gateway in a public subnet.

Tip #2: Deploy Common Code to a Lambda Layer (i.e. the AWS SDK)

If you intend to reuse code in more than one function, consider creating a Layer and deploying it there. A great candidate would be a logging package that your team is required to standardize on. Another great example is the AWS SDK. AWS will include the AWS SDK for NodeJS and Python functions (and update the SDK periodically). However, you should bundle your own SDK and pin your functions to a version of the SDK you have tested.

Tip #3: Watch Your Package Size and Dependencies

Lambda functions require you to package all needed dependencies (or attach a Layer) — the bigger your deployment package, the slower your function will cold-start. Remove all unnecessary items, such as documentation and unused libraries. If you are using Java functions with the AWS SDK, only bundle the module(s) that you actually need to use — not the entire SDK.

Good:

<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>dynamodb</artifactId>
    <version>2.6.0</version>
</dependency>

Bad:

<!-- https://mvnrepository.com/artifact/software.amazon.awssdk/aws-sdk-java -->
<dependency>
    <groupId>software.amazon.awssdk</groupId>
    <artifactId>aws-sdk-java</artifactId>
    <version>2.6.0</version>
</dependency>

Tip #4: Monitor Your Concurrency (and Set Alarms)

Our first post in this series talked about how concurrency can effect your down stream systems. Since Lambda functions can scale extremely quickly, this means you should have controls in place to notify you when you have a spike in concurrency. A good idea is to deploy a CloudWatch Alarm that notifies your team when function metrics such as ConcurrentExecutions or Invocations exceeds your threshold. You should create an AWS Budget so you can monitor costs on a daily basis. Here is a great example of how to set up automated cost controls.

Tip #5: Over-Provision Memory (in some use cases) but Not Function Timeout

Lambda allocates compute power in proportion to the memory you allocate to your function. This means you can over provision memory to run your functions faster and potentially reduce your costs. You should benchmark your use case to determine where the breakeven point is for running faster and using more memory vs running slower and using less memory.

However, we recommend you do not over provision your function time out settings. Always understand your code performance and set a function time out accordingly. Overprovisioning function timeout often results in Lambda functions running longer than expected and unexpected costs.

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

Understanding the Different Ways to Invoke Lambda Functions

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/understanding-the-different-ways-to-invoke-lambda-functions/

In our first post, we talked about general design patterns to enable massive scale with serverless applications. In this post, we’ll review the different ways you can invoke Lambda functions and what you should be aware of with each invocation model.

Synchronous Invokes

Synchronous invocations are the most straight forward way to invoke your Lambda functions. In this model, your functions execute immediately when you perform the Lambda Invoke API call. This can be accomplished through a variety of options, including using the CLI or any of the supported SDKs.

Here is an example of a synchronous invoke using the CLI:

aws lambda invoke —function-name MyLambdaFunction —invocation-type RequestResponse —payload  “[JSON string here]”

The Invocation-type flag specifies a value of “RequestResponse”. This instructs AWS to execute your Lambda function and wait for the function to complete. When you perform a synchronous invoke, you are responsible for checking the response and determining if there was an error and if you should retry the invoke.

Many AWS services can emit events that trigger Lambda functions. Here is a list of services that invoke Lambda functions synchronously:

Asynchronous Invokes

Here is an example of an asynchronous invoke using the CLI:

aws lambda invoke —function-name MyLambdaFunction —invocation-type Event —payload  “[JSON string here]”

Notice, the Invocation-type flag specifies “Event.” If your function returns an error, AWS will automatically retry the invoke twice, for a total of three invocations.

Here is a list of services that invoke Lambda functions asynchronously:

Asynchronous invokes place your invoke request in Lambda service queue and we process the requests as they arrive. You should use AWS X-Ray to review how long your request spent in the service queue by checking the “dwell time” segment.

Poll based Invokes

This invocation model is designed to allow you to integrate with AWS Stream and Queue based services with no code or server management. Lambda will poll the following services on your behalf, retrieve records, and invoke your functions. The following are supported services:

AWS will manage the poller on your behalf and perform Synchronous invokes of your function with this type of integration. The retry behavior for this model is based on data expiration in the data source. For example, Kinesis Data streams store records for 24 hours by default (up to 168 hours). The specific details of each integration are linked above.

Conclusion

In our next post, we’ll provide some tips and best practices for developing Lambda functions. Happy coding!

 

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

How to Design Your Serverless Apps for Massive Scale

Post Syndicated from George Mao original https://aws.amazon.com/blogs/architecture/how-to-design-your-serverless-apps-for-massive-scale/

Serverless is one of the hottest design patterns in the cloud today, allowing you to focus on building and innovating, rather than worrying about the heavy lifting of server and OS operations. In this series of posts, we’ll discuss topics that you should consider when designing your serverless architectures. First, we’ll look at architectural patterns designed to achieve massive scale with serverless.

Scaling Considerations

In general, developers in a “serverful” world need to be worried about how many total requests can be served throughout the day, week, or month, and how quickly their system can scale. As you move into the serverless world, the most important question you should understand becomes: “What is the concurrency that your system is designed to handle?”

The AWS Serverless platform allows you to scale very quickly in response to demand. Below is an example of a serverless design that is fully synchronous throughout the application. During periods of extremely high demand, Amazon API Gateway and AWS Lambda will scale in response to your incoming load. This design places extremely high load on your backend relational database because Lambda can easily scale from thousands to tens of thousands of concurrent requests. In most cases, your relational databases are not designed to accept the same number of concurrent connections.

Serverless at scale-1

This design risks bottlenecks at your relational database and may cause service outages. This design also risks data loss due to throttling or database connection exhaustion.

Cloud Native Design

Instead, you should consider decoupling your architecture and moving to an asynchronous model. In this architecture, you use an intermediary service to buffer incoming requests, such as Amazon Kinesis or Amazon Simple Queue Service (SQS). You can configure Kinesis or SQS as out of the box event sources for Lambda. In design below, AWS will automatically poll your Kinesis stream or SQS resource for new records and deliver them to your Lambda functions. You can control the batch size per delivery and further place throttles on a per Lambda function basis.

Serverless at scale - 2

This design allows you to accept extremely high volume of requests, store the requests in a durable datastore, and process them at the speed which your system can handle.

Conclusion

Serverless computing allows you to scale much quicker than with server-based applications, but that means application architects should always consider the effects of scaling to your downstream services. Always keep in mind cost, speed, and reliability when you’re building your serverless applications.

Our next post in this series will discuss the different ways to invoke your Lambda functions and how to design your applications appropriately.

About the Author

George MaoGeorge Mao is a Specialist Solutions Architect at Amazon Web Services, focused on the Serverless platform. George is responsible for helping customers design and operate Serverless applications using services like Lambda, API Gateway, Cognito, and DynamoDB. He is a regular speaker at AWS Summits, re:Invent, and various tech events. George is a software engineer and enjoys contributing to open source projects, delivering technical presentations at technology events, and working with customers to design their applications in the Cloud. George holds a Bachelor of Computer Science and Masters of IT from Virginia Tech.

FICO: Fraud Detection and Anti-Money Laundering with AWS Lambda and AWS Step Functions

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/fico-fraud-detection-and-anti-money-laundering-with-aws-lambda-and-aws-step-functions/

In this episode of This is My Architecture, filmed in 2018 on the last day of re:Invent (a learning conference hosted by Amazon Web Services for the global cloud computing community), FICO lead Software Engineer Sven Ahlfeld talks to AWS Solutions Architect Tom Jones about how the company uses a combination of AWS Lambda and AWS Step Functions to architect an on-demand solution for fraud detection and anti-money laundering.

When you think of FICO, you probably thing credit score. And that’s true: founded in 1956, FICO introduced analytic solutions–such as credit scoring–that have made credit more widely available in the US and around the world. As well, the FICO score is the standard measure of consumer risk in the US.

In the video, Sven explains that FICO is making software to meet regulatory compliance goals and requirements, in this case to tackle money laundering. FICO ingests a massive amounts of customer data in the form of financial documents into S3, and then uses S3 to trigger and analyze each document for a number of different fraud and money laundering characteristics.

Key architecture components are designed to be immutable, assuring that the EC2 instances doing the analysis work themselves can’t be compromised and tampered with. But as well, an unchangeable instance can scale very fast and allow for the ability to ingest a large amount of documents. It can also scale back when there is less demand. The immutable images also support regulatory requirements for the various needs and regulations of localities around the world.

 

*Check out more This Is My Architecture videos on YouTube.

About the author

Annik StahlAnnik Stahl is a Senior Program Manager in AWS, specializing in blog and magazine content as well as customer ratings and satisfaction. Having been the face of Microsoft Office for 10 years as the Crabby Office Lady columnist, she loves getting to know her customers and wants to hear from you.

Updates to Serverless Architectural Patterns and Best Practices

Post Syndicated from Drew Dennis original https://aws.amazon.com/blogs/architecture/updates-to-serverless-architectural-patterns-and-best-practices/

As we sail past the halfway point between re:Invent 2018 and re:Invent 2019, I’d like to revisit some of the recent serverless announcements we’ve made. These are all complimentary to the patterns discussed in the re:Invent architecture track’s Serverless Architectural Patterns and Best Practices session.

AWS Event Fork Pipelines

AWS Event Fork Pipelines was announced in March 2019. Many customers use asynchronous event-driven processing in their serverless applications to decouple application components and address high concurrency needs. And in doing so, they often find themselves needing to backup, search, analyze, or replay these asynchronous events. That is exactly what AWS Event Fork Pipelines aims to achieve. You can plug them into a new or existing SNS topic used by your application and immediately address retention and compliance needs, gain new business insights, or even improve your application’s disaster recovery abilities.

AWS Event Fork Pipelines is a suite of three applications. The first application addresses event storage and backup needs by writing all events to an S3 bucket where they can be queried with services like Amazon Athena. The second is a search and analytics pipeline that delivers events to a new or existing Amazon ES domain, enabling search and analysis of your events. Finally, the third application is an event replay pipeline that can be used to reprocess messages should a downstream failure occur in your application. AWS Event Fork Pipelines is available in AWS Serverless Application Model (SAM) templates and are available in the AWS Serverless Application Repository (SAR). Check out our example e-commerce application on GitHub..

Amazon API Gateway Serverless Developer Portal

If you publish APIs for developers allowing them to build new applications and capabilities with your data, you understand the need for a developer portal. Also, in March 2019, we announced some significant upgrades to the API Gateway Serverless Developer Portal. The portal’s front end is written in React and is designed to be fully customizable.

The API Gateway Serverless Developer Portal is also available in GitHub and the AWS SAR. As you can see from the architecture diagram below, it is integrated with Amazon Cognito User Pools to allow developers to sign-up, receive an API Key, and register for one or more of your APIs. You can now also enable administrative scenarios from your developer portal by logging in as users belonging to the portal’s Admin group which is created when the portal is initially deployed to your account. For example, you can control which APIs appear in a customer’s developer portal, enable SDK downloads, solicit developer feedback, and even publish updates for APIs that have been recently revised.

AWS Lambda with Amazon Application Load Balancer (ALB)

Serverless microservices have been built by our customers for quite a while, with AWS Lambda and Amazon API Gateway. At re:Invent 2018 during Dr. Werner Vogel’s keynote, a new approach to serverless microservices was announced, Lambda functions as ALB targets.

ALB’s support for Lambda targets gives customers the ability to deploy serverless code behind an ALB, alongside servers, containers, and IP addresses. With this feature, ALB path and host-based routing can be used to direct incoming requests to Lambda functions. Also, ALB can now provide an entry point for legacy applications to take on new serverless functionality, and enable migration scenarios from monolithic legacy server or container-based applications.

Use cases for Lambda targets for ALB include adding new functionality to an existing application that already sits behind an ALB. This could be request monitoring by sending http headers to Elasticsearch clusters or implementing controls that manage cookies. Check out our demo of this new feature. For additional details, take a look at the feature’s documentation.

Security Overview of AWS Lambda Whitepaper

Finally, I’d be remiss if I didn’t point out the great work many of my colleagues have done in releasing the Security Overview of AWS Lambda Whitepaper. It is a succinct and enlightening read for anyone wishing to better understand the Lambda runtime environment, function isolation, or data paths taken for payloads sent to the Lambda service during synchronous and asynchronous invocations. It also has some great insight into compliance, auditing, monitoring, and configuration management of your Lambda functions. A must read for anyone wishing to better understand the overall security of AWS serverless applications.

I look forward to seeing everyone at re:Invent 2019 for more exciting serverless announcements!

About the author

Drew DennisDrew Dennis is a Global Solutions Architect with AWS based in Dallas, TX. He enjoys all things Serverless and has delivered the Architecture Track’s Serverless Patterns and Best Practices session at re:Invent the past three years. Today, he helps automotive companies with autonomous driving research on AWS, connected car use cases, and electrification.

Building an AWS Landing Zone from Scratch in Six Weeks

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/building-an-aws-landing-zone-from-scratch-in-six-weeks/

In an effort to deliver a simpler, smarter, and more unified experience on its website, the UK’s Ministry of Justice and its Lead Technical Architect, James Abley, created a bespoke AWS Landing Zone, a pre-defined template for an AWS account or infrastructure. And they did it in six weeks.

Supporting 33 agencies and public bodies, and making sure they all work together, the Ministry of Justice is at the heart of the United Kingdom’s justice system. Its task is to look after all parts of the justice system, including the courts, prisons, probation services, and legal aid, striving to bring the principles of justice to life for everyone in society.

In a This Is My Architecture video, shot at 2018 re:Invent in Las Vegas, James talks with AWS Solutions Architect, Simon Treacy, about the importance of delivering a consistent experience to his website’s customers, a mix of citizen and internal legal aid agency case workers.

Utilizing a number of AWS services, James walks us through the user experience, and he why decided to put AWS CoudFront and AWS Web Application Firewall (WAF) up front to improve the security posture of the ministry’s legacy applications and extend their lifespan. James also explained how he split traffic between two availability zones, using AWS Elastic Load Balancing (ELB) to provide higher availability and resilience, which will help with zero downtime deployment later on.

 

About the author

Annik StahlAnnik Stahl is a Senior Program Manager in AWS, specializing in blog and magazine content as well as customer ratings and satisfaction. Having been the face of Microsoft Office for 10 years as the Crabby Office Lady columnist, she loves getting to know her customers and wants to hear from you.

 

This Is My Architecture: Mobile Cryptocurrency Mining

Post Syndicated from Annik Stahl original https://aws.amazon.com/blogs/architecture/this-is-my-architecture-mobile-cryptocurrency-mining/

In North America, approximately 95% of adults over the age of 25 have a bank account. In the developing world, that number is only about 52%. Cryptocurrencies can provide a platform for millions of unbanked people in the world to achieve financial freedom on a more level financial playing field.

Electroneum, a cryptocurrency company located in England, built its cryptocurrency mobile back end on AWS and is using the power of blockchain to unlock the global digital economy for millions of people in the developing world.

Electroneum’s cryptocurrency mobile app allows Electroneum customers in developing countries to transfer ETNs (exchange-traded notes) and pay for goods using their smartphones. Listen in to the discussion between AWS Solutions Architect Toby Knight and Electroneum CTO Barry Last as they explain how the company built its solution. Electroneum’s app is a web application that uses a feedback loop between its web servers and AWS WAF (a web application firewall) to automatically block malicious actors. The system then uses Athena, with a gamified approach, to provide an additional layer of blocking to prevent DDoS attacks. Finally, Electroneum built a serverless, instant payments system using AWS API Gateway, AWS Lambda, and Amazon DynamoDB to help its customers avoid the usual delays in confirming cryptocurrency transactions.