Tag Archives: cybersecurity

The Cost of Cybercrime

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/the_cost_of_cyb_1.html

Really interesting paper calculating the worldwide cost of cybercrime:

Abstract: In 2012 we presented the first systematic study of the costs of cybercrime. In this paper,we report what has changed in the seven years since. The period has seen major platform evolution, with the mobile phone replacing the PC and laptop as the consumer terminal of choice, with Android replacing Windows, and with many services moving to the cloud.The use of social networks has become extremely widespread. The executive summary is that about half of all property crime, by volume and by value, is now online. We hypothesised in 2012 that this might be so; it is now established by multiple victimisation studies.Many cybercrime patterns appear to be fairly stable, but there are some interesting changes.Payment fraud, for example, has more than doubled in value but has fallen slightly as a proportion of payment value; the payment system has simply become bigger, and slightly more efficient. Several new cybercrimes are significant enough to mention, including business email compromise and crimes involving cryptocurrencies. The move to the cloud means that system misconfiguration may now be responsible for as many breaches as phishing. Some companies have suffered large losses as a side-effect of denial-of-service worms released by state actors, such as NotPetya; we have to take a view on whether they count as cybercrime.The infrastructure supporting cybercrime, such as botnets, continues to evolve, and specific crimes such as premium-rate phone scams have evolved some interesting variants. The over-all picture is the same as in 2012: traditional offences that are now technically ‘computercrimes’ such as tax and welfare fraud cost the typical citizen in the low hundreds of Euros/dollars a year; payment frauds and similar offences, where the modus operandi has been completely changed by computers, cost in the tens; while the new computer crimes cost in the tens of cents. Defending against the platforms used to support the latter two types of crime cost citizens in the tens of dollars. Our conclusions remain broadly the same as in 2012:it would be economically rational to spend less in anticipation of cybercrime (on antivirus, firewalls, etc.) and more on response. We are particularly bad at prosecuting criminals who operate infrastructure that other wrongdoers exploit. Given the growing realisation among policymakers that crime hasn’t been falling over the past decade, merely moving online, we might reasonably hope for better funded and coordinated law-enforcement action.

Richard Clayton gave a presentation on this yesterday at WEIS. His final slide contained a summary.

  • Payment fraud is up, but credit card sales are up even more — so we’re winning.
  • Cryptocurrencies are enabling new scams, but the bit money is still being list in more traditional investment fraud.

  • Telcom fraud is down, basically because Skype is free.

  • Anti-virus fraud has almost disappeared, but tech support scams are growing very rapidly.

  • The big money is still in tax fraud, welfare fraud, VAT fraud, and so on.

  • We spend more money on cyber defense than we do on the actual losses.

  • Criminals largely act with impunity. They don’t believe they will get caught, and mostly that’s correct.

Bottom line: the technology has changed a lot since 2012, but the economic considerations remain unchanged.

The Importance of Protecting Cybersecurity Whistleblowers

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/06/the_importance_3.html

Interesting essay arguing that we need better legislation to protect cybersecurity whistleblowers.

Congress should act to protect cybersecurity whistleblowers because information security has never been so important, or so challenging. In the wake of a barrage of shocking revelations about data breaches and companies mishandling of customer data, a bipartisan consensus has emerged in support of legislation to give consumers more control over their personal information, require companies to disclose how they collect and use consumer data, and impose penalties for data breaches and misuse of consumer data. The Federal Trade Commission (“FTC”) has been held out as the best agency to implement this new regulation. But for any such legislation to be effective, it must protect the courageous whistleblowers who risk their careers to expose data breaches and unauthorized use of consumers’ private data.

Whistleblowers strengthen regulatory regimes, and cybersecurity regulation would be no exception. Republican and Democratic leaders from the executive and legislative branches have extolled the virtues of whistleblowers. High-profile cases abound. Recently, Christopher Wylie exposed Cambridge Analytica’s misuse of Facebook user data to manipulate voters, including its apparent theft of data from 50 million Facebook users as part of a psychological profiling campaign. Though additional research is needed, the existing empirical data reinforces the consensus that whistleblowers help prevent, detect, and remedy misconduct. Therefore it is reasonable to conclude that protecting and incentivizing whistleblowers could help the government address the many complex challenges facing our nation’s information systems.

Visiting the NSA

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/visiting_the_ns.html

Yesterday, I visited the NSA. It was Cyber Command’s birthday, but that’s not why I was there. I visited as part of the Berklett Cybersecurity Project, run out of the Berkman Klein Center and funded by the Hewlett Foundation. (BERKman hewLETT — get it? We have a web page, but it’s badly out of date.)

It was a full day of meetings, all unclassified but under the Chatham House Rule. Gen. Nakasone welcomed us and took questions at the start. Various senior officials spoke with us on a variety of topics, but mostly focused on three areas:

  • Russian influence operations, both what the NSA and US Cyber Command did during the 2018 election and what they can do in the future;
  • China and the threats to critical infrastructure from untrusted computer hardware, both the 5G network and more broadly;

  • Machine learning, both how to ensure a ML system is compliant with all laws, and how ML can help with other compliance tasks.

It was all interesting. Those first two topics are ones that I am thinking and writing about, and it was good to hear their perspective. I find that I am much more closely aligned with the NSA about cybersecurity than I am about privacy, which made the meeting much less fraught than it would have been if we were discussing Section 702 of the FISA Amendments Act, Section 215 the USA Freedom Act (up for renewal next year), or any 4th Amendment violations. I don’t think we’re past those issues by any means, but they make up less of what I am working on.

Cybersecurity for the Public Interest

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/cybersecurity_f_2.html

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism­ — as practiced by the Internet companies that are already spying on everyone — ­matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?

The problem is that almost no policymakers are discussing this policy issue from a technologically informed perspective, and very few technologists truly understand the policy contours of the debate. The result is both sides consistently talking past each other, and policy proposals­ — that occasionally become law­ — that are technological disasters.

This isn’t sustainable, either for this issue or any of the other policy issues surrounding Internet security. We need policymakers who understand technology, but we also need cybersecurity technologists who understand — ­and are involved in — ­policy. We need public-interest technologists.

Let’s pause at that term. The Ford Foundation defines public-interest technologists as “technology practitioners who focus on social justice, the common good, and/or the public interest.” A group of academics recently wrote that public-interest technologists are people who “study the application of technology expertise to advance the public interest, generate public benefits, or promote the public good.” Tim Berners-Lee has called them “philosophical engineers.” I think of public-interest technologists as people who combine their technological expertise with a public-interest focus: by working on tech policy, by working on a tech project with a public benefit, or by working as a traditional technologist for an organization with a public benefit. Maybe it’s not the best term­ — and I know not everyone likes it­ — but it’s a decent umbrella term that can encompass all these roles.

We need public-interest technologists in policy discussions. We need them on congressional staff, in federal agencies, at non-governmental organizations (NGOs), in academia, inside companies, and as part of the press. In our field, we need them to get involved in not only the Crypto Wars, but everywhere cybersecurity and policy touch each other: the vulnerability equities debate, election security, cryptocurrency policy, Internet of Things safety and security, big data, algorithmic fairness, adversarial machine learning, critical infrastructure, and national security. When you broaden the definition of Internet security, many additional areas fall within the intersection of cybersecurity and policy. Our particular expertise and way of looking at the world is critical for understanding a great many technological issues, such as net neutrality and the regulation of critical infrastructure. I wouldn’t want to formulate public policy about artificial intelligence and robotics without a security technologist involved.

Public-interest technology isn’t new. Many organizations are working in this area, from older organizations like EFF and EPIC to newer ones like Verified Voting and Access Now. Many academic classes and programs combine technology and public policy. My cybersecurity policy class at the Harvard Kennedy School is just one example. Media startups like The Markup are doing technology-driven journalism. There are even programs and initiatives related to public-interest technology inside for-profit corporations.

This might all seem like a lot, but it’s really not. There aren’t enough people doing it, there aren’t enough people who know it needs to be done, and there aren’t enough places to do it. We need to build a world where there is a viable career path for public-interest technologists.

There are many barriers. There’s a report titled A Pivotal Moment that includes this quote: “While we cite individual instances of visionary leadership and successful deployment of technology skill for the public interest, there was a consensus that a stubborn cycle of inadequate supply, misarticulated demand, and an inefficient marketplace stymie progress.”

That quote speaks to the three places for intervention. One: the supply side. There just isn’t enough talent to meet the eventual demand. This is especially acute in cybersecurity, which has a talent problem across the field. Public-interest technologists are a diverse and multidisciplinary group of people. Their backgrounds come from technology, policy, and law. We also need to foster diversity within public-interest technology; the populations using the technology must be represented in the groups that shape the technology. We need a variety of ways for people to engage in this sphere: ways people can do it on the side, for a couple of years between more traditional technology jobs, or as a full-time rewarding career. We need public-interest technology to be part of every core computer-science curriculum, with “clinics” at universities where students can get a taste of public-interest work. We need technology companies to give people sabbaticals to do this work, and then value what they’ve learned and done.

Two: the demand side. This is our biggest problem right now; not enough organizations understand that they need technologists doing public-interest work. We need jobs to be funded across a wide variety of NGOs. We need staff positions throughout the government: executive, legislative, and judiciary branches. President Obama’s US Digital Service should be expanded and replicated; so should Code for America. We need more press organizations that perform this kind of work.

Three: the marketplace. We need job boards, conferences, and skills exchanges­ — places where people on the supply side can learn about the demand.

Major foundations are starting to provide funding in this space: the Ford and MacArthur Foundations in particular, but others as well.

This problem in our field has an interesting parallel with the field of public-interest law. In the 1960s, there was no such thing as public-interest law. The field was deliberately created, funded by organizations like the Ford Foundation. They financed legal aid clinics at universities, so students could learn housing, discrimination, or immigration law. They funded fellowships at organizations like the ACLU and the NAACP. They created a world where public-interest law is valued, where all the partners at major law firms are expected to have done some public-interest work. Today, when the ACLU advertises for a staff attorney, paying one-third to one-tenth normal salary, it gets hundreds of applicants. Today, 20% of Harvard Law School graduates go into public-interest law, and the school has soul-searching seminars because that percentage is so low. Meanwhile, the percentage of computer-science graduates going into public-interest work is basically zero.

This is bigger than computer security. Technology now permeates society in a way it didn’t just a couple of decades ago, and governments move too slowly to take this into account. That means technologists now are relevant to all sorts of areas that they had no traditional connection to: climate change, food safety, future of work, public health, bioengineering.

More generally, technologists need to understand the policy ramifications of their work. There’s a pervasive myth in Silicon Valley that technology is politically neutral. It’s not, and I hope most people reading this today knows that. We built a world where programmers felt they had an inherent right to code the world as they saw fit. We were allowed to do this because, until recently, it didn’t matter. Now, too many issues are being decided in an unregulated capitalist environment where significant social costs are too often not taken into account.

This is where the core issues of society lie. The defining political question of the 20th century was: “What should be governed by the state, and what should be governed by the market?” This defined the difference between East and West, and the difference between political parties within countries. The defining political question of the first half of the 21st century is: “How much of our lives should be governed by technology, and under what terms?” In the last century, economists drove public policy. In this century, it will be technologists.

The future is coming faster than our current set of policy tools can deal with. The only way to fix this is to develop a new set of policy tools with the help of technologists. We need to be in all aspects of public-interest work, from informing policy to creating tools all building the future. The world needs all of our help.

This essay previously appeared in the January/February 2019 issue of IEEE Security & Privacy. I maintain a public-interest tech resources page here.

Why Isn’t GDPR Being Enforced?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/05/why_isnt_gdpr_b.html

Politico has a long article making the case that the lead GDPR regulator, Ireland, has too cozy a relationship with Silicon Valley tech companies to effectively regulate their privacy practices.

Despite its vows to beef up its threadbare regulatory apparatus, Ireland has a long history of catering to the very companies it is supposed to oversee, having wooed top Silicon Valley firms to the Emerald Isle with promises of low taxes, open access to top officials, and help securing funds to build glittering new headquarters.

Now, data-privacy experts and regulators in other countries alike are questioning Ireland’s commitment to policing imminent privacy concerns like Facebook’s reintroduction of facial recognition software and data sharing with its recently purchased subsidiary WhatsApp, and Google’s sharing of information across its burgeoning number of platforms.

More on the Triton Malware

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/04/more_on_the_tri.html

FireEye is releasing much more information about the Triton malware that attacks critical infrastructure. It has been discovered in more places.

This is also a good — but older — article on Triton. We don’t know who wrote it. Initial speculation was Iran; more recent speculation is Russia. Both are still speculations.

Fireeye report. BoingBoing post.

An Argument that Cybersecurity Is Basically Okay

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/an_argument_tha.html

Andrew Odlyzko’s new essay is worth reading — “Cybersecurity is not very important“:

Abstract: There is a rising tide of security breaches. There is an even faster rising tide of hysteria over the ostensible reason for these breaches, namely the deficient state of our information infrastructure. Yet the world is doing remarkably well overall, and has not suffered any of the oft-threatened giant digital catastrophes. This continuing general progress of society suggests that cyber security is not very important. Adaptations to cyberspace of techniques that worked to protect the traditional physical world have been the main means of mitigating the problems that occurred. This “chewing gum and baling wire”approach is likely to continue to be the basic method of handling problems that arise, and to provide adequate levels of security.

I am reminded of these two essays. And, as I said in the blog post about those two essays:

This is true, and is something I worry will change in a world of physically capable computers. Automation, autonomy, and physical agency will make computer security a matter of life and death, and not just a matter of data.

Cybersecurity Insurance Not Paying for NotPetya Losses

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/cybersecurity_i_2.html

This will complicate things:

To complicate matters, having cyber insurance might not cover everyone’s losses. Zurich American Insurance Company refused to pay out a $100 million claim from Mondelez, saying that since the U.S. and other governments labeled the NotPetya attack as an action by the Russian military their claim was excluded under the “hostile or warlike action in time of peace or war” exemption.

I get that $100 million is real money, but the insurance industry needs to figure out how to properly insure commercial networks against this sort of thing.

Cybersecurity for the Public Interest

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/03/cybersecurity_f_1.html

The Crypto Wars have been waging off-and-on for a quarter-century. On one side is law enforcement, which wants to be able to break encryption, to access devices and communications of terrorists and criminals. On the other are almost every cryptographer and computer security expert, repeatedly explaining that there’s no way to provide this capability without also weakening the security of every user of those devices and communications systems.

It’s an impassioned debate, acrimonious at times, but there are real technologies that can be brought to bear on the problem: key-escrow technologies, code obfuscation technologies, and backdoors with different properties. Pervasive surveillance capitalism — ­as practiced by the Internet companies that are already spying on everyone­ — matters. So does society’s underlying security needs. There is a security benefit to giving access to law enforcement, even though it would inevitably and invariably also give that access to others. However, there is also a security benefit of having these systems protected from all attackers, including law enforcement. These benefits are mutually exclusive. Which is more important, and to what degree?

The problem is that almost no policymakers are discussing this policy issue from a technologically informed perspective, and very few technologists truly understand the policy contours of the debate. The result is both sides consistently talking past each other, and policy proposals — ­that occasionally become law­ — that are technological disasters.

This isn’t sustainable, either for this issue or any of the other policy issues surrounding Internet security. We need policymakers who understand technology, but we also need cybersecurity technologists who understand­ — and are involved in — ­policy. We need public-interest technologists.

Let’s pause at that term. The Ford Foundation defines public-interest technologists as “technology practitioners who focus on social justice, the common good, and/or the public interest.” A group of academics recently wrote that public-interest technologists are people who “study the application of technology expertise to advance the public interest, generate public benefits, or promote the public good.” Tim Berners-Lee has called them “philosophical engineers.” I think of public-interest technologists as people who combine their technological expertise with a public-interest focus: by working on tech policy, by working on a tech project with a public benefit, or by working as a traditional technologist for an organization with a public benefit. Maybe it’s not the best term­ — and I know not everyone likes it­ — but it’s a decent umbrella term that can encompass all these roles.

We need public-interest technologists in policy discussions. We need them on congressional staff, in federal agencies, at non-governmental organizations (NGOs), in academia, inside companies, and as part of the press. In our field, we need them to get involved in not only the Crypto Wars, but everywhere cybersecurity and policy touch each other: the vulnerability equities debate, election security, cryptocurrency policy, Internet of Things safety and security, big data, algorithmic fairness, adversarial machine learning, critical infrastructure, and national security. When you broaden the definition of Internet security, many additional areas fall within the intersection of cybersecurity and policy. Our particular expertise and way of looking at the world is critical for understanding a great many technological issues, such as net neutrality and the regulation of critical infrastructure. I wouldn’t want to formulate public policy about artificial intelligence and robotics without a security technologist involved.

Public-interest technology isn’t new. Many organizations are working in this area, from older organizations like EFF and EPIC to newer ones like Verified Voting and Access Now. Many academic classes and programs combine technology and public policy. My cybersecurity policy class at the Harvard Kennedy School is just one example. Media startups like The Markup are doing technology-driven journalism. There are even programs and initiatives related to public-interest technology inside for-profit corporations.

This might all seem like a lot, but it’s really not. There aren’t enough people doing it, there aren’t enough people who know it needs to be done, and there aren’t enough places to do it. We need to build a world where there is a viable career path for public-interest technologists.

There are many barriers. There’s a report titled A Pivotal Moment that includes this quote: “While we cite individual instances of visionary leadership and successful deployment of technology skill for the public interest, there was a consensus that a stubborn cycle of inadequate supply, misarticulated demand, and an inefficient marketplace stymie progress.”

That quote speaks to the three places for intervention. One: the supply side. There just isn’t enough talent to meet the eventual demand. This is especially acute in cybersecurity, which has a talent problem across the field. Public-interest technologists are a diverse and multidisciplinary group of people. Their backgrounds come from technology, policy, and law. We also need to foster diversity within public-interest technology; the populations using the technology must be represented in the groups that shape the technology. We need a variety of ways for people to engage in this sphere: ways people can do it on the side, for a couple of years between more traditional technology jobs, or as a full-time rewarding career. We need public-interest technology to be part of every core computer-science curriculum, with “clinics” at universities where students can get a taste of public-interest work. We need technology companies to give people sabbaticals to do this work, and then value what they’ve learned and done.

Two: the demand side. This is our biggest problem right now; not enough organizations understand that they need technologists doing public-interest work. We need jobs to be funded across a wide variety of NGOs. We need staff positions throughout the government: executive, legislative, and judiciary branches. President Obama’s US Digital Service should be expanded and replicated; so should Code for America. We need more press organizations that perform this kind of work.

Three: the marketplace. We need job boards, conferences, and skills exchanges­ — places where people on the supply side can learn about the demand.

Major foundations are starting to provide funding in this space: the Ford and MacArthur Foundations in particular, but others as well.

This problem in our field has an interesting parallel with the field of public-interest law. In the 1960s, there was no such thing as public-interest law. The field was deliberately created, funded by organizations like the Ford Foundation. They financed legal aid clinics at universities, so students could learn housing, discrimination, or immigration law. They funded fellowships at organizations like the ACLU and the NAACP. They created a world where public-interest law is valued, where all the partners at major law firms are expected to have done some public-interest work. Today, when the ACLU advertises for a staff attorney, paying one-third to one-tenth normal salary, it gets hundreds of applicants. Today, 20% of Harvard Law School graduates go into public-interest law, and the school has soul-searching seminars because that percentage is so low. Meanwhile, the percentage of computer-science graduates going into public-interest work is basically zero.

This is bigger than computer security. Technology now permeates society in a way it didn’t just a couple of decades ago, and governments move too slowly to take this into account. That means technologists now are relevant to all sorts of areas that they had no traditional connection to: climate change, food safety, future of work, public health, bioengineering.

More generally, technologists need to understand the policy ramifications of their work. There’s a pervasive myth in Silicon Valley that technology is politically neutral. It’s not, and I hope most people reading this today knows that. We built a world where programmers felt they had an inherent right to code the world as they saw fit. We were allowed to do this because, until recently, it didn’t matter. Now, too many issues are being decided in an unregulated capitalist environment where significant social costs are too often not taken into account.

This is where the core issues of society lie. The defining political question of the 20th century was: “What should be governed by the state, and what should be governed by the market?” This defined the difference between East and West, and the difference between political parties within countries. The defining political question of the first half of the 21st century is: “How much of our lives should be governed by technology, and under what terms?” In the last century, economists drove public policy. In this century, it will be technologists.

The future is coming faster than our current set of policy tools can deal with. The only way to fix this is to develop a new set of policy tools with the help of technologists. We need to be in all aspects of public-interest work, from informing policy to creating tools all building the future. The world needs all of our help.

This essay previously appeared in the January/February issue of IEEE Security & Privacy.

Together with the Ford Foundation, I am hosting a one-day mini-track on public-interest technologists at the RSA Conference this week on Thursday. We’ve had some press coverage.

Edited to Add (3/7): More news articles.

Gen. Nakasone on US Cyber Command

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/gen_nakasone_on.html

Really interesting article by and interview with Paul M. Nakasone (Commander of US Cyber Command, Director of the National Security Agency, and Chief of the Central Security Service) in the current issue of Joint Forces Quarterly. He talks about the evolving role of US Cyber Command, and its new posture of “persistent engagement” using a “cyber-persistant force.”

From the article:

We must “defend forward” in cyberspace, as we do in the physical domains. Our naval forces do not defend by staying in port, and our airpower does not remain at airfields. They patrol the seas and skies to ensure they are positioned to defend our country before our borders are crossed. The same logic applies in cyberspace. Persistent engagement of our adversaries in cyberspace cannot be successful if our actions are limited to DOD networks. To defend critical military and national interests, our forces must operate against our enemies on their virtual territory as well. Shifting from a response outlook to a persistence force that defends forward moves our cyber capabilities out of their virtual garrisons, adopting a posture that matches the cyberspace operational environment.

From the interview:

As we think about cyberspace, we should agree on a few foundational concepts. First, our nation is in constant contact with its adversaries; we’re not waiting for adversaries to come to us. Our adversaries understand this, and they are always working to improve that contact. Second, our security is challenged in cyberspace. We have to actively defend; we have to conduct reconnaissance; we have to understand where our adversary is and his capabilities; and we have to understand their intent. Third, superiority in cyberspace is temporary; we may achieve it for a period of time, but it’s ephemeral. That’s why we must operate continuously to seize and maintain the initiative in the face of persistent threats. Why do the threats persist in cyberspace? They persist because the barriers to entry are low and the capabilities are rapidly available and can be easily repurposed. Fourth, in this domain, the advantage favors those who have initiative. If we want to have an advantage in cyberspace, we have to actively work to either improve our defenses, create new accesses, or upgrade our capabilities. This is a domain that requires constant action because we’re going to get reactions from our adversary.

[…]

Persistent engagement is the concept that states we are in constant contact with our adversaries in cyberspace, and success is determined by how we enable and act. In persistent engagement, we enable other interagency partners. Whether it’s the FBI or DHS, we enable them with information or intelligence to share with elements of the CIKR [critical infrastructure and key resources] or with select private-sector companies. The recent midterm elections is an example of how we enabled our partners. As part of the Russia Small Group, USCYBERCOM and the National Security Agency [NSA] enabled the FBI and DHS to prevent interference and influence operations aimed at our political processes. Enabling our partners is two-thirds of persistent engagement. The other third rests with our ability to act — that is, how we act against our adversaries in cyberspace. Acting includes defending forward. How do we warn, how do we influence our adversaries, how do we position ourselves in case we have to achieve outcomes in the future? Acting is the concept of operating outside our borders, being outside our networks, to ensure that we understand what our adversaries are doing. If we find ourselves defending inside our own networks, we have lost the initiative and the advantage.

[…]

The concept of persistent engagement has to be teamed with “persistent presence” and “persistent innovation.” Persistent presence is what the Intelligence Community is able to provide us to better understand and track our adversaries in cyberspace. The other piece is persistent innovation. In the last couple of years, we have learned that capabilities rapidly change; accesses are tenuous; and tools, techniques, and tradecraft must evolve to keep pace with our adversaries. We rely on operational structures that are enabled with the rapid development of capabilities. Let me offer an example regarding the need for rapid change in technologies. Compare the air and cyberspace domains. Weapons like JDAMs [Joint Direct Attack Munitions] are an important armament for air operations. How long are those JDAMs good for? Perhaps 5, 10, or 15 years, some-times longer given the adversary. When we buy a capability or tool for cyberspace…we rarely get a prolonged use we can measure in years. Our capabilities rarely last 6 months, let alone 6 years. This is a big difference in two important domains of future conflict. Thus, we will need formations that have ready access to developers.

Solely from a military perspective, these are obviously the right things to be doing. From a societal perspective — from the perspective a potential arms race — I’m much less sure. I’m also worried about the singular focus on nation-state actors in an environment where capabilities diffuse so quickly. But Cyber Command’s job is not cybersecurity and resilience.

The whole thing is worth reading, regardless of whether you agree or disagree.

EDITED TO ADD (2/26): As an example US CyberCommand disrupted a Russian troll farm during the 2018 midterm elections.

Cyberinsurance and Acts of War

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/02/cyberinsurance_.html

I had not heard about this case before. Zurich Insurance has refused to pay Mondelez International’s claim of $100 million in damages from NotPetya. It claims it is an act of war and therefor not covered. Mondelez is suing.

Those turning to cyber insurance to manage their exposure presently face significant uncertainties about its promise. First, the scope of cyber risks vastly exceeds available coverage, as cyber perils cut across most areas of commercial insurance in an unprecedented manner: direct losses to policyholders and third-party claims (clients, customers, etc.); financial, physical and IP damages; business interruption, and so on. Yet no cyber insurance policies cover this entire spectrum. Second, the scope of cyber-risk coverage under existing policies, whether traditional general liability or property policies or cyber-specific policies, is rarely comprehensive (to cover all possible cyber perils) and often unclear (i.e., it does not explicitly pertain to all manifestations of cyber perils, or it explicitly excludes some).

But it is in the public interest for Zurich and its peers to expand their role in managing cyber risk. In its ideal state, a mature cyber insurance market could go beyond simply absorbing some of the damage of cyberattacks and play a more fundamental role in engineering and managing cyber risk. It would allow analysis of data across industries to understand risk factors and develop common metrics and scalable solutions. It would allow researchers to pinpoint sources of aggregation risk, such as weak spots in widely relied-upon software and hardware platforms and services. Through its financial levers, the insurance industry can turn these insights into action, shaping private-sector behavior and promoting best practices internationally. Such systematic efforts to improve and incentivize cyber-risk management would redress the conditions that made NotPetya possible in the first place. This, in turn, would diminish the onus on governments to retaliate against attacks.

Hacking the GCHQ Backdoor

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2019/01/hacking_the_gch.html

Last week, I evaluated the security of a recent GCHQ backdoor proposal for communications systems. Furthering the debate, Nate Cardozo and Seth Schoen of EFF explain how this sort of backdoor can be detected:

In fact, we think when the ghost feature is active­ — silently inserting a secret eavesdropping member into an otherwise end-to-end encrypted conversation in the manner described by the GCHQ authors­ — it could be detected (by the target as well as certain third parties) with at least four different techniques: binary reverse engineering, cryptographic side channels, network-traffic analysis, and crash log analysis. Further, crash log analysis could lead unrelated third parties to find evidence of the ghost in use, and it’s even possible that binary reverse engineering could lead researchers to find ways to disable the ghost capability on the client side. It should be obvious that none of these possibilities are desirable for law enforcement or society as a whole. And while we’ve theorized some types of mitigations that might make the ghost less detectable by particular techniques, they could also impose considerable costs to the network when deployed at the necessary scale, as well as creating new potential security risks or detection methods.

Other critiques of the system were written by Susan Landau and Matthew Green.

EDITED TO ADD (1/26): Good commentary on how to defeat the backdoor detection.

New whitepaper: Achieving Operational Resilience in the Financial Sector and Beyond

Post Syndicated from Rahul Prabhakar original https://aws.amazon.com/blogs/security/new-whitepaper-achieving-operational-resilience-in-the-financial-sector-and-beyond/

AWS has released a new whitepaper, Amazon Web Services’ Approach to Operational Resilience in the Financial Sector and Beyond, in which we discuss how AWS and customers build for resiliency on the AWS cloud. We’re constantly amazed at the applications our customers build using AWS services — including what our financial services customers have built, from credit risk simulations to mobile banking applications. Depending on their internal and regulatory requirements, financial services companies may need to meet specific resiliency objectives and withstand low-probability events that could otherwise disrupt their businesses. We know that financial regulators are also interested in understanding how the AWS cloud allows customers to meet those objectives. This new whitepaper addresses these topics.

The paper walks through the AWS global infrastructure and how we build to withstand failures. Reflecting how AWS and customers share responsibility for resilience, the paper also outlines how a financial institution can build mission-critical applications to leverage, for example, multiple Availability Zones to improve their resiliency compared to a traditional, on-premises environment.

Security and resiliency remain our highest priority. We encourage you to check out the paper and provide feedback. We’d love to hear from you, so don’t hesitate to get in touch with us by reaching out to your account executive or contacting AWS Support.

Want more AWS Security how-to content, news, and feature announcements? Follow us on Twitter.

Security Vulnerabilities in US Weapons Systems

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/10/security_vulner_17.html

The US Government Accounting Office just published a new report: “Weapons Systems Cyber Security: DOD Just Beginning to Grapple with Scale of Vulnerabilities” (summary here). The upshot won’t be a surprise to any of my regular readers: they’re vulnerable.

From the summary:

Automation and connectivity are fundamental enablers of DOD’s modern military capabilities. However, they make weapon systems more vulnerable to cyber attacks. Although GAO and others have warned of cyber risks for decades, until recently, DOD did not prioritize weapon systems cybersecurity. Finally, DOD is still determining how best to address weapon systems cybersecurity.

In operational testing, DOD routinely found mission-critical cyber vulnerabilities in systems that were under development, yet program officials GAO met with believed their systems were secure and discounted some test results as unrealistic. Using relatively simple tools and techniques, testers were able to take control of systems and largely operate undetected, due in part to basic issues such as poor password management and unencrypted communications. In addition, vulnerabilities that DOD is aware of likely represent a fraction of total vulnerabilities due to testing limitations. For example, not all programs have been tested and tests do not reflect the full range of threats.

It is definitely easier, and cheaper, to ignore the problem or pretend it isn’t a big deal. But that’s probably a mistake in the long run.