Tag Archives: artificial intelligence

AI in the Cloud Market: AWS & Microsoft Lend a Big Hand

Post Syndicated from Chris De Santis original https://www.anchor.com.au/blog/2017/10/aws-microsoft-launch-ai-platform/

Artificial intelligence (or AI) doesn’t necessarily play a big role in the current cloud hosting market, but Amazon Web Services (AWS) and Microsoft are looking to change that.

AI is starting to grow at an alarming rate and may be a significant role-player in the near future. According to Bernie Trudel, chairman of the Asia Cloud Computing Association (ACCA), AI “will become the killer application that will drive cloud computing forward”. He continues to mention that, although AI only accounts for 1% of the today’s global cloud computing market, its overall IT market share is growing at 52%, and its expected to rapidly grow to 10% of cloud revenue by 2025.

Trudel made notable that, although the big players in the cloud game are currently offering AI capabilities, the cloud-based AI market is still in its early stages. These big players include AWS, Microsoft, Google, and IBM. He also continues to state that AWS is certainly the leader in the cloud market, but they’re playing catch-up in terms of an AI perspective.

AWS 💘 Microsoft?

Here’s the funny bit–that a day or two after Trudel said all of this at Cloud Expo Asia, AWS announce (on their blog) their combined effort with Microsoft to create a new open-source deep-learning interface that “allows developers to more easily and quickly build machine learning models”. In other words, Gluon is an AI application for developers to create their own AI models, to the benefit of their own cloud applications and technical endeavours.

If you’d like to learn more about Gluon and the details of the project, head over to the AWS blog here.

AWS + Microsoft

 

The post AI in the Cloud Market: AWS & Microsoft Lend a Big Hand appeared first on AWS Managed Services by Anchor.

Introducing Gluon: a new library for machine learning from AWS and Microsoft

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/introducing-gluon-a-new-library-for-machine-learning-from-aws-and-microsoft/

Post by Dr. Matt Wood

Today, AWS and Microsoft announced Gluon, a new open source deep learning interface which allows developers to more easily and quickly build machine learning models, without compromising performance.

Gluon Logo

Gluon provides a clear, concise API for defining machine learning models using a collection of pre-built, optimized neural network components. Developers who are new to machine learning will find this interface more familiar to traditional code, since machine learning models can be defined and manipulated just like any other data structure. More seasoned data scientists and researchers will value the ability to build prototypes quickly and utilize dynamic neural network graphs for entirely new model architectures, all without sacrificing training speed.

Gluon is available in Apache MXNet today, a forthcoming Microsoft Cognitive Toolkit release, and in more frameworks over time.

Neural Networks vs Developers
Machine learning with neural networks (including ‘deep learning’) has three main components: data for training; a neural network model, and an algorithm which trains the neural network. You can think of the neural network in a similar way to a directed graph; it has a series of inputs (which represent the data), which connect to a series of outputs (the prediction), through a series of connected layers and weights. During training, the algorithm adjusts the weights in the network based on the error in the network output. This is the process by which the network learns; it is a memory and compute intensive process which can take days.

Deep learning frameworks such as Caffe2, Cognitive Toolkit, TensorFlow, and Apache MXNet are, in part, an answer to the question ‘how can we speed this process up? Just like query optimizers in databases, the more a training engine knows about the network and the algorithm, the more optimizations it can make to the training process (for example, it can infer what needs to be re-computed on the graph based on what else has changed, and skip the unaffected weights to speed things up). These frameworks also provide parallelization to distribute the computation process, and reduce the overall training time.

However, in order to achieve these optimizations, most frameworks require the developer to do some extra work: specifically, by providing a formal definition of the network graph, up-front, and then ‘freezing’ the graph, and just adjusting the weights.

The network definition, which can be large and complex with millions of connections, usually has to be constructed by hand. Not only are deep learning networks unwieldy, but they can be difficult to debug and it’s hard to re-use the code between projects.

The result of this complexity can be difficult for beginners and is a time-consuming task for more experienced researchers. At AWS, we’ve been experimenting with some ideas in MXNet around new, flexible, more approachable ways to define and train neural networks. Microsoft is also a contributor to the open source MXNet project, and were interested in some of these same ideas. Based on this, we got talking, and found we had a similar vision: to use these techniques to reduce the complexity of machine learning, making it accessible to more developers.

Enter Gluon: dynamic graphs, rapid iteration, scalable training
Gluon introduces four key innovations.

  1. Friendly API: Gluon networks can be defined using a simple, clear, concise code – this is easier for developers to learn, and much easier to understand than some of the more arcane and formal ways of defining networks and their associated weighted scoring functions.
  2. Dynamic networks: the network definition in Gluon is dynamic: it can bend and flex just like any other data structure. This is in contrast to the more common, formal, symbolic definition of a network which the deep learning framework has to effectively carve into stone in order to be able to effectively optimizing computation during training. Dynamic networks are easier to manage, and with Gluon, developers can easily ‘hybridize’ between these fast symbolic representations and the more friendly, dynamic ‘imperative’ definitions of the network and algorithms.
  3. The algorithm can define the network: the model and the training algorithm are brought much closer together. Instead of separate definitions, the algorithm can adjust the network dynamically during definition and training. Not only does this mean that developers can use standard programming loops, and conditionals to create these networks, but researchers can now define even more sophisticated algorithms and models which were not possible before. They are all easier to create, change, and debug.
  4. High performance operators for training: which makes it possible to have a friendly, concise API and dynamic graphs, without sacrificing training speed. This is a huge step forward in machine learning. Some frameworks bring a friendly API or dynamic graphs to deep learning, but these previous methods all incur a cost in terms of training speed. As with other areas of software, abstraction can slow down computation since it needs to be negotiated and interpreted at run time. Gluon can efficiently blend together a concise API with the formal definition under the hood, without the developer having to know about the specific details or to accommodate the compiler optimizations manually.

The team here at AWS, and our collaborators at Microsoft, couldn’t be more excited to bring these improvements to developers through Gluon. We’re already seeing quite a bit of excitement from developers and researchers alike.

Getting started with Gluon
Gluon is available today in Apache MXNet, with support coming for the Microsoft Cognitive Toolkit in a future release. We’re also publishing the front-end interface and the low-level API specifications so it can be included in other frameworks in the fullness of time.

You can get started with Gluon today. Fire up the AWS Deep Learning AMI with a single click and jump into one of 50 fully worked, notebook examples. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

-Dr. Matt Wood

Things Go Better With Step Functions

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/things-go-better-with-step-functions/

I often give presentations on Amazon’s culture of innovation, and start out with a slide that features a revealing quote from Amazon founder Jeff Bezos:

I love to sit down with our customers and to learn how we have empowered their creativity and to pursue their dreams. Earlier this year I chatted with Patrick from The Coca-Cola Company in order to learn how they used AWS Step Functions and other AWS services to support the Coke.com Vending Pass program. This program includes drink rewards earned by purchasing products at vending machines equipped to support mobile payments using the Coca-Cola Vending Pass. Participants swipe their NFC-enabled phones to complete an Apple Pay or Android Pay purchase, identifying themselves to the vending machine and earning credit towards future free vending purchases in the process

After the swipe, a combination of SNS topics and AWS Lambda functions initiated a pair of calls to some existing backend code to count the vending points and update the participant’s record. Unfortunately, the backend code was slow to react and had some timing dependencies, leading to missing updates that had the potential to confuse Vending Pass participants. The initial solution to this issue was very simple: modify the Lambda code to include a 90 second delay between the two calls. This solved the problem, but ate up process time for no good reason (billing for the use of Lambda functions is based on the duration of the request, in 100 ms intervals).

In order to make their solution more cost-effective, the team turned to AWS Step Functions, building a very simple state machine. As I wrote in an earlier blog post, Step Functions coordinate the components of distributed applications and microservices at scale, using visual workflows that are easy to build.

Coke built a very simple state machine to simplify their business logic and reduce their costs. Yours can be equally simple, or they can make use of other Step Function features such as sequential and parallel execution and the ability to make decisions and choose alternate states. The Coke state machine looks like this:

The FirstState and the SecondState states (Task states) call the appropriate Lambda functions while Step Functions implements the 90 second delay (a Wait state). This modification simplified their logic and reduced their costs. Here’s how it all fits together:

 

What’s Next
This initial success led them to take a closer look at serverless computing and to consider using it for other projects. Patrick told me that they have already seen a boost in productivity and developer happiness. Developers no longer need to wait for servers to be provisioned, and can now (as Jeff says) unleash their creativity and pursue their dreams. They expect to use Step Functions to improve the scalability, functionality, and reliability of their applications, going far beyond the initial use for the Coca-Cola Vending Pass. For example, Coke has built a serverless solution for publishing nutrition information to their food service partners using Lambda, Step Functions, and API Gateway.

Patrick and his team are now experimenting with machine learning and artificial intelligence. They built a prototype application to analyze a stream of photos from Instagram and extract trends in tastes and flavors. The application (built as a quick, one-day prototype) made use of Lambda, Amazon DynamoDB, Amazon API Gateway, and Amazon Rekognition and was, in Patrick’s words, a “big win and an enabler.”

In order to build serverless applications even more quickly, the development team has created an internal CI/CD reference architecture that builds on the Serverless Application Framework. The architecture includes a guided tour of Serverless and some boilerplate code to access internal services and assets. Patrick told me that this model allows them to easily scale promising projects from “a guy with a computer” to an entire development team.

Patrick will be on stage at AWS re:Invent next to my colleague Tim Bray. To meet them in person, be sure to attend SRV306 – State Machines in the Wild! How Customers Use AWS Step Functions.

Jeff;

Natural Language Processing at Clemson University – 1.1 Million vCPUs & EC2 Spot Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/natural-language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-instances/

My colleague Sanjay Padhi shared the guest post below in order to recognize an important milestone in the use of EC2 Spot Instances.

Jeff;


A group of researchers from Clemson University achieved a remarkable milestone while studying topic modeling, an important component of machine learning associated with natural language processing, breaking the record for creating the largest high-performance cluster by using more than 1,100,000 vCPUs on Amazon EC2 Spot Instances running in a single AWS region. The researchers conducted nearly half a million topic modeling experiments to study how human language is processed by computers. Topic modeling helps in discovering the underlying themes that are present across a collection of documents. Topic models are important because they are used to forecast business trends and help in making policy or funding decisions. These topic models can be run with many different parameters and the goal of the experiments is to explore how these parameters affect the model outputs.

The Experiment
Professor Amy Apon, Co-Director of the Complex Systems, Analytics and Visualization Institute at Clemson University with Professor Alexander Herzog and graduate students Brandon Posey and Christopher Gropp in collaboration with members of the AWS team as well as AWS Partner Omnibond performed the experiments.  They used software infrastructure based on CloudyCluster that provisions high performance computing clusters on dynamically allocated AWS resources using Amazon EC2 Spot Fleet. Spot Fleet is a collection of biddable spot instances in EC2 responsible for maintaining a target capacity specified during the request. The SLURM scheduler was used as an overlay virtual workload manager for the data analytics workflows. The team developed additional provisioning and workflow automation software as shown below for the design and orchestration of the experiments. This setup allowed them to evaluate various topic models on different data sets with massively parallel parameter sweeps on dynamically allocated AWS resources. This framework can easily be used beyond the current study for other scientific applications that use parallel computing.

Ramping to 1.1 Million vCPUs
The figure below shows elastic, automatic expansion of resources as a function of time, in the US East (Northern Virginia) Region. At just after 21:40 (GMT-1) on Aug. 26, 2017, the number of vCPUs utilized was 1,119,196. Clemson researchers also took advantage of the new per-second billing for the EC2 instances that they launched. The vCPU count usage is comparable to the core count on the largest supercomputers in the world.

Here’s the breakdown of the EC2 instance types that they used:

Campus resources at Clemson funded by the National Science Foundation were used to determine an effective configuration for the AWS experiments as compared to campus resources, and the AWS cloud resources complement the campus resources for large-scale experiments.

Meet the Team
Here’s the team that ran the experiment (Professor Alexander Herzog, graduate students Christopher Gropp and Brandon Posey, and Professor Amy Apon):

Professor Apon said about the experiment:

I am absolutely thrilled with the outcome of this experiment. The graduate students on the project are amazing. They used resources from AWS and Omnibond and developed a new software infrastructure to perform research at a scale and time-to-completion not possible with only campus resources. Per-second billing was a key enabler of these experiments.

Boyd Wilson (CEO, Omnibond, member of the AWS Partner Network) told me:

Participating in this project was exciting, seeing how the Clemson team developed a provisioning and workflow automation tool that tied into CloudyCluster to build a huge Spot Fleet supercomputer in a single region in AWS was outstanding.

About the Experiment
The experiments test parameter combinations on a range of topics and other parameters used in the topic model. The topic model outputs are stored in Amazon S3 and are currently being analyzed. The models have been applied to 17 years of computer science journal abstracts (533,560 documents and 32,551,540 words) and full text papers from the NIPS (Neural Information Processing Systems) Conference (2,484 documents and 3,280,697 words). This study allows the research team to systematically measure and analyze the impact of parameters and model selection on model convergence, topic composition and quality.

Looking Forward
This study constitutes an interaction between computer science, artificial intelligence, and high performance computing. Papers describing the full study are being submitted for peer-reviewed publication. I hope that you enjoyed this brief insight into the ways in which AWS is helping to break the boundaries in the frontiers of natural language processing!

Sanjay Padhi, Ph.D, AWS Research and Technical Computing

 

An intro to machine learning (opensource.com)

Post Syndicated from corbet original https://lwn.net/Articles/734319/rss

Ulrich Drepper, once again an engineer at Red Hat, writes
about machine learning
on opensource.com.
Machine learning and artificial intelligence (ML/AI) mean different
things to different people, but the newest approaches have one thing in
common: They are based on the idea that a program’s output should be
created mostly automatically from a high-dimensional and possibly huge
dataset, with minimal or no intervention or guidance from a human. Open
source tools are used in a variety of machine learning and artificial
intelligence projects. In this article, I’ll provide an overview of the
state of machine learning today.

An intro to machine learning (Opensource.com)

Post Syndicated from corbet original https://lwn.net/Articles/734319/rss

Ulrich Drepper, once again an engineer at Red Hat, writes
about machine learning
on opensource.com.
Machine learning and artificial intelligence (ML/AI) mean different
things to different people, but the newest approaches have one thing in
common: They are based on the idea that a program’s output should be
created mostly automatically from a high-dimensional and possibly huge
dataset, with minimal or no intervention or guidance from a human. Open
source tools are used in a variety of machine learning and artificial
intelligence projects. In this article, I’ll provide an overview of the
state of machine learning today.

Simplify Your Jenkins Builds with AWS CodeBuild

Post Syndicated from Paul Roberts original https://aws.amazon.com/blogs/devops/simplify-your-jenkins-builds-with-aws-codebuild/

Jeff Bezos famously said, “There’s a lot of undifferentiated heavy lifting that stands between your idea and that success.” He went on to say, “…70% of your time, energy, and dollars go into the undifferentiated heavy lifting and only 30% of your energy, time, and dollars gets to go into the core kernel of your idea.”

If you subscribe to this maxim, you should not be spending valuable time focusing on operational issues related to maintaining the Jenkins build infrastructure. Companies such as Riot Games have over 1.25 million builds per year and have written several lengthy blog posts about their experiences designing a complex, custom Docker-powered Jenkins build farm. Dealing with Jenkins slaves at scale is a job in itself and Riot has engineers focused on managing the build infrastructure.

Typical Jenkins Build Farm

 

As with all technology, the Jenkins build farm architectures have evolved. Today, instead of manually building your own container infrastructure, there are Jenkins Docker plugins available to help reduce the operational burden of maintaining these environments. There is also a community-contributed Amazon EC2 Container Service (Amazon ECS) plugin that helps remove some of the overhead, but you still need to configure and manage the overall Amazon ECS environment.

There are various ways to create and manage your Jenkins build farm, but there has to be a way that significantly reduces your operational overhead.

Introducing AWS CodeBuild

AWS CodeBuild is a fully managed build service that removes the undifferentiated heavy lifting of provisioning, managing, and scaling your own build servers. With CodeBuild, there is no software to install, patch, or update. CodeBuild scales up automatically to meet the needs of your development teams. In addition, CodeBuild is an on-demand service where you pay as you go. You are charged based only on the number of minutes it takes to complete your build.

One AWS customer, Recruiterbox, helps companies hire simply and predictably through their software platform. Two years ago, they began feeling the operational pain of maintaining their own Jenkins build farms. They briefly considered moving to Amazon ECS, but chose an even easier path forward instead. Recuiterbox transitioned to using Jenkins with CodeBuild and are very happy with the results. You can read more about their journey here.

Solution Overview: Jenkins and CodeBuild

To remove the heavy lifting from managing your Jenkins build farm, AWS has developed a Jenkins AWS CodeBuild plugin. After the plugin has been enabled, a developer can configure a Jenkins project to pick up new commits from their chosen source code repository and automatically run the associated builds. After the build is successful, it will create an artifact that is stored inside an S3 bucket that you have configured. If an error is detected somewhere, CodeBuild will capture the output and send it to Amazon CloudWatch logs. In addition to storing the logs on CloudWatch, Jenkins also captures the error so you do not have to go hunting for log files for your build.

 

AWS CodeBuild with Jenkins Plugin

 

The following example uses AWS CodeCommit (Git) as the source control management (SCM) and Amazon S3 for build artifact storage. Logs are stored in CloudWatch. A development pipeline that uses Jenkins with CodeBuild plugin architecture looks something like this:

 

AWS CodeBuild Diagram

Initial Solution Setup

To keep this blog post succinct, I assume that you are using the following components on AWS already and have applied the appropriate IAM policies:

·         AWS CodeCommit repo.

·         Amazon S3 bucket for CodeBuild artifacts.

·         SNS notification for text messaging of the Jenkins admin password.

·         IAM user’s key and secret.

·         A role that has a policy with these permissions. Be sure to edit the ARNs with your region, account, and resource name. Use this role in the AWS CloudFormation template referred to later in this post.

 

Jenkins Installation with CodeBuild Plugin Enabled

To make the integration with Jenkins as frictionless as possible, I have created an AWS CloudFormation template here: https://s3.amazonaws.com/proberts-public/jenkins.yaml. Download the template, sign in the AWS CloudFormation console, and then use the template to create a stack.

 

CloudFormation Inputs

Jenkins Project Configuration

After the stack is complete, log in to the Jenkins EC2 instance using the user name “admin” and the password sent to your mobile device. Now that you have logged in to Jenkins, you need to create your first project. Start with a Freestyle project and configure the parameters based on your CodeBuild and CodeCommit settings.

 

AWS CodeBuild Plugin Configuration in Jenkins

 

Additional Jenkins AWS CodeBuild Plugin Configuration

 

After you have configured the Jenkins project appropriately you should be able to check your build status on the Jenkins polling log under your project settings:

 

Jenkins Polling Log

 

Now that Jenkins is polling CodeCommit, you can check the CodeBuild dashboard under your Jenkins project to confirm your build was successful:

Jenkins AWS CodeBuild Dashboard

Wrapping Up

In a matter of minutes, you have been able to provision Jenkins with the AWS CodeBuild plugin. This will greatly simplify your build infrastructure management. Now kick back and relax while CodeBuild does all the heavy lifting!


About the Author

Paul Roberts is a Strategic Solutions Architect for Amazon Web Services. When he is not working on Serverless, DevOps, or Artificial Intelligence, he is often found in Lake Tahoe exploring the various mountain ranges with his family.

AWS Hot Startups – August 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-august-2017/

There’s no doubt about it – Artificial Intelligence is changing the world and how it operates. Across industries, organizations from startups to Fortune 500s are embracing AI to develop new products, services, and opportunities that are more efficient and accessible for their consumers. From driverless cars to better preventative healthcare to smart home devices, AI is driving innovation at a fast rate and will continue to play a more important role in our everyday lives.

This month we’d like to highlight startups using AI solutions to help companies grow. We are pleased to feature:

  • SignalBox – a simple and accessible deep learning platform to help businesses get started with AI.
  • Valossa – an AI video recognition platform for the media and entertainment industry.
  • Kaliber – innovative applications for businesses using facial recognition, deep learning, and big data.

SignalBox (UK)

In 2016, SignalBox founder Alain Richardt was hearing the same comments being made by developers, data scientists, and business leaders. They wanted to get into deep learning but didn’t know where to start. Alain saw an opportunity to commodify and apply deep learning by providing a platform that does the heavy lifting with an easy-to-use web interface, blueprints for common tasks, and just a single-click to productize the models. With SignalBox, companies can start building deep learning models with no coding at all – they just select a data set, choose a network architecture, and go. SignalBox also offers step-by-step tutorials, tips and tricks from industry experts, and consulting services for customers that want an end-to-end AI solution.

SignalBox offers a variety of solutions that are being used across many industries for energy modeling, fraud detection, customer segmentation, insurance risk modeling, inventory prediction, real estate prediction, and more. Existing data science teams are using SignalBox to accelerate their innovation cycle. One innovative UK startup, Energi Mine, recently worked with SignalBox to develop deep networks that predict anomalous energy consumption patterns and do time series predictions on energy usage for businesses with hundreds of sites.

SignalBox uses a variety of AWS services including Amazon EC2, Amazon VPC, Amazon Elastic Block Store, and Amazon S3. The ability to rapidly provision EC2 GPU instances has been a critical factor in their success – both in terms of keeping their operational expenses low, as well as speed to market. The Amazon API Gateway has allowed for operational automation, giving SignalBox the ability to control its infrastructure.

To learn more about SignalBox, visit here.

Valossa (Finland)

As students at the University of Oulu in Finland, the Valossa founders spent years doing research in the computer science and AI labs. During that time, the team witnessed how the world was moving beyond text, with video playing a greater role in day-to-day communication. This spawned an idea to use technology to automatically understand what an audience is viewing and share that information with a global network of content producers. Since 2015, Valossa has been building next generation AI applications to benefit the media and entertainment industry and is moving beyond the capabilities of traditional visual recognition systems.

Valossa’s AI is capable of analyzing any video stream. The AI studies a vast array of data within videos and converts that information into descriptive tags, categories, and overviews automatically. Basically, it sees, hears, and understands videos like a human does. The Valossa AI can detect people, visual and auditory concepts, key speech elements, and labels explicit content to make moderating and filtering content simpler. Valossa’s solutions are designed to provide value for the content production workflow, from media asset management to end-user applications for content discovery. AI-annotated content allows online viewers to jump directly to their favorite scenes or search specific topics and actors within a video.

Valossa leverages AWS to deliver the industry’s first complete AI video recognition platform. Using Amazon EC2 GPU instances, Valossa can easily scale their computation capacity based on customer activity. High-volume video processing with GPU instances provides the necessary speed for time-sensitive workflows. The geo-located Availability Zones in EC2 allow Valossa to bring resources close to their customers to minimize network delays. Valossa also uses Amazon S3 for video ingestion and to provide end-user video analytics, which makes managing and accessing media data easy and highly scalable.

To see how Valossa works, check out www.WhatIsMyMovie.com or enable the Alexa Skill, Valossa Movie Finder. To try the Valossa AI, sign up for free at www.valossa.com.

Kaliber (San Francisco, CA)

Serial entrepreneurs Ray Rahman and Risto Haukioja founded Kaliber in 2016. The pair had previously worked in startups building smart cities and online privacy tools, and teamed up to bring AI to the workplace and change the hospitality industry. Our world is designed to appeal to our senses – stores and warehouses have clearly marked aisles, products are colorfully packaged, and we use these designs to differentiate one thing from another. We tell each other apart by our faces, and previously that was something only humans could measure or act upon. Kaliber is using facial recognition, deep learning, and big data to create solutions for business use. Markets and companies that aren’t typically associated with cutting-edge technology will be able to use their existing camera infrastructure in a whole new way, making them more efficient and better able to serve their customers.

Computer video processing is rapidly expanding, and Kaliber believes that video recognition will extend to far more than security cameras and robots. Using the clients’ network of in-house cameras, Kaliber’s platform extracts key data points and maps them to actionable insights using their machine learning (ML) algorithm. Dashboards connect users to the client’s BI tools via the Kaliber enterprise APIs, and managers can view these analytics to improve their real-world processes, taking immediate corrective action with real-time alerts. Kaliber’s Real Metrics are aimed at combining the power of image recognition with ML to ultimately provide a more meaningful experience for all.

Kaliber uses many AWS services, including Amazon Rekognition, Amazon Kinesis, AWS Lambda, Amazon EC2 GPU instances, and Amazon S3. These services have been instrumental in helping Kaliber meet the needs of enterprise customers in record time.

Learn more about Kaliber here.

Thanks for reading and we’ll see you next month!

-Tina

 

3D print your own Rubik’s Cube Solver

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/rubiks-cube-solver/

Why use logic and your hands to solve a Rubik’s Cube, when you could 3D print your own Rubik’s Cube Solver and thus avoid overexerting your fingers and brain cells? Here to help you with this is Otvinta‘s new robotic make:

Fully 3D-Printed Rubik’s Cube Solving Robot

This 3D-printed Raspberry PI-powered Rubik’s Cube solving robot has everything any serious robot does — arms, servos, gears, vision, artificial intelligence and a task to complete. If you want to introduce robotics to your kids or your students, this is the perfect machine for it. This robot is fully 3D-printable.

Rubik’s Cubes

As Liz has said before, we have a lot of Rubik’s cubes here at Pi Towers. In fact, let me just…hold on…I’ll be right back.

Okay, these are all the ones I found on Gordon’s desk, and I’m 99% sure there are more in his drawers.

Raspberry Pi Rubik's Cube Solver

And that’s just Gordon. Given that there’s a multitude of other Pi Towers staff members who are also obsessed with the little twisty cube of wonder, you could use what you find in our office to restock an entire toy shop for the pre-Christmas rush!

So yeah, we like Rubik’s Cubes.

The 3D-Printable Rubik’s Cube Solver

Aside from the obvious electronic elements, Otvinta’s Rubik’s Cube Solving Robot is completely 3D-printable. While it may take a whopping 70 hours of print time and a whole spool of filament to make your solving robot a reality, we’ve seen far more time-consuming prints with a lot less purpose than this.

(If you’ve clicked the link above, I’d just like to point out that, while that build might be 3D printing overkill, I want one anyway.)

Rubik's Cube Solver

After 3D printing all the necessary parts of your Rubik’s Cube Solving Robot, you’ll need to run the Windows 10 IoT Core on your Raspberry Pi. Once connected to your network, you can select the Pi from the IoT Dashboard on your main PC and install the RubiksCubeRobot app.

Raspberry Pi Rubik's Cube Solver

Then simply configure the robot via the app, and you’re good to go!

You might not necessarily need a Raspberry Pi to create this build, since you could simply run the app on your main PC. However, using a Pi will make your project more manageable and less bulky.

You can find all the details of how to make your own Rubik’s Cube Solving Robot on Otvinta’s website, so do make sure to head over there if you want to learn more.

All the robots!

This isn’t the first Raspberry Pi-powered Rubik’s Cube out there, and it surely won’t be the last. There’s this one by Francesco Georg using LEGO Mindstorms; this one was originally shared on Reddit; Liz wrote about this one; and there’s one more which I can’t seem to find but I swear exists, and it looks like the Eye of Sauron! Ten House Points to whoever shares it with me in the comments below.

The post 3D print your own Rubik’s Cube Solver appeared first on Raspberry Pi.

AWS Hot Startups – July 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-july-2017/

Welcome back to another month of Hot Startups! Every day, startups are creating innovative and exciting businesses, applications, and products around the world. Each month we feature a handful of startups doing cool things using AWS.

July is all about learning! These companies are focused on providing access to tools and resources to expand knowledge and skills in different ways.

This month’s startups:

  • CodeHS – provides fun and accessible computer science curriculum for middle and high schools.
  • Insight – offers intensive fellowships to grow technical talent in Data Science.
  • iTranslate – enables people to read, write, and speak in over 90 languages, anywhere in the world.

CodeHS (San Francisco, CA)

In 2012, Stanford students Zach Galant and Jeremy Keeshin were computer science majors and TAs for introductory classes when they noticed a trend among their peers. Many wished that they had been exposed to computer science earlier in life. In their senior year, Zach and Jeremy launched CodeHS to give middle and high schools the opportunity to provide a fun, accessible computer science education to students everywhere. CodeHS is a web-based curriculum pathway complete with teacher resources, lesson plans, and professional development opportunities. The curriculum is supplemented with time-saving teacher tools to help with lesson planning, grading and reviewing student code, and managing their classroom.

CodeHS aspires to empower all students to meaningfully impact the future, and believe that coding is becoming a new foundational skill, along with reading and writing, that allows students to further explore any interest or area of study. At the time CodeHS was founded in 2012, only 10% of high schools in America offered a computer science course. Zach and Jeremy set out to change that by providing a solution that made it easy for schools and districts to get started. With CodeHS, thousands of teachers have been trained and are teaching hundreds of thousands of students all over the world. To use CodeHS, all that’s needed is the internet and a web browser. Students can write and run their code online, and teachers can immediately see what the students are working on and how they are doing.

Amazon EC2, Amazon RDS, Amazon ElastiCache, Amazon CloudFront, and Amazon S3 make it possible for CodeHS to scale their site to meet the needs of schools all over the world. CodeHS also relies on AWS to compile and run student code in the browser, which is extremely important when teaching server-side languages like Java that powers the AP course. Since usage rises and falls based on school schedules, Amazon CloudWatch and ELBs are used to easily scale up when students are running code so they have a seamless experience.

Be sure to visit the CodeHS website, and to learn more about bringing computer science to your school, click here!

Insight (Palo Alto, CA)

Insight was founded in 2012 to create a new educational model, optimize hiring for data teams, and facilitate successful career transitions among data professionals. Over the last 5 years, Insight has kept ahead of market trends and launched a series of professional training fellowships including Data Science, Health Data Science, Data Engineering, and Artificial Intelligence. Finding individuals with the right skill set, background, and culture fit is a challenge for big companies and startups alike, and Insight is focused on developing top talent through intensive 7-week fellowships. To date, Insight has over 1,000 alumni at over 350 companies including Amazon, Google, Netflix, Twitter, and The New York Times.

The Data Engineering team at Insight is well-versed in the current ecosystem of open source tools and technologies and provides mentorship on the best practices in this space. The technical teams are continually working with external groups in a variety of data advisory and mentorship capacities, but the majority of Insight partners participate in professional sessions. Companies visit the Insight office to speak with fellows in an informal setting and provide details on the type of work they are doing and how their teams are growing. These sessions have proved invaluable as fellows experience a significantly better interview process and companies yield engaged and enthusiastic new team members.

An important aspect of Insight’s fellowships is the opportunity for hands-on work, focusing on everything from building big-data pipelines to contributing novel features to industry-standard open source efforts. Insight provides free AWS resources for all fellows to use, in addition to mentorships from the Data Engineering team. Fellows regularly utilize Amazon S3, Amazon EC2, Amazon Kinesis, Amazon EMR, AWS Lambda, Amazon Redshift, Amazon RDS, among other services. The experience with AWS gives fellows a solid skill set as they transition into the industry. Fellowships are currently being offered in Boston, New York, Seattle, and the Bay Area.

Check out the Insight blog for more information on trends in data infrastructure, artificial intelligence, and cutting-edge data products.

 

iTranslate (Austria)

When the App Store was introduced in 2008, the founders of iTranslate saw an opportunity to be part of something big. The group of four fully believed that the iPhone and apps were going to change the world, and together they brainstormed ideas for their own app. The combination of translation and mobile devices seemed a natural fit, and by 2009 iTranslate was born. iTranslate’s mission is to enable travelers, students, business professionals, employers, and medical staff to read, write, and speak in all languages, anywhere in the world. The app allows users to translate text, voice, websites and more into nearly 100 languages on various platforms. Today, iTranslate is the leading player for conversational translation and dictionary apps, with more than 60 million downloads and 6 million monthly active users.

iTranslate is breaking language barriers through disruptive technology and innovation, enabling people to translate in real time. The app has a variety of features designed to optimize productivity including offline translation, website and voice translation, and language auto detection. iTranslate also recently launched the world’s first ear translation device in collaboration with Bragi, a company focused on smart earphones. The Dash Pro allows people to communicate freely, while having a personal translator right in their ear.

iTranslate started using Amazon Polly soon after it was announced. CEO Alexander Marktl said, “As the leading translation and dictionary app, it is our mission at iTranslate to provide our users with the best possible tools to read, write, and speak in all languages across the globe. Amazon Polly provides us with the ability to efficiently produce and use high quality, natural sounding synthesized speech.” The stable and simple-to-use API, low latency, and free caching allow iTranslate to scale as they continue adding features to their app. Customers also enjoy the option to change speech rate and change between male and female voices. To assure quality, speed, and reliability of their products, iTranslate also uses Amazon EC2, Amazon S3, and Amazon Route 53.

To get started with iTranslate, visit their website here.

—–

Thanks for reading!

-Tina

Google Pi Intercom with the AIY Projects kit

Post Syndicated from Janina Ander original https://www.raspberrypi.org/blog/google-pi-intercom-aiy-projects/

When we released the Google AIY Projects kit with Issue 57 of The MagPi in May, we could hardly wait to see what you in the community would build with it. Being able to add voice interaction to your Raspberry Pi projects opens up a world of possibilities for exciting digital making.

One such project is maker Martin Mander‘s Google Pi Intercom. We love this build for its retro feel and modern functionality, a combination of characteristics shared by many of Martin’s creations.

1986 Google Pi Intercom

This is a 1986 Radio Shack Intercom that I’ve converted into a Google Home style device using a Raspberry Pi and the Google AIY (Artificial Intelligence Yourself) kit that came free with the MagPi magazine (issue 57). It uses the Google Assistant to answer questions and perform actions, using IFTTT to integrate with smart home accessories and other web services.

Inter-com again?

If you’ve paid any attention at all to the world of Raspberry Pi in the last few months, you’ve probably seen the Google AIY Projects kit that came free with The MagPi #57. It includes a practical cardboard housing, but of course makers everywhere have been upgrading their kits, for example by creating a laser-cut wooden box. Martin, however, has taken things to the next level: he’s installed his AIY kit in a wall-mounted intercom from 1986.

Google Pi intercom Martin Mander

The components of the Google Pi Intercom

It’s all (inter)coming together

Martin already had not one, but three vintage intercoms at home. So when he snatched up an AIY Projects kit, there was no doubt in his mind about how he was going to use it:

The moment I scooped the Google AIY kit, I knew that one of these old units would be a perfect match for it – after all, both were essentially based on a button, microphone, and loudspeaker, just with different technology in between.

Preparing the intercom housing

First, Martin gutted the intercom and ground away some of the excess plastic inside. This was necessary because integrating all the components was going to be a tight fit. To overhaul its look, he then gave the housing a good scrub and a new paint job. For a splash of colour, Martin affixed a strip of paper in the palette of the Google logo.

Google Pi intercom Martin Mander

BUBBLES!

Building the Google Pi Intercom

The intercom’s speaker wasn’t going to provide good enough sound quality. Moreover, Martin quickly realised that the one included in the AIY kit was too big for this make. He hunted down a small speaker online, and set about wiring everything up.

Google Pi intercom Martin Mander

Assembling the electronics

Martin wanted the build to resemble the original intercom as closely as possible. Consequently, he was keen to use its tilting bar to activate the device’s voice command function. Luckily, it was easy to mount the AIY kit’s button behind the bar.

Google Pi intercom Martin Mander

Using the intercom’s tilting bar switch

Finally it was only a matter of using some hot glue and a few screws and bolts to secure all the components inside the housing. Once he’d done that, Martin just had to set up the software of the Google Assistant, and presto! He had a voice-controlled smart device for home automation.

A pretty snazzy-looking build, isn’t it? If you’d like to learn more about Martin’s Google Pi Intercom, head over to the Instructables page for a complete rundown.

Google Pi intercom Martin Mander

Awaiting your command

The AIY Projects Kit

Didn’t manage to snap up an AIY Projects kit? Find out how to get your hands on one over at The MagPi.

Or do you have an AIY kit at home? Lucky you! You can follow our shiny new learning resource to get started with using it. There are also lots of handy articles about the kit in The MagPi #57 – download the PDF version here. If you’re stuck, or looking for inspiration, check out our AIY Projects subforum. Ask your questions, and help others by answering theirs.

What have you built with your AIY Projects kit? Be sure to share your voice-controlled project with us in the comments.

 

The post Google Pi Intercom with the AIY Projects kit appeared first on Raspberry Pi.

Journey into Deep Learning with AWS

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/journey-into-deep-learning-with-aws/

If you are anything like me, Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning are completely fascinating and exciting topics. As AI, ML, and Deep Learning become more widely used, for me it means that the science fiction written by Dr. Issac Asimov, the robotics and medical advancements in Star Wars, and the technologies that enabled Captain Kirk and his Star Trek crew “to boldly go where no man has gone before” can become achievable realities.

 

Most people interested in the aforementioned topics are familiar with the AI and ML solutions enabled by Deep Learning, such as Convolutional Neural Networks for Image and Video Classification, Speech Recognition, Natural Language interfaces, and Recommendation Engines. However, it is not always an easy task setting up the infrastructure, environment, and tools to enable data scientists, machine learning practitioners, research scientists, and deep learning hobbyists/advocates to dive into these technologies. Most developers desire to go quickly from getting started with deep learning to training models and developing solutions using deep learning technologies.

For these reasons, I would like to share some resources that will help to quickly build deep learning solutions whether you are an experienced data scientist or a curious developer wanting to get started.

Deep Learning Resources

The Apache MXNet is Amazon’s deep learning framework of choice. With the power of Apache MXNet framework and NVIDIA GPU computing, you can launch your scalable deep learning projects and solutions easily on the AWS Cloud. As you get started on your MxNet deep learning quest, there are a variety of self-service tutorials and datasets available to you:

  • Launch an AWS Deep Learning AMI: This guide walks you through the steps to launch the AWS Deep Learning AMI with Ubuntu
  • MXNet – Create a computer vision application: This hands-on tutorial uses a pre-built notebook to walk you through using neural networks to build a computer vision application to identify handwritten digits
  • AWS Machine Learning Datasets: AWS hosts datasets for Machine Learning on the AWS Marketplace that you can access for free. These large datasets are available for anyone to analyze the data without requiring the data to be downloaded or stored.
  • Predict and Extract – Learn to use pre-trained models for predictions: This hands-on tutorial will walk you through how to use pre-trained model for predicting and feature extraction using the full Imagenet dataset.

 

AWS Deep Learning AMIs

AWS offers Amazon Machine Images (AMIs) for use on Amazon EC2 for quick deployment of an infrastructure needed to start your deep learning journey. The AWS Deep Learning AMIs are pre-configured with popular deep learning frameworks built using Amazon EC2 instances on Amazon Linux, and Ubuntu that can be launched for AI targeted solutions and models. The deep learning frameworks supported and pre-configured on the deep learning AMI are:

  • Apache MXNet
  • TensorFlow
  • Microsoft Cognitive Toolkit (CNTK)
  • Caffe
  • Caffe2
  • Theano
  • Torch
  • Keras

Additionally, the AWS Deep Learning AMIs install preconfigured libraries for Jupyter notebooks with Python 2.7/3.4, AWS SDK for Python, and other data science related python packages and dependencies. The AMIs also come with NVIDIA CUDA and NVIDIA CUDA Deep Neural Network (cuDNN) libraries preinstalled with all the supported deep learning frameworks and the Intel Math Kernel Library is installed for Apache MXNet framework. You can launch any of the Deep Learning AMIs by visiting the AWS Marketplace using the Try the Deep Learning AMIs link.

Summary

It is a great time to dive into Deep Learning. You can accelerate your work in deep learning by using the AWS Deep Learning AMIs running on the AWS cloud to get your deep learning environment running quickly or get started learning more about Deep Learning on AWS with MXNet using the AWS self-service resources.  Of course, you can learn even more information about Deep Learning, Machine Learning, and Artificial Intelligence on AWS by reviewing the AWS Deep Learning page, the Amazon AI product page, and the AWS AI Blog.

May the Deep Learning Force be with you all.

Tara

AWS GovCloud (US) and Amazon Rekognition – A Powerful Public Safety Tool

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-govcloud-us-and-amazon-rekognition-a-powerful-public-safety-tool/

I’ve already told you about Amazon Rekognition and described how it uses deep neural network models to analyze images by detecting objects, scenes, and faces.

Today I am happy to tell you that Rekognition is now available in the AWS GovCloud (US) Region. To learn more, read the Amazon Rekognition FAQ, and the Amazon Rekognition Product Details, review the Amazon Rekognition Customer Use Cases, and then build your app using the information on the Amazon Rekognition for Developers page.

Motorola Solutions for Public Safety
While I have your attention, I would love to tell you how Motorola Solutions is exploring how Rekognition can enhance real-time intelligence for public safety personnel in the field and at the command center.

Motorola Solutions provides over 100,000 public safety and commercial customers in more than 100 countries with software, services, and tools for mobile intelligence and digital evidence management, many powered by images captured using body, dashboard, and stationary cameras. Due to the exceptionally sensitive nature of these images, they must be stored in an environment that meets stringent CJIS (Criminal Justice Information Systems) security standards defined by the FBI.

For several years, researchers at Motorola Solutions have been exploring the use of artificial intelligence. For example, they have built prototype applications that use Rekognition, Lex, and Polly in conjunction with their own software to scan images from a body-worn camera for missing persons and to raise alerts without requiring continuous human attention or interaction. With approximately 100,000 missing people in the US alone, law enforcement agencies need to bring powerful tools to bear. At re:Invent 2016, Dan Law (Chief Data Scientist for Motorola Solutions) described how they use AWS to aid in this effort. Here’s the video (Dan’s section is titled AI for Public Safety):

AWS and CJIS
The applications that Dan described can run in AWS GovCloud (US). This is an isolated cloud built to protect and preserve sensitive IT data while meeting the FBI’s CJIS requirements (and many others). AWS GovCloud (US) resides on US soil and is managed exclusively by US citizens. AWS routinely signs CJIS security agreements with our customers and can either perform or allow background checks on our employees, as needed.

Here are some resources that you can use to learn more about AWS and CJIS:

Jeff;

 

 

AWS Online Tech Talks – June 2017

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-june-2017/

As the sixth month of the year, June is significant in that it is not only my birth month (very special), but it contains the summer solstice in the Northern Hemisphere, the day with the most daylight hours, and the winter solstice in the Southern Hemisphere, the day with the fewest daylight hours. In the United States, June is also the month in which we celebrate our dads with Father’s Day and have month-long celebrations of music, heritage, and the great outdoors.

Therefore, the month of June can be filled with lots of excitement. So why not add even more delight to the month, by enhancing your cloud computing skills. This month’s AWS Online Tech Talks features sessions on Artificial Intelligence (AI), Storage, Big Data, and Compute among other great topics.

June 2017 – Schedule

Noted below are the upcoming scheduled live, online technical sessions being held during the month of June. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts. All schedule times for the online tech talks are shown in the Pacific Time (PDT) time zone.

Webinars featured this month are:

Thursday, June 1

Storage

9:00 AM – 10:00 AM: Deep Dive on Amazon Elastic File System

Big Data

10:30 AM – 11:30 AM: Migrating Big Data Workloads to Amazon EMR

Serverless

12:00 Noon – 1:00 PM: Building AWS Lambda Applications with the AWS Serverless Application Model (AWS SAM)

 

Monday, June 5

Artificial Intelligence

9:00 AM – 9:40 AM: Exploring the Business Use Cases for Amazon Lex

 

Tuesday, June 6

Management Tools

9:00 AM – 9:40 AM: Automated Compliance and Governance with AWS Config and AWS CloudTrail

 

Wednesday, June 7

Storage

9:00 AM – 9:40 AM: Backing up Amazon EC2 with Amazon EBS Snapshots

Big Data

10:30 AM – 11:10 AM: Intro to Amazon Redshift Spectrum: Quickly Query Exabytes of Data in S3

DevOps

12:00 Noon – 12:40 PM: Introduction to AWS CodeStar: Quickly Develop, Build, and Deploy Applications on AWS

 

Thursday, June 8

Artificial Intelligence

9:00 AM – 9:40 AM: Exploring the Business Use Cases for Amazon Polly

10:30 AM – 11:10 AM: Exploring the Business Use Cases for Amazon Rekognition

 

Monday, June 12

Artificial Intelligence

9:00 AM – 9:40 AM: Exploring the Business Use Cases for Amazon Machine Learning

 

Tuesday, June 13

Compute

9:00 AM – 9:40 AM: DevOps with Visual Studio, .NET and AWS

IoT

10:30 AM – 11:10 AM: Create, with Intel, an IoT Gateway and Establish a Data Pipeline to AWS IoT

Big Data

12:00 Noon – 12:40 PM: Real-Time Log Analytics using Amazon Kinesis and Amazon Elasticsearch Service

 

Wednesday, June 14

Containers

9:00 AM – 9:40 AM: Batch Processing with Containers on AWS

Security & Identity

12:00 Noon – 12:40 PM: Using Microsoft Active Directory across On-premises and Cloud Workloads

 

Thursday, June 15

Big Data

12:00 Noon – 1:00 PM: Building Big Data Applications with Serverless Architectures

 

Monday, June 19

Artificial Intelligence

9:00 AM – 9:40 AM: Deep Learning for Data Scientists: Using Apache MxNet and R on AWS

 

Tuesday, June 20

Storage

9:00 AM – 9:40 AM: Cloud Backup & Recovery Options with AWS Partner Solutions

Artificial Intelligence

10:30 AM – 11:10 AM: An Overview of AI on the AWS Platform

 

The AWS Online Tech Talks series covers a broad range of topics at varying technical levels. These sessions feature live demonstrations & customer examples led by AWS engineers and Solution Architects. Check out the AWS YouTube channel for more on-demand webinars on AWS technologies.

Tara

AWS Hot Startups – May 2017

Post Syndicated from Tina Barr original https://aws.amazon.com/blogs/aws/aws-hot-startups-may-2017/

April showers bring May startups! This month we have three hot startups for you to check out. Keep reading to find out what they’re up to, and how they’re using AWS to do it.

Today’s post features the following startups:

  • Lobster – an AI-powered platform connecting creative social media users to professionals.
  • Visii – helping consumers find the perfect product using visual search.
  • Tiqets – a curated marketplace for culture and entertainment.

Lobster (London, England)

Every day, social media users generate billions of authentic images and videos to rival typical stock photography. Powered by Artificial Intelligence, Lobster enables brands, agencies, and the press to license visual content directly from social media users so they can find that piece of content that perfectly fits their brand or story. Lobster does the work of sorting through major social networks (Instagram, Flickr, Facebook, Vk, YouTube, and Vimeo) and cloud storage providers (Dropbox, Google Photos, and Verizon) to find media, saving brands and agencies time and energy. Using filters like gender, color, age, and geolocation can help customers find the unique content they’re looking for, while Lobster’s AI and visual recognition finds images instantly. Lobster also runs photo challenges to help customers discover the perfect image to fit their needs.

Lobster is an excellent platform for creative people to get their work discovered while also protecting their content. Users are treated as copyright holders and earn 75% of the final price of every sale. The platform is easy to use: new users simply sign in with an existing social media or cloud account and can start showcasing their artistic talent right away. Lobster allows users to connect to any number of photo storage sources so they’re able to choose which items to share and which to keep private. Once users have selected their favorite photos and videos to share, they can sit back and watch as their work is picked to become the signature for a new campaign or featured on a cool website – and start earning money for their work.

Lobster is using a variety of AWS services to keep everything running smoothly. The company uses Amazon S3 to store photography that was previously ordered by customers. When a customer purchases content, the respective piece of content must be available at any given moment, independent from the original source. Lobster is also using Amazon EC2 for its application servers and Elastic Load Balancing to monitor the state of each server.

To learn more about Lobster, check them out here!

Visii (London, England)

In today’s vast web, a growing number of products are being sold online and searching for something specific can be difficult. Visii was created to cater to businesses and help them extract value from an asset they already have – their images. Their SaaS platform allows clients to leverage an intelligent visual search on their websites and apps to help consumers find the perfect product for them. With Visii, consumers can choose an image and immediately discover more based on their tastes and preferences. Whether it’s clothing, artwork, or home decor, Visii will make recommendations to get consumers to search visually and subsequently help businesses increase their conversion rates.

There are multiple ways for businesses to integrate Visii on their website or app. Many of Visii’s clients choose to build against their API, but Visii also work closely with many clients to figure out the most effective way to do this for each unique case. This has led Visii to help build innovative user interfaces and figure out the best integration points to get consumers to search visually. Businesses can also integrate Visii on their website with a widget – they just need to provide a list of links to their products and Visii does the rest.

Visii runs their entire infrastructure on AWS. Their APIs and pipeline all sit in auto-scaling groups, with ELBs in front of them, sending things across into Amazon Simple Queue Service and Amazon Aurora. Recently, Visii moved from Amazon RDS to Aurora and noted that the process was incredibly quick and easy. Because they make heavy use of machine learning, it is crucial that their pipeline only runs when required and that they maximize the efficiency of their uptime.

To see how companies are using Visii, check out Style Picker and Saatchi Art.

Tiqets (Amsterdam, Netherlands)

Tiqets is making the ticket-buying experience faster and easier for travelers around the world.  Founded in 2013, Tiqets is one of the leading curated marketplaces for admission tickets to museums, zoos, and attractions. Their mission is to help travelers get the most out of their trips by helping them find and experience a city’s culture and entertainment. Tiqets partners directly with vendors to adapt to a customer’s specific needs, and is now active in over 30 cities in the US, Europe, and the Middle East.

With Tiqets, travelers can book tickets either ahead of time or at their destination for a wide range of attractions. The Tiqets app provides real-time availability and delivers tickets straight to customer’s phones via email, direct download, or in the app. Customers save time skipping long lines (a perk of the app!), save trees (don’t need to physically print tickets), and most importantly, they can make the most out of their leisure time. For each attraction featured on Tiqets, there is a lot of helpful information including best modes of transportation, hours, commonly asked questions, and reviews from other customers.

The Tiqets platform consists of the consumer-facing website, the internal and external-facing APIs, and the partner self-service portals. For the app hosting and infrastructure, Tiqets uses AWS services such as Elastic Load Balancing, Amazon EC2, Amazon RDS, Amazon CloudFront, Amazon Route 53, and Amazon ElastiCache. Through the infrastructure orchestration of their AWS configuration, they can easily set up separate development or test environments while staying close to the production environment as well.

Tiqets is hiring! Be sure to check out their jobs page if you are interested in joining the Tiqets team.

Thanks for reading and don’t forget to check out April’s Hot Startups if you missed it.

-Tina Barr

 

 

Join Us at the 10th Annual Hadoop Summit / DataWorks Summit, San Jose (Jun 13-15)

Post Syndicated from mikesefanov original https://yahooeng.tumblr.com/post/160966148886

yahoohadoop:

image

We’re excited to co-host the 10th Annual Hadoop Summit, the leading conference for the Apache Hadoop community, taking place on June 13 – 15 at the San Jose Convention Center. In the last few years, the Hadoop Summit has expanded to cover all things data beyond just Apache Hadoop – such as data science, cloud and operations, IoT and applications – and has been aptly renamed the DataWorks Summit. The three-day program is bursting at the seams! Here are just a few of the reasons why you cannot miss this must-attend event:

  • Familiarize yourself with the cutting edge in Apache project developments from the committers
  • Learn from your peers and industry experts about innovative and real-world use cases, development and administration tips and tricks, success stories and best practices to leverage all your data – on-premise and in the cloud – to drive predictive analytics, distributed deep-learning and artificial intelligence initiatives
  • Attend one of our more than 170 technical deep dive breakout sessions from nearly 200 speakers across eight tracks
  • Check out our keynotes, meetups, trainings, technical crash courses, birds-of-a-feather sessions, Women in Big Data and more
  • Attend the community showcase where you can network with sponsors and industry experts, including a host of startups and large companies like Microsoft, IBM, Oracle, HP, Dell EMC and Teradata

Similar to previous years, we look forward to continuing Yahoo’s decade-long tradition of thought leadership at this year’s summit. Join us for an in-depth look at Yahoo’s Hadoop culture and for the latest in technologies such as Apache Tez, HBase, Hive, Data Highway Rainbow, Mail Data Warehouse and Distributed Deep Learning at the breakout sessions below. Or, stop by Yahoo kiosk #700 at the community showcase.

Also, as a co-host of the event, Yahoo is pleased to offer a 20% discount for the summit with the code MSPO20. Register here for Hadoop Summit, San Jose, California!


DAY 1. TUESDAY June 13, 2017


12:20 – 1:00 P.M. TensorFlowOnSpark – Scalable TensorFlow Learning On Spark Clusters

Andy Feng – VP Architecture, Big Data and Machine Learning

Lee Yang – Sr. Principal Engineer

In this talk, we will introduce a new framework, TensorFlowOnSpark, for scalable TensorFlow learning, that was open sourced in Q1 2017. This new framework enables easy experimentation for algorithm designs, and supports scalable training & inferencing on Spark clusters. It supports all TensorFlow functionalities including synchronous & asynchronous learning, model & data parallelism, and TensorBoard. It provides architectural flexibility for data ingestion to TensorFlow and network protocols for server-to-server communication. With a few lines of code changes, an existing TensorFlow algorithm can be transformed into a scalable application.

2:10 – 2:50 P.M. Handling Kernel Upgrades at Scale – The Dirty Cow Story

Samy Gawande – Sr. Operations Engineer

Savitha Ravikrishnan – Site Reliability Engineer

Apache Hadoop at Yahoo is a massive platform with 36 different clusters spread across YARN, Apache HBase, and Apache Storm deployments, totaling 60,000 servers made up of 100s of different hardware configurations accumulated over generations, presenting unique operational challenges and a variety of unforeseen corner cases. In this talk, we will share methods, tips and tricks to deal with large scale kernel upgrade on heterogeneous platforms within tight timeframes with 100% uptime and no service or data loss through the Dirty COW use case (privilege escalation vulnerability found in the Linux Kernel in late 2016).

5:00 – 5:40 P.M. Data Highway Rainbow –  Petabyte Scale Event Collection, Transport, and Delivery at Yahoo

Nilam Sharma – Sr. Software Engineer

Huibing Yin – Sr. Software Engineer

This talk presents the architecture and features of Data Highway Rainbow, Yahoo’s hosted multi-tenant infrastructure which offers event collection, transport and aggregated delivery as a service. Data Highway supports collection from multiple data centers & aggregated delivery in primary Yahoo data centers which provide a big data computing cluster. From a delivery perspective, Data Highway supports endpoints/sinks such as HDFS, Storm and Kafka; with Storm & Kafka endpoints tailored towards latency sensitive consumers.


DAY 2. WEDNESDAY June 14, 2017


9:05 – 9:15 A.M. Yahoo General Session – Shaping Data Platform for Lasting Value

Sumeet Singh  – Sr. Director, Products

With a long history of open innovation with Hadoop, Yahoo continues to invest in and expand the platform capabilities by pushing the boundaries of what the platform can accomplish for the entire organization. In the last 11 years (yes, it is that old!), the Hadoop platform has shown no signs of giving up or giving in. In this talk, we explore what makes the shared multi-tenant Hadoop platform so special at Yahoo.

12:20 – 1:00 P.M. CaffeOnSpark Update – Recent Enhancements and Use Cases

Mridul Jain – Sr. Principal Engineer

Jun Shi – Principal Engineer

By combining salient features from deep learning framework Caffe and big-data frameworks Apache Spark and Apache Hadoop, CaffeOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. We released CaffeOnSpark as an open source project in early 2016, and shared its architecture design and basic usage at Hadoop Summit 2016. In this talk, we will update audiences about the recent development of CaffeOnSpark. We will highlight new features and capabilities: unified data layer which multi-label datasets, distributed LSTM training, interleave testing with training, monitoring/profiling framework, and docker deployment.

12:20 – 1:00 P.M. Tez Shuffle Handler – Shuffling at Scale with Apache Hadoop

Jon Eagles – Principal Engineer  

Kuhu Shukla – Software Engineer

In this talk we introduce a new Shuffle Handler for Tez, a YARN Auxiliary Service, that addresses the shortcomings and performance bottlenecks of the legacy MapReduce Shuffle Handler, the default shuffle service in Apache Tez. The Apache Tez Shuffle Handler adds composite fetch which has support for multi-partition fetch to mitigate performance slow down and provides deletion APIs to reduce disk usage for long running Tez sessions. As an emerging technology we will outline future roadmap for the Apache Tez Shuffle Handler and provide performance evaluation results from real world jobs at scale.

2:10 – 2:50 P.M. Achieving HBase Multi-Tenancy with RegionServer Groups and Favored Nodes

Thiruvel Thirumoolan – Principal Engineer

Francis Liu – Sr. Principal Engineer

At Yahoo! HBase has been running as a hosted multi-tenant service since 2013. In a single HBase cluster we have around 30 tenants running various types of workloads (ie batch, near real-time, ad-hoc, etc). We will walk through multi-tenancy features explaining our motivation, how they work as well as our experiences running these multi-tenant clusters. These features will be available in Apache HBase 2.0.

2:10 – 2:50 P.M. Data Driving Yahoo Mail Growth and Evolution with a 50 PB Hadoop Warehouse

Nick Huang – Director, Data Engineering, Yahoo Mail  

Saurabh Dixit – Sr. Principal Engineer, Yahoo Mail

Since 2014, the Yahoo Mail Data Engineering team took on the task of revamping the Mail data warehouse and analytics infrastructure in order to drive the continued growth and evolution of Yahoo Mail. Along the way we have built a 50 PB Hadoop warehouse, and surrounding analytics and machine learning programs that have transformed the way data plays in Yahoo Mail. In this session we will share our experience from this 3 year journey, from the system architecture, analytics systems built, to the learnings from development and drive for adoption.

DAY3. THURSDAY June 15, 2017


2:10 – 2:50 P.M. OracleStore – A Highly Performant RawStore Implementation for Hive Metastore

Chris Drome – Sr. Principal Engineer  

Jin Sun – Principal Engineer

Today, Yahoo uses Hive in many different spaces, from ETL pipelines to adhoc user queries. Increasingly, we are investigating the practicality of applying Hive to real-time queries, such as those generated by interactive BI reporting systems. In order for Hive to succeed in this space, it must be performant in all aspects of query execution, from query compilation to job execution. One such component is the interaction with the underlying database at the core of the Metastore. As an alternative to ObjectStore, we created OracleStore as a proof-of-concept. Freed of the restrictions imposed by DataNucleus, we were able to design a more performant database schema that better met our needs. Then, we implemented OracleStore with specific goals built-in from the start, such as ensuring the deduplication of data. In this talk we will discuss the details behind OracleStore and the gains that were realized with this alternative implementation. These include a reduction of 97%+ in the storage footprint of multiple tables, as well as query performance that is 13x faster than ObjectStore with DirectSQL and 46x faster than ObjectStore without DirectSQL.

3:00 P.M. – 3:40 P.M. Bullet – A Real Time Data Query Engine

Akshai Sarma – Sr. Software Engineer

Michael Natkovich – Director, Engineering

Bullet is an open sourced, lightweight, pluggable querying system for streaming data without a persistence layer implemented on top of Storm. It allows you to filter, project, and aggregate on data in transit. It includes a UI and WS. Instead of running queries on a finite set of data that arrived and was persisted or running a static query defined at the startup of the stream, our queries can be executed against an arbitrary set of data arriving after the query is submitted. In other words, it is a look-forward system. Bullet is a multi-tenant system that scales independently of the data consumed and the number of simultaneous queries. Bullet is pluggable into any streaming data source. It can be configured to read from systems such as Storm, Kafka, Spark, Flume, etc. Bullet leverages Sketches to perform its aggregate operations such as distinct, count distinct, sum, count, min, max, and average.

3:00 P.M. – 3:40 P.M. Yahoo – Moving Beyond Running 100% of Apache Pig Jobs on Apache Tez

Rohini Palaniswamy – Sr. Principal Engineer

Last year at Yahoo, we spent great effort in scaling, stabilizing and making Pig on Tez production ready and by the end of the year retired running Pig jobs on Mapreduce. This talk will detail the performance and resource utilization improvements Yahoo achieved after migrating all Pig jobs to run on Tez. After successful migration and the improved performance we shifted our focus to addressing some of the bottlenecks we identified and new optimization ideas that we came up with to make it go even faster. We will go over the new features and work done in Tez to make that happen like custom YARN ShuffleHandler, reworking DAG scheduling order, serialization changes, etc. We will also cover exciting new features that were added to Pig for performance such as bloom join and byte code generation.

4:10 P.M. – 4:50 P.M. Leveraging Docker for Hadoop Build Automation and Big Data Stack Provisioning

Evans Ye,  Software Engineer

Apache Bigtop as an open source Hadoop distribution, focuses on developing packaging, testing and deployment solutions that help infrastructure engineers to build up their own customized big data platform as easy as possible. However, packages deployed in production require a solid CI testing framework to ensure its quality. Numbers of Hadoop component must be ensured to work perfectly together as well. In this presentation, we’ll talk about how Bigtop deliver its containerized CI framework which can be directly replicated by Bigtop users. The core revolution here are the newly developed Docker Provisioner that leveraged Docker for Hadoop deployment and Docker Sandbox for developer to quickly start a big data stack. The content of this talk includes the containerized CI framework, technical detail of Docker Provisioner and Docker Sandbox, a hierarchy of docker images we designed, and several components we developed such as Bigtop Toolchain to achieve build automation.

Register here for Hadoop Summit, San Jose, California with a 20% discount code MSPO20

Questions? Feel free to reach out to us at [email protected] Hope to see you there!

AWS Online Tech Talks – May 2017

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-may-2017/

Spring has officially sprung. As you enjoy the blossoming of May flowers, it may be worthy to also note some of the great tech talks blossoming online during the month of May. This month’s AWS Online Tech Talks features sessions on topics like AI, DevOps, Data, and Serverless just to name a few.

May 2017 – Schedule

Below is the upcoming schedule for the live, online technical sessions scheduled for the month of May. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts. All schedule times for the online tech talks are shown in the Pacific Time (PDT) time zone.

Webinars featured this month are:

Monday, May 15

Artificial Intelligence

9:00 AM – 10:00 AM: Integrate Your Amazon Lex Chatbot with Any Messaging Service

 

Tuesday, May 16

Compute

10:30 AM – 11:30 AM: Deep Dive on Amazon EC2 F1 Instance

IoT

12:00 Noon – 1:00 PM: How to Connect Your Own Creations with AWS IoT

Wednesday, May 17

Management Tools

9:00 AM – 10:00 AM: OpsWorks for Chef Automate – Automation Made Easy!

Serverless

10:30 AM – 11:30 AM: Serverless Orchestration with AWS Step Functions

Enterprise & Hybrid

12:00 Noon – 1:00 PM: Moving to the AWS Cloud: An Overview of the AWS Cloud Adoption Framework

 

Thursday, May 18

Compute

9:00 AM – 10:00 AM: Scaling Up Tenfold with Amazon EC2 Spot Instances

Big Data

10:30 AM – 11:30 AM: Building Analytics Pipelines for Games on AWS

12:00 Noon – 1:00 PM: Serverless Big Data Analytics using Amazon Athena and Amazon QuickSight

 

Monday, May 22

Artificial Intelligence

9:00 AM – 10:00 AM: What’s New with Amazon Rekognition

Serverless

10:30 AM – 11:30 AM: Building Serverless Web Applications

 

Tuesday, May 23

Hands-On Lab

8:30 – 10:00 AM: Hands On Lab: Windows Workloads on AWS

Big Data

10:30 AM – 11:30 AM: Streaming ETL for Data Lakes using Amazon Kinesis Firehose

DevOps

12:00 Noon – 1:00 PM: Deep Dive: Continuous Delivery for AI Applications with ECS

 

Wednesday, May 24

Storage

9:00 – 10:00 AM: Moving Data into the Cloud with AWS Transfer Services

Containers

12:00 Noon – 1:00 PM: Building a CICD Pipeline for Container Deployment to Amazon ECS

 

Thursday, May 25

Mobile

9:00 – 10:00 AM: Test Your Android App with Espresso and AWS Device Farm

Security & Identity

10:30 AM – 11:30 AM: Advanced Techniques for Federation of the AWS Management Console and Command Line Interface (CLI)

 

Tuesday, May 30

Databases

9:00 – 10:00 AM: DynamoDB: Architectural Patterns and Best Practices for Infinitely Scalable Applications

Compute

10:30 AM – 11:30 AM: Deep Dive on Amazon EC2 Elastic GPUs

Security & Identity

12:00 Noon – 1:00 PM: Securing Your AWS Infrastructure with Edge Services

 

Wednesday, May 31

Hands-On Lab

8:30 – 10:00 AM: Hands On Lab: Introduction to Microsoft SQL Server in AWS

Enterprise & Hybrid

10:30 AM – 11:30 AM: Best Practices in Planning a Large-Scale Migration to AWS

Databases

12:00 Noon – 1:00 PM: Convert and Migrate Your NoSQL Database or Data Warehouse to AWS

 

The AWS Online Tech Talks series covers a broad range of topics at varying technical levels. These sessions feature live demonstrations & customer examples led by AWS engineers and Solution Architects. Check out the AWS YouTube channel for more on-demand webinars on AWS technologies.

Tara

Steal This Show S02E13: ‘How P2P Will Save The World’

Post Syndicated from J.J. King original https://torrentfreak.com/steal-show-s02e13-p2p-will-save-world/

stslogo180If you enjoy this episode, consider becoming a patron and getting involved with the show. Check out Steal This Show’s Patreon campaign: support us and get all kinds of fantastic benefits!

In this episode we meet Samer Hassan, researcher in decentralized collaboration, activist and Berkman Center fellow. We discuss why the swarm is safer than the cloud, the new decentralized tools powering resistance movements, and how and why the centralization of online services is a threat to our freedom.

With a background in Social Sciences, Artificial Intelligence and Computer Science, Samer is passionate about how to build free/open source privacy-aware decentralized systems (e.g. blockchain) to facilitate collaborative communities and social movements.

He led the technical team that built the backend-as-a-service for collaborative apps SwellRT; the app for collaborative communities Teem, used by a diversity of social collectives; and the real-time collaborative editor JetPad, which aims to provide a fully-fledged free/open source alternative to Google Docs.

Steal This Show aims to release bi-weekly episodes featuring insiders discussing copyright and file-sharing news. It complements our regular reporting by adding more room for opinion, commentary, and analysis.

The guests for our news discussions will vary, and we’ll aim to introduce voices from different backgrounds and persuasions. In addition to news, STS will also produce features interviewing some of the great innovators and minds.

Host: Jamie King

Guest: Samer Hassan

Produced by Jamie King
Edited & Mixed by Riley Byrne
Original Music by David Triana
Web Production by Siraje Amarniss

Source: TF, for the latest info on copyright, file-sharing, torrent sites and ANONYMOUS VPN services.