Tag Archives: news

Use AWS Fault Injection Service to demonstrate multi-region and multi-AZ application resilience

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/use-aws-fault-injection-service-to-demonstrate-multi-region-and-multi-az-application-resilience/

AWS Fault Injection Service (FIS) helps you to put chaos engineering into practice at scale. Today we are launching new scenarios that will let you demonstrate that your applications perform as intended if an AWS Availability Zone experiences a full power interruption or connectivity from one AWS region to another is lost.

You can use the scenarios to conduct experiments that will build confidence that your application (whether single-region or multi-region) works as expected when something goes wrong, help you to gain a better understanding of direct and indirect dependencies, and test recovery time. After you have put your application through its paces and know that it works as expected, you can use the results of the experiment for compliance purposes. When used in conjunction with other parts of AWS Resilience Hub, FIS can help you to fully understand the overall resilience posture of your applications.

Intro to Scenarios
We launched FIS in 2021 to help you perform controlled experiments on your AWS applications. In the post that I wrote to announce that launch, I showed you how to create experiment templates and to use them to conduct experiments. The experiments are built using powerful, low-level actions that affect specified groups of AWS resources of a particular type. For example, the following actions operate on EC2 instances and Auto Scaling Groups:

With these actions as building blocks, we recently launched the AWS FIS Scenario Library. Each scenario in the library defines events or conditions that you can use to test the resilience of your applications:

Each scenario is used to create an experiment template. You can use the scenarios as-is, or you can take any template as a starting point and customize or enhance it as desired.

The scenarios can target resources in the same AWS account or in other AWS accounts:

New Scenarios
With all of that as background, let’s take a look at the new scenarios.

AZ Availability: Power Interruption – This scenario temporarily “pulls the plug” on a targeted set of your resources in a single Availability Zone including EC2 instances (including those in EKS and ECS clusters), EBS volumes, Auto Scaling Groups, VPC subnets, Amazon ElastiCache for Redis clusters, and Amazon Relational Database Service (RDS) clusters. In most cases you will run it on an application that has resources in more than one Availability Zone, but you can run it on a single-AZ app with an outage as the expected outcome. It targets a single AZ, and also allows you to disallow a specified set of IAM roles or Auto Scaling Groups from being able to launch fresh instances or start stopped instances during the experiment.

The New actions and targets experience makes it easy to see everything at a glance — the actions in the scenario and the types of AWS resources that they affect:

The scenarios include parameters that are used to customize the experiment template:

The Advanced parameters – targeting tags lets you control the tag keys and values that will be used to locate the resources targeted by experiments:

Cross-Region: Connectivity – This scenario prevents your application in a test region from being able to access resources in a target region. This includes traffic from EC2 instances, ECS tasks, EKS pods, and Lambda functions attached to a VPC. It also includes traffic flowing across Transit Gateways and VPC peering connections, as well as cross-region S3 and DynamoDB replication. The scenario looks like this out of the box:

This scenario runs for 3 hours (unless you change the disruptionDuration parameter), and isolates the test region from the target region in the specified ways, with advanced parameters to control the tags that are used to select the affected AWS resources in the isolated region:

You might also find that the Disrupt and Pause actions used in this scenario useful on their own:

For example, the aws:s3:bucket-pause-replication action can be used to pause replication within a region.

Things to Know
Here are a couple of things to know about the new scenarios:

Regions – The new scenarios are available in all commercial AWS Regions where FIS is available, at no additional cost.

Pricing – You pay for the action-minutes consumed by the experiments that you run; see the AWS Fault Injection Service Pricing Page for more info.

Naming – This service was formerly called AWS Fault Injection Simulator.


Zonal autoshift – Automatically shift your traffic away from Availability Zones when we detect potential issues

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/zonal-autoshift-automatically-shift-your-traffic-away-from-availability-zones-when-we-detect-potential-issues/

Today we’re launching zonal autoshift, a new capability of Amazon Route 53 Application Recovery Controller that you can enable to automatically and safely shift your workload’s traffic away from an Availability Zone when AWS identifies a potential failure affecting that Availability Zone and shift it back once the failure is resolved.

When deploying resilient applications, you typically deploy your resources across multiple Availability Zones in a Region. Availability Zones are distinct groups of physical data centers at a meaningful distance apart (typically miles) to make sure that they have diverse power, connectivity, network devices, and flood plains.

To help you protect against an application’s errors, like a failed deployment, an error of configuration, or an operator error, we introduced last year the ability to manually or programmatically trigger a zonal shift. This enables you to shift the traffic away from one Availability Zone when you observe degraded metrics in that zone. It does so by configuring your load balancer to direct all new connections to infrastructure in healthy Availability Zones only. This allows you to preserve your application’s availability for your customers while you investigate the root cause of the failure. Once fixed, you stop the zonal shift to ensure the traffic is distributed across all zones again.

Zonal shift works at the Application Load Balancer (ALB) or Network Load Balancer (NLB) level only when cross-zone load balancing is turned off, which is the default for NLB. In a nutshell, load balancers offer two levels of load balancing. The first level is configured in the DNS. Load balancers expose one or more IP addresses for each Availability Zone, offering a client-side load balancing between zones. Once the traffic hits an Availability Zone, the load balancer sends traffic to registered healthy targets, typically an Amazon Elastic Compute Cloud (Amazon EC2) instance. By default, ALBs send traffic to targets across all Availability Zones. For zonal shift to properly work, you must configure your load balancers to disable cross-zone load balancing.

When zonal shift starts, the DNS sends all traffic away from one Availability Zone, as illustrated by the following diagram.

ARC Zonal Shift

Manual zonal shift helps to protect your workload against errors originating from your side. But when there is a potential failure in an Availability Zone, it is sometimes difficult for you to identify or detect the failure. Detecting an issue in an Availability Zone using application metrics is difficult because, most of the time, you don’t track metrics per Availability Zone. Moreover, your services often call dependencies across Availability Zone boundaries, resulting in errors seen in all Availability Zones. With modern microservice architectures, these detection and recovery steps must often be performed across tens or hundreds of discrete microservices, leading to recovery times of multiple hours.

Customers asked us if we could take the burden off their shoulders to detect a potential failure in an Availability Zone. After all, we might know about potential issues through our internal monitoring tools before you do.

With this launch, you can now configure zonal autoshift to protect your workloads against potential failure in an Availability Zone. We use our own AWS internal monitoring tools and metrics to decide when to trigger a network traffic shift. The shift starts automatically; there is no API to call. When we detect that a zone has a potential failure, such as a power or network disruption, we automatically trigger an autoshift of your infrastructure’s NLB or ALB traffic, and we shift the traffic back when the failure is resolved.

Obviously, shifting traffic away from an Availability Zone is a delicate operation that must be carefully prepared. We built a series of safeguards to ensure we don’t degrade your application availability by accident.

First, we have internal controls to ensure we shift traffic away from no more than one Availability Zone at a time. Second, we practice the shift on your infrastructure for 30 minutes every week. You can define blocks of time when you don’t want the practice to happen, for example, 08:00–18:00, Monday through Friday. Third, you can define two Amazon CloudWatch alarms to act as a circuit breaker during the practice run: one alarm to prevent starting the practice run at all and one alarm to monitor your application health during a practice run. When either alarm triggers during the practice run, we stop it and restore traffic to all Availability Zones. The state of application health alarm at the end of the practice run indicates its outcome: success or failure.

According to the principle of shared responsibility, you have two responsibilities as well.

First you must ensure there is enough capacity deployed in all Availability Zones to sustain the increase of traffic in remaining Availability Zones after traffic has shifted. We strongly recommend having enough capacity in remaining Availability Zones at all times and not relying on scaling mechanisms that could delay your application recovery or impact its availability. When zonal autoshift triggers, AWS Auto Scaling might take more time than usual to scale your resources. Pre-scaling your resource ensures a predictable recovery time for your most demanding applications.

Let’s imagine that to absorb regular user traffic, your application needs six EC2 instances across three Availability Zones (2×3 instances). Before configuring zonal autoshift, you should ensure you have enough capacity in the remaining Availability Zones to absorb the traffic when one Availability Zone is not available. In this example, it means three instances per Availability Zone (3×3 = 9 instances with three Availability Zones in order to keep 2×3 = 6 instances to handle the load when traffic is shifted to two Availability Zones).

In practice, when operating a service that requires high reliability, it’s normal to operate with some redundant capacity online for eventualities such as customer-driven load spikes, occasional host failures, etc. Topping up your existing redundancy in this way both ensures you can recover rapidly during an Availability Zone issue but can also give you greater robustness to other events.

Second, you must explicitly enable zonal autoshift for the resources you choose. AWS applies zonal autoshift only on the resources you chose. Applying a zonal autoshift will affect the total capacity allocated to your application. As I just described, your application must be prepared for that by having enough capacity deployed in the remaining Availability Zones.

Of course, deploying this extra capacity in all Availability Zones has a cost. When we talk about resilience, there is a business tradeoff to decide between your application availability and its cost. This is another reason why we apply zonal autoshift only on the resources you select.

Let’s see how to configure zonal autoshift
To show you how to configure zonal autoshift, I deploy my now-famous TicTacToe web application using a CDK script. I open the Route 53 Application Recovery Controller page of the AWS Management Console. On the left pane, I select Zonal autoshift. Then, on the welcome page, I select Configure zonal autoshift for a resource.

Zonal autoshift - 1

I select the load balancer of my demo application. Remember that currently, only load balancers with cross-zone load balancing turned off are eligible for zonal autoshift. As the warning on the console reminds me, I also make sure my application has enough capacity to continue to operate with the loss of one Availability Zone.

Zonal autoshift - 2

I scroll down the page and configure the times and days I don’t want AWS to run the 30-minute practice. At first, and until I’m comfortable with autoshift, I block the practice 08:00–18:00, Monday through Friday. Pay attention that hours are expressed in UTC, and they don’t vary with daylight saving time. You may use a UTC time converter application for help. While it is safe for you to exclude business hours at the start, we recommend configuring the practice run also during your business hours to ensure capturing issues that might not be visible when there is low or no traffic on your application. You probably most need zonal autoshift to work without impact at your peak time, but if you have never tested it, how confident are you? Ideally, you don’t want to block any time at all, but we recognize that’s not always practical.

Zonal autoshift - 3

Further down on the same page, I enter the two circuit breaker alarms. The first one prevents the practice from starting. You use this alarm to tell us this is not a good time to start a practice run. For example, when there is an issue ongoing with your application or when you’re deploying a new version of your application to production. The second CloudWatch alarm gives the outcome of the practice run. It enables zonal autoshift to judge how your application is responding to the practice run. If the alarm stays green, we know all went well.

If either of these two alarms triggers during the practice run, zonal autoshift stops the practice and restores the traffic to all Availability Zones.

Finally, I acknowledge that a 30-minute practice run will run weekly and that it might reduce the availability of my application.

Then, I select Create.

Zonal autoshift - 4And that’s it.

After a few days, I see the history of the practice runs on the Zonal shift history for resource tab of the console. I monitor the history of my two circuit breaker alarms to stay confident everything is correctly monitored and configured.

ARC Zonal Shift - practice run

It’s not possible to test an autoshift itself. It triggers automatically when we detect a potential issue in an Availability Zone. I asked the service team if we could shut down an Availability Zone to test the instructions I shared in this post; they politely declined my request :-).

To test your configuration, you can trigger a manual shift, which behaves identically to an autoshift.

A few more things to know
Zonal autoshift is now available at no additional cost in all AWS Regions, except for China and GovCloud.

We recommend applying the crawl, walk, run methodology. First, you get started with manual zonal shifts to acquire confidence in your application. Then, you turn on zonal autoshift configured with practice runs outside of your business hours. Finally, you modify the schedule to include practice zonal shifts during your business hours. You want to test your application response to an event when you least want it to occur.

We also recommend that you think holistically about how all parts of your application will recover when we move traffic away from one Availability Zone and then back. The list that comes to mind (although certainly not complete) is the following.

First, plan for extra capacity as I discussed already. Second, think about possible single points of failure in each Availability Zone, such as a self-managed database running on a single EC2 instance or a microservice that leaves in a single Availability Zone, and so on. I strongly recommend using managed databases, such as Amazon DynamoDB or Amazon Aurora for applications requiring zonal shifts. These have built-in replication and fail-over mechanisms in place. Third, plan the switch back when the Availability Zone will be available again. How much time do you need to scale your resources? Do you need to rehydrate caches?

You can learn more about resilient architectures and methodologies with this great series of articles from my colleague Adrian.

Finally, remember that only load balancers with cross-zone load balancing turned off are currently eligible for zonal autoshift. To turn off cross-zone load balancing from a CDK script, you need to remove stickinessCookieDuration and add load_balancing.cross_zone.enabled=false on the target group. Here is an example with CDK and Typescript:

    // Add the auto scaling group as a load balancing
    // target to the listener.
    const targetGroup = listener.addTargets('MyApplicationFleet', {
      port: 8080,
      // for zonal shift, stickiness & cross-zones load balancing must be disabled
      // stickinessCookieDuration: Duration.hours(1),
      targets: [asg]
    // disable cross zone load balancing
    targetGroup.setAttribute("load_balancing.cross_zone.enabled", "false");

Now it’s time for you to select your applications that would benefit from zonal autoshift. Start by reviewing your infrastructure capacity in each Availability Zone and then define the circuit breaker alarms. Once you are confident your monitoring is correctly configured, go and enable zonal autoshift.

— seb

IDE extension for AWS Application Composer enhances visual modern applications development with AI-generated IaC

Post Syndicated from Donnie Prakoso original https://aws.amazon.com/blogs/aws/ide-extension-for-aws-application-composer-enhances-visual-modern-applications-development-with-ai-generated-iac/

Today, I’m happy to share the integrated development environment (IDE) extension for AWS Application Composer. Now you can use AWS Application Composer directly in your IDE to visually build modern applications and iteratively develop your infrastructure as code templates with Amazon CodeWhisperer.

Announced as preview at AWS re:Invent 2022 and generally available in March 2023, Application Composer is a visual builder that makes it easier for developers to visualize, design, and iterate on an application architecture by dragging, grouping, and connecting AWS services on a visual canvas. Application Composer simplifies building modern applications by providing an easy-to-use visual drag-and-drop interface and generates IaC templates in real time.

AWS Application Composer also lets you work with AWS CloudFormation resources. In September, AWS Application Composer announced support for 1000+ AWS CloudFormation resources. This provides you the flexibility to define configuration for your AWS resources at a granular level.

Building modern applications with modern tools
The IDE extension for AWS Application Composer provides you with the same visual drag-and-drop experience and functionality as what it offers you in the console. Utilizing the visual canvas in your IDE means you can quickly prototype your ideas and focus on your application code.

With Application Composer running in your IDE, you can also use the various tools available in your IDE. For example, you can seamlessly integrate IaC templates generated real-time by Application Composer with AWS Serverless Application Model (AWS SAM) to manage and deploy your serverless applications.

In addition to making Application Composer available in your IDE, you can create generative AI powered code suggestions in the CloudFormation template in real time while visualizing the application architecture in split view. You can pair and synchronize Application Composer’s visualization and CloudFormation template editing side by side in the IDE without context switching between consoles to iterate on their designs. This minimizes hand coding and increase your productivity.

Using AWS Application Composer in Visual Studio Code
First, I need to install the latest AWS Toolkit for Visual Studio Code plugin. If you already have the AWS Toolkit plugin installed, you only need to update the plugin to start using Application Composer.

To start using Application Composer, I don’t need to authenticate into my AWS account. With Application Composer available on my IDE, I can open my existing AWS CloudFormation or AWS SAM templates.

Another method is to create a new blank file, then right-click on the file and select Open with Application Composer to start designing my application visually.

This will provide me with a blank canvas. Here I have both code and visual editors at the same time to build a simple serverless API using Amazon API Gateway, AWS Lambda, and Amazon DynamoDB. Any changes that I make on the canvas will also be reflected in real time on my IaC template.

I get consistent experiences, such as when I use the Application Composer console. For example, if I make some modifications to my AWS Lambda function, it will also create relevant files in my local folder.

With IaC templates available in my local folder, it’s easier for me to manage my applications with AWS SAM CLI. I can create continuous integration and continuous delivery (CI/CD) with sam pipeline or deploy my stack with sam deploy.

One of the features that accelerates my development workflow is the built-in Sync feature that seamlessly integrates with AWS SAM command sam sync. This feature syncs my local application changes to my AWS account, which is helpful for me to do testing and validation before I deploy my applications into a production environment.

Developing IaC templates with generative AI
With this new capability, I can use generative AI code suggestions to quickly get started with any of CloudFormation’s 1000+ resources. This also means that it’s now even easier to include standard IaC resources to extend my architecture.

For example, I need to use Amazon MQ, which is a standard IaC resource, and I need to modify some configurations for its AWS CloudFormation resource using Application Composer. In the Resource configuration section, change some values if needed, then choose Generate. Application Composer provides code suggestions that I can accept and incorporate into my IaC template.

This capability helps me to improve my development velocity by eliminating context switching. I can design my modern applications using AWS Application Composer canvas and use various tools such as Amazon CodeWhisperer and AWS SAM to accelerate my development workflow.

Things to know
Here are a couple of things to note:

Supported IDE – At launch, this new capability is available for Visual Studio Code.

Pricing – The IDE extension for AWS Application Composer is available at no charge.

Get started with IDE extension for AWS Application Composer by installing the latest AWS Toolkit for Visual Studio Code.

Happy coding!

Amazon SageMaker Studio adds web-based interface, Code Editor, flexible workspaces, and streamlines user onboarding

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/amazon-sagemaker-studio-adds-web-based-interface-code-editor-flexible-workspaces-and-streamlines-user-onboarding/

Today, we are announcing an improved Amazon SageMaker Studio experience! The new SageMaker Studio web-based interface loads faster and provides consistent access to your preferred integrated development environment (IDE) and SageMaker resources and tooling, irrespective of your IDE choice. In addition to JupyterLab and RStudio, SageMaker Studio now includes a fully managed Code Editor based on Code-OSS (Visual Studio Code Open Source).

Both Code Editor and JupyterLab can be launched using a flexible workspace. With spaces, you can scale the compute and storage for your IDE up and down as you go, customize runtime environments, and pause-and-resume coding anytime from anywhere. You can spin up multiple such spaces, each configured with a different combination of compute, storage, and runtimes.

SageMaker Studio now also comes with a streamlined onboarding and administration experience to help both individual users and enterprise administrators get started in minutes. Let me give you a quick tour of some of these highlights.

New SageMaker Studio web-based interface
The new SageMaker Studio web-based interface acts as a command center for launching your preferred IDE and accessing your SageMaker tools to build, train, tune, and deploy models. You can now view SageMaker training jobs and endpoints in SageMaker Studio and access foundation models (FMs) via SageMaker JumpStart. Also, you no longer need to manually upgrade SageMaker Studio.

Amazon SageMaker Studio

New Code Editor based on Code-OSS (Visual Studio Code Open Source)
As a data scientist or machine learning (ML) practitioner, you can now sign in to SageMaker Studio and launch Code Editor directly from your browser. With Code Editor, you have access to thousands of VS Code compatible extensions from Open VSX registry and the preconfigured AWS toolkit for Visual Studio Code for developing and deploying applications on AWS. You can also use the artificial intelligence (AI)-powered coding companion and security scanning tool powered by Amazon CodeWhisperer and Amazon CodeGuru.

Amazon SageMaker Studio

Launch Code Editor and JupyterLab in a flexible workspace
You can launch both Code Editor and JupyterLab using private spaces that only the user creating the space has access to. This flexible workspace is designed to provide a faster and more efficient coding environment.

The spaces come preconfigured with a SageMaker distribution that contains popular ML frameworks and Python packages. With the help of the AI-powered coding companions and security tools, you can quickly generate, debug, explain, and refactor your code.

In addition, SageMaker Studio comes with an improved collaboration experience. You can use the built-in Git integration to share and version code or bring your own shared file storage using Amazon EFS to access a collaborative filesystem across different users or teams.

Amazon SageMaker Studio

Amazon SageMaker Studio

Amazon SageMaker Studio

Streamlined user onboarding and administration
With redesigned setup and onboarding workflows, you can now set up SageMaker Studio domains within minutes. As an individual user, you can now use a one-click experience to launch SageMaker Studio using default presets and without the need to learn about domains or AWS IAM roles.

As an enterprise administrator, step-by-step instructions help you choose the right authentication method, connect to your third-party identity providers, integrate networking and security configurations, configure fine-grained access policies, and choose the right applications to enable in SageMaker Studio. You can also update settings at any time.

To get started, navigate to the SageMaker console and select either Set up for single user or Set up for organization.

Amazon SageMaker Studio

The single-user setup will start deploying a SageMaker Studio domain using default presets and will be ready within a few minutes. The setup for organizations will guide you through the configuration step-by-step. Note that you can choose to keep working with the classic SageMaker Studio experience or start exploring the new experience.

Amazon SageMaker Studio

Now available
The new Amazon SageMaker Studio experience is available today in all AWS Regions where SageMaker Studio is available. Starting today, new SageMaker Studio domains will default to the new web-based interface. If you have an existing setup and want to start using the new experience, check out the SageMaker Developer Guide for instructions on how to migrate your existing domains.

Give it a try, and let us know what you think. You can send feedback to AWS re:Post for Amazon SageMaker Studio or through your usual AWS contacts.

Start building your ML projects with Amazon SageMaker Studio today!

— Antje

Three new capabilities for Amazon Inspector broaden the realm of vulnerability scanning for workloads

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/three-new-capabilities-for-amazon-inspector-broaden-the-realm-of-vulnerability-scanning-for-workloads/

Today, Amazon Inspector adds three new capabilities to increase the realm of possibilities when scanning your workloads for software vulnerabilities:

  • Amazon Inspector introduces a new set of open source plugins and an API allowing you to assess your container images for software vulnerabilities at build time directly from your continuous integration and continuous delivery (CI/CD) pipelines wherever they are running.
  • Amazon Inspector can now continuously monitor your Amazon Elastic Compute Cloud (Amazon EC2) instances without installing an agent or additional software (in preview).
  • Amazon Inspector uses generative artificial intelligence (AI) and automated reasoning to provide assisted code remediation for your AWS Lambda functions.

Amazon Inspector is a vulnerability management service that continually scans your AWS workloads for known software vulnerabilities and unintended network exposure. Amazon Inspector automatically discovers and scans running EC2 instances, container images in Amazon Elastic Container Registry (Amazon ECR) and within your CI/CD tools, and Lambda functions.

We all know engineering teams often face challenges when it comes to promptly addressing vulnerabilities. This is because of the tight release deadlines that force teams to prioritize development over tackling issues in their vulnerability backlog. But it’s also due to the complex and ever-evolving nature of the security landscape. As a result, a study showed that organizations take 250 days on average to resolve critical vulnerabilities. It is therefore crucial to identify potential security issues early in the development lifecycle to prevent their deployment into production.

Detecting vulnerabilities in your AWS Lambda functions code
Let’s start close to the developer with Lambda functions code.

In November 2022 and June 2023, Amazon Inspector added the capability to scan your function’s dependencies and code. Today, we’re adding generative AI and automated reasoning to analyze your code and automatically create remediation as code patches.

Amazon Inspector can now provide in-context code patches for multiple classes of vulnerabilities detected during security scans. Amazon Inspector extends the assessment of your code for security issues like injection flaws, data leaks, weak cryptography, or missing encryption. Thanks to generative AI, Amazon Inspector now provides suggestions how to fix it. It shows affected code snippets in context with suggested remediation.

Here is an example. I wrote a short snippet of Python code with a hardcoded AWS secret key. Never do that!

def create_session_noncompliant():
    import boto3
    # Noncompliant: uses hardcoded secret access key.
    sample_key = "AjWnyxxxxx45xxxxZxxxX7ZQxxxxYxxx1xYxxxxx"
    return response

I deploy the code. This triggers the assessment. I open the AWS Management Console and navigate to the Amazon Inspector page. In the Findings section, I find the vulnerability. It gives me the Vulnerability location and the Suggested remediation in a plain natural language explanation but also in diff text and graphical formats.

Inspector automated code remediation

Detecting vulnerabilities in your container CI/CD pipeline
Now, let’s move to your CI/CD pipelines when building containers.

Until today, Amazon Inspector was able to assess container images once they were built and stored in Amazon Elastic Container Registry (Amazon ECR). Starting today, Amazon Inspector can detect security issues much sooner in the development process by assessing container images during their build within CI/CD tools. Assessment results are returned in near real-time directly to the CI/CD tool’s dashboard. There is no need to enable Amazon Inspector to use this new capability.

We provide ready-to-use CI/CD plugins for Jenkins and JetBrain’s TeamCity, with more to come. There is also a new API (inspector-scan) and command (inspector-sbomgen) available from our AWS SDKs and AWS Command Line Interface (AWS CLI). This new API allows you to integrate Amazon Inspector in the CI/CD tool of your choice.

Upon execution, the plugin runs a container extraction engine on the configured resource and generates a CycloneDX-compatible software bill of materials (SBOM). Then, the plugin sends the SBOM to Amazon Inspector for analysis. The plugin receives the result of the scan in near real-time. It parses the response and generates outputs that Jenkins or TeamCity uses to pass or fail the execution of the pipeline.

To use the plugin with Jenkins, I first make sure there is a role attached to the EC2 instance where Jenkins is installed, or I have an AWS access key and secret access key with permissions to call the Amazon Inspector API.

I install the plugin directly from Jenkins (Jenkins Dashboard > Manage Jenkins > Plugins)

Inspect CICD Install Jenkins plugin

Then, I add an Amazon Inspector Scan step in my pipeline.

Inspector CICD - add Jenkins step

I configure the step with the IAM Role I created (or an AWS access key and secret access key when running on premises), my Docker Credentials, the AWS Region, and the Image Id.

Inspector CICD - configure jenkins plugins

When Amazon Inspector detects vulnerabilities, it reports them to the plugin. The build fails, and I can view the details directly in Jenkins.

Inspector CICD - findings in jenkins

The SBOM generation understands packages or applications for popular operating systems, such as Alpine, Amazon Linux, Debian, Ubuntu, and Red Hat packages. It also detects packages for Go, Java, NodeJS, C#, PHP, Python, Ruby, and Rust programming languages.

Detecting vulnerabilities on Amazon EC2 without installing agents (in preview)
Finally, let’s talk about agentless inspection of your EC2 instances.

Currently, Amazon Inspector uses AWS Systems Manager and the AWS Systems Manager Agent (SSM Agent) to collect information about the inventory of your EC2 instances. To ensure Amazon Inspector can communicate with your instances, you have to ensure three conditions. First, a recent version of the SSM Agent is installed on the instance. Second, the SSM Agent is started. And third, you attached an IAM role to the instance to allow the SSM Agent to communicate back to the SSM service. This seems fair and simple. But it is not when considering large deployments across multiple OS versions, AWS Regions, and accounts, or when you manage legacy applications. Each instance launched that doesn’t satisfy these three conditions is a potential security gap in your infrastructure.

With agentless scanning (in preview), Amazon Inspector doesn’t require the SSM Agent to scan your instances. It automatically discovers existing and new instances and schedules a vulnerability assessment for them. It does so by taking a snapshot of the instance’s EBS volumes and analyzing the snapshot. This technique has the extra advantage of not consuming any CPU cycle or memory on your instances, leaving 100 percent of the (virtual) hardware available for your workloads. After the analysis, Amazon Inspector deletes the snapshot.

To get started, enable hybrid scanning under EC2 scanning settings in the Amazon Inspector section of the AWS Management Console. Hybrid mode means Amazon Inspector continues to use the SSM Agent–based scanning for instances managed by SSM and automatically switches to agentless for instances that are not managed by SSM.

Inspector enable hybrid scanning

Under Account management, I can verify the list of scanned instances. I can see which instances are scanned with the SSM Agent and which are not.

Inspector list of instances monitored

Under Findings, I can filter by vulnerability, by account, by instance, and so on. I select by instance and select the agentless instance I want to review.

For that specific instance, Amazon Inspector lists more than 200 findings, sorted by severity.

Inspector list of findings

As usual, I can see the details of a finding to understand what the risk is and how to mitigate it.

Inspector details of a finding

Pricing and availability
Amazon Inspector code remediation for Lambda functions is available in ten Regions: US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Singapore, Sydney, Tokyo), and Europe (Frankfurt, Ireland, London, Stockholm). It is available at no additional cost.

Amazon Inspector agentless vulnerability scanning for Amazon EC2 is available in preview in three AWS Regions: US East (N. Virginia), US West (Oregon), and Europe (Ireland).

The new API to scan containers at build time is available in the 21 AWS Regions where Amazon Inspector is available today.

There are no upfront or subscription costs. We charge on-demand based on the volume of activity. There is a price per EC2 instance or container image scan. As usual, the Amazon Inspector pricing page has the details.

Start today by adding the Jenkins or TeamCity agent to your containerized application CI/CD pipelines or activate the agentless Amazon EC2 inspection.

Now go build!

— seb

New myApplications in the AWS Management Console simplifies managing your application resources

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/new-myapplications-in-the-aws-management-console-simplifies-managing-your-application-resources/

Today, we are announcing the general availability of myApplications supporting application operations, a new set of capabilities that help you get started with your applications on AWS, operate them with less effort, and move faster at scale. With myApplication in the AWS Management Console, you can more easily manage and monitor the cost, health, security posture, and performance of your applications on AWS.

The myApplications experience is available in the Console Home, where you can access an Applications widget that lists the applications in an account. Now, you can create your applications more easily using the Create application wizard, connecting resources in your AWS account from one view in the console. The created application will automatically display in myApplications, and you can take action on your applications.

When you choose your application in the Applications widget in the console, you can see an at-a-glance view of key application metrics widgets in the applications dashboard. Here you can find, debug operational issues, and optimize your applications.

With a single action on the applications dashboard, you can dive deeper to act on specific resources in the relevant services, such as Amazon CloudWatch for application performance, AWS Cost Explorer for cost and usage, and AWS Security Hub for security findings.

Getting started with myApplications
To get started, on the AWS Management Console Home, choose Create application in the Applications widget. In the first step, input your application name and description.

In the next step, you can add your resources. Before you can search and add resources, you should turn on and set up AWS Resource Explorer, a managed capability that simplifies the search and discovery of your AWS resources across AWS Regions.

Choose Add resources and select the resources to add to your applications. You can also search by keyword, tag, or AWS CloudFormation stack to integrate groups of resources to manage the full lifecycle of your application.

After confirming, your resources are added, new awsApplication tags applied, and the myApplications dashboard will be automatically generated.

Now, let’s see which widgets can be useful.

The Application summary widget displays the name, description, and tag so you know which application you are working on. The Cost and usage widget visualizes your AWS resource costs and usage from AWS Cost Explorer, including the application’s current and forecasted month-end costs, top five billed services, and a monthly application resource cost trend chart. You can monitor spend, look for anomalies, and click to take action where needed.

The Compute widget summarizes of application compute resources, information about which are in alarm, and trend charts from CloudWatch showing basic metrics such as Amazon EC2 instance CPU utilization and AWS Lambda invocations. You also can assess application operations, look for anomalies, and take action.

The Monitoring and Operations widget displays alarms and alerts for resources associated with your application, service level objectives (SLOs), and standardized application performance metrics from CloudWatch Application Signals. You can monitor ongoing issues, assess trends, and quickly identify and drill down on any issues that might impact your application.

The Security widget shows the highest priority security findings identified by AWS Security Hub. Findings are listed by severity and service, so you can monitor their security posture and click to take action where needed.

The DevOps widget summarizes operational insights from AWS System Manager Application Manager, such as fleet management, state management, patch management, and configuration management status so you can assess compliance and take action.

You can also use the Tagging widget to assist you in reviewing and applying tags to your application.

Now available
You can enjoy this new myApplications capability, a new application-centric experience to easily manage and monitor applications on AWS. myApplications capability is available in the following AWS Regions: US East (Ohio, N. Virginia), US West (N. California, Oregon), South America (São Paulo), Asia Pacific (Hyderabad, Jakarta, Mumbai, Osaka, Seoul, Singapore, Sydney, Tokyo), Europe (Frankfurt, Ireland, London, Paris, Stockholm), Middle East (Bahrain) Regions.

AWS Premier Tier Services Partners— Escala24x7, IBM, Tech Mahindra, and Xebia will support application operations with complementary features and services.

Give it a try now in the AWS Management Console and send feedback to AWS re:Post for AWS Management Console, using the feedback link on the myApplications dashboard, or through your usual AWS Support contacts.


Package and deploy models faster with new tools and guided workflows in Amazon SageMaker

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/package-and-deploy-models-faster-with-new-tools-and-guided-workflows-in-amazon-sagemaker/

I’m happy to share that Amazon SageMaker now comes with an improved model deployment experience to help you deploy traditional machine learning (ML) models and foundation models (FMs) faster.

As a data scientist or ML practitioner, you can now use the new ModelBuilder class in the SageMaker Python SDK to package models, perform local inference to validate runtime errors, and deploy to SageMaker from your local IDE or SageMaker Studio notebooks.

In SageMaker Studio, new interactive model deployment workflows give you step-by-step guidance on which instance type to choose to find the most optimal endpoint configuration. SageMaker Studio also provides additional interfaces to add models, test inference, and enable auto scaling policies on the deployed endpoints.

New tools in SageMaker Python SDK
The SageMaker Python SDK has been updated with new tools, including ModelBuilder and SchemaBuilder classes that unify the experience of converting models into SageMaker deployable models across ML frameworks and model servers. Model builder automates the model deployment by selecting a compatible SageMaker container and capturing dependencies from your development environment. Schema builder helps to manage serialization and deserialization tasks of model inputs and outputs. You can use the tools to deploy the model in your local development environment to experiment with it, fix any runtime errors, and when ready, transition from local testing to deploy the model on SageMaker with a single line of code.

Amazon SageMaker ModelBuilder

Let me show you how this works. In the following example, I choose the Falcon-7B model from the Hugging Face model hub. I first deploy the model locally, run a sample inference, perform local benchmarking to find the optimal configuration, and finally deploy the model with the suggested configuration to SageMaker.

First, import the updated SageMaker Python SDK and define a sample model input and output that matches the prompt format for the selected model.

import sagemaker
from sagemaker.serve.builder.model_builder import ModelBuilder
from sagemaker.serve.builder.schema_builder import SchemaBuilder
from sagemaker.serve import Mode

prompt = "Falcons are"
response = "Falcons are small to medium-sized birds of prey related to hawks and eagles."

sample_input = {
    "inputs": prompt,
    "parameters": {"max_new_tokens": 32}

sample_output = [{"generated_text": response}]

Then, create a ModelBuilder instance with the Hugging Face model ID, a SchemaBuilder instance with the sample model input and output, define a local model path, and set the mode to LOCAL_CONTAINER to deploy the model locally. The schema builder generates the required functions for serializing and deserializing the model inputs and outputs.

model_builder = ModelBuilder(
    schema_builder=SchemaBuilder(sample_input, sample_output),
	env_vars={"HF_TRUST_REMOTE_CODE": "True"}

Next, call build() to convert the PyTorch model into a SageMaker deployable model. The build function generates the required artifacts for the model server, including the inferency.py and serving.properties files.

local_mode_model = model_builder.build()

For FMs, such as Falcon, you can optionally run tune() in local container mode that performs local benchmarking to find the optimal model serving configuration. This includes the tensor parallel degree that specifies the number of GPUs to use if your environment has multiple GPUs available. Once ready, call deploy() to deploy the model in your local development environment.

tuned_model = local_mode_model.tune()

Let’s test the model.

updated_sample_input = model_builder.schema_builder.sample_input

{'inputs': 'Falcons are',
 'parameters': {'max_new_tokens': 32}}

In my demo, the model returns the following response:

a type of bird that are known for their sharp talons and powerful beaks. They are also known for their ability to fly at high speeds […]

When you’re ready to deploy the model on SageMaker, call deploy() again, set the mode to SAGEMAKLER_ENDPOINT, and provide an AWS Identity and Access Management (IAM) role with appropriate permissions.

sm_predictor = tuned_model.deploy(

This starts deploying your model on a SageMaker endpoint. Once the endpoint is ready, you can run predictions.

new_input = {'inputs': 'Eagles are','parameters': {'max_new_tokens': 32}}

New SageMaker Studio model deployment experience
You can start the new interactive model deployment workflows by selecting one or more models to deploy from the models landing page or SageMaker JumpStart model details page or by creating a new endpoint from the endpoints details page.

Amazon SageMaker - New Model Deployment Experience

The new workflows help you quickly deploy the selected model(s) with minimal inputs. If you used SageMaker Inference Recommender to benchmark your model, the dropdown will show instance recommendations from that benchmarking.

Model deployment experience in SageMaker Studio

Without benchmarking your model, the dropdown will display prospective instances that SageMaker predicts could be a good fit based on its own heuristics. For some of the most popular SageMaker JumpStart models, you’ll see an AWS pretested optimal instance type. For other models, you’ll see generally recommended instance types. For example, if I select the Falcon 40B Instruct model in SageMaker JumpStart, I can see the recommended instance types.

Model deployment experience in SageMaker Studio

Model deployment experience in SageMaker Studio

However, if I want to optimize the deployment for cost or performance to meet my specific use cases, I could open the Alternate configurations panel to view more options based on data from before benchmarking.

Model deployment experience in SageMaker Studio

Once deployed, you can test inference or manage auto scaling policies.

Model deployment experience in SageMaker Studio

Things to know
Here are a couple of important things to know:

Supported ML models and frameworks – At launch, the new SageMaker Python SDK tools support model deployment for XGBoost and PyTorch models. You can deploy FMs by specifying the Hugging Face model ID or SageMaker JumpStart model ID using the SageMaker LMI container or Hugging Face TGI-based container. You can also bring your own container (BYOC) or deploy models using the Triton model server in ONNX format.

Now available
The new set of tools is available today in all AWS Regions where Amazon SageMaker real-time inference is available. There is no cost to use the new set of tools; you pay only for any underlying SageMaker resources that get created.

Learn more

Get started
Explore the new SageMaker model deployment experience in the AWS Management Console today!

— Antje

Use natural language to explore and prepare data with a new capability of Amazon SageMaker Canvas

Post Syndicated from Irshad Buchh original https://aws.amazon.com/blogs/aws/use-natural-language-to-explore-and-prepare-data-with-a-new-capability-of-amazon-sagemaker-canvas/

Today, I’m happy to introduce the ability to use natural language instructions in Amazon SageMaker Canvas to explore, visualize, and transform data for machine learning (ML).

SageMaker Canvas now supports using foundation model- (FM) powered natural language instructions to complement its comprehensive data preparation capabilities for data exploration, analysis, visualization, and transformation. Using natural language instructions, you can now explore and transform your data to build highly accurate ML models. This new capability is powered by Amazon Bedrock.

Data is the foundation for effective machine learning, and transforming raw data to make it suitable for ML model building and generating predictions is key to better insights. Analyzing, transforming, and preparing data to build ML models is often the most time-consuming part of the ML workflow. With SageMaker Canvas, data preparation for ML is seamless and fast with 300+ built-in transforms, analyses, and an in-depth data quality insights report without writing any code. Starting today, the process of data exploration and preparation is faster and simpler in SageMaker Canvas using natural language instructions for exploring, visualizing, and transforming data.

Data preparation tasks are now accelerated through a natural language experience using queries and responses. You can quickly get started with contextual, guided prompts to understand and explore your data.

Say I want to build an ML model to predict house prices Using SageMaker Canvas. First, I need to prepare my housing dataset to build an accurate model. To get started with the new natural language instructions, I open the SageMaker Canvas application, and in the left navigation pane, I choose Data Wrangler. Under the Data tab and from the list of available datasets, I select the canvas-housing-sample.csv as the dataset, then select Create a data flow and choose Create. I see the tabular view of my dataset and an introduction to the new Chat for data prep capability.


I select Chat for data prep, and it displays the chat interface with a set of guided prompts relevant to my dataset. I can use any of these prompts or query the data for something else.


First, I want to understand the quality of my dataset to identify any outliers or anomalies. I ask SageMaker Canvas to generate a data quality report to accomplish this task.


I see there are no major issues with my data. I would now like to visualize the distribution of a couple of features in the data. I ask SageMaker Canvas to plot a chart.


I now want to filter certain rows to transform my data. I ask SageMaker Canvas to remove rows where the population is less than 1,000. Canvas removes those rows, shows me a preview of the transformed data, and also gives me the option to view and update the code that generated the transform.


I am happy with the preview and add the transformed data to my list of data transform steps on the right. SageMaker Canvas adds the step along with the code.


Now that my data is transformed, I can go on to build my ML model to predict house prices and even deploy the model into production using the same visual interface of SageMaker Canvas, without writing a single line of code.

Data preparation has never been easier for ML!

The new capability in Amazon SageMaker Canvas to explore and transform data using natural language queries is available in all AWS Regions where Amazon SageMaker Canvas and Amazon Bedrock are supported.

Learn more
Amazon SageMaker Canvas product page

Go build!

— Irshad

Amazon SageMaker adds new inference capabilities to help reduce foundation model deployment costs and latency

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/amazon-sagemaker-adds-new-inference-capabilities-to-help-reduce-foundation-model-deployment-costs-and-latency/

Today, we are announcing new Amazon SageMaker inference capabilities that can help you optimize deployment costs and reduce latency. With the new inference capabilities, you can deploy one or more foundation models (FMs) on the same SageMaker endpoint and control how many accelerators and how much memory is reserved for each FM. This helps to improve resource utilization, reduce model deployment costs on average by 50 percent, and lets you scale endpoints together with your use cases.

For each FM, you can define separate scaling policies to adapt to model usage patterns while further optimizing infrastructure costs. In addition, SageMaker actively monitors the instances that are processing inference requests and intelligently routes requests based on which instances are available, helping to achieve on average 20 percent lower inference latency.

Key components
The new inference capabilities build upon SageMaker real-time inference endpoints. As before, you create the SageMaker endpoint with an endpoint configuration that defines the instance type and initial instance count for the endpoint. The model is configured in a new construct, an inference component. Here, you specify the number of accelerators and amount of memory you want to allocate to each copy of a model, together with the model artifacts, container image, and number of model copies to deploy.

Amazon SageMaker - MME

Let me show you how this works.

New inference capabilities in action
You can start using the new inference capabilities from SageMaker Studio, the SageMaker Python SDK, and the AWS SDKs and AWS Command Line Interface (AWS CLI). They are also supported by AWS CloudFormation.

For this demo, I use the AWS SDK for Python (Boto3) to deploy a copy of the Dolly v2 7B model and a copy of the FLAN-T5 XXL model from the Hugging Face model hub on a SageMaker real-time endpoint using the new inference capabilities.

Create a SageMaker endpoint configuration

import boto3
import sagemaker

role = sagemaker.get_execution_role()
sm_client = boto3.client(service_name="sagemaker")

        "VariantName": "AllTraffic",
        "InstanceType": "ml.g5.12xlarge",
        "InitialInstanceCount": 1,
		"RoutingConfig": {
            "RoutingStrategy": "LEAST_OUTSTANDING_REQUESTS"

Create the SageMaker endpoint


Before you can create the inference component, you need to create a SageMaker-compatible model and specify a container image to use. For both models, I use the Hugging Face LLM Inference Container for Amazon SageMaker. These deep learning containers (DLCs) include the necessary components, libraries, and drivers to host large models on SageMaker.

Prepare the Dolly v2 model

from sagemaker.huggingface import get_huggingface_llm_image_uri

# Retrieve the container image URI
hf_inference_dlc = get_huggingface_llm_image_uri(

# Configure model container
dolly7b = {
    'Image': hf_inference_dlc,
    'Environment': {

# Create SageMaker Model
    ModelName        = "dolly-v2-7b",
    ExecutionRoleArn = role,
    Containers       = [dolly7b]

Prepare the FLAN-T5 XXL model

# Configure model container
flant5xxlmodel = {
    'Image': hf_inference_dlc,
    'Environment': {

# Create SageMaker Model
    ModelName        = "flan-t5-xxl",
    ExecutionRoleArn = role,
    Containers       = [flant5xxlmodel]

Now, you’re ready to create the inference component.

Create an inference component for each model
Specify an inference component for each model you want to deploy on the endpoint. Inference components let you specify the SageMaker-compatible model and the compute and memory resources you want to allocate. For CPU workloads, define the number of cores to allocate. For accelerator workloads, define the number of accelerators. RuntimeConfig defines the number of model copies you want to deploy.

# Inference compoonent for Dolly v2 7B
        "ModelName": "dolly-v2-7b",
        "ComputeResourceRequirements": {
		    "NumberOfAcceleratorDevicesRequired": 2, 
			"NumberOfCpuCoresRequired": 2, 
			"MinMemoryRequiredInMb": 1024
    RuntimeConfig={"CopyCount": 1},

# Inference component for FLAN-T5 XXL
        "ModelName": "flan-t5-xxl",
        "ComputeResourceRequirements": {
		    "NumberOfAcceleratorDevicesRequired": 2, 
			"NumberOfCpuCoresRequired": 1, 
			"MinMemoryRequiredInMb": 1024
    RuntimeConfig={"CopyCount": 1},

Once the inference components have successfully deployed, you can invoke the models.

Run inference
To invoke a model on the endpoint, specify the corresponding inference component.

import json
sm_runtime_client = boto3.client(service_name="sagemaker-runtime")
payload = {"inputs": "Why is California a great place to live?"}

response_dolly = sm_runtime_client.invoke_endpoint(
    InferenceComponentName = "IC-dolly-v2-7b",

response_flant5 = sm_runtime_client.invoke_endpoint(
    InferenceComponentName = "IC-flan-t5-xxl",

result_dolly = json.loads(response_dolly['Body'].read().decode())
result_flant5 = json.loads(response_flant5['Body'].read().decode())

Next, you can define separate scaling policies for each model by registering the scaling target and applying the scaling policy to the inference component. Check out the SageMaker Developer Guide for detailed instructions.

The new inference capabilities provide per-model CloudWatch metrics and CloudWatch Logs and can be used with any SageMaker-compatible container image across SageMaker CPU- and GPU-based compute instances. Given support by the container image, you can also use response streaming.

Now available
The new Amazon SageMaker inference capabilities are available today in AWS Regions US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Jakarta, Mumbai, Seoul, Singapore, Sydney, Tokyo), Canada (Central), Europe (Frankfurt, Ireland, London, Stockholm), Middle East (UAE), and South America (São Paulo). For pricing details, visit Amazon SageMaker Pricing. To learn more, visit Amazon SageMaker.

Get started
Log in to the AWS Management Console and deploy your FMs using the new SageMaker inference capabilities today!

— Antje

Introducing highly durable Amazon OpenSearch Service clusters with 30% price/performance improvement

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/introducing-highly-durable-amazon-opensearch-service-clusters-with-30-price-performance-improvement/

You can use the new OR1 instances to create Amazon OpenSearch Service clusters that use Amazon Simple Storage Service (Amazon S3) for primary storage. You can ingest, store, index, and access just about any imaginable amount of data, while also enjoying a 30% price/performance improvement over existing instance types, eleven nines of data durability, and a zero-time Recovery Point Objective (RPO). You can use this to perform interactive log analytics, monitor application in real time, and more.

New OR1 Instances
These benefits are all made possible by the new OR1 instances, which are available in eight sizes and used for the data nodes of the cluster:

Instance Name vCPUs
EBS Storage Max (gp3)
or1.medium.search 1 8 GiB 400 GiB
or1.large.search 2 16 GiB 800 GiB
or1.xlarge.search 4 32 GiB 1.5 TiB
or1.2xlarge.search 8 64 GiB 3 TiB
or1.4xlarge.search 16 128 GiB 6 TiB
or1.8xlarge.search 32 256 GiB 12 TiB
or1.12xlarge.search 48 384 GiB 18 TiB
or1.16xlarge.search 64 512 GiB 24 TiB

To choose a suitable instance size, read Sizing Amazon OpenSearch Service domains.

The Amazon Elastic Block Store (Amazon EBS) volumes are used for primary storage, with data copied synchronously to S3 as it arrives. The data in S3 is used to create replicas and to rehydrate EBS after shards are moved between instances as a result of a node failure or a routine rebalancing operation. This is made possible by the remote-backed storage and segment replication features that were recently released for OpenSearch.

Creating a Domain
To create a domain I open the Amazon OpenSearch Service Console, select Managed clusters, and click Create domain:

I enter a name for my domain (my-domain), select Standard create, and use the Production template:

Then I choose the Domain with standby deployment option. This option will create active data nodes in two Availability Zones and a standby one in a third. I also choose the latest engine version:

Then I select the OR1 instance family and (for my use case) configure 500 GiB of EBS storage per data node:

I set the other settings as needed, and click Create to proceed:

I take a quick lunch break and when i come back my domain is ready:

Things to Know
Here are a couple of things to know about this new storage option:

Engine Versions – Amazon OpenSearch Service engines version 2.11 and above support OR1 instances.

Regions – The OR1 instance family is available for use with OpenSearch in the US East (Ohio, N. Virginia), US West (N. California, Oregon), Asia Pacific (Mumbai, Singapore, Sydney, Tokyo), and Europe (Frankfurt, Ireland, Spain, Stockholm) AWS Regions.

Pricing – You pay On-Demand or Reserved prices for data nodes, and you also pay for EBS storage. See the Amazon OpenSearch Service Pricing page for more information.


Evaluate, compare, and select the best foundation models for your use case in Amazon Bedrock (preview)

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/evaluate-compare-and-select-the-best-foundation-models-for-your-use-case-in-amazon-bedrock-preview/

I’m happy to share that you can now evaluate, compare, and select the best foundation models (FMs) for your use case in Amazon Bedrock. Model Evaluation on Amazon Bedrock is available today in preview.

Amazon Bedrock offers a choice of automatic evaluation and human evaluation. You can use automatic evaluation with predefined metrics such as accuracy, robustness, and toxicity. For subjective or custom metrics, such as friendliness, style, and alignment to brand voice, you can set up human evaluation workflows with just a few clicks.

Model evaluations are critical at all stages of development. As a developer, you now have evaluation tools available for building generative artificial intelligence (AI) applications. You can start by experimenting with different models in the playground environment. To iterate faster, add automatic evaluations of the models. Then, when you prepare for an initial launch or limited release, you can incorporate human reviews to help ensure quality.

Let me give you a quick tour of Model Evaluation on Amazon Bedrock.

Automatic model evaluation
With automatic model evaluation, you can bring your own data or use built-in, curated datasets and pre-defined metrics for specific tasks such as content summarization, question and answering, text classification, and text generation. This takes away the heavy lifting of designing and running your own model evaluation benchmarks.

To get started, navigate to the Amazon Bedrock console, then select Model evaluation under Assessment & deployment in the left menu. Create a new model evaluation and choose Automatic.

Amazon Bedrock Model Evaluation

Next, follow the setup dialog to choose the FM you want to evaluate and the type of task, for example, text summarization. Select the evaluation metrics and specify a dataset—either built-in or your own.

If you bring your own dataset, make sure it’s in JSON Lines format, and each line contains all of the key-value pairs that you want to evaluate your model with for the model dimension that you want to evaluate. For example, if you want to evaluate the model on a question-answer task, you would format your data as follows (with category being optional):

{"referenceResponse":"Cantal","category":"Capitals","prompt":"Aurillac is the capital of"}
{"referenceResponse":"Bamiyan Province","category":"Capitals","prompt":"Bamiyan city is the capital of"}
{"referenceResponse":"Abkhazia","category":"Capitals","prompt":"Sokhumi is the capital of"}

Then, create and run the evaluation job to understand the model’s task-specific performance. Once the evaluation job is complete, you can review the results in the model evaluation report.

Amazon Bedrock Model Evaluations

Human model evaluation
For human evaluation, you can have Amazon Bedrock set up human review workflows with a few clicks. You can bring your own datasets and define custom evaluation metrics, such as relevance, style, or alignment to brand voice. You also have the choice to either leverage your own internal teams as reviewers or engage an AWS managed team. This takes away the tedious effort of building and operating human evaluation workflows.

To get started, create a new model evaluation and select Human: Bring your own team or Human: AWS managed team.

If you choose an AWS managed team for human evaluation, describe your model evaluation needs, including task type, expertise of the work team, and the approximate number of prompts, along with your contact information. In the next step, an AWS expert will reach out to discuss your model evaluation project requirements in more detail. Upon review, the team will share a custom quote and project timeline.

If you choose to bring your own team, follow the setup dialog to choose the FMs you want to evaluate and the type of task, for example, text summarization. Then, select the evaluation metrics, upload your test dataset, and set up the work team.

For human evaluation, you would format the example data shown before again in JSON Lines format like this (with category and referenceResponse being optional):

{"prompt":"Aurillac is the capital of","referenceResponse":"Cantal","category":"Capitals"}
{"prompt":"Bamiyan city is the capital of","referenceResponse":"Bamiyan Province","category":"Capitals"}
{"prompt":"Senftenberg is the capital of","referenceResponse":"Oberspreewald-Lausitz","category":"Capitals"}

Once the human evaluation is completed, Amazon Bedrock generates an evaluation report with the model’s performance against your selected metrics.

Amazon Bedrock Model Evaluation

Things to know
Here are a couple of important things to know:

Model support – During preview, you can evaluate and compare text-based large language models (LLMs) available on Amazon Bedrock. During preview, you can select one model for each automatic evaluation job and up to two models for each human evaluation job using your own team. For human evaluation using an AWS managed team, you can specify custom project requirements.

Pricing – During preview, AWS only charges for the model inference needed to perform the evaluation (processed input and output tokens for on-demand pricing). There will be no separate charges for human evaluation or automatic evaluation. Amazon Bedrock Pricing has all the details.

Join the preview
Automatic evaluation and human evaluation using your own work team are available today in public preview in AWS Regions US East (N. Virginia) and US West (Oregon). Human evaluation using an AWS managed team is available in public preview in AWS Region US East (N. Virginia). To learn more, visit the Amazon Bedrock Developer Experience web page and check out the User Guide.

Get started
Log in to the AWS Management Console and start exploring model evaluation in Amazon Bedrock today!

— Antje

Amazon Redshift adds new AI capabilities, including Amazon Q, to boost efficiency and productivity

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/amazon-redshift-adds-new-ai-capabilities-to-boost-efficiency-and-productivity/

Amazon Redshift puts artificial intelligence (AI) at your service to optimize efficiencies and make you more productive with two new capabilities that we are launching in preview today.

First, Amazon Redshift Serverless becomes smarter. It scales capacity proactively and automatically along dimensions such as the complexity of your queries, their frequency, the size of the dataset, and so on to deliver tailored performance optimizations. This allows you to spend less time tuning your data warehouse instances and more time getting value from your data.

Second, Amazon Q generative SQL in Amazon Redshift Query Editor generates SQL recommendations from natural language prompts. This helps you to be more productive in extracting insights from your data.

Let’s start with Amazon Redshift Serverless
When you use Amazon Redshift Serverless, you can now opt in for a preview of AI-driven scaling and optimizations. When enabled, the system observes and learns from your usage patterns, such as the concurrent number of queries, their complexity, and the time it takes to run them. Then, it automatically optimizes your serverless endpoint to meet your price performance target. Based on AWS internal testing, this new capability may give you up to ten times better price performance for variable workloads without any manual intervention.

AI-driven scaling and optimizations eliminate the time and effort to manually resize your workgroup and plan background optimizations based on workload needs. It continually runs automatic optimizations when they are most valuable for better performance, avoiding performance cliffs and time-outs.

This new capability goes beyond the existing self-tuning capabilities of Amazon Redshift Serverless, such as machine learning (ML)-enhanced techniques to adjust your compute, modify the physical schema of the database, create or drop materialized views as needed (the one we manage automatically, not yours), and vacuum tables. This new capability brings more intelligence to decide how to adjust the compute, what background optimizations are required, and when to apply them, and it makes its decisions based on more dimensions. We also orchestrate ML-based optimizations for materialized views, table optimizations, and workload management when your queries need it.

During the preview, you must opt in to enable these AI-driven scaling and optimizations on your workgroups. You configure the system to balance the optimization for price or performance. There is only one slider to adjust in the console.

Redshift serverless - AI driven workgoups

As usual, you can track resource usage and associated changes through the console, Amazon CloudWatch metrics, and the system table SYS_SERVERLESS_USAGE.

Now, let’s look at Amazon Q generative SQL in Amazon Redshift Query Editor
What if you could use generative AI to help analysts write effective SQL queries more rapidly? This is the new experience we introduce today in Amazon Redshift Query Editor, our web-based SQL editor.

You can now describe the information you want to extract from your data in natural language, and we generate the SQL query recommendations for you. Behind the scenes, Amazon Q generative SQL uses a large language model (LLM) and Amazon Bedrock to generate the SQL query. We use different techniques, such as prompt engineering and Retrieval Augmented Generation (RAG), to query the model based on your context: the database you’re connected to, the schema you’re working on, your query history, and optionally the query history of other users connected to the same endpoint. The system also remembers previous questions. You can ask it to refine a previously generated query.

The SQL generation model uses metadata specific to your data schema to generate relevant queries. For example, it uses the table and column names and the relationship between the tables in your database. In addition, your database administrator can authorize the model to use the query history of all users in your AWS account to generate even more relevant SQL statements. We don’t share your query history with other AWS accounts and we don’t train our generation models with any data coming from your AWS account. We maintain the high level of privacy and security that you expect from us.

Using generated SQL queries helps you to get started when discovering new schemas. It does the heavy lifting of discovering the column names and relationships between tables for you. Senior analysts also benefit from asking what they want in natural language and having the SQL statement automatically generated. They can review the queries and run them directly from their notebook.

Let’s explore a schema and extract information
For this demo, let’s pretend I am a data analyst at a company that sells concert tickets. The database schema and data are available for you to download. My manager asks me to analyze the ticket sales data to send a thank you note with discount coupons to the highest-spending customers in Seattle.

I connect to Amazon Redshift Query Editor and connect the analytic endpoint. I create a new tab for a Notebook (SQL generation is available from notebooks only).

Instead of writing a SQL statement, I open the chat panel and type, “Find the top five users from Seattle who bought the most number of tickets in 2022.” I take the time to verify the generated SQL statement. It seems correct, so I decide to run it. I select Add to notebook and then Run. The query returns the list of the top five buyers in Seattle.

sql generation - top 5 users

I had no previous knowledge of the data schema, and I did not type a single line of SQL to find the information I needed.

But generative SQL is not limited to a single interaction. I can chat with it to dynamically refine the queries. Here is another example.

I ask “Which state has the most venues?” Generative SQL proposes the following query. The answer is New York, with 49 venues, if you’re curious.

generative sql chat 01

I changed my mind, and I want to know the top three cities with the most venues. I simply rephrase my question: “What about the top three venues?

generative sql chat 02

I add the query to the notebook and run it. It returns the expected result.

generative sql chat 03

Best practices for prompting
Here are a couple of tips and tricks to get the best results out of your prompts.

Be specific – When asking questions in natural language, be as specific as possible to help the system understand exactly what you need. For example, instead of writing “find the top venues that sold the most tickets,” provide more details like “find the names of the top three venues that sold the most tickets in 2022.” Use consistent entity names like venue, ticket, and location instead of referring to the same entity in different ways, which can confuse the system.

Iterate – Break your complex requests into multiple simple statements that are easier for the system to interpret. Iteratively ask follow-up questions to get more detailed analysis from the system. For example, start by asking, “Which state has the most venues?” Then, based on the response, ask a follow-up question like “Which is the most popular venue from this state?”

Verify – Review the generated SQL before running it to ensure accuracy. If the generated SQL query has errors or does not match your intent, provide instructions to the system on how to correct it instead of rephrasing the entire request. For example, if the query is missing a filter clause on year, write “provide venues from year 2022.”

Availability and pricing
AI-driven scaling and optimizations are in preview in six AWS Regions: US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Tokyo), and Europe (Ireland, Stockholm). They come at no additional cost. You pay only for the compute capacity your data warehouse consumes when it is active. Pricing is per Redshift Processing Unit (RPU) per hour. The billing is per second of used capacity. The pricing page for Amazon Redshift has the details.

Amazon Q generative SQL for Amazon Redshift Query Editor is in preview in two AWS Regions today: US East (N. Virginia) and US West (Oregon). There is no charge during the preview period.

These are two examples of how AI helps to optimize performance and increase your productivity, either by automatically adjusting the price-performance ratio of your Amazon Redshift Serverless endpoints or by generating correct SQL statements from natural language prompts.

Previews are essential for us to capture your feedback before we make these capabilities available for all. Experiment with these today and let us know what you think on the re:Post forums or using the feedback button on the bottom left side of the console.

— seb

AWS Clean Rooms Differential Privacy enhances privacy protection of your users data (preview)

Post Syndicated from Donnie Prakoso original https://aws.amazon.com/blogs/aws/aws-clean-rooms-differential-privacy-enhances-privacy-protection-of-your-users-data-preview/

Starting today, you can use AWS Clean Rooms Differential Privacy (preview) to help protect the privacy of your users with mathematically backed and intuitive controls in a few steps. As a fully managed capability of AWS Clean Rooms, no prior differential privacy experience is needed to help you prevent the reidentification of your users.

AWS Clean Rooms Differential Privacy obfuscates the contribution of any individual’s data in generating aggregate insights in collaborations so that you can run a broad range of SQL queries to generate insights about advertising campaigns, investment decisions, clinical research, and more.

Quick overview on differential privacy
Differential privacy is not new. It is a strong, mathematical definition of privacy compatible with statistical and machine learning based analysis, and has been used by the United States Census Bureau as well as companies with vast amounts of data.

Differential privacy helps with a wide variety of use cases involving large datasets, where adding or removing a few individuals has a small impact on the overall result, such as population analyses using count queries, histograms, benchmarking, A/B testing, and machine learning.

The following illustration shows how differential privacy works when it is applied to SQL queries.

When an analyst runs a query, differential privacy adds a carefully calibrated amount of error (also referred to as noise) to query results at run-time, masking the contribution of individuals while still keeping the query results accurate enough to provide meaningful insights. The noise is carefully fine-tuned to mask the presence or absence of any possible individual in the dataset.

Differential privacy also has another component called privacy budget. The privacy budget is a finite resource consumed each time a query is run and thus controls the number of queries that can be run on your datasets, helping ensure that the noise cannot be averaged out to reveal any private information about an individual. When the privacy budget is fully exhausted, no more queries can be run on your tables until it is increased or refreshed.

However, differential privacy is not easy to implement because this technique requires an in-depth understanding of mathematically rigorous formulas and theories to apply it effectively. Configuring differential privacy is also a complex task because customers need to calculate the right level of noise in order to preserve the privacy of their users without negatively impacting the utility of query results.

Customers also want to enable their partners to conduct a wide variety of analyses including highly complex and customized queries on their data. This requirement is hard to support with differential privacy because of the intricate nature of the calculations involved in calibrating the noise while processing various query components such as aggregations, joins, and transformations.

We created AWS Clean Rooms Differential Privacy to help you protect the privacy of your users with mathematically backed controls in a few clicks.

How differential privacy works in AWS Clean Rooms
While differential privacy is quite a sophisticated technique, AWS Clean Rooms Differential Privacy makes it easy for you to apply it and protect the privacy of your users with mathematically backed, flexible, and intuitive controls. You can begin using it with just a few steps after starting or joining an AWS Clean Rooms collaboration as a member with abilities to contribute data.

You create a configured table, which is a reference to your table in the AWS Glue Data Catalog, and choose to turn on differential privacy while adding a custom analysis rule to the configured table.

Next, you associate the configured table to your AWS Clean Rooms collaboration and configure a differential privacy policy in the collaboration to make your table available for querying. You can use a default policy to quickly complete the setup or customize it to meet your specific requirements. As part of this step, you will configure the following:

Privacy budget
Quantified as a value that we call epsilon, the privacy budget controls the level of privacy protection. It is a common, finite resource that is applied for all of your tables protected with differential privacy in the collaboration because the goal is to preserve the privacy of your users whose information can be present in multiple tables. The privacy budget is consumed every time a query is run on your tables. You have the flexibility to increase the privacy budget value any time during the collaboration and automatically refresh it each calendar month.

Noise added per query
Measured in terms of the number of users whose contributions you want to obscure, this input parameter governs the rate at which the privacy budget is depleted.

In general, you need to balance your privacy needs against the number of queries you want to permit and the accuracy of those queries. AWS Clean Rooms makes it easy for you to complete this step by helping you understand the resulting utility you are providing to your collaboration partner. You can also use the interactive examples to understand how your chosen settings would impact the results for different types of SQL queries.

Now that you have successfully enabled differential privacy protection for your data, let’s see AWS Clean Rooms Differential Privacy in action. For this demo, let’s assume I am your partner in the AWS Clean Rooms collaboration.

Here, I’m running a query to count the number of overlapping customers and the result shows there are 3,227,643 values for tv.customer_id.

Now, if I run the same query again after removing records about an individual from coffee_customers table, it shows a different result, 3,227,604 tv.customer_id. This variability in the query results prevents me from identifying the individuals from observing the difference in query results.

I can also see the impact of differential privacy, including the remaining queries I can run.

Available for preview
Join this preview and start protecting the privacy of your users with AWS Clean Rooms Differential Privacy. During this preview period, you can use AWS Clean Rooms Differential Privacy wherever AWS Clean Rooms is available. To learn more on how to get started, visit the AWS Clean Rooms Differential Privacy page.

Happy collaborating!

AWS Clean Rooms ML helps customers and partners apply ML models without sharing raw data (preview)

Post Syndicated from Donnie Prakoso original https://aws.amazon.com/blogs/aws/aws-clean-rooms-ml-helps-customers-and-partners-apply-ml-models-without-sharing-raw-data-preview/

Today, we’re introducing AWS Clean Rooms ML (preview), a new capability of AWS Clean Rooms that helps you and your partners apply machine learning (ML) models on your collective data without copying or sharing raw data with each other. With this new capability, you can generate predictive insights using ML models while continuing to protect your sensitive data.

During this preview, AWS Clean Rooms ML introduces its first model specialized to help companies create lookalike segments for marketing use cases. With AWS Clean Rooms ML lookalike, you can train your own custom model, and you can invite partners to bring a small sample of their records to collaborate and generate an expanded set of similar records while protecting everyone’s underlying data.

In the coming months, AWS Clean Rooms ML will release a healthcare model. This will be the first of many models that AWS Clean Rooms ML will support next year.

AWS Clean Rooms ML helps you to unlock various opportunities for you to generate insights. For example:

  • Airlines can take signals about loyal customers, collaborate with online booking services, and offer promotions to users with similar characteristics.
  • Auto lenders and car insurers can identify prospective auto insurance customers who share characteristics with a set of existing lease owners.
  • Brands and publishers can model lookalike segments of in-market customers and deliver highly relevant advertising experiences.
  • Research institutions and hospital networks can find candidates similar to existing clinical trial participants to accelerate clinical studies (coming soon).

AWS Clean Rooms ML lookalike modeling helps you apply an AWS managed, ready-to-use model that is trained in each collaboration to generate lookalike datasets in a few clicks, saving months of development work to build, train, tune, and deploy your own model.

How to use AWS Clean Rooms ML to generate predictive insights
Today I will show you how to use lookalike modeling in AWS Clean Rooms ML and assume you have already set up a data collaboration with your partner. If you want to learn how to do that, check out the AWS Clean Rooms Now Generally Available — Collaborate with Your Partners without Sharing Raw Data post.

With your collective data in the AWS Clean Rooms collaboration, you can work with your partners to apply ML lookalike modeling to generate a lookalike segment. It works by taking a small sample of representative records from your data, creating a machine learning (ML) model, then applying the particular model to identify an expanded set of similar records from your business partner’s data.

The following screenshot shows the overall workflow for using AWS Clean Rooms ML.

By using AWS Clean Rooms ML, you don’t need to build complex and time-consuming ML models on your own. AWS Clean Rooms ML trains a custom, private ML model, which saves months of your time while still protecting your data.

Eliminating the need to share data
As ML models are natively built within the service, AWS Clean Rooms ML helps you protect your dataset and customer’s information because you don’t need to share your data to build your ML model.

You can specify the training dataset using the AWS Glue Data Catalog table, which contains user-item interactions.

Under Additional columns to train, you can define numerical and categorical data. This is useful if you need to add more features to your dataset, such as the number of seconds spent watching a video, the topic of an article, or the product category of an e-commerce item.

Applying custom-trained AWS-built models
Once you have defined your training dataset, you can now create a lookalike model. A lookalike model is a machine learning model used to find similar profiles in your partner’s dataset without either party having to share their underlying data with each other.

When creating a lookalike model, you need to specify the training dataset. From a single training dataset, you can create many lookalike models. You also have the flexibility to define the date window in your training dataset using Relative range or Absolute range. This is useful when you have data that is constantly updated within AWS Glue, such as articles read by users.

Easy-to-tune ML models
After you create a lookalike model, you need to configure it to use in AWS Clean Rooms collaboration. AWS Clean Rooms ML provides flexible controls that enable you and your partners to tune the results of the applied ML model to garner predictive insights.

On the Configure lookalike model page, you can choose which Lookalike model you want to use and define the Minimum matching seed size you need. This seed size defines the minimum number of profiles in your seed data that overlap with profiles in the training data.

You also have the flexibility to choose whether the partner in your collaboration receives metrics in Metrics to share with other members.

With your lookalike models properly configured, you can now make the ML models available for your partners by associating the configured lookalike model with a collaboration.

Creating lookalike segments
Once the lookalike models have been associated, your partners can now start generating insights by selecting Create lookalike segment and choosing the associated lookalike model for your collaboration.

Here on the Create lookalike segment page, your partners need to provide the Seed profiles. Examples of seed profiles include your top customers or all customers who purchased a specific product. The resulting lookalike segment will contain profiles from the training data that are most similar to the profiles from the seed.

Lastly, your partner will get the Relevance metrics as the result of the lookalike segment using the ML models. At this stage, you can use the Score to make a decision.

Export data and use programmatic API
You also have the option to export the lookalike segment data. Once it’s exported, the data is available in JSON format and you can process this output by integrating with AWS Clean Rooms API and your applications.

Join the preview
AWS Clean Rooms ML is now in preview and available via AWS Clean Rooms in US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Seoul, Singapore, Sydney, Tokyo), and Europe (Frankfurt, Ireland, London). Support for additional models is in the works.

Learn how to apply machine learning with your partners without sharing underlying data on the AWS Clean Rooms ML page.

Happy collaborating!
— Donnie

Announcing Amazon OpenSearch Service zero-ETL integration with Amazon S3 (preview)

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/amazon-opensearch-service-zero-etl-integration-with-amazon-s3-preview/

Today we are announcing a preview of Amazon OpenSearch Service zero-ETL integration with Amazon S3, a new way to query operational logs in Amazon S3 and S3-based data lakes without needing to switch between services. You can now analyze infrequently queried data in cloud object stores and simultaneously use the operational analytics and visualization capabilities of OpenSearch Service.

Amazon OpenSearch Service direct queries with Amazon S3 provides a zero-ETL integration to reduce the operational complexity of duplicating data or managing multiple analytics tools by enabling customers to directly query their operational data, reducing costs and time to action. This zero-ETL integration will be configurable within OpenSearch Service, where you can take advantage of various log type templates, including predefined dashboards, and configure data accelerations tailored to that log type. Templates include VPC Flow Logs, Elastic Load Balancing logs, and NGINX logs, and accelerations include skipping indexes, materialized views, and covered indexes.

With direct queries with Amazon S3, you can perform complex queries critical to security forensic and threat analysis that correlate data across multiple data sources, which aids teams in investigating service downtime and security events. After creating an integration, you can start querying their data directly from the OpenSearch Dashboards or OpenSearch API. You can easily audit connections to ensure that they are set up in a scalable, cost-efficient, and secure way.

Getting started with direct queries with Amazon S3
You can easily get started by creating a new Amazon S3 direct query data source for OpenSearch Service through the AWS Management Console or the API. Each new data source uses AWS Glue Data Catalog to manage tables that represent S3 buckets. Once you create a data source, you can configure Amazon S3 tables and data indexing and query data in OpenSearch Dashboards.

1. Create a data source in OpenSearch Service
Before you create a data source, you should have an OpenSearch Service domain with version 2.11 or later and a target Amazon S3 table in AWS Glue Data Catalog with the appropriate IAM permissions. IAM will need access to the desired S3 bucket(s) and read and write access to AWS Glue Data Catalog. To learn more about IAM prerequisites, see Creating a data source in the AWS documentation.

Go to the OpenSearch Service console and choose the domain you want to set up a new data source for. In the domain details page, choose the Connections tab below the general information and see the Direct Query section.

To create a new data source, choose Create, input the name of your new data source, select the data source type as Amazon S3 with AWS Glue Data Catalog, and choose the IAM role for your data source.

Once you create a data source, you can go to the OpenSearch Dashboards of the domain, which you use to configure access control, define tables, set up log type–based dashboards for popular log types, and query your data.

2. Configuring your data source in OpenSearch Dashboards
To configure data source in OpenSearch Dashboards, choose Configure in the console and go to OpenSearch Dashboards. In the left-hand navigation of OpenSearch Dashboards, under Management, choose Data sources. Under Manage data sources, choose the name of the data source you created in the console.

Direct queries from OpenSearch Service to Amazon S3 use Spark tables within AWS Glue Data Catalog. To create a new table you want to direct query, go to the Query Workbench in the Open Search Plugins menu.

Now run as in the following SQL statement to create http_logs table and run MSCK REPAIR TABLE mys3.default.http_logs command to update the metadata in the catalog

CREATE EXTERNAL TABLE IF NOT EXISTS mys3.default.http_logs (
   `@timestamp` TIMESTAMP,
    clientip STRING,
    request STRING, 
    status INT, 
    size INT, 
    year INT, 
    month INT, 
    day INT) 
USING json PARTITIONED BY(year, month, day) OPTIONS (path 's3://mys3/data/http_log/http_logs_partitioned_json_bz2/', compression 'bzip2')

To ensure a fast experience with your data in Amazon S3, you can set up any of three different types of accelerations to index data into OpenSearch Service, such as skipping indexes, materialized views, and covering indexes. To create OpenSearch indexes from external data connections for better performance, choose the Accelerate Table.

  • Skipping indexes allow you to index only the metadata of the data stored in Amazon S3. Skipping indexes help quickly identify data stored by narrowing down a specific location of where the data is stored.
  • Materialized views enable you to use complex queries such as aggregations, which can be used for querying or powering dashboard visualizations. Materialized views ingest data into OpenSearch Service for anomaly detection or geospatial capabilities.
  • Covering indexes will ingest all the data from the specified table column. Covering indexes are the most performant of the three indexing types.

3. Query your data source in OpenSearch Dashboards
After you set up your tables, you can query your data using Discover. You can run a sample SQL query for the http_logs table you created in AWS Glue Data Catalog tables.

To learn more, see Working with Amazon OpenSearch Service direct queries with Amazon S3 in the AWS documentation.

Join the preview
Amazon OpenSearch Service zero-ETL integration with Amazon S3 is now previewed in the AWS US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Tokyo), Europe (Frankfurt), and Europe (Ireland) Regions.

OpenSearch Service separately charges for only the compute needed as OpenSearch Compute Units to query your external data as well as maintain indexes in OpenSearch Service. For more information, see Amazon OpenSearch Service Pricing.

Give it a try and send feedback to the AWS re:Post for Amazon OpenSearch Service or through your usual AWS Support contacts.


Analyze large amounts of graph data to get insights and find trends with Amazon Neptune Analytics

Post Syndicated from Sébastien Stormacq original https://aws.amazon.com/blogs/aws/introducing-amazon-neptune-analytics-a-high-performance-graph-analytics/

I am happy to announce the general availability of Amazon Neptune Analytics, a new analytics database engine that makes it faster for data scientists and application developers to quickly analyze large amounts of graph data. With Neptune Analytics, you can now quickly load your dataset from Amazon Neptune or your data lake on Amazon Simple Storage Service (Amazon S3), run your analysis tasks in near real time, and optionally terminate your graph afterward.

Graph data enables the representation and analysis of intricate relationships and connections within diverse data domains. Common applications include social networks, where it aids in identifying communities, recommending connections, and analyzing information diffusion. In supply chain management, graphs facilitate efficient route optimization and bottleneck identification. In cybersecurity, they reveal network vulnerabilities and identify patterns of malicious activity. Graph data finds application in knowledge management, financial services, digital advertising, and network security, performing tasks such as identifying money laundering networks in banking transactions and predicting network vulnerabilities.

Since the launch of Neptune in May 2018, thousands of customers have embraced the service for storing their graph data and performing updates and deletion on specific subsets of the graph. However, analyzing data for insights often involves loading the entire graph into memory. For instance, a financial services company aiming to detect fraud may need to load and correlate all historical account transactions.

Performing analyses on extensive graph datasets, such as running common graph algorithms, requires specialized tools. Utilizing separate analytics solutions demands the creation of intricate pipelines to transfer data for processing, which is challenging to operate, time-consuming, and prone to errors. Furthermore, loading large datasets from existing databases or data lakes to a graph analytic solution can take hours or even days.

Neptune Analytics offers a fully managed graph analytics experience. It takes care of the infrastructure heavy lifting, enabling you to concentrate on problem-solving through queries and workflows. Neptune Analytics automatically allocates compute resources according to the graph’s size and quickly loads all the data in memory to run your queries in seconds. Our initial benchmarking shows that Neptune Analytics loads data from Amazon S3 up to 80x faster than existing AWS solutions.

Neptune Analytics supports 5 families of algorithms covering 15 different algorithms, each with multiple variants. For example, we provide algorithms for path-finding, detecting communities (clustering), identifying important data (centrality), and quantifying similarity. Path-finding algorithms are used for use cases such as route planning for supply chain optimization. Centrality algorithms like page rank identify the most influential sellers in a graph. Algorithms like connected components, clustering, and similarity algorithms can be used for fraud-detection use cases to determine whether the connected network is a group of friends or a fraud ring formed by a set of coordinated fraudsters.

Neptune Analytics facilitates the creation of graph applications using openCypher, presently one of the widely adopted graph query languages. Developers, business analysts, and data scientists appreciate openCypher’s SQL-inspired syntax, finding it familiar and structured for composing graph queries.

Let’s see it at work
As we usually do on the AWS News blog, let’s show how it works. For this demo, I first navigate to Neptune in the AWS Management Console. There is a new Analytics section on the left navigation pane. I select Graphs and then Create graph.

Neptune Analytics - create graph 1

On the Create graph page, I enter the details of my graph analytics database engine. I won’t detail each parameter here; their names are self-explanatory.

Neptune Analytics - Create graph 1

Pay attention to Allow from public because, the vast majority of the time, you want to keep your graph only available from the boundaries of your VPC. I also create a Private endpoint to allow private access from machines and services inside my account VPC network.

Neptune Analytics - Create graph 2

In addition to network access control, users will need proper IAM permissions to access the graph.

Finally, I enable Vector search to perform similarity search using embeddings in the dataset. The dimension of the vector depends on the large language model (LLM) that you use to generate the embedding.

Neptune Analytics - Create graph 3

When I am ready, I select Create graph (not shown here).

After a few minutes, my graph is available. Under Connectivity & security, I take note of the Endpoint. This is the DNS name I will use later to access my graph from my applications.

I can also create Replicas. A replica is a warm standby copy of the graph in another Availability Zone. You might decide to create one or more replicas for high availability. By default, we create one replica, and depending on your availability requirements, you can choose not to create replicas.

Neptune Analytics - create graph 3

Business queries on graph data
Now that the Neptune Analytics graph is available, let’s load and analyze data. For the rest of this demo, imagine I’m working in the finance industry.

I have a dataset obtained from the US Securities and Exchange Commission (SEC). This dataset contains the list of positions held by investors that have more than $100 million in assets. Here is a diagram to illustrate the structure of the dataset I use in this demo.

Nuptune graph analytics - dataset structure

I want to get a better understanding of the positions held by one investment firm (let’s name it “Seb’s Investments LLC”). I wonder what its top five holdings are and who else holds more than $1 billion in the same companies. I am also curious to know what are other investment companies that have a similar portfolio as Seb’s Investments LLC.

To start my analysis, I create a Jupyter notebook in the Neptune section of the AWS Management Console. In the notebook, I first define my analytics endpoint and load the data set from an S3 bucket. It takes only 18 seconds to load 17 million records.

Neptune Analytics - load data

Then, I start to explore the dataset using openCypher queries. I start by defining my parameters:

params = {'name': "Seb's Investments LLC", 'quarter': '2023Q4'}

First, I want to know what the top five holdings are for Seb’s Investments LLC in this quarter and who else holds more than $1 billion in the same companies. In openCypher, it translates to the query hereafter. The $name parameter’s value is “Seb’s Investment LLC” and the $quarter parameter’s value is 2023Q4.

MATCH p=(h:Holder)-->(hq1)-[o:owns]->(holding)
WHERE h.name = $name AND hq1.name = $quarter
WITH DISTINCT holding as holding, o ORDER BY o.value DESC LIMIT 5
MATCH (holding)<-[o2:owns]-(hq2)<--(coholder:Holder)
WHERE hq2.name = '2023Q4'
WITH sum(o2.value) AS totalValue, coholder, holding
WHERE totalValue > 1000000000
RETURN coholder.name, collect(holding.name)

Neptune Analytics - query 1

Then, I want to know what the other top five companies are that have similar holdings as “Seb’s Investments LLC.” I use the topKByNode() function to perform a vector search.

MATCH (n:Holder)
WHERE n.name = $name
CALL neptune.algo.vectors.topKByNode(n)
YIELD node, score
WHERE score >0
RETURN node.name LIMIT 5

This query identifies a specific Holder node with the name “Seb’s Investments LLC.” Then, it utilizes the Neptune Analytics custom vector similarity search algorithm on the embedding property of the Holder node to find other nodes in the graph that are similar. The results are filtered to include only those with a positive similarity score, and the query finally returns the names of up to five related nodes.

Neptune Analytics - query 2

Pricing and availability
Neptune Analytics is available today in seven AWS Regions: US East (Ohio, N. Virginia), US West (Oregon), Asia Pacific (Singapore, Tokyo), and Europe (Frankfurt, Ireland).

AWS charges for the usage on a pay-as-you-go basis, with no recurring subscriptions or one-time setup fees.

Pricing is based on configurations of memory-optimized Neptune capacity units (m-NCU). Each m-NCU corresponds to one hour of compute and networking capacity and 1 GiB of memory. You can choose configurations starting with 128 m-NCUs and up to 4096 m-NCUs. In addition to m-NCU, storage charges apply for graph snapshots.

I invite you to read the Neptune pricing page for more details

Neptune Analytics is a new analytics database engine to analyze large graph datasets. It helps you discover insights faster for use cases such as fraud detection and prevention, digital advertising, cybersecurity, transportation logistics, and bioinformatics.

Get started
Log in to the AWS Management Console to give Neptune Analytics a try.

— seb

Vector search for Amazon DocumentDB (with MongoDB compatibility) is now generally available

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/vector-search-for-amazon-documentdb-with-mongodb-compatibility-is-now-generally-available/

Today, we are announcing the general availability of vector search for Amazon DocumentDB (with MongoDB compatibility), a new built-in capability that lets you store, index, and search millions of vectors with millisecond response times within your document database.

Vector search is an emerging technique used in machine learning (ML) to find similar data points to given data by comparing their vector representations using distance or similarity metrics. Vectors are numerical representation of unstructured data created from large language models (LLM) hosted in Amazon Bedrock, Amazon SageMaker, and other open source or proprietary ML services. This approach is useful in creating generative artificial intelligence (AI) applications, such as intuitive search, product recommendation, personalization, and chatbots using Retrieval Augmented Generation (RAG) model approach. For example, if your data set contained individual documents for movies, you could semantically search for movies similar to Titanic based on shared context such as “boats”, “tragedy”, or “movies based on true stories” instead of simply matching keywords.

With vector search for Amazon DocumentDB, you can effectively search the database based on nuanced meaning and context without spending time and cost to manage a separate vector database infrastructure. You also benefit from the fully managed, scalable, secure, and highly available JSON-based document database that Amazon DocumentDB provides.

Getting started with vector search on Amazon DocumentDB
The vector search feature is available on your Amazon DocumentDB 5.0 instance-based clusters. To implement a vector search application, you generate vectors using embedding models for fields inside your document and store vectors side by side your source data inside Amazon DocumentDB.

Next, you create a vector index on a vector field that will help retrieve similar vectors and can search the Amazon DocumentDB database using semantic search. Finally, user-submitted queries are converted to vectors using the same embedding model to get semantically similar documents and return them to the client.

Let’s look at how to implement a simple semantic search application using vector search on Amazon DocumentDB.

Step 1. Create vector embeddings using the Amazon Titan Embeddings model
Let’s use the Amazon Titan Embeddings model to create an embedding vector. Amazon Titan Embeddings model is available in Amazon Bedrock, a serverless generative AI service. You can easily access it using a single API and without managing any infrastructure.

prompt = "I love dog and cat."
response = bedrock_runtime.invoke_model(
    body= json.dumps({"inputText": prompt}), 
response_body = json.loads(response['body'].read())
embedding = response_body.get('embedding')

The returned vector embedding will look similar to this:

[0.82421875, -0.6953125, -0.115722656, 0.87890625, 0.05883789, -0.020385742, 0.32421875, -0.00078201294, -0.40234375, 0.44140625, ...]

Step 2. Insert vector embeddings and create a vector index
You can add generated vector embeddings using the insertMany( [{},...,{}] ) operation with a list of the documents that you want added to your collection in Amazon DocumentDB.

    {sentence: "I love a dog and cat.", vectorField: [0.82421875, -0.6953125,...]},
    {sentence: "My dog is very cute.", vectorField: [0.05883789, -0.020385742,...]},
    {sentence: "I write with a pen.", vectorField: [-0.020385742, 0.32421875,...]},

You can create a vector index using the createIndex command. Amazon DocumentDB performs an approximate nearest neighbor (ANN) search using the inverted file with flat compression (IVFFLAT) vector index. The feature supports three distance metrics: euclidean, cosine, and inner product. We will use the euclidean distance, a measure of the straight-line distance between two points in space. The smaller the euclidean distance, the closer the vectors are to each other.

db.collection.createIndex (
   { vectorField: "vector" },
   { "name": "index name",
     "vectorOptions": {
        "dimensions": 100, // the number of vector data dimensions
        "similarity": "euclidean", // Or cosine and dotProduct
        "lists": 100 

Step 3.  Search vector embeddings from Amazon DocumentDB
You can now search for similar vectors within your documents using a new aggregation pipeline operator within $search. The example code to search “I like pets” is as follows:

db.collection.aggregate ({
  $search: {
    "vectorSearch": {
      "vector": [0.82421875, -0.6953125,...], // Search for ‘I like pets’
      "path": vectorField,
      "k": 5,
      "similarity": "euclidean", // Or cosine and dotProduct
      "probes": 1 // the number of clusters for vector search

This returns search results such as “I love a dog and cat.” which is semantically similar.

To learn more, see Amazon DocumentDB documentation. To see a more practical example—a semantic movie search with Amazon DocumentDB—find the Python source codes and data-sets in the GitHub repository.

Now available
Vector search for Amazon DocumentDB is now available at no additional cost to all customers using Amazon DocumentDB 5.0 instance-based clusters in all AWS Regions where Amazon DocumentDB is available. Standard compute, I/O, storage, and backup charges will apply as you store, index, and search vector embeddings on Amazon DocumentDB.

To learn more, see the Amazon DocumentDB documentation and send feedback to AWS re:Post for Amazon DocumentDB or through your usual AWS Support contacts.


Vector engine for Amazon OpenSearch Serverless is now available

Post Syndicated from Channy Yun original https://aws.amazon.com/blogs/aws/vector-engine-for-amazon-opensearch-serverless-is-now-generally-available/

Today we are announcing the general availability of the vector engine for Amazon OpenSearch Serverless with new features. In July 2023, we introduced the preview release of the vector engine for Amazon OpenSearch Serverless, a simple, scalable, and high-performing similarity search capability. The vector engine makes it easy for you to build modern machine learning (ML) augmented search experiences and generative artificial intelligence (generative AI) applications without needing to manage the underlying vector database infrastructure.

You can now store, update, and search billions of vector embeddings with thousands of dimensions in milliseconds. The highly performant similarity search capability of vector engine enables generative AI-powered applications to deliver accurate and reliable results with consistent milliseconds-scale response times.

The vector engine also enables you to optimize and tune results with hybrid search by combining vector search and full-text search in the same query, removing the need to manage and maintain separate data stores or a complex application stack. The vector engine provides a secure, reliable, scalable, and enterprise-ready platform to cost effectively build a prototyping application and then seamlessly scale to production.

You can now get started in minutes with the vector engine by creating a specialized vector engine–based collection, which is a logical grouping of embeddings that works together to support a workload.

The vector engine uses OpenSearch Compute Units (OCUs), compute capacity unit, to ingest and run similarity search queries. One OCU can handle up to 2 million vectors for 128 dimensions or 500,000 for 768 dimensions at 99 percent recall rate.

The vector engine built on OpenSearch Serverless is a highly available service by default. It requires a minimum of four OCUs (2 OCUs for the ingest, including primary and standby, and 2 OCUs for the search with two active replicas across Availability Zones) for the first collection in an account. All subsequent collections using the same AWS Key Management Service (AWS KMS) key can share those OCUs.

What’s new at GA?
Since the preview, the vector engine for Amazon OpenSearch Serverless became one of the vector database options in the knowledge base of Amazon Bedrock to build generative AI applications using a Retrieval Augmented Generation (RAG) concept.

Here are some new or improved features for this GA release:

Disable redundant replica (development and test focused) option
As we announced in our preview blog post, this feature eliminates the need to have redundant OCUs in another Availability Zone solely for availability purposes. A collection can be deployed with two OCUs – one for indexing and one for search. This cuts the costs in half compared to default deployment with redundant replicas. The reduced cost makes this configuration suitable and economical for development and testing workloads.

With this option, we will still provide durability guarantees since the vector engine persists all the data in Amazon S3, but single-AZ failures would impact your availability.

If you want to disable a redundant replica, uncheck Enable redundancy when creating a new vector search

Fractional OCU for the development and test focused option
Support for fractional OCU billing for development and test focused workloads (that is, no redundant replica option) reduces the floor price for vector search collection. The vector engine will initially deploy smaller 0.5 OCUs while providing the same capabilities at lower scale and will scale up to a full OCU and beyond to meet your workload demand. This option will further reduce the monthly costs when experimenting with using the vector engine.

Automatic scaling for a billion scale
With vector engine’s seamless auto-scaling, you no longer have to reindex for scaling purposes. At preview, we were supporting about 20 million vector embeddings. With the general availability of vector engine, we have raised the limits to support a billion vector scale.

Now available
The vector engine for Amazon OpenSearch Serverless is now available in all AWS Regions where Amazon OpenSearch Serverless is available.

To get started, you can refer to the following resources:

Give it a try and send feedback to AWS re:Post for Amazon OpenSearch Service or through your usual AWS support contacts.


Introducing Amazon SageMaker HyperPod, a purpose-built infrastructure for distributed training at scale

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/introducing-amazon-sagemaker-hyperpod-a-purpose-built-infrastructure-for-distributed-training-at-scale/

Today, we are introducing Amazon SageMaker HyperPod, which helps reducing time to train foundation models (FMs) by providing a purpose-built infrastructure for distributed training at scale. You can now use SageMaker HyperPod to train FMs for weeks or even months while SageMaker actively monitors the cluster health and provides automated node and job resiliency by replacing faulty nodes and resuming model training from a checkpoint.

The clusters come preconfigured with SageMaker’s distributed training libraries that help you split your training data and model across all the nodes to process them in parallel and fully utilize the cluster’s compute and network infrastructure. You can further customize your training environment by installing additional frameworks, debugging tools, and optimization libraries.

Let me show you how to get started with SageMaker HyperPod. In the following demo, I create a SageMaker HyperPod and show you how to train a Llama 2 7B model using the example shared in the AWS ML Training Reference Architectures GitHub repository.

Create and manage clusters
As the SageMaker HyperPod admin, you can create and manage clusters using the AWS Management Console or AWS Command Line Interface (AWS CLI). In the console, navigate to Amazon SageMaker, select Cluster management under HyperPod Clusters in the left menu, then choose Create a cluster.

Amazon SageMaker HyperPod Clusters

In the setup that follows, provide a cluster name and configure instance groups with your instance types of choice and the number of instances to allocate to each instance group.

Amazon SageMaker HyperPod

You also need to prepare and upload one or more lifecycle scripts to your Amazon Simple Storage Service (Amazon S3) bucket to run in each instance group during cluster creation. With lifecycle scripts, you can customize your cluster environment and install required libraries and packages. You can find example lifecycle scripts for SageMaker HyperPod in the GitHub repo.

Using the AWS CLI
You can also use the AWS CLI to create and manage clusters. For my demo, I specify my cluster configuration in a JSON file. I choose to create two instance groups, one for the cluster controller node(s) that I call “controller-group,” and one for the cluster worker nodes that I call “worker-group.” For the worker nodes that will perform model training, I specify Amazon EC2 Trn1 instances powered by AWS Trainium chips.

// demo-cluster.json
   "InstanceGroups": [
            "InstanceGroupName": "controller-group",
            "InstanceType": "ml.m5.xlarge",
            "InstanceCount": 1,
            "lifecycleConfig": {
                "SourceS3Uri": "s3://<your-s3-bucket>/<lifecycle-script-directory>/",
                "OnCreate": "on_create.sh"
            "ExecutionRole": "arn:aws:iam::111122223333:role/my-role-for-cluster",
            "ThreadsPerCore": 1
            "InstanceGroupName": "worker-group",
            "InstanceType": "trn1.32xlarge",
            "InstanceCount": 4,
            "lifecycleConfig": {
                "SourceS3Uri": "s3://<your-s3-bucket>/<lifecycle-script-directory>/",
                "OnCreate": "on_create.sh"
            "ExecutionRole": "arn:aws:iam::111122223333:role/my-role-for-cluster",
            "ThreadsPerCore": 1

To create the cluster, I run the following AWS CLI command:

aws sagemaker create-cluster \
--cluster-name antje-demo-cluster \
--instance-groups file://demo-cluster.json

Upon creation, you can use aws sagemaker describe-cluster and aws sagemaker list-cluster-nodes to view your cluster and node details. Note down the cluster ID and instance ID of your controller node. You need that information to connect to your cluster.

You also have the option to attach a shared file system, such as Amazon FSx for Lustre. To use FSx for Lustre, you need to set up your cluster with an Amazon Virtual Private Cloud (Amazon VPC) configuration. Here’s an AWS CloudFormation template that shows how to create a SageMaker VPC and how to deploy FSx for Lustre.

Connect to your cluster
As a cluster user, you need to have access to the cluster provisioned by your cluster admin. With access permissions in place, you can connect to the cluster using SSH to schedule and run jobs. You can use the preinstalled AWS CLI plugin for AWS Systems Manager to connect to the controller node of your cluster.

For my demo, I run the following command specifying my cluster ID and instance ID of the control node as the target.

aws ssm start-session \
--target sagemaker-cluster:ntg44z9os8pn_i-05a854e0d4358b59c \
--region us-west-2

Schedule and run jobs on the cluster using Slurm
At launch, SageMaker HyperPod supports Slurm for workload orchestration. Slurm is a popular an open source cluster management and job scheduling system. You can install and set up Slurm through lifecycle scripts as part of the cluster creation. The example lifecycle scripts show how. Then, you can use the standard Slurm commands to schedule and launch jobs. Check out the Slurm Quick Start User Guide for architecture details and helpful commands.

For this demo, I’m using this example from the AWS ML Training Reference Architectures GitHub repo that shows how to train Llama 2 7B on Slurm with Trn1 instances. My cluster is already setup with Slurm, and I have an FSx for Lustre filesystem mounted.

The Llama 2 model is governed by Meta. You can request access through the Meta request access page.

Set up the cluster environment
SageMaker HyperPod supports training in a range of environments, including Conda, venv, Docker, and enroot. Following the instructions in the README, I build my virtual environment aws_neuron_venv_pytorch and set up the torch_neuronx and neuronx-nemo-megatron libraries for training models on Trn1 instances.

Prepare model, tokenizer, and dataset
I follow the instructions to download the Llama 2 model and tokenizer and convert the model into the Hugging Face format. Then, I download and tokenize the RedPajama dataset. As a final preparation step, I pre-compile the Llama 2 model using ahead-of-time (AOT) compilation to speed up model training.

Launch jobs on the cluster
Now, I’m ready to start my model training job using the sbatch command.

sbatch --nodes 4 --auto-resume=1 run.slurm ./llama_7b.sh

You can use the squeue command to view the job queue. Once the training job is running, the SageMaker HyperPod resiliency features are automatically enabled. SageMaker HyperPod will automatically detect hardware failures, replace nodes as needed, and resume training from checkpoints if the auto-resume parameter is set, as shown in the preceding command.

You can view the output of the model training job in the following file:

tail -f slurm-run.slurm-<JOB_ID>.out

A sample output indicating that model training has started will look like this:

Epoch 0:  22%|██▏       | 4499/20101 [22:26:14<77:48:37, 17.95s/it, loss=2.43, v_num=5563, reduced_train_loss=2.470, gradient_norm=0.121, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.40]
Epoch 0:  22%|██▏       | 4500/20101 [22:26:32<77:48:18, 17.95s/it, loss=2.43, v_num=5563, reduced_train_loss=2.470, gradient_norm=0.121, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.40]
Epoch 0:  22%|██▏       | 4500/20101 [22:26:32<77:48:18, 17.95s/it, loss=2.44, v_num=5563, reduced_train_loss=2.450, gradient_norm=0.120, parameter_norm=1864.0, global_step=4512.0, consumed_samples=1.16e+6, iteration_time=16.50]

To further monitor and profile your model training jobs, you can use SageMaker hosted TensorBoard or any other tool of your choice.

Now available
SageMaker HyperPod is available today in AWS Regions US East (Ohio), US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Sydney), Asia Pacific (Tokyo), Europe (Frankfurt), Europe (Ireland), and Europe (Stockholm).

Learn more:

— Antje

PS: Writing a blog post at AWS is always a team effort, even when you see only one name under the post title. In this case, I want to thank Brad Doran, Justin Pirtle, Ben Snyder, Pierre-Yves Aquilanti, Keita Watanabe, and Verdi March for their generous help with example code and sharing their expertise in managing large-scale model training infrastructures, Slurm, and SageMaker HyperPod.

Amazon Titan Image Generator, Multimodal Embeddings, and Text models are now available in Amazon Bedrock

Post Syndicated from Antje Barth original https://aws.amazon.com/blogs/aws/amazon-titan-image-generator-multimodal-embeddings-and-text-models-are-now-available-in-amazon-bedrock/

Today, we’re introducing two new Amazon Titan multimodal foundation models (FMs): Amazon Titan Image Generator (preview) and Amazon Titan Multimodal Embeddings. I’m also happy to share that Amazon Titan Text Lite and Amazon Titan Text Express are now generally available in Amazon Bedrock. You can now choose from three available Amazon Titan Text FMs, including Amazon Titan Text Embeddings.

Amazon Titan models incorporate 25 years of artificial intelligence (AI) and machine learning (ML) innovation at Amazon and offer a range of high-performing image, multimodal, and text model options through a fully managed API. AWS pre-trained these models on large datasets, making them powerful, general-purpose models built to support a variety of use cases while also supporting the responsible use of AI.

You can use the base models as is, or you can privately customize them with your own data. To enable access to Amazon Titan FMs, navigate to the Amazon Bedrock console and select Model access on the bottom left menu. On the model access overview page, choose Manage model access and enable access to the Amazon Titan FMs.

Amazon Titan Models

Let me give you a quick tour of the new models.

Amazon Titan Image Generator (preview)
As a content creator, you can now use Amazon Titan Image Generator to quickly create and refine images using English natural language prompts. This helps companies in advertising, e-commerce, and media and entertainment to create studio-quality, realistic images in large volumes and at low cost. The model makes it easy to iterate on image concepts by generating multiple image options based on the text descriptions. The model can understand complex prompts with multiple objects and generates relevant images. It is trained on high-quality, diverse data to create more accurate outputs, such as realistic images with inclusive attributes and limited distortions.

Titan Image Generator’s image editing features include the ability to automatically edit an image with a text prompt using a built-in segmentation model. The model supports inpainting with an image mask and outpainting to extend or change the background of an image. You can also configure image dimensions and specify the number of image variations you want the model to generate.

In addition, you can customize the model with proprietary data to generate images consistent with your brand guidelines or to generate images in a specific style, for example, by fine-tuning the model with images from a previous marketing campaign. Titan Image Generator also mitigates harmful content generation to support the responsible use of AI. All images generated by Amazon Titan contain an invisible watermark, by default, designed to help reduce the spread of misinformation by providing a discreet mechanism to identify AI-generated images.

Amazon Titan Image Generator in action
You can start using the model in the Amazon Bedrock console by submitting either an English natural language prompt to generate images or by uploading an image for editing. In the following example, I show you how to generate an image with Amazon Titan Image Generator using the AWS SDK for Python (Boto3).

First, let’s have a look at the configuration options for image generation that you can specify in the body of the inference request. For task type, I choose TEXT_IMAGE to create an image from a natural language prompt.

import boto3
import json

bedrock = boto3.client(service_name="bedrock")
bedrock_runtime = boto3.client(service_name="bedrock-runtime")

# ImageGenerationConfig Options:
#   numberOfImages: Number of images to be generated
#   quality: Quality of generated images, can be standard or premium
#   height: Height of output image(s)
#   width: Width of output image(s)
#   cfgScale: Scale for classifier-free guidance
#   seed: The seed to use for reproducibility  

body = json.dumps(
        "taskType": "TEXT_IMAGE",
        "textToImageParams": {
            "text": "green iguana",   # Required
#           "negativeText": "<text>"  # Optional
        "imageGenerationConfig": {
            "numberOfImages": 1,   # Range: 1 to 5 
            "quality": "premium",  # Options: standard or premium
            "height": 768,         # Supported height list in the docs 
            "width": 1280,         # Supported width list in the docs
            "cfgScale": 7.5,       # Range: 1.0 (exclusive) to 10.0
            "seed": 42             # Range: 0 to 214783647

Next, specify the model ID for Amazon Titan Image Generator and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(

Then, parse the response and decode the base64-encoded image.

import base64
from PIL import Image
from io import BytesIO

response_body = json.loads(response.get("body").read())
images = [Image.open(BytesIO(base64.b64decode(base64_image))) for base64_image in response_body.get("images")]

for img in images:

Et voilà, here’s the green iguana (one of my favorite animals, actually):

Green iguana generated by Amazon Titan Image Generator

To learn more about all the Amazon Titan Image Generator features, visit the Amazon Titan product page. (You’ll see more of the iguana over there.)

Next, let’s use this image with the new Amazon Titan Multimodal Embeddings model.

Amazon Titan Multimodal Embeddings
Amazon Titan Multimodal Embeddings helps you build more accurate and contextually relevant multimodal search and recommendation experiences for end users. Multimodal refers to a system’s ability to process and generate information using distinct types of data (modalities). With Titan Multimodal Embeddings, you can submit text, image, or a combination of the two as input.

The model converts images and short English text up to 128 tokens into embeddings, which capture semantic meaning and relationships between your data. You can also fine-tune the model on image-caption pairs. For example, you can combine text and images to describe company-specific manufacturing parts to understand and identify parts more effectively.

By default, Titan Multimodal Embeddings generates vectors of 1,024 dimensions, which you can use to build search experiences that offer a high degree of accuracy and speed. You can also configure smaller vector dimensions to optimize for speed and price performance. The model provides an asynchronous batch API, and the Amazon OpenSearch Service will soon offer a connector that adds Titan Multimodal Embeddings support for neural search.

Amazon Titan Multimodal Embeddings in action
For this demo, I create a combined image and text embedding. First, I base64-encode my image, and then I specify either inputText, inputImage, or both in the body of the inference request.

# Maximum image size supported is 2048 x 2048 pixels
with open("iguana.png", "rb") as image_file:
    input_image = base64.b64encode(image_file.read()).decode('utf8')

# You can specify either text or image or both
body = json.dumps(
        "inputText": "Green iguana on tree branch",
        "inputImage": input_image

Next, specify the model ID for Amazon Titan Multimodal Embeddings and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(

Let’s see the response.

response_body = json.loads(response.get("body").read())

[0.005087942, -0.004392853, -0.04764151, -0.024312444, 0.049922388, 0.0132532045, 0.014374298, 0.005523709, -0.015199458, 0.02182385, ...]

I redacted the output for brevity. The distance between multimodal embedding vectors, measured with metrics like cosine similarity or euclidean distance, shows how similar or different the represented information is across modalities. Smaller distances mean more similarity, while larger distances mean more dissimilarity.

As a next step, you could build an image database by storing and indexing the multimodal embeddings in a vector store or vector database. To implement text-to-image search, query the database with inputText. For image-to-image search, query the database with inputImage. For image+text-to-image search, query the database with both inputImage and inputText.

Amazon Titan Text
Amazon Titan Text Lite and Amazon Titan Text Express are large language models (LLMs) that support a wide range of text-related tasks, including summarization, translation, and conversational chatbot systems. They can also generate code and are optimized to support popular programming languages and text formats like JSON and CSV.

Titan Text Express – Titan Text Express has a maximum context length of 8,192 tokens and is ideal for a wide range of tasks, such as open-ended text generation and conversational chat, and support within Retrieval Augmented Generation (RAG) workflows.

Titan Text Lite – Titan Text Lite has a maximum context length of 4,096 tokens and is a price-performant version that is ideal for English-language tasks. The model is highly customizable and can be fine-tuned for tasks such as article summarization and copywriting.

Amazon Titan Text in action
For this demo, I ask Titan Text to write an email to my team members suggesting they organize a live stream: “Compose a short email from Antje, Principal Developer Advocate, encouraging colleagues in the developer relations team to organize a live stream to demo our new Amazon Titan V1 models.”

body = json.dumps({
    "inputText": prompt, 

Titan Text FMs support temperature and topP inference parameters to control the randomness and diversity of the response, as well as maxTokenCount and stopSequences to control the length of the response.

Next, choose the model ID for one of the Titan Text models and use the InvokeModel API to send the inference request.

response = bedrock_runtime.invoke_model(
	# Choose modelID
	# Titan Text Express: "amazon.titan-text-express-v1"
	# Titan Text Lite: "amazon.titan-text-lite-v1"

Let’s have a look at the response.

response_body = json.loads(response.get('body').read())
outputText = response_body.get('results')[0].get('outputText')

text = outputText[outputText.index('\n')+1:]
email = text.strip()

Subject: Demo our new Amazon Titan V1 models live!

Dear colleagues,

I hope this email finds you well. I am excited to announce that we have recently launched our new Amazon Titan V1 models, and I believe it would be a great opportunity for us to showcase their capabilities to the wider developer community.

I suggest that we organize a live stream to demo these models and discuss their features, benefits, and how they can help developers build innovative applications. This live stream could be hosted on our YouTube channel, Twitch, or any other platform that is suitable for our audience.

I believe that showcasing our new models will not only increase our visibility but also help us build stronger relationships with developers. It will also provide an opportunity for us to receive feedback and improve our products based on the developer’s needs.

If you are interested in organizing this live stream, please let me know. I am happy to provide any support or guidance you may need. Together, let’s make this live stream a success and showcase the power of Amazon Titan V1 models to the world!

Best regards,
Principal Developer Advocate

Nice. I could send this email right away!

Availability and pricing
Amazon Titan Text FMs are available today in AWS Regions US East (N. Virginia), US West (Oregon), Asia Pacific (Singapore, Tokyo), and Europe (Frankfurt). Amazon Titan Multimodal Embeddings is available today in the AWS Regions US East (N. Virginia) and US West (Oregon). Amazon Titan Image Generator is available in public preview in the AWS Regions US East (N. Virginia) and US West (Oregon). For pricing details, see the Amazon Bedrock Pricing page.

Learn more

Go to the AWS Management Console to start building generative AI applications with Amazon Titan FMs on Amazon Bedrock today!

— Antje