Tag Archives: Analytics

Amazon Redshift – 2017 Recap

Post Syndicated from Larry Heathcote original https://aws.amazon.com/blogs/big-data/amazon-redshift-2017-recap/

We have been busy adding new features and capabilities to Amazon Redshift, and we wanted to give you a glimpse of what we’ve been doing over the past year. In this article, we recap a few of our enhancements and provide a set of resources that you can use to learn more and get the most out of your Amazon Redshift implementation.

In 2017, we made more than 30 announcements about Amazon Redshift. We listened to you, our customers, and delivered Redshift Spectrum, a feature of Amazon Redshift, that gives you the ability to extend analytics to your data lake—without moving data. We launched new DC2 nodes, doubling performance at the same price. We also announced many new features that provide greater scalability, better performance, more automation, and easier ways to manage your analytics workloads.

To see a full list of our launches, visit our what’s new page—and be sure to subscribe to our RSS feed.

Major launches in 2017

Amazon Redshift Spectrumextend analytics to your data lake, without moving data

We launched Amazon Redshift Spectrum to give you the freedom to store data in Amazon S3, in open file formats, and have it available for analytics without the need to load it into your Amazon Redshift cluster. It enables you to easily join datasets across Redshift clusters and S3 to provide unique insights that you would not be able to obtain by querying independent data silos.

With Redshift Spectrum, you can run SQL queries against data in an Amazon S3 data lake as easily as you analyze data stored in Amazon Redshift. And you can do it without loading data or resizing the Amazon Redshift cluster based on growing data volumes. Redshift Spectrum separates compute and storage to meet workload demands for data size, concurrency, and performance. Redshift Spectrum scales processing across thousands of nodes, so results are fast, even with massive datasets and complex queries. You can query open file formats that you already use—such as Apache Avro, CSV, Grok, ORC, Apache Parquet, RCFile, RegexSerDe, SequenceFile, TextFile, and TSV—directly in Amazon S3, without any data movement.

For complex queries, Redshift Spectrum provided a 67 percent performance gain,” said Rafi Ton, CEO, NUVIAD. “Using the Parquet data format, Redshift Spectrum delivered an 80 percent performance improvement. For us, this was substantial.

To learn more about Redshift Spectrum, watch our AWS Summit session Intro to Amazon Redshift Spectrum: Now Query Exabytes of Data in S3, and read our announcement blog post Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data.

DC2 nodes—twice the performance of DC1 at the same price

We launched second-generation Dense Compute (DC2) nodes to provide low latency and high throughput for demanding data warehousing workloads. DC2 nodes feature powerful Intel E5-2686 v4 (Broadwell) CPUs, fast DDR4 memory, and NVMe-based solid state disks (SSDs). We’ve tuned Amazon Redshift to take advantage of the better CPU, network, and disk on DC2 nodes, providing up to twice the performance of DC1 at the same price. Our DC2.8xlarge instances now provide twice the memory per slice of data and an optimized storage layout with 30 percent better storage utilization.

Redshift allows us to quickly spin up clusters and provide our data scientists with a fast and easy method to access data and generate insights,” said Bradley Todd, technology architect at Liberty Mutual. “We saw a 9x reduction in month-end reporting time with Redshift DC2 nodes as compared to DC1.”

Read our customer testimonials to see the performance gains our customers are experiencing with DC2 nodes. To learn more, read our blog post Amazon Redshift Dense Compute (DC2) Nodes Deliver Twice the Performance as DC1 at the Same Price.

Performance enhancements— 3x-5x faster queries

On average, our customers are seeing 3x to 5x performance gains for most of their critical workloads.

We introduced short query acceleration to speed up execution of queries such as reports, dashboards, and interactive analysis. Short query acceleration uses machine learning to predict the execution time of a query, and to move short running queries to an express short query queue for faster processing.

We launched results caching to deliver sub-second response times for queries that are repeated, such as dashboards, visualizations, and those from BI tools. Results caching has an added benefit of freeing up resources to improve the performance of all other queries.

We also introduced late materialization to reduce the amount of data scanned for queries with predicate filters by batching and factoring in the filtering of predicates before fetching data blocks in the next column. For example, if only 10 percent of the table rows satisfy the predicate filters, Amazon Redshift can potentially save 90 percent of the I/O for the remaining columns to improve query performance.

We launched query monitoring rules and pre-defined rule templates. These features make it easier for you to set metrics-based performance boundaries for workload management (WLM) queries, and specify what action to take when a query goes beyond those boundaries. For example, for a queue that’s dedicated to short-running queries, you might create a rule that aborts queries that run for more than 60 seconds. To track poorly designed queries, you might have another rule that logs queries that contain nested loops.

Customer insights

Amazon Redshift and Redshift Spectrum serve customers across a variety of industries and sizes, from startups to large enterprises. Visit our customer page to see the success that customers are having with our recent enhancements. Learn how companies like Liberty Mutual Insurance saw a 9x reduction in month-end reporting time using DC2 nodes. On this page, you can find case studies, videos, and other content that show how our customers are using Amazon Redshift to drive innovation and business results.

In addition, check out these resources to learn about the success our customers are having building out a data warehouse and data lake integration solution with Amazon Redshift:

Partner solutions

You can enhance your Amazon Redshift data warehouse by working with industry-leading experts. Our AWS Partner Network (APN) Partners have certified their solutions to work with Amazon Redshift. They offer software, tools, integration, and consulting services to help you at every step. Visit our Amazon Redshift Partner page and choose an APN Partner. Or, use AWS Marketplace to find and immediately start using third-party software.

To see what our Partners are saying about Amazon Redshift Spectrum and our DC2 nodes mentioned earlier, read these blog posts:

Resources

Blog posts

Visit the AWS Big Data Blog for a list of all Amazon Redshift articles.

YouTube videos

GitHub

Our community of experts contribute on GitHub to provide tips and hints that can help you get the most out of your deployment. Visit GitHub frequently to get the latest technical guidance, code samples, administrative task automation utilities, the analyze & vacuum schema utility, and more.

Customer support

If you are evaluating or considering a proof of concept with Amazon Redshift, or you need assistance migrating your on-premises or other cloud-based data warehouse to Amazon Redshift, our team of product experts and solutions architects can help you with architecting, sizing, and optimizing your data warehouse. Contact us using this support request form, and let us know how we can assist you.

If you are an Amazon Redshift customer, we offer a no-cost health check program. Our team of database engineers and solutions architects give you recommendations for optimizing Amazon Redshift and Amazon Redshift Spectrum for your specific workloads. To learn more, email us at [email protected].

If you have any questions, email us at [email protected].

 


Additional Reading

If you found this post useful, be sure to check out Amazon Redshift Spectrum – Exabyte-Scale In-Place Queries of S3 Data, Using Amazon Redshift for Fast Analytical Reports and How to Migrate Your Oracle Data Warehouse to Amazon Redshift Using AWS SCT and AWS DMS.


About the Author

Larry Heathcote is a Principle Product Marketing Manager at Amazon Web Services for data warehousing and analytics. Larry is passionate about seeing the results of data-driven insights on business outcomes. He enjoys family time, home projects, grilling out and the taste of classic barbeque.

 

 

 

How I built a data warehouse using Amazon Redshift and AWS services in record time

Post Syndicated from Stephen Borg original https://aws.amazon.com/blogs/big-data/how-i-built-a-data-warehouse-using-amazon-redshift-and-aws-services-in-record-time/

This is a customer post by Stephen Borg, the Head of Big Data and BI at Cerberus Technologies.

Cerberus Technologies, in their own words: Cerberus is a company founded in 2017 by a team of visionary iGaming veterans. Our mission is simple – to offer the best tech solutions through a data-driven and a customer-first approach, delivering innovative solutions that go against traditional forms of working and process. This mission is based on the solid foundations of reliability, flexibility and security, and we intend to fundamentally change the way iGaming and other industries interact with technology.

Over the years, I have developed and created a number of data warehouses from scratch. Recently, I built a data warehouse for the iGaming industry single-handedly. To do it, I used the power and flexibility of Amazon Redshift and the wider AWS data management ecosystem. In this post, I explain how I was able to build a robust and scalable data warehouse without the large team of experts typically needed.

In two of my recent projects, I ran into challenges when scaling our data warehouse using on-premises infrastructure. Data was growing at many tens of gigabytes per day, and query performance was suffering. Scaling required major capital investment for hardware and software licenses, and also significant operational costs for maintenance and technical staff to keep it running and performing well. Unfortunately, I couldn’t get the resources needed to scale the infrastructure with data growth, and these projects were abandoned. Thanks to cloud data warehousing, the bottleneck of infrastructure resources, capital expense, and operational costs have been significantly reduced or have totally gone away. There is no more excuse for allowing obstacles of the past to delay delivering timely insights to decision makers, no matter how much data you have.

With Amazon Redshift and AWS, I delivered a cloud data warehouse to the business very quickly, and with a small team: me. I didn’t have to order hardware or software, and I no longer needed to install, configure, tune, or keep up with patches and version updates. Instead, I easily set up a robust data processing pipeline and we were quickly ingesting and analyzing data. Now, my data warehouse team can be extremely lean, and focus more time on bringing in new data and delivering insights. In this post, I show you the AWS services and the architecture that I used.

Handling data feeds

I have several different data sources that provide everything needed to run the business. The data includes activity from our iGaming platform, social media posts, clickstream data, marketing and campaign performance, and customer support engagements.

To handle the diversity of data feeds, I developed abstract integration applications using Docker that run on Amazon EC2 Container Service (Amazon ECS) and feed data to Amazon Kinesis Data Streams. These data streams can be used for real time analytics. In my system, each record in Kinesis is preprocessed by an AWS Lambda function to cleanse and aggregate information. My system then routes it to be stored where I need on Amazon S3 by Amazon Kinesis Data Firehose. Suppose that you used an on-premises architecture to accomplish the same task. A team of data engineers would be required to maintain and monitor a Kafka cluster, develop applications to stream data, and maintain a Hadoop cluster and the infrastructure underneath it for data storage. With my stream processing architecture, there are no servers to manage, no disk drives to replace, and no service monitoring to write.

Setting up a Kinesis stream can be done with a few clicks, and the same for Kinesis Firehose. Firehose can be configured to automatically consume data from a Kinesis Data Stream, and then write compressed data every N minutes to Amazon S3. When I want to process a Kinesis data stream, it’s very easy to set up a Lambda function to be executed on each message received. I can just set a trigger from the AWS Lambda Management Console, as shown following.

I also monitor the duration of function execution using Amazon CloudWatch and AWS X-Ray.

Regardless of the format I receive the data from our partners, I can send it to Kinesis as JSON data using my own formatters. After Firehose writes this to Amazon S3, I have everything in nearly the same structure I received but compressed, encrypted, and optimized for reading.

This data is automatically crawled by AWS Glue and placed into the AWS Glue Data Catalog. This means that I can immediately query the data directly on S3 using Amazon Athena or through Amazon Redshift Spectrum. Previously, I used Amazon EMR and an Amazon RDS–based metastore in Apache Hive for catalog management. Now I can avoid the complexity of maintaining Hive Metastore catalogs. Glue takes care of high availability and the operations side so that I know that end users can always be productive.

Working with Amazon Athena and Amazon Redshift for analysis

I found Amazon Athena extremely useful out of the box for ad hoc analysis. Our engineers (me) use Athena to understand new datasets that we receive and to understand what transformations will be needed for long-term query efficiency.

For our data analysts and data scientists, we’ve selected Amazon Redshift. Amazon Redshift has proven to be the right tool for us over and over again. It easily processes 20+ million transactions per day, regardless of the footprint of the tables and the type of analytics required by the business. Latency is low and query performance expectations have been more than met. We use Redshift Spectrum for long-term data retention, which enables me to extend the analytic power of Amazon Redshift beyond local data to anything stored in S3, and without requiring me to load any data. Redshift Spectrum gives me the freedom to store data where I want, in the format I want, and have it available for processing when I need it.

To load data directly into Amazon Redshift, I use AWS Data Pipeline to orchestrate data workflows. I create Amazon EMR clusters on an intra-day basis, which I can easily adjust to run more or less frequently as needed throughout the day. EMR clusters are used together with Amazon RDS, Apache Spark 2.0, and S3 storage. The data pipeline application loads ETL configurations from Spring RESTful services hosted on AWS Elastic Beanstalk. The application then loads data from S3 into memory, aggregates and cleans the data, and then writes the final version of the data to Amazon Redshift. This data is then ready to use for analysis. Spark on EMR also helps with recommendations and personalization use cases for various business users, and I find this easy to set up and deliver what users want. Finally, business users use Amazon QuickSight for self-service BI to slice, dice, and visualize the data depending on their requirements.

Each AWS service in this architecture plays its part in saving precious time that’s crucial for delivery and getting different departments in the business on board. I found the services easy to set up and use, and all have proven to be highly reliable for our use as our production environments. When the architecture was in place, scaling out was either completely handled by the service, or a matter of a simple API call, and crucially doesn’t require me to change one line of code. Increasing shards for Kinesis can be done in a minute by editing a stream. Increasing capacity for Lambda functions can be accomplished by editing the megabytes allocated for processing, and concurrency is handled automatically. EMR cluster capacity can easily be increased by changing the master and slave node types in Data Pipeline, or by using Auto Scaling. Lastly, RDS and Amazon Redshift can be easily upgraded without any major tasks to be performed by our team (again, me).

In the end, using AWS services including Kinesis, Lambda, Data Pipeline, and Amazon Redshift allows me to keep my team lean and highly productive. I eliminated the cost and delays of capital infrastructure, as well as the late night and weekend calls for support. I can now give maximum value to the business while keeping operational costs down. My team pushed out an agile and highly responsive data warehouse solution in record time and we can handle changing business requirements rapidly, and quickly adapt to new data and new user requests.


Additional Reading

If you found this post useful, be sure to check out Deploy a Data Warehouse Quickly with Amazon Redshift, Amazon RDS for PostgreSQL and Tableau Server and Top 8 Best Practices for High-Performance ETL Processing Using Amazon Redshift.


About the Author

Stephen Borg is the Head of Big Data and BI at Cerberus Technologies. He has a background in platform software engineering, and first became involved in data warehousing using the typical RDBMS, SQL, ETL, and BI tools. He quickly became passionate about providing insight to help others optimize the business and add personalization to products. He is now the Head of Big Data and BI at Cerberus Technologies.

 

 

 

Build a Multi-Tenant Amazon EMR Cluster with Kerberos, Microsoft Active Directory Integration and EMRFS Authorization

Post Syndicated from Songzhi Liu original https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/

One of the challenges faced by our customers—especially those in highly regulated industries—is balancing the need for security with flexibility. In this post, we cover how to enable multi-tenancy and increase security by using EMRFS (EMR File System) authorization, the Amazon S3 storage-level authorization on Amazon EMR.

Amazon EMR is an easy, fast, and scalable analytics platform enabling large-scale data processing. EMRFS authorization provides Amazon S3 storage-level authorization by configuring EMRFS with multiple IAM roles. With this functionality enabled, different users and groups can share the same cluster and assume their own IAM roles respectively.

Simply put, on Amazon EMR, we can now have an Amazon EC2 role per user assumed at run time instead of one general EC2 role at the cluster level. When the user is trying to access Amazon S3 resources, Amazon EMR evaluates against a predefined mappings list in EMRFS configurations and picks up the right role for the user.

In this post, we will discuss what EMRFS authorization is (Amazon S3 storage-level access control) and show how to configure the role mappings with detailed examples. You will then have the desired permissions in a multi-tenant environment. We also demo Amazon S3 access from HDFS command line, Apache Hive on Hue, and Apache Spark.

EMRFS authorization for Amazon S3

There are two prerequisites for using this feature:

  1. Users must be authenticated, because EMRFS needs to map the current user/group/prefix to a predefined user/group/prefix. There are several authentication options. In this post, we launch a Kerberos-enabled cluster that manages the Key Distribution Center (KDC) on the master node, and enable a one-way trust from the KDC to a Microsoft Active Directory domain.
  2. The application must support accessing Amazon S3 via Applications that have their own S3FileSystem APIs (for example, Presto) are not supported at this time.

EMRFS supports three types of mapping entries: user, group, and Amazon S3 prefix. Let’s use an example to show how this works.

Assume that you have the following three identities in your organization, and they are defined in the Active Directory:

To enable all these groups and users to share the EMR cluster, you need to define the following IAM roles:

In this case, you create a separate Amazon EC2 role that doesn’t give any permission to Amazon S3. Let’s call the role the base role (the EC2 role attached to the EMR cluster), which in this example is named EMR_EC2_RestrictedRole. Then, you define all the Amazon S3 permissions for each specific user or group in their own roles. The restricted role serves as the fallback role when the user doesn’t belong to any user/group, nor does the user try to access any listed Amazon S3 prefixes defined on the list.

Important: For all other roles, like emrfs_auth_group_role_data_eng, you need to add the base role (EMR_EC2_RestrictedRole) as the trusted entity so that it can assume other roles. See the following example:

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "ec2.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::511586466501:role/EMR_EC2_RestrictedRole"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

The following is an example policy for the admin user role (emrfs_auth_user_role_admin_user):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "s3:*",
            "Resource": "*"
        }
    ]
}

We are assuming the admin user has access to all buckets in this example.

The following is an example policy for the data science group role (emrfs_auth_group_role_data_sci):

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-science-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

This role grants all Amazon S3 permissions to the emrfs-auth-data-science-bucket-demo bucket and all the objects in it. Similarly, the policy for the role emrfs_auth_group_role_data_eng is shown below:

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": [
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo/*",
                "arn:aws:s3:::emrfs-auth-data-engineering-bucket-demo"
            ],
            "Action": [
                "s3:*"
            ]
        }
    ]
}

Example role mappings configuration

To configure EMRFS authorization, you use EMR security configuration. Here is the configuration we use in this post

Consider the following scenario.

First, the admin user admin1 tries to log in and run a command to access Amazon S3 data through EMRFS. The first role emrfs_auth_user_role_admin_user on the mapping list, which is a user role, is mapped and picked up. Then admin1 has access to the Amazon S3 locations that are defined in this role.

Then a user from the data engineer group (grp_data_engineering) tries to access a data bucket to run some jobs. When EMRFS sees that the user is a member of the grp_data_engineering group, the group role emrfs_auth_group_role_data_eng is assumed, and the user has proper access to Amazon S3 that is defined in the emrfs_auth_group_role_data_eng role.

Next, the third user comes, who is not an admin and doesn’t belong to any of the groups. After failing evaluation of the top three entries, EMRFS evaluates whether the user is trying to access a certain Amazon S3 prefix defined in the last mapping entry. This type of mapping entry is called the prefix type. If the user is trying to access s3://emrfs-auth-default-bucket-demo/, then the prefix mapping is in effect, and the prefix role emrfs_auth_prefix_role_default_s3_prefix is assumed.

If the user is not trying to access any of the Amazon S3 paths that are defined on the list—which means it failed the evaluation of all the entries—it only has the permissions defined in the EMR_EC2RestrictedRole. This role is assumed by the EC2 instances in the cluster.

In this process, all the mappings defined are evaluated in the defined order, and the first role that is mapped is assumed, and the rest of the list is skipped.

Setting up an EMR cluster and mapping Active Directory users and groups

Now that we know how EMRFS authorization role mapping works, the next thing we need to think about is how we can use this feature in an easy and manageable way.

Active Directory setup

Many customers manage their users and groups using Microsoft Active Directory or other tools like OpenLDAP. In this post, we create the Active Directory on an Amazon EC2 instance running Windows Server and create the users and groups we will be using in the example below. After setting up Active Directory, we use the Amazon EMR Kerberos auto-join capability to establish a one-way trust from the KDC running on the EMR master node to the Active Directory domain on the EC2 instance. You can use your own directory services as long as it talks to the LDAP (Lightweight Directory Access Protocol).

To create and join Active Directory to Amazon EMR, follow the steps in the blog post Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory.

After configuring Active Directory, you can create all the users and groups using the Active Directory tools and add users to appropriate groups. In this example, we created users like admin1, dataeng1, datascientist1, grp_data_engineering, and grp_data_science, and then add the users to the right groups.

Join the EMR cluster to an Active Directory domain

For clusters with Kerberos, Amazon EMR now supports automated Active Directory domain joins. You can use the security configuration to configure the one-way trust from the KDC to the Active Directory domain. You also configure the EMRFS role mappings in the same security configuration.

The following is an example of the EMR security configuration with a trusted Active Directory domain EMRKRB.TEST.COM and the EMRFS role mappings as we discussed earlier:

The EMRFS role mapping configuration is shown in this example:

We will also provide an example AWS CLI command that you can run.

Launching the EMR cluster and running the tests

Now you have configured Kerberos and EMRFS authorization for Amazon S3.

Additionally, you need to configure Hue with Active Directory using the Amazon EMR configuration API in order to log in using the AD users created before. The following is an example of Hue AD configuration.

[
  {
    "Classification":"hue-ini",
    "Properties":{

    },
    "Configurations":[
      {
        "Classification":"desktop",
        "Properties":{

        },
        "Configurations":[
          {
            "Classification":"ldap",
            "Properties":{

            },
            "Configurations":[
              {
                "Classification":"ldap_servers",
                "Properties":{

                },
                "Configurations":[
                  {
                    "Classification":"AWS",
                    "Properties":{
                      "base_dn":"DC=emrkrb,DC=test,DC=com",
                      "ldap_url":"ldap://emrkrb.test.com",
                      "search_bind_authentication":"false",
                      "bind_dn":"CN=adjoiner,CN=users,DC=emrkrb,DC=test,DC=com",
                      "bind_password":"Abc123456",
                      "create_users_on_login":"true",
                      "nt_domain":"emrkrb.test.com"
                    },
                    "Configurations":[

                    ]
                  }
                ]
              }
            ]
          },
          {
            "Classification":"auth",
            "Properties":{
              "backend":"desktop.auth.backend.LdapBackend"
            },
            "Configurations":[

            ]
          }
        ]
      }
    ]
  }

Note: In the preceding configuration JSON file, change the values as required before pasting it into the software setting section in the Amazon EMR console.

Now let’s use this configuration and the security configuration you created before to launch the cluster.

In the Amazon EMR console, choose Create cluster. Then choose Go to advanced options. On the Step1: Software and Steps page, under Edit software settings (optional), paste the configuration in the box.

The rest of the setup is the same as an ordinary cluster setup, except in the Security Options section. In Step 4: Security, under Permissions, choose Custom, and then choose the RestrictedRole that you created before.

Choose the appropriate subnets (these should meet the base requirement in order for a successful Active Directory join—see the Amazon EMR Management Guide for more details), and choose the appropriate security groups to make sure it talks to the Active Directory. Choose a key so that you can log in and configure the cluster.

Most importantly, choose the security configuration that you created earlier to enable Kerberos and EMRFS authorization for Amazon S3.

You can use the following AWS CLI command to create a cluster.

aws emr create-cluster --name "TestEMRFSAuthorization" \ 
--release-label emr-5.10.0 \ --instance-type m3.xlarge \ 
--instance-count 3 \ 
--ec2-attributes InstanceProfile=EMR_EC2_DefaultRole,KeyName=MyEC2KeyPair \ --service-role EMR_DefaultRole \ 
--security-configuration MyKerberosConfig \ 
--configurations file://hue-config.json \
--applications Name=Hadoop Name=Hive Name=Hue Name=Spark \ 
--kerberos-attributes Realm=EC2.INTERNAL, \ KdcAdminPassword=<YourClusterKDCAdminPassword>, \ ADDomainJoinUser=<YourADUserLogonName>,ADDomainJoinPassword=<YourADUserPassword>, \ 
CrossRealmTrustPrincipalPassword=<MatchADTrustPwd>

Note: If you create the cluster using CLI, you need to save the JSON configuration for Hue into a file named hue-config.json and place it on the server where you run the CLI command.

After the cluster gets into the Waiting state, try to connect by using SSH into the cluster using the Active Directory user name and password.

ssh -l [email protected] <EMR IP or DNS name>

Quickly run two commands to show that the Active Directory join is successful:

  1. id [user name] shows the mapped AD users and groups in Linux.
  2. hdfs groups [user name] shows the mapped group in Hadoop.

Both should return the current Active Directory user and group information if the setup is correct.

Now, you can test the user mapping first. Log in with the admin1 user, and run a Hadoop list directory command:

hadoop fs -ls s3://emrfs-auth-data-science-bucket-demo/

Now switch to a user from the data engineer group.

Retry the previous command to access the admin’s bucket. It should throw an Amazon S3 Access Denied exception.

When you try listing the Amazon S3 bucket that a data engineer group member has accessed, it triggers the group mapping.

hadoop fs -ls s3://emrfs-auth-data-engineering-bucket-demo/

It successfully returns the listing results. Next we will test Apache Hive and then Apache Spark.

 

To run jobs successfully, you need to create a home directory for every user in HDFS for staging data under /user/<username>. Users can configure a step to create a home directory at cluster launch time for every user who has access to the cluster. In this example, you use Hue since Hue will create the home directory in HDFS for the user at the first login. Here Hue also needs to be integrated with the same Active Directory as explained in the example configuration described earlier.

First, log in to Hue as a data engineer user, and open a Hive Notebook in Hue. Then run a query to create a new table pointing to the data engineer bucket, s3://emrfs-auth-data-engineering-bucket-demo/table1_data_eng/.

You can see that the table was created successfully. Now try to create another table pointing to the data science group’s bucket, where the data engineer group doesn’t have access.

It failed and threw an Amazon S3 Access Denied error.

Now insert one line of data into the successfully create table.

Next, log out, switch to a data science group user, and create another table, test2_datasci_tb.

The creation is successful.

The last task is to test Spark (it requires the user directory, but Hue created one in the previous step).

Now let’s come back to the command line and run some Spark commands.

Login to the master node using the datascientist1 user:

Start the SparkSQL interactive shell by typing spark-sql, and run the show tables command. It should list the tables that you created using Hive.

As a data science group user, try select on both tables. You will find that you can only select the table defined in the location that your group has access to.

Conclusion

EMRFS authorization for Amazon S3 enables you to have multiple roles on the same cluster, providing flexibility to configure a shared cluster for different teams to achieve better efficiency. The Active Directory integration and group mapping make it much easier for you to manage your users and groups, and provides better auditability in a multi-tenant environment.


Additional Reading

If you found this post useful, be sure to check out Use Kerberos Authentication to Integrate Amazon EMR with Microsoft Active Directory and Launching and Running an Amazon EMR Cluster inside a VPC.


About the Authors

Songzhi Liu is a Big Data Consultant with AWS Professional Services. He works closely with AWS customers to provide them Big Data & Machine Learning solutions and best practices on the Amazon cloud.

 

 

 

 

Тоест

Post Syndicated from Йовко Ламбрев original https://yovko.net/toest/

В Пловдив след Освобождението бе започнал да излиза първият български вестник “Марица” с брой 1 от 25.VII/6.VIII.1878 г. Издател бил Христо Г. Данов. […] Съобщенията и новините във в. “Марица” били така подробни и достоверни, че в София предпочитали да се осведомяват от него, а не от местните вестници. За да знаят чужденците какво става в България, имало статии и на френски език. […]

В 1907 г. в Пловдив излизаха повече от десет вестника освен периодическите списания: “Балкански новини”, еврейският “Ел Диа” – “Ден”, турският “Ехали” – “Народ”, “Зорница”, гръцкият “Едисие ту ему”, турският “Мувазине”, “Нова Марица”, “Пловдив”, арменският “Размиг” – “Борец”, “Санстефанска България”, гръцкият “Филипополис”, еврейският “Ла семена” – “Седмица”, турският “Хилел” – “Полумесец”. Започнаха да печатат свои вестници и работническите синдикати. В 1908 г. се появи първият брой на вестник “Тютюноработник”, а в края на 1909 г. – на “Кожаро-обущар”. […]

Вестници много, на различни езици, но в 45-хилядния град имаше и много читатели!

Никола Алваджиев, “Пловдивска хроника”

Първият брой на вестник Марица от 1878 година

Първият брой на вестник Марица от 1878 година

Днес в почти половин милионен Пловдив излиза само един ежедневник.

А голяма част от медиите в България са зависими. Подчинени на политическите влияния, на бизнес интересите на собствениците си, или разчитат на благоразположението на рекламодателите си. Автоцензурата също се е превърнала във важно умение за оцеляване на българския журналист и на българския медиен пазар. Така основната роля на медиите да бъдат в полза на обществото и да са критичен коректив на управляващите става невъзможна.

Без свободни медии обаче демокрацията е не просто уязвима – тя не може да съществува. А единствената гаранция за действителна независимост на медиите е да бъде изолирано влиянието на собствениците, рекламодателите и властимащите върху тях, което ще е възможно само ако гражданите се ангажират с финансирането на медиите, на които държат.

От години насам с различни хора обсъждах няколко форма̀та, които по една или друга причина не се реализираха. На 1 февруари, около 5 сутринта, след безсънна нощ и над 12-часова работна сесия, започнала следобеда на предния ден, дръпнахме завесата пред Тоест.

Наясно сме, че започваме скромно, но се надяваме да пораснем бързо и заедно. Екипът ни постепенно расте, защото продължаваме да разговаряме с хора, които да привлечем под една или друга форма. Засега сме разпръснати между София, Пловдив и няколко европейски града. Редакцията ни е виртуална, за да можем да сме навсякъде и защото искаме да изцедим възможностите на съвременните технологии, за да създаваме съдържание и общност около себе си.

Искаме да натежим в посока на думите, които имат смисъл. Искаме да предлагаме стойностни неща за четене, гледане и слушане. Представяме си се като съвременно списание, което „разлиствате“ по-бавно, и избирате подходящия момент, за да се потопите в една или друга тема. Не можем да бъдем прехвърлени набързо. Ще прескачаме злободневните теми, за да се фокусираме върху истински важните. Но ако нямаме автор за дадена тема, ще предпочетем да я пропуснем, отколкото да не бъдем на ниво. Искаме да даваме трибуна на хора с експертност и репутация в своята област и целенасочено ще отбягваме многознайството по всяка тема.

В „Тоест“ няма да препубликуваме чужди материали, а само авторски. Ще съпоставяме факти, ще ги анализираме, а когато сме пристрастни към някоя позиция, ще го декларираме ясно и обосновано. Ще търсим и разказваме историите на хората, които вдъхновяват, и на малкия и средния бизнес, който възражда предприемаческия дух на българите. Ще бъдем критични към управляващите, които и да са те.

И започваме, отказвайки се да публикуваме реклами, отказвайки да се финансираме по програми, отказвайки зад нас да стои нечий бизнес. Заради това регистрирахме фондация, а не търговско дружество за издател на Тоест. Единственият начин да се закрепим над водата е да спечелим доверието на читателите, зрителите и слушателите си, да им носим смисъл и полезност, а те редовно да ни подкрепят с малки суми. Нямаме друга опция. Нещо повече, освен да спечелим доверие, ежедневно ще трябва да го защитаваме и умножаваме.

Съзнаваме, че подобен бизнес модел звучи сякаш сами се препъваме, но пък… ако се получи? В Тоест няма и няма да имаме нужда от търговци, които да продават реклама, за да запълваме страниците си с банери и платени публикации. Няма да броим кликовете върху тях. Няма да се борим за повече трафик, няма да пишем провокативни заглавия, за да привличаме внимание. Дори не ползваме Google Analytics, защото не следим и не профилираме посетителите си – защото няма пред кого да доказваме посещаемост. Няма да слагаме и paywall, за да предлагаме по няколко безплатни статии, а след това да затваряме достъпа до сайта за посетители, които не са платили.

Единственото, което ще реши дали ще оцелеем при този модел, е дали достатъчно хора ни намират за полезни и ни подкрепят. Нито сме първи, нито единствени с подобна идея – има вече успешни проекти по света и това ни дава кураж да опитаме.

Оригинален линк: “Тоест” • Някои права запазени

Top 8 Best Practices for High-Performance ETL Processing Using Amazon Redshift

Post Syndicated from Thiyagarajan Arumugam original https://aws.amazon.com/blogs/big-data/top-8-best-practices-for-high-performance-etl-processing-using-amazon-redshift/

An ETL (Extract, Transform, Load) process enables you to load data from source systems into your data warehouse. This is typically executed as a batch or near-real-time ingest process to keep the data warehouse current and provide up-to-date analytical data to end users.

Amazon Redshift is a fast, petabyte-scale data warehouse that enables you easily to make data-driven decisions. With Amazon Redshift, you can get insights into your big data in a cost-effective fashion using standard SQL. You can set up any type of data model, from star and snowflake schemas, to simple de-normalized tables for running any analytical queries.

To operate a robust ETL platform and deliver data to Amazon Redshift in a timely manner, design your ETL processes to take account of Amazon Redshift’s architecture. When migrating from a legacy data warehouse to Amazon Redshift, it is tempting to adopt a lift-and-shift approach, but this can result in performance and scale issues long term. This post guides you through the following best practices for ensuring optimal, consistent runtimes for your ETL processes:

  • COPY data from multiple, evenly sized files.
  • Use workload management to improve ETL runtimes.
  • Perform table maintenance regularly.
  • Perform multiple steps in a single transaction.
  • Loading data in bulk.
  • Use UNLOAD to extract large result sets.
  • Use Amazon Redshift Spectrum for ad hoc ETL processing.
  • Monitor daily ETL health using diagnostic queries.

1. COPY data from multiple, evenly sized files

Amazon Redshift is an MPP (massively parallel processing) database, where all the compute nodes divide and parallelize the work of ingesting data. Each node is further subdivided into slices, with each slice having one or more dedicated cores, equally dividing the processing capacity. The number of slices per node depends on the node type of the cluster. For example, each DS2.XLARGE compute node has two slices, whereas each DS2.8XLARGE compute node has 16 slices.

When you load data into Amazon Redshift, you should aim to have each slice do an equal amount of work. When you load the data from a single large file or from files split into uneven sizes, some slices do more work than others. As a result, the process runs only as fast as the slowest, or most heavily loaded, slice. In the example shown below, a single large file is loaded into a two-node cluster, resulting in only one of the nodes, “Compute-0”, performing all the data ingestion:

When splitting your data files, ensure that they are of approximately equal size – between 1 MB and 1 GB after compression. The number of files should be a multiple of the number of slices in your cluster. Also, I strongly recommend that you individually compress the load files using gzip, lzop, or bzip2 to efficiently load large datasets.

When loading multiple files into a single table, use a single COPY command for the table, rather than multiple COPY commands. Amazon Redshift automatically parallelizes the data ingestion. Using a single COPY command to bulk load data into a table ensures optimal use of cluster resources, and quickest possible throughput.

2. Use workload management to improve ETL runtimes

Use Amazon Redshift’s workload management (WLM) to define multiple queues dedicated to different workloads (for example, ETL versus reporting) and to manage the runtimes of queries. As you migrate more workloads into Amazon Redshift, your ETL runtimes can become inconsistent if WLM is not appropriately set up.

I recommend limiting the overall concurrency of WLM across all queues to around 15 or less. This WLM guide helps you organize and monitor the different queues for your Amazon Redshift cluster.

When managing different workloads on your Amazon Redshift cluster, consider the following for the queue setup:

  • Create a queue dedicated to your ETL processes. Configure this queue with a small number of slots (5 or fewer). Amazon Redshift is designed for analytics queries, rather than transaction processing. The cost of COMMIT is relatively high, and excessive use of COMMIT can result in queries waiting for access to the commit queue. Because ETL is a commit-intensive process, having a separate queue with a small number of slots helps mitigate this issue.
  • Claim extra memory available in a queue. When executing an ETL query, you can take advantage of the wlm_query_slot_count to claim the extra memory available in a particular queue. For example, a typical ETL process might involve COPYing raw data into a staging table so that downstream ETL jobs can run transformations that calculate daily, weekly, and monthly aggregates. To speed up the COPY process (so that the downstream tasks can start in parallel sooner), the wlm_query_slot_count can be increased for this step.
  • Create a separate queue for reporting queries. Configure query monitoring rules on this queue to further manage long-running and expensive queries.
  • Take advantage of the dynamic memory parameters. They swap the memory from your ETL to your reporting queue after the ETL job has completed.

3. Perform table maintenance regularly

Amazon Redshift is a columnar database, which enables fast transformations for aggregating data. Performing regular table maintenance ensures that transformation ETLs are predictable and performant. To get the best performance from your Amazon Redshift database, you must ensure that database tables regularly are VACUUMed and ANALYZEd. The Analyze & Vacuum schema utility helps you automate the table maintenance task and have VACUUM & ANALYZE executed in a regular fashion.

  • Use VACUUM to sort tables and remove deleted blocks

During a typical ETL refresh process, tables receive new incoming records using COPY, and unneeded data (cold data) is removed using DELETE. New rows are added to the unsorted region in a table. Deleted rows are simply marked for deletion.

DELETE does not automatically reclaim the space occupied by the deleted rows. Adding and removing large numbers of rows can therefore cause the unsorted region and the number of deleted blocks to grow. This can degrade the performance of queries executed against these tables.

After an ETL process completes, perform VACUUM to ensure that user queries execute in a consistent manner. The complete list of tables that need VACUUMing can be found using the Amazon Redshift Util’s table_info script.

Use the following approaches to ensure that VACCUM is completed in a timely manner:

  • Use wlm_query_slot_count to claim all the memory allocated in the ETL WLM queue during the VACUUM process.
  • DROP or TRUNCATE intermediate or staging tables, thereby eliminating the need to VACUUM them.
  • If your table has a compound sort key with only one sort column, try to load your data in sort key order. This helps reduce or eliminate the need to VACUUM the table.
  • Consider using time series This helps reduce the amount of data you need to VACUUM.
  • Use ANALYZE to update database statistics

Amazon Redshift uses a cost-based query planner and optimizer using statistics about tables to make good decisions about the query plan for the SQL statements. Regular statistics collection after the ETL completion ensures that user queries run fast, and that daily ETL processes are performant. The Amazon Redshift utility table_info script provides insights into the freshness of the statistics. Keeping the statistics off (pct_stats_off) less than 20% ensures effective query plans for the SQL queries.

4. Perform multiple steps in a single transaction

ETL transformation logic often spans multiple steps. Because commits in Amazon Redshift are expensive, if each ETL step performs a commit, multiple concurrent ETL processes can take a long time to execute.

To minimize the number of commits in a process, the steps in an ETL script should be surrounded by a BEGIN…END statement so that a single commit is performed only after all the transformation logic has been executed. For example, here is an example multi-step ETL script that performs one commit at the end:

Begin
CREATE temporary staging_table;
INSERT INTO staging_table SELECT .. FROM source (transformation logic);
DELETE FROM daily_table WHERE dataset_date =?;
INSERT INTO daily_table SELECT .. FROM staging_table (daily aggregate);
DELETE FROM weekly_table WHERE weekending_date=?;
INSERT INTO weekly_table SELECT .. FROM staging_table(weekly aggregate);
Commit

5. Loading data in bulk

Amazon Redshift is designed to store and query petabyte-scale datasets. Using Amazon S3 you can stage and accumulate data from multiple source systems before executing a bulk COPY operation. The following methods allow efficient and fast transfer of these bulk datasets into Amazon Redshift:

  • Use a manifest file to ingest large datasets that span multiple files. The manifest file is a JSON file that lists all the files to be loaded into Amazon Redshift. Using a manifest file ensures that Amazon Redshift has a consistent view of the data to be loaded from S3, while also ensuring that duplicate files do not result in the same data being loaded more than one time.
  • Use temporary staging tables to hold the data for transformation. These tables are automatically dropped after the ETL session is complete. Temporary tables can be created using the CREATE TEMPORARY TABLE syntax, or by issuing a SELECT … INTO #TEMP_TABLE query. Explicitly specifying the CREATE TEMPORARY TABLE statement allows you to control the DISTRIBUTION KEY, SORT KEY, and compression settings to further improve performance.
  • User ALTER table APPEND to swap data from the staging tables to the target table. Data in the source table is moved to matching columns in the target table. Column order doesn’t matter. After data is successfully appended to the target table, the source table is empty. ALTER TABLE APPEND is much faster than a similar CREATE TABLE AS or INSERT INTO operation because it doesn’t involve copying or moving data.

6. Use UNLOAD to extract large result sets

Fetching a large number of rows using SELECT is expensive and takes a long time. When a large amount of data is fetched from the Amazon Redshift cluster, the leader node has to hold the data temporarily until the fetches are complete. Further, data is streamed out sequentially, which results in longer elapsed time. As a result, the leader node can become hot, which not only affects the SELECT that is being executed, but also throttles resources for creating execution plans and managing the overall cluster resources. Here is an example of a large SELECT statement. Notice that the leader node is doing most of the work to stream out the rows:

Use UNLOAD to extract large results sets directly to S3. After it’s in S3, the data can be shared with multiple downstream systems. By default, UNLOAD writes data in parallel to multiple files according to the number of slices in the cluster. All the compute nodes participate to quickly offload the data into S3.

If you are extracting data for use with Amazon Redshift Spectrum, you should make use of the MAXFILESIZE parameter to and keep files are 150 MB. Similar to item 1 above, having many evenly sized files ensures that Redshift Spectrum can do the maximum amount of work in parallel.

7. Use Redshift Spectrum for ad hoc ETL processing

Events such as data backfill, promotional activity, and special calendar days can trigger additional data volumes that affect the data refresh times in your Amazon Redshift cluster. To help address these spikes in data volumes and throughput, I recommend staging data in S3. After data is organized in S3, Redshift Spectrum enables you to query it directly using standard SQL. In this way, you gain the benefits of additional capacity without having to resize your cluster.

For tips on getting started with and optimizing the use of Redshift Spectrum, see the previous post, 10 Best Practices for Amazon Redshift Spectrum.

8. Monitor daily ETL health using diagnostic queries

Monitoring the health of your ETL processes on a regular basis helps identify the early onset of performance issues before they have a significant impact on your cluster. The following monitoring scripts can be used to provide insights into the health of your ETL processes:

Script Use when… Solution
commit_stats.sql – Commit queue statistics from past days, showing largest queue length and queue time first DML statements such as INSERT/UPDATE/COPY/DELETE operations take several times longer to execute when multiple of these operations are in progress Set up separate WLM queues for the ETL process and limit the concurrency to < 5.
copy_performance.sql –  Copy command statistics for the past days Daily COPY operations take longer to execute • Follow the best practices for the COPY command.
• Analyze data growth with the incoming datasets and consider cluster resize to meet the expected SLA.
table_info.sql – Table skew and unsorted statistics along with storage and key information Transformation steps take longer to execute • Set up regular VACCUM jobs to address unsorted rows and claim the deleted blocks so that transformation SQL execute optimally.
• Consider a table redesign to avoid data skewness.
v_check_transaction_locks.sql – Monitor transaction locks INSERT/UPDATE/COPY/DELETE operations on particular tables do not respond back in timely manner, compared to when run after the ETL Multiple DML statements are operating on the same target table at the same moment from different transactions. Set up ETL job dependency so that they execute serially for the same target table.
v_get_schema_priv_by_user.sql – Get the schema that the user has access to Reporting users can view intermediate tables Set up separate database groups for reporting and ETL users, and grants access to objects using GRANT.
v_generate_tbl_ddl.sql – Get the table DDL You need to create an empty table with same structure as target table for data backfill Generate DDL using this script for data backfill.
v_space_used_per_tbl.sql – monitor space used by individual tables Amazon Redshift data warehouse space growth is trending upwards more than normal

Analyze the individual tables that are growing at higher rate than normal. Consider data archival using UNLOAD to S3 and Redshift Spectrum for later analysis.

Use unscanned_table_summary.sql to find unused table and archive or drop them.

top_queries.sql – Return the top 50 time consuming statements aggregated by its text ETL transformations are taking longer to execute Analyze the top transformation SQL and use EXPLAIN to find opportunities for tuning the query plan.

There are several other useful scripts available in the amazon-redshift-utils repository. The AWS Lambda Utility Runner runs a subset of these scripts on a scheduled basis, allowing you to automate much of monitoring of your ETL processes.

Example ETL process

The following ETL process reinforces some of the best practices discussed in this post. Consider the following four-step daily ETL workflow where data from an RDBMS source system is staged in S3 and then loaded into Amazon Redshift. Amazon Redshift is used to calculate daily, weekly, and monthly aggregations, which are then unloaded to S3, where they can be further processed and made available for end-user reporting using a number of different tools, including Redshift Spectrum and Amazon Athena.

Step 1:  Extract from the RDBMS source to a S3 bucket

In this ETL process, the data extract job fetches change data every 1 hour and it is staged into multiple hourly files. For example, the staged S3 folder looks like the following:

 [[email protected] ~]$ aws s3 ls s3://<<S3 Bucket>>/batch/2017/07/02/
2017-07-02 01:59:58   81900220 20170702T01.export.gz
2017-07-02 02:59:56   84926844 20170702T02.export.gz
2017-07-02 03:59:54   78990356 20170702T03.export.gz
…
2017-07-02 22:00:03   75966745 20170702T21.export.gz
2017-07-02 23:00:02   89199874 20170702T22.export.gz
2017-07-02 00:59:59   71161715 20170702T23.export.gz

Organizing the data into multiple, evenly sized files enables the COPY command to ingest this data using all available resources in the Amazon Redshift cluster. Further, the files are compressed (gzipped) to further reduce COPY times.

Step 2: Stage data to the Amazon Redshift table for cleansing

Ingesting the data can be accomplished using a JSON-based manifest file. Using the manifest file ensures that S3 eventual consistency issues can be eliminated and also provides an opportunity to dedupe any files if needed. A sample manifest20170702.json file looks like the following:

{
  "entries": [
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T01.export.gz", "mandatory":true},
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T02.export.gz", "mandatory":true},
    …
    {"url":" s3://<<S3 Bucket>>/batch/2017/07/02/20170702T23.export.gz", "mandatory":true}
  ]
}

The data can be ingested using the following command:

SET wlm_query_slot_count TO <<max available concurrency in the ETL queue>>;
COPY stage_tbl FROM 's3:// <<S3 Bucket>>/batch/manifest20170702.json' iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole' manifest;

Because the downstream ETL processes depend on this COPY command to complete, the wlm_query_slot_count is used to claim all the memory available to the queue. This helps the COPY command complete as quickly as possible.

Step 3: Transform data to create daily, weekly, and monthly datasets and load into target tables

Data is staged in the “stage_tbl” from where it can be transformed into the daily, weekly, and monthly aggregates and loaded into target tables. The following job illustrates a typical weekly process:

Begin
INSERT into ETL_LOG (..) values (..);
DELETE from weekly_tbl where dataset_week = <<current week>>;
INSERT into weekly_tbl (..)
  SELECT date_trunc('week', dataset_day) AS week_begin_dataset_date, SUM(C1) AS C1, SUM(C2) AS C2
	FROM   stage_tbl
GROUP BY date_trunc('week', dataset_day);
INSERT into AUDIT_LOG values (..);
COMMIT;
End;

As shown above, multiple steps are combined into one transaction to perform a single commit, reducing contention on the commit queue.

Step 4: Unload the daily dataset to populate the S3 data lake bucket

The transformed results are now unloaded into another S3 bucket, where they can be further processed and made available for end-user reporting using a number of different tools, including Redshift Spectrum and Amazon Athena.

unload ('SELECT * FROM weekly_tbl WHERE dataset_week = <<current week>>’) TO 's3:// <<S3 Bucket>>/datalake/weekly/20170526/' iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

Summary

Amazon Redshift lets you easily operate petabyte-scale data warehouses on the cloud. This post summarized the best practices for operating scalable ETL natively within Amazon Redshift. I demonstrated efficient ways to ingest and transform data, along with close monitoring. I also demonstrated the best practices being used in a typical sample ETL workload to transform the data into Amazon Redshift.

If you have questions or suggestions, please comment below.

 


About the Author

Thiyagarajan Arumugam is a Big Data Solutions Architect at Amazon Web Services and designs customer architectures to process data at scale. Prior to AWS, he built data warehouse solutions at Amazon.com. In his free time, he enjoys all outdoor sports and practices the Indian classical drum mridangam.

 

Optimize Delivery of Trending, Personalized News Using Amazon Kinesis and Related Services

Post Syndicated from Yukinori Koide original https://aws.amazon.com/blogs/big-data/optimize-delivery-of-trending-personalized-news-using-amazon-kinesis-and-related-services/

This is a guest post by Yukinori Koide, an the head of development for the Newspass department at Gunosy.

Gunosy is a news curation application that covers a wide range of topics, such as entertainment, sports, politics, and gourmet news. The application has been installed more than 20 million times.

Gunosy aims to provide people with the content they want without the stress of dealing with a large influx of information. We analyze user attributes, such as gender and age, and past activity logs like click-through rate (CTR). We combine this information with article attributes to provide trending, personalized news articles to users.

In this post, I show you how to process user activity logs in real time using Amazon Kinesis Data Firehose, Amazon Kinesis Data Analytics, and related AWS services.

Why does Gunosy need real-time processing?

Users need fresh and personalized news. There are two constraints to consider when delivering appropriate articles:

  • Time: Articles have freshness—that is, they lose value over time. New articles need to reach users as soon as possible.
  • Frequency (volume): Only a limited number of articles can be shown. It’s unreasonable to display all articles in the application, and users can’t read all of them anyway.

To deliver fresh articles with a high probability that the user is interested in them, it’s necessary to include not only past user activity logs and some feature values of articles, but also the most recent (real-time) user activity logs.

We optimize the delivery of articles with these two steps.

  1. Personalization: Deliver articles based on each user’s attributes, past activity logs, and feature values of each article—to account for each user’s interests.
  2. Trends analysis/identification: Optimize delivering articles using recent (real-time) user activity logs—to incorporate the latest trends from all users.

Optimizing the delivery of articles is always a cold start. Initially, we deliver articles based on past logs. We then use real-time data to optimize as quickly as possible. In addition, news has a short freshness time. Specifically, day-old news is past news, and even the news that is three hours old is past news. Therefore, shortening the time between step 1 and step 2 is important.

To tackle this issue, we chose AWS for processing streaming data because of its fully managed services, cost-effectiveness, and so on.

Solution

The following diagrams depict the architecture for optimizing article delivery by processing real-time user activity logs

There are three processing flows:

  1. Process real-time user activity logs.
  2. Store and process all user-based and article-based logs.
  3. Execute ad hoc or heavy queries.

In this post, I focus on the first processing flow and explain how it works.

Process real-time user activity logs

The following are the steps for processing user activity logs in real time using Kinesis Data Streams and Kinesis Data Analytics.

  1. The Fluentd server sends the following user activity logs to Kinesis Data Streams:
{"article_id": 12345, "user_id": 12345, "action": "click"}
{"article_id": 12345, "user_id": 12345, "action": "impression"}
...
  1. Map rows of logs to columns in Kinesis Data Analytics.

  1. Set the reference data to Kinesis Data Analytics from Amazon S3.

a. Gunosy has user attributes such as gender, age, and segment. Prepare the following CSV file (user_id, gender, segment_id) and put it in Amazon S3:

101,female,1
102,male,2
103,female,3
...

b. Add the application reference data source to Kinesis Data Analytics using the AWS CLI:

$ aws kinesisanalytics add-application-reference-data-source \
  --application-name <my-application-name> \
  --current-application-version-id <version-id> \
  --reference-data-source '{
  "TableName": "REFERENCE_DATA_SOURCE",
  "S3ReferenceDataSource": {
    "BucketARN": "arn:aws:s3:::<my-bucket-name>",
    "FileKey": "mydata.csv",
    "ReferenceRoleARN": "arn:aws:iam::<account-id>:role/..."
  },
  "ReferenceSchema": {
    "RecordFormat": {
      "RecordFormatType": "CSV",
      "MappingParameters": {
        "CSVMappingParameters": {"RecordRowDelimiter": "\n", "RecordColumnDelimiter": ","}
      }
    },
    "RecordEncoding": "UTF-8",
    "RecordColumns": [
      {"Name": "USER_ID", "Mapping": "0", "SqlType": "INTEGER"},
      {"Name": "GENDER",  "Mapping": "1", "SqlType": "VARCHAR(32)"},
      {"Name": "SEGMENT_ID", "Mapping": "2", "SqlType": "INTEGER"}
    ]
  }
}'

This application reference data source can be referred on Kinesis Data Analytics.

  1. Run a query against the source data stream on Kinesis Data Analytics with the application reference data source.

a. Define the temporary stream named TMP_SQL_STREAM.

CREATE OR REPLACE STREAM "TMP_SQL_STREAM" (
  GENDER VARCHAR(32), SEGMENT_ID INTEGER, ARTICLE_ID INTEGER
);

b. Insert the joined source stream and application reference data source into the temporary stream.

CREATE OR REPLACE PUMP "TMP_PUMP" AS
INSERT INTO "TMP_SQL_STREAM"
SELECT STREAM
  R.GENDER, R.SEGMENT_ID, S.ARTICLE_ID, S.ACTION
FROM      "SOURCE_SQL_STREAM_001" S
LEFT JOIN "REFERENCE_DATA_SOURCE" R
  ON S.USER_ID = R.USER_ID;

c. Define the destination stream named DESTINATION_SQL_STREAM.

CREATE OR REPLACE STREAM "DESTINATION_SQL_STREAM" (
  TIME TIMESTAMP, GENDER VARCHAR(32), SEGMENT_ID INTEGER, ARTICLE_ID INTEGER, 
  IMPRESSION INTEGER, CLICK INTEGER
);

d. Insert the processed temporary stream, using a tumbling window, into the destination stream per minute.

CREATE OR REPLACE PUMP "STREAM_PUMP" AS
INSERT INTO "DESTINATION_SQL_STREAM"
SELECT STREAM
  ROW_TIME AS TIME,
  GENDER, SEGMENT_ID, ARTICLE_ID,
  SUM(CASE ACTION WHEN 'impression' THEN 1 ELSE 0 END) AS IMPRESSION,
  SUM(CASE ACTION WHEN 'click' THEN 1 ELSE 0 END) AS CLICK
FROM "TMP_SQL_STREAM"
GROUP BY
  GENDER, SEGMENT_ID, ARTICLE_ID,
  FLOOR("TMP_SQL_STREAM".ROWTIME TO MINUTE);

The results look like the following:

  1. Insert the results into Amazon Elasticsearch Service (Amazon ES).
  2. Batch servers get results from Amazon ES every minute. They then optimize delivering articles with other data sources using a proprietary optimization algorithm.

How to connect a stream to another stream in another AWS Region

When we built the solution, Kinesis Data Analytics was not available in the Asia Pacific (Tokyo) Region, so we used the US West (Oregon) Region. The following shows how we connected a data stream to another data stream in the other Region.

There is no need to continue containing all components in a single AWS Region, unless you have a situation where a response difference at the millisecond level is critical to the service.

Benefits

The solution provides benefits for both our company and for our users. Benefits for the company are cost savings—including development costs, operational costs, and infrastructure costs—and reducing delivery time. Users can now find articles of interest more quickly. The solution can process more than 500,000 records per minute, and it enables fast and personalized news curating for our users.

Conclusion

In this post, I showed you how we optimize trending user activities to personalize news using Amazon Kinesis Data Firehose, Amazon Kinesis Data Analytics, and related AWS services in Gunosy.

AWS gives us a quick and economical solution and a good experience.

If you have questions or suggestions, please comment below.


Additional Reading

If you found this post useful, be sure to check out Implement Serverless Log Analytics Using Amazon Kinesis Analytics and Joining and Enriching Streaming Data on Amazon Kinesis.


About the Authors

Yukinori Koide is the head of development for the Newspass department at Gunosy. He is working on standardization of provisioning and deployment flow, promoting the utilization of serverless and containers for machine learning and AI services. His favorite AWS services are DynamoDB, Lambda, Kinesis, and ECS.

 

 

 

Akihiro Tsukada is a start-up solutions architect with AWS. He supports start-up companies in Japan technically at many levels, ranging from seed to later-stage.

 

 

 

 

Yuta Ishii is a solutions architect with AWS. He works with our customers to provide architectural guidance for building media & entertainment services, helping them improve the value of their services when using AWS.

 

 

 

 

 

Scale Your Web Application — One Step at a Time

Post Syndicated from Saurabh Shrivastava original https://aws.amazon.com/blogs/architecture/scale-your-web-application-one-step-at-a-time/

I often encounter people experiencing frustration as they attempt to scale their e-commerce or WordPress site—particularly around the cost and complexity related to scaling. When I talk to customers about their scaling plans, they often mention phrases such as horizontal scaling and microservices, but usually people aren’t sure about how to dive in and effectively scale their sites.

Now let’s talk about different scaling options. For instance if your current workload is in a traditional data center, you can leverage the cloud for your on-premises solution. This way you can scale to achieve greater efficiency with less cost. It’s not necessary to set up a whole powerhouse to light a few bulbs. If your workload is already in the cloud, you can use one of the available out-of-the-box options.

Designing your API in microservices and adding horizontal scaling might seem like the best choice, unless your web application is already running in an on-premises environment and you’ll need to quickly scale it because of unexpected large spikes in web traffic.

So how to handle this situation? Take things one step at a time when scaling and you may find horizontal scaling isn’t the right choice, after all.

For example, assume you have a tech news website where you did an early-look review of an upcoming—and highly-anticipated—smartphone launch, which went viral. The review, a blog post on your website, includes both video and pictures. Comments are enabled for the post and readers can also rate it. For example, if your website is hosted on a traditional Linux with a LAMP stack, you may find yourself with immediate scaling problems.

Let’s get more details on the current scenario and dig out more:

  • Where are images and videos stored?
  • How many read/write requests are received per second? Per minute?
  • What is the level of security required?
  • Are these synchronous or asynchronous requests?

We’ll also want to consider the following if your website has a transactional load like e-commerce or banking:

How is the website handling sessions?

  • Do you have any compliance requests—like the Payment Card Industry Data Security Standard (PCI DSS compliance) —if your website is using its own payment gateway?
  • How are you recording customer behavior data and fulfilling your analytics needs?
  • What are your loading balancing considerations (scaling, caching, session maintenance, etc.)?

So, if we take this one step at a time:

Step 1: Ease server load. We need to quickly handle spikes in traffic, generated by activity on the blog post, so let’s reduce server load by moving image and video to some third -party content delivery network (CDN). AWS provides Amazon CloudFront as a CDN solution, which is highly scalable with built-in security to verify origin access identity and handle any DDoS attacks. CloudFront can direct traffic to your on-premises or cloud-hosted server with its 113 Points of Presence (102 Edge Locations and 11 Regional Edge Caches) in 56 cities across 24 countries, which provides efficient caching.
Step 2: Reduce read load by adding more read replicas. MySQL provides a nice mirror replication for databases. Oracle has its own Oracle plug for replication and AWS RDS provide up to five read replicas, which can span across the region and even the Amazon database Amazon Aurora can have 15 read replicas with Amazon Aurora autoscaling support. If a workload is highly variable, you should consider Amazon Aurora Serverless database  to achieve high efficiency and reduced cost. While most mirror technologies do asynchronous replication, AWS RDS can provide synchronous multi-AZ replication, which is good for disaster recovery but not for scalability. Asynchronous replication to mirror instance means replication data can sometimes be stale if network bandwidth is low, so you need to plan and design your application accordingly.

I recommend that you always use a read replica for any reporting needs and try to move non-critical GET services to read replica and reduce the load on the master database. In this case, loading comments associated with a blog can be fetched from a read replica—as it can handle some delay—in case there is any issue with asynchronous reflection.

Step 3: Reduce write requests. This can be achieved by introducing queue to process the asynchronous message. Amazon Simple Queue Service (Amazon SQS) is a highly-scalable queue, which can handle any kind of work-message load. You can process data, like rating and review; or calculate Deal Quality Score (DQS) using batch processing via an SQS queue. If your workload is in AWS, I recommend using a job-observer pattern by setting up Auto Scaling to automatically increase or decrease the number of batch servers, using the number of SQS messages, with Amazon CloudWatch, as the trigger.  For on-premises workloads, you can use SQS SDK to create an Amazon SQS queue that holds messages until they’re processed by your stack. Or you can use Amazon SNS  to fan out your message processing in parallel for different purposes like adding a watermark in an image, generating a thumbnail, etc.

Step 4: Introduce a more robust caching engine. You can use Amazon Elastic Cache for Memcached or Redis to reduce write requests. Memcached and Redis have different use cases so if you can afford to lose and recover your cache from your database, use Memcached. If you are looking for more robust data persistence and complex data structure, use Redis. In AWS, these are managed services, which means AWS takes care of the workload for you and you can also deploy them in your on-premises instances or use a hybrid approach.

Step 5: Scale your server. If there are still issues, it’s time to scale your server.  For the greatest cost-effectiveness and unlimited scalability, I suggest always using horizontal scaling. However, use cases like database vertical scaling may be a better choice until you are good with sharding; or use Amazon Aurora Serverless for variable workloads. It will be wise to use Auto Scaling to manage your workload effectively for horizontal scaling. Also, to achieve that, you need to persist the session. Amazon DynamoDB can handle session persistence across instances.

If your server is on premises, consider creating a multisite architecture, which will help you achieve quick scalability as required and provide a good disaster recovery solution.  You can pick and choose individual services like Amazon Route 53, AWS CloudFormation, Amazon SQS, Amazon SNS, Amazon RDS, etc. depending on your needs.

Your multisite architecture will look like the following diagram:

In this architecture, you can run your regular workload on premises, and use your AWS workload as required for scalability and disaster recovery. Using Route 53, you can direct a precise percentage of users to an AWS workload.

If you decide to move all of your workloads to AWS, the recommended multi-AZ architecture would look like the following:

In this architecture, you are using a multi-AZ distributed workload for high availability. You can have a multi-region setup and use Route53 to distribute your workload between AWS Regions. CloudFront helps you to scale and distribute static content via an S3 bucket and DynamoDB, maintaining your application state so that Auto Scaling can apply horizontal scaling without loss of session data. At the database layer, RDS with multi-AZ standby provides high availability and read replica helps achieve scalability.

This is a high-level strategy to help you think through the scalability of your workload by using AWS even if your workload in on premises and not in the cloud…yet.

I highly recommend creating a hybrid, multisite model by placing your on-premises environment replica in the public cloud like AWS Cloud, and using Amazon Route53 DNS Service and Elastic Load Balancing to route traffic between on-premises and cloud environments. AWS now supports load balancing between AWS and on-premises environments to help you scale your cloud environment quickly, whenever required, and reduce it further by applying Amazon auto-scaling and placing a threshold on your on-premises traffic using Route 53.

AWS Online Tech Talks – January 2018

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-january-2018/

Happy New Year! Kick of 2018 right by expanding your AWS knowledge with a great batch of new Tech Talks. We’re covering some of the biggest launches from re:Invent including Amazon Neptune, Amazon Rekognition Video, AWS Fargate, AWS Cloud9, Amazon Kinesis Video Streams, AWS PrivateLink, AWS Single-Sign On and more!

January 2018– Schedule

Noted below are the upcoming scheduled live, online technical sessions being held during the month of January. Make sure to register ahead of time so you won’t miss out on these free talks conducted by AWS subject matter experts.

Webinars featured this month are:

Monday January 22

Analytics & Big Data
11:00 AM – 11:45 AM PT Analyze your Data Lake, Fast @ Any Scale  Lvl 300

Database
01:00 PM – 01:45 PM PT Deep Dive on Amazon Neptune Lvl 200

Tuesday, January 23

Artificial Intelligence
9:00 AM – 09:45 AM PT  How to get the most out of Amazon Rekognition Video, a deep learning based video analysis service Lvl 300

Containers

11:00 AM – 11:45 AM Introducing AWS Fargate Lvl 200

Serverless
01:00 PM – 02:00 PM PT Overview of Serverless Application Deployment Patterns Lvl 400

Wednesday, January 24

DevOps
09:00 AM – 09:45 AM PT Introducing AWS Cloud9  Lvl 200

Analytics & Big Data
11:00 AM – 11:45 AM PT Deep Dive: Amazon Kinesis Video Streams
Lvl 300
Database
01:00 PM – 01:45 PM PT Introducing Amazon Aurora with PostgreSQL Compatibility Lvl 200

Thursday, January 25

Artificial Intelligence
09:00 AM – 09:45 AM PT Introducing Amazon SageMaker Lvl 200

Mobile
11:00 AM – 11:45 AM PT Ionic and React Hybrid Web/Native Mobile Applications with Mobile Hub Lvl 200

IoT
01:00 PM – 01:45 PM PT Connected Product Development: Secure Cloud & Local Connectivity for Microcontroller-based Devices Lvl 200

Monday, January 29

Enterprise
11:00 AM – 11:45 AM PT Enterprise Solutions Best Practices 100 Achieving Business Value with AWS Lvl 100

Compute
01:00 PM – 01:45 PM PT Introduction to Amazon Lightsail Lvl 200

Tuesday, January 30

Security, Identity & Compliance
09:00 AM – 09:45 AM PT Introducing Managed Rules for AWS WAF Lvl 200

Storage
11:00 AM – 11:45 AM PT  Improving Backup & DR – AWS Storage Gateway Lvl 300

Compute
01:00 PM – 01:45 PM PT  Introducing the New Simplified Access Model for EC2 Spot Instances Lvl 200

Wednesday, January 31

Networking
09:00 AM – 09:45 AM PT  Deep Dive on AWS PrivateLink Lvl 300

Enterprise
11:00 AM – 11:45 AM PT Preparing Your Team for a Cloud Transformation Lvl 200

Compute
01:00 PM – 01:45 PM PT  The Nitro Project: Next-Generation EC2 Infrastructure Lvl 300

Thursday, February 1

Security, Identity & Compliance
09:00 AM – 09:45 AM PT  Deep Dive on AWS Single Sign-On Lvl 300

Storage
11:00 AM – 11:45 AM PT How to Build a Data Lake in Amazon S3 & Amazon Glacier Lvl 300

Now Available: New Digital Training to Help You Learn About AWS Big Data Services

Post Syndicated from Sara Snedeker original https://aws.amazon.com/blogs/big-data/now-available-new-digital-training-to-help-you-learn-about-aws-big-data-services/

AWS Training and Certification recently released free digital training courses that will make it easier for you to build your cloud skills and learn about using AWS Big Data services. This training includes courses like Introduction to Amazon EMR and Introduction to Amazon Athena.

You can get free and unlimited access to more than 100 new digital training courses built by AWS experts at aws.training. It’s easy to access training related to big data. Just choose the Analytics category on our Find Training page to browse through the list of courses. You can also use the keyword filter to search for training for specific AWS offerings.

Recommended training

Just getting started, or looking to learn about a new service? Check out the following digital training courses:

Introduction to Amazon EMR (15 minutes)
Covers the available tools that can be used with Amazon EMR and the process of creating a cluster. It includes a demonstration of how to create an EMR cluster.

Introduction to Amazon Athena (10 minutes)
Introduces the Amazon Athena service along with an overview of its operating environment. It covers the basic steps in implementing Athena and provides a brief demonstration.

Introduction to Amazon QuickSight (10 minutes)
Discusses the benefits of using Amazon QuickSight and how the service works. It also includes a demonstration so that you can see Amazon QuickSight in action.

Introduction to Amazon Redshift (10 minutes)
Walks you through Amazon Redshift and its core features and capabilities. It also includes a quick overview of relevant use cases and a short demonstration.

Introduction to AWS Lambda (10 minutes)
Discusses the rationale for using AWS Lambda, how the service works, and how you can get started using it.

Introduction to Amazon Kinesis Analytics (10 minutes)
Discusses how Amazon Kinesis Analytics collects, processes, and analyzes streaming data in real time. It discusses how to use and monitor the service and explores some use cases.

Introduction to Amazon Kinesis Streams (15 minutes)
Covers how Amazon Kinesis Streams is used to collect, process, and analyze real-time streaming data to create valuable insights.

Introduction to AWS IoT (10 minutes)
Describes how the AWS Internet of Things (IoT) communication architecture works, and the components that make up AWS IoT. It discusses how AWS IoT works with other AWS services and reviews a case study.

Introduction to AWS Data Pipeline (10 minutes)
Covers components like tasks, task runner, and pipeline. It also discusses what a pipeline definition is, and reviews the AWS services that are compatible with AWS Data Pipeline.

Go deeper with classroom training

Want to learn more? Enroll in classroom training to learn best practices, get live feedback, and hear answers to your questions from an instructor.

Big Data on AWS (3 days)
Introduces you to cloud-based big data solutions such as Amazon EMR, Amazon Redshift, Amazon Kinesis, and the rest of the AWS big data platform.

Data Warehousing on AWS (3 days)
Introduces you to concepts, strategies, and best practices for designing a cloud-based data warehousing solution, and demonstrates how to collect, store, and prepare data for the data warehouse.

Building a Serverless Data Lake (1 day)
Teaches you how to design, build, and operate a serverless data lake solution with AWS services. Includes topics such as ingesting data from any data source at large scale, storing the data securely and durably, using the right tool to process large volumes of data, and understanding the options available for analyzing the data in near-real time.

More training coming in 2018

We’re always evaluating and expanding our training portfolio, so stay tuned for more training options in the new year. You can always visit us at aws.training to explore our latest offerings.

Serverless @ re:Invent 2017

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

AWS Lambda

Amazon API Gateway

  • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
  • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
  • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
  • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
  • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

AWS Serverless Application Repository

Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

AWS [email protected]

[email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.

AWS SAM

Twitch Launchpad live announcements

Other service announcements

Here are some of the other highlights that you might have missed. We think these could help you make great applications:

AWS re:Invent 2017 sessions

Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

Find the entire Serverless Track playlist on YouTube.

Talks for people new to Serverless

Advanced topics

Expert mode

Talks for specific use cases

Talks from AWS customers & partners

Looking to get hands-on with Serverless?

At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
Build a Serverless web application

Still looking for more?

We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

Power data ingestion into Splunk using Amazon Kinesis Data Firehose

Post Syndicated from Tarik Makota original https://aws.amazon.com/blogs/big-data/power-data-ingestion-into-splunk-using-amazon-kinesis-data-firehose/

In late September, during the annual Splunk .conf, Splunk and Amazon Web Services (AWS) jointly announced that Amazon Kinesis Data Firehose now supports Splunk Enterprise and Splunk Cloud as a delivery destination. This native integration between Splunk Enterprise, Splunk Cloud, and Amazon Kinesis Data Firehose is designed to make AWS data ingestion setup seamless, while offering a secure and fault-tolerant delivery mechanism. We want to enable customers to monitor and analyze machine data from any source and use it to deliver operational intelligence and optimize IT, security, and business performance.

With Kinesis Data Firehose, customers can use a fully managed, reliable, and scalable data streaming solution to Splunk. In this post, we tell you a bit more about the Kinesis Data Firehose and Splunk integration. We also show you how to ingest large amounts of data into Splunk using Kinesis Data Firehose.

Push vs. Pull data ingestion

Presently, customers use a combination of two ingestion patterns, primarily based on data source and volume, in addition to existing company infrastructure and expertise:

  1. Pull-based approach: Using dedicated pollers running the popular Splunk Add-on for AWS to pull data from various AWS services such as Amazon CloudWatch or Amazon S3.
  2. Push-based approach: Streaming data directly from AWS to Splunk HTTP Event Collector (HEC) by using AWS Lambda. Examples of applicable data sources include CloudWatch Logs and Amazon Kinesis Data Streams.

The pull-based approach offers data delivery guarantees such as retries and checkpointing out of the box. However, it requires more ops to manage and orchestrate the dedicated pollers, which are commonly running on Amazon EC2 instances. With this setup, you pay for the infrastructure even when it’s idle.

On the other hand, the push-based approach offers a low-latency scalable data pipeline made up of serverless resources like AWS Lambda sending directly to Splunk indexers (by using Splunk HEC). This approach translates into lower operational complexity and cost. However, if you need guaranteed data delivery then you have to design your solution to handle issues such as a Splunk connection failure or Lambda execution failure. To do so, you might use, for example, AWS Lambda Dead Letter Queues.

How about getting the best of both worlds?

Let’s go over the new integration’s end-to-end solution and examine how Kinesis Data Firehose and Splunk together expand the push-based approach into a native AWS solution for applicable data sources.

By using a managed service like Kinesis Data Firehose for data ingestion into Splunk, we provide out-of-the-box reliability and scalability. One of the pain points of the old approach was the overhead of managing the data collection nodes (Splunk heavy forwarders). With the new Kinesis Data Firehose to Splunk integration, there are no forwarders to manage or set up. Data producers (1) are configured through the AWS Management Console to drop data into Kinesis Data Firehose.

You can also create your own data producers. For example, you can drop data into a Firehose delivery stream by using Amazon Kinesis Agent, or by using the Firehose API (PutRecord(), PutRecordBatch()), or by writing to a Kinesis Data Stream configured to be the data source of a Firehose delivery stream. For more details, refer to Sending Data to an Amazon Kinesis Data Firehose Delivery Stream.

You might need to transform the data before it goes into Splunk for analysis. For example, you might want to enrich it or filter or anonymize sensitive data. You can do so using AWS Lambda. In this scenario, Kinesis Data Firehose buffers data from the incoming source data, sends it to the specified Lambda function (2), and then rebuffers the transformed data to the Splunk Cluster. Kinesis Data Firehose provides the Lambda blueprints that you can use to create a Lambda function for data transformation.

Systems fail all the time. Let’s see how this integration handles outside failures to guarantee data durability. In cases when Kinesis Data Firehose can’t deliver data to the Splunk Cluster, data is automatically backed up to an S3 bucket. You can configure this feature while creating the Firehose delivery stream (3). You can choose to back up all data or only the data that’s failed during delivery to Splunk.

In addition to using S3 for data backup, this Firehose integration with Splunk supports Splunk Indexer Acknowledgments to guarantee event delivery. This feature is configured on Splunk’s HTTP Event Collector (HEC) (4). It ensures that HEC returns an acknowledgment to Kinesis Data Firehose only after data has been indexed and is available in the Splunk cluster (5).

Now let’s look at a hands-on exercise that shows how to forward VPC flow logs to Splunk.

How-to guide

To process VPC flow logs, we implement the following architecture.

Amazon Virtual Private Cloud (Amazon VPC) delivers flow log files into an Amazon CloudWatch Logs group. Using a CloudWatch Logs subscription filter, we set up real-time delivery of CloudWatch Logs to an Kinesis Data Firehose stream.

Data coming from CloudWatch Logs is compressed with gzip compression. To work with this compression, we need to configure a Lambda-based data transformation in Kinesis Data Firehose to decompress the data and deposit it back into the stream. Firehose then delivers the raw logs to the Splunk Http Event Collector (HEC).

If delivery to the Splunk HEC fails, Firehose deposits the logs into an Amazon S3 bucket. You can then ingest the events from S3 using an alternate mechanism such as a Lambda function.

When data reaches Splunk (Enterprise or Cloud), Splunk parsing configurations (packaged in the Splunk Add-on for Kinesis Data Firehose) extract and parse all fields. They make data ready for querying and visualization using Splunk Enterprise and Splunk Cloud.

Walkthrough

Install the Splunk Add-on for Amazon Kinesis Data Firehose

The Splunk Add-on for Amazon Kinesis Data Firehose enables Splunk (be it Splunk Enterprise, Splunk App for AWS, or Splunk Enterprise Security) to use data ingested from Amazon Kinesis Data Firehose. Install the Add-on on all the indexers with an HTTP Event Collector (HEC). The Add-on is available for download from Splunkbase.

HTTP Event Collector (HEC)

Before you can use Kinesis Data Firehose to deliver data to Splunk, set up the Splunk HEC to receive the data. From Splunk web, go to the Setting menu, choose Data Inputs, and choose HTTP Event Collector. Choose Global Settings, ensure All tokens is enabled, and then choose Save. Then choose New Token to create a new HEC endpoint and token. When you create a new token, make sure that Enable indexer acknowledgment is checked.

When prompted to select a source type, select aws:cloudwatch:vpcflow.

Create an S3 backsplash bucket

To provide for situations in which Kinesis Data Firehose can’t deliver data to the Splunk Cluster, we use an S3 bucket to back up the data. You can configure this feature to back up all data or only the data that’s failed during delivery to Splunk.

Note: Bucket names are unique. Thus, you can’t use tmak-backsplash-bucket.

aws s3 create-bucket --bucket tmak-backsplash-bucket --create-bucket-configuration LocationConstraint=ap-northeast-1

Create an IAM role for the Lambda transform function

Firehose triggers an AWS Lambda function that transforms the data in the delivery stream. Let’s first create a role for the Lambda function called LambdaBasicRole.

Note: You can also set this role up when creating your Lambda function.

$ aws iam create-role --role-name LambdaBasicRole --assume-role-policy-document file://TrustPolicyForLambda.json

Here is TrustPolicyForLambda.json.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Principal": {
        "Service": "lambda.amazonaws.com"
      },
      "Action": "sts:AssumeRole"
    }
  ]
}

 

After the role is created, attach the managed Lambda basic execution policy to it.

$ aws iam attach-role-policy 
  --policy-arn arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole 
  --role-name LambdaBasicRole

 

Create a Firehose Stream

On the AWS console, open the Amazon Kinesis service, go to the Firehose console, and choose Create Delivery Stream.

In the next section, you can specify whether you want to use an inline Lambda function for transformation. Because incoming CloudWatch Logs are gzip compressed, choose Enabled for Record transformation, and then choose Create new.

From the list of the available blueprint functions, choose Kinesis Data Firehose CloudWatch Logs Processor. This function unzips data and place it back into the Firehose stream in compliance with the record transformation output model.

Enter a name for the Lambda function, choose Choose an existing role, and then choose the role you created earlier. Then choose Create Function.

Go back to the Firehose Stream wizard, choose the Lambda function you just created, and then choose Next.

Select Splunk as the destination, and enter your Splunk Http Event Collector information.

Note: Amazon Kinesis Data Firehose requires the Splunk HTTP Event Collector (HEC) endpoint to be terminated with a valid CA-signed certificate matching the DNS hostname used to connect to your HEC endpoint. You receive delivery errors if you are using a self-signed certificate.

In this example, we only back up logs that fail during delivery.

To monitor your Firehose delivery stream, enable error logging. Doing this means that you can monitor record delivery errors.

Create an IAM role for the Firehose stream by choosing Create new, or Choose. Doing this brings you to a new screen. Choose Create a new IAM role, give the role a name, and then choose Allow.

If you look at the policy document, you can see that the role gives Kinesis Data Firehose permission to publish error logs to CloudWatch, execute your Lambda function, and put records into your S3 backup bucket.

You now get a chance to review and adjust the Firehose stream settings. When you are satisfied, choose Create Stream. You get a confirmation once the stream is created and active.

Create a VPC Flow Log

To send events from Amazon VPC, you need to set up a VPC flow log. If you already have a VPC flow log you want to use, you can skip to the “Publish CloudWatch to Kinesis Data Firehose” section.

On the AWS console, open the Amazon VPC service. Then choose VPC, Your VPC, and choose the VPC you want to send flow logs from. Choose Flow Logs, and then choose Create Flow Log. If you don’t have an IAM role that allows your VPC to publish logs to CloudWatch, choose Set Up Permissions and Create new role. Use the defaults when presented with the screen to create the new IAM role.

Once active, your VPC flow log should look like the following.

Publish CloudWatch to Kinesis Data Firehose

When you generate traffic to or from your VPC, the log group is created in Amazon CloudWatch. The new log group has no subscription filter, so set up a subscription filter. Setting this up establishes a real-time data feed from the log group to your Firehose delivery stream.

At present, you have to use the AWS Command Line Interface (AWS CLI) to create a CloudWatch Logs subscription to a Kinesis Data Firehose stream. However, you can use the AWS console to create subscriptions to Lambda and Amazon Elasticsearch Service.

To allow CloudWatch to publish to your Firehose stream, you need to give it permissions.

$ aws iam create-role --role-name CWLtoKinesisFirehoseRole --assume-role-policy-document file://TrustPolicyForCWLToFireHose.json


Here is the content for TrustPolicyForCWLToFireHose.json.

{
  "Statement": {
    "Effect": "Allow",
    "Principal": { "Service": "logs.us-east-1.amazonaws.com" },
    "Action": "sts:AssumeRole"
  }
}

 

Attach the policy to the newly created role.

$ aws iam put-role-policy 
    --role-name CWLtoKinesisFirehoseRole 
    --policy-name Permissions-Policy-For-CWL 
    --policy-document file://PermissionPolicyForCWLToFireHose.json

Here is the content for PermissionPolicyForCWLToFireHose.json.

{
    "Statement":[
      {
        "Effect":"Allow",
        "Action":["firehose:*"],
        "Resource":["arn:aws:firehose:us-east-1:YOUR-AWS-ACCT-NUM:deliverystream/ FirehoseSplunkDeliveryStream"]
      },
      {
        "Effect":"Allow",
        "Action":["iam:PassRole"],
        "Resource":["arn:aws:iam::YOUR-AWS-ACCT-NUM:role/CWLtoKinesisFirehoseRole"]
      }
    ]
}

Finally, create a subscription filter.

$ aws logs put-subscription-filter 
   --log-group-name " /vpc/flowlog/FirehoseSplunkDemo" 
   --filter-name "Destination" 
   --filter-pattern "" 
   --destination-arn "arn:aws:firehose:us-east-1:YOUR-AWS-ACCT-NUM:deliverystream/FirehoseSplunkDeliveryStream" 
   --role-arn "arn:aws:iam::YOUR-AWS-ACCT-NUM:role/CWLtoKinesisFirehoseRole"

When you run the AWS CLI command preceding, you don’t get any acknowledgment. To validate that your CloudWatch Log Group is subscribed to your Firehose stream, check the CloudWatch console.

As soon as the subscription filter is created, the real-time log data from the log group goes into your Firehose delivery stream. Your stream then delivers it to your Splunk Enterprise or Splunk Cloud environment for querying and visualization. The screenshot following is from Splunk Enterprise.

In addition, you can monitor and view metrics associated with your delivery stream using the AWS console.

Conclusion

Although our walkthrough uses VPC Flow Logs, the pattern can be used in many other scenarios. These include ingesting data from AWS IoT, other CloudWatch logs and events, Kinesis Streams or other data sources using the Kinesis Agent or Kinesis Producer Library. We also used Lambda blueprint Kinesis Data Firehose CloudWatch Logs Processor to transform streaming records from Kinesis Data Firehose. However, you might need to use a different Lambda blueprint or disable record transformation entirely depending on your use case. For an additional use case using Kinesis Data Firehose, check out This is My Architecture Video, which discusses how to securely centralize cross-account data analytics using Kinesis and Splunk.

 


Additional Reading

If you found this post useful, be sure to check out Integrating Splunk with Amazon Kinesis Streams and Using Amazon EMR and Hunk for Rapid Response Log Analysis and Review.


About the Authors

Tarik Makota is a solutions architect with the Amazon Web Services Partner Network. He provides technical guidance, design advice and thought leadership to AWS’ most strategic software partners. His career includes work in an extremely broad software development and architecture roles across ERP, financial printing, benefit delivery and administration and financial services. He holds an M.S. in Software Development and Management from Rochester Institute of Technology.

 

 

 

Roy Arsan is a solutions architect in the Splunk Partner Integrations team. He has a background in product development, cloud architecture, and building consumer and enterprise cloud applications. More recently, he has architected Splunk solutions on major cloud providers, including an AWS Quick Start for Splunk that enables AWS users to easily deploy distributed Splunk Enterprise straight from their AWS console. He’s also the co-author of the AWS Lambda blueprints for Splunk. He holds an M.S. in Computer Science Engineering from the University of Michigan.

 

 

 

How to Manage Amazon GuardDuty Security Findings Across Multiple Accounts

Post Syndicated from Tom Stickle original https://aws.amazon.com/blogs/security/how-to-manage-amazon-guardduty-security-findings-across-multiple-accounts/

Introduced at AWS re:Invent 2017, Amazon GuardDuty is a managed threat detection service that continuously monitors for malicious or unauthorized behavior to help you protect your AWS accounts and workloads. In an AWS Blog post, Jeff Barr shows you how to enable GuardDuty to monitor your AWS resources continuously. That blog post shows how to get started with a single GuardDuty account and provides an overview of the features of the service. Your security team, though, will probably want to use GuardDuty to monitor a group of AWS accounts continuously.

In this post, I demonstrate how to use GuardDuty to monitor a group of AWS accounts and have their findings routed to another AWS account—the master account—that is owned by a security team. The method I demonstrate in this post is especially useful if your security team is responsible for monitoring a group of AWS accounts over which it does not have direct access—known as member accounts. In this solution, I simplify the work needed to enable GuardDuty in member accounts and configure findings by simplifying the process, which I do by enabling GuardDuty in the master account and inviting member accounts.

Enable GuardDuty in a master account and invite member accounts

To get started, you must enable GuardDuty in the master account, which will receive GuardDuty findings. The master account should be managed by your security team, and it will display the findings from all member accounts. The master account can be reverted later by removing any member accounts you add to it. Adding member accounts is a two-way handshake mechanism to ensure that administrators from both the master and member accounts formally agree to establish the relationship.

To enable GuardDuty in the master account and add member accounts:

  1. Navigate to the GuardDuty console.
  2. In the navigation pane, choose Accounts.
    Screenshot of the Accounts choice in the navigation pane
  1. To designate this account as the GuardDuty master account, start adding member accounts:
    • You can add individual accounts by choosing Add Account, or you can add a list of accounts by choosing Upload List (.csv).
  1. Now, add the account ID and email address of the member account, and choose Add. (If you are uploading a list of accounts, choose Browse, choose the .csv file with the member accounts [one email address and account ID per line], and choose Add accounts.)
    Screenshot of adding an account

For security reasons, AWS checks to make sure each account ID is valid and that you’ve entered each member account’s email address that was used to create the account. If a member account’s account ID and email address do not match, GuardDuty does not send an invitation.
Screenshot showing the Status of Invite

  1. After you add all the member accounts you want to add, you will see them listed in the Member accounts table with a Status of Invite. You don’t have to individually invite each account—you can choose a group of accounts and when you choose to invite one account in the group, all accounts are invited.
  2. When you choose Invite for each member account:
    1. AWS checks to make sure the account ID is valid and the email address provided is the email address of the member account.
    2. AWS sends an email to the member account email address with a link to the GuardDuty console, where the member account owner can accept the invitation. You can add a customized message from your security team. Account owners who receive the invitation must sign in to their AWS account to accept the invitation. The service also sends an invitation through the AWS Personal Health Dashboard in case the member email address is not monitored. This invitation appears in the member account under the AWS Personal Health Dashboard alert bell on the AWS Management Console.
    3. A pending-invitation indicator is shown on the GuardDuty console of the member account, as shown in the following screenshot.
      Screenshot showing the pending-invitation indicator

When the invitation is sent by email, it is sent to the account owner of the GuardDuty member account.
Screenshot of the invitation sent by email

The account owner can click the link in the email invitation or the AWS Personal Health Dashboard message, or the account owner can sign in to their account and navigate to the GuardDuty console. In all cases, the member account displays the pending invitation in the member account’s GuardDuty console with instructions for accepting the invitation. The GuardDuty console walks the account owner through accepting the invitation, including enabling GuardDuty if it is not already enabled.

If you prefer to work in the AWS CLI, you can enable GuardDuty and accept the invitation. To do this, call CreateDetector to enable GuardDuty, and then call AcceptInvitation, which serves the same purpose as accepting the invitation in the GuardDuty console.

  1. After the member account owner accepts the invitation, the Status in the master account is changed to Monitored. The status helps you track the status of each AWS account that you invite.
    Screenshot showing the Status change to Monitored

You have enabled GuardDuty on the member account, and all findings will be forwarded to the master account. You can now monitor the findings about GuardDuty member accounts from the GuardDuty console in the master account.

The member account owner can see GuardDuty findings by default and can control all aspects of the experience in the member account with AWS Identity and Access Management (IAM) permissions. Users with the appropriate permissions can end the multi-account relationship at any time by toggling the Accept button on the Accounts page. Note that ending the relationship changes the Status of the account to Resigned and also triggers a security finding on the side of the master account so that the security team knows the member account is no longer linked to the master account.

Working with GuardDuty findings

Most security teams have ticketing systems, chat operations, security information event management (SIEM) systems, or other security automation systems to which they would like to push GuardDuty findings. For this purpose, GuardDuty sends all findings as JSON-based messages through Amazon CloudWatch Events, a scalable service to which you can subscribe and to which AWS services can stream system events. To access these events, navigate to the CloudWatch Events console and create a rule that subscribes to the GuardDuty-related findings. You then can assign a target such as Amazon Kinesis Data Firehose that can place the findings in a number of services such as Amazon S3. The following screenshot is of the CloudWatch Events console, where I have a rule that pulls all events from GuardDuty and pushes them to a preconfigured AWS Lambda function.

Screenshot of a CloudWatch Events rule

The following example is a subset of GuardDuty findings that includes relevant context and information about the nature of a threat that was detected. In this example, the instanceId, i-00bb62b69b7004a4c, is performing Secure Shell (SSH) brute-force attacks against IP address 172.16.0.28. From a Lambda function, you can access any of the following fields such as the title of the finding and its description, and send those directly to your ticketing system.

Example GuardDuty findings

You can use other AWS services to build custom analytics and visualizations of your security findings. For example, you can connect Kinesis Data Firehose to CloudWatch Events and write events to an S3 bucket in a standard format, which can be encrypted with AWS Key Management Service and then compressed. You also can use Amazon QuickSight to build ad hoc dashboards by using AWS Glue and Amazon Athena. Similarly, you can place the data from Kinesis Data Firehose in Amazon Elasticsearch Service, with which you can use tools such as Kibana to build your own visualizations and dashboards.

Like most other AWS services, GuardDuty is a regional service. This means that when you enable GuardDuty in an AWS Region, all findings are generated and delivered in that region. If you are regulated by a compliance regime, this is often an important requirement to ensure that security findings remain in a specific jurisdiction. Because customers have let us know they would prefer to be able to enable GuardDuty globally and have all findings aggregated in one place, we intend to give the choice of regional or global isolation as we evolve this new service.

Summary

In this blog post, I have demonstrated how to use GuardDuty to monitor a group of GuardDuty member accounts and aggregate security findings in a central master GuardDuty account. You can use this solution whether or not you have direct control over the member accounts.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about using GuardDuty, start a thread in the GuardDuty forum or contact AWS Support.

-Tom

Glenn’s Take on re:Invent 2017 – Part 3

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-3/

Glenn Gore here, Chief Architect for AWS. I was in Las Vegas last week — with 43K others — for re:Invent 2017. I checked in to the Architecture blog here and here with my take on what was interesting about some of the bigger announcements from a cloud-architecture perspective.

In the excitement of so many new services being launched, we sometimes overlook feature updates that, while perhaps not as exciting as Amazon DeepLens, have significant impact on how you architect and develop solutions on AWS.

Amazon DynamoDB is used by more than 100,000 customers around the world, handling over a trillion requests every day. From the start, DynamoDB has offered high availability by natively spanning multiple Availability Zones within an AWS Region. As more customers started building and deploying truly-global applications, there was a need to replicate a DynamoDB table to multiple AWS Regions, allowing for read/write operations to occur in any region where the table was replicated. This update is important for providing a globally-consistent view of information — as users may transition from one region to another — or for providing additional levels of availability, allowing for failover between AWS Regions without loss of information.

There are some interesting concurrency-design aspects you need to be aware of and ensure you can handle correctly. For example, we support the “last writer wins” reconciliation where eventual consistency is being used and an application updates the same item in different AWS Regions at the same time. If you require strongly-consistent read/writes then you must perform all of your read/writes in the same AWS Region. The details behind this can be found in the DynamoDB documentation. Providing a globally-distributed, replicated DynamoDB table simplifies many different use cases and allows for the logic of replication, which may have been pushed up into the application layers to be simplified back down into the data layer.

The other big update for DynamoDB is that you can now back up your DynamoDB table on demand with no impact to performance. One of the features I really like is that when you trigger a backup, it is available instantly, regardless of the size of the table. Behind the scenes, we use snapshots and change logs to ensure a consistent backup. While backup is instant, restoring the table could take some time depending on its size and ranges — from minutes to hours for very large tables.

This feature is super important for those of you who work in regulated industries that often have strict requirements around data retention and backups of data, which sometimes limited the use of DynamoDB or required complex workarounds to implement some sort of backup feature in the past. This often incurred significant, additional costs due to increased read transactions on their DynamoDB tables.

Amazon Simple Storage Service (Amazon S3) was our first-released AWS service over 11 years ago, and it proved the simplicity and scalability of true API-driven architectures in the cloud. Today, Amazon S3 stores trillions of objects, with transactional requests per second reaching into the millions! Dealing with data as objects opened up an incredibly diverse array of use cases ranging from libraries of static images, game binary downloads, and application log data, to massive data lakes used for big data analytics and business intelligence. With Amazon S3, when you accessed your data in an object, you effectively had to write/read the object as a whole or use the range feature to retrieve a part of the object — if possible — in your individual use case.

Now, with Amazon S3 Select, an SQL-like query language is used that can work with delimited text and JSON files, as well as work with GZIP compressed files. We don’t support encryption during the preview of Amazon S3 Select.

Amazon S3 Select provides two major benefits:

  • Faster access
  • Lower running costs

Serverless Lambda functions, where every millisecond matters when you are being charged, will benefit greatly from Amazon S3 Select as data retrieval and processing of your Lambda function will experience significant speedups and cost reductions. For example, we have seen 2x speed improvement and 80% cost reduction with the Serverless MapReduce code.

Other AWS services such as Amazon Athena, Amazon Redshift, and Amazon EMR will support Amazon S3 Select as well as partner offerings including Cloudera and Hortonworks. If you are using Amazon Glacier for longer-term data archival, you will be able to use Amazon Glacier Select to retrieve a subset of your content from within Amazon Glacier.

As the volume of data that can be stored within Amazon S3 and Amazon Glacier continues to scale on a daily basis, we will continue to innovate and develop improved and optimized services that will allow you to work with these magnificently-large data sets while reducing your costs (retrieval and processing). I believe this will also allow you to simplify the transformation and storage of incoming data into Amazon S3 in basic, semi-structured formats as a single copy vs. some of the duplication and reformatting of data sometimes required to do upfront optimizations for downstream processing. Amazon S3 Select largely removes the need for this upfront optimization and instead allows you to store data once and process it based on your individual Amazon S3 Select query per application or transaction need.

Thanks for reading!

Glenn contemplating why CSV format is still relevant in 2017 (Italy).

Presenting AWS IoT Analytics: Delivering IoT Analytics at Scale and Faster than Ever Before

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-aws-iot-analytics/

One of the technology areas I thoroughly enjoy is the Internet of Things (IoT). Even as a child I used to infuriate my parents by taking apart the toys they would purchase for me to see how they worked and if I could somehow put them back together. It seems somehow I was destined to end up the tough and ever-changing world of technology. Therefore, it’s no wonder that I am really enjoying learning and tinkering with IoT devices and technologies. It combines my love of development and software engineering with my curiosity around circuits, controllers, and other facets of the electrical engineering discipline; even though an electrical engineer I can not claim to be.

Despite all of the information that is collected by the deployment of IoT devices and solutions, I honestly never really thought about the need to analyze, search, and process this data until I came up against a scenario where it became of the utmost importance to be able to search and query through loads of sensory data for an anomaly occurrence. Of course, I understood the importance of analytics for businesses to make accurate decisions and predictions to drive the organization’s direction. But it didn’t occur to me initially, how important it was to make analytics an integral part of my IoT solutions. Well, I learned my lesson just in time because this re:Invent a service is launching to make it easier for anyone to process and analyze IoT messages and device data.

 

Hello, AWS IoT Analytics!  AWS IoT Analytics is a fully managed service of AWS IoT that provides advanced data analysis of data collected from your IoT devices.  With the AWS IoT Analytics service, you can process messages, gather and store large amounts of device data, as well as, query your data. Also, the new AWS IoT Analytics service feature integrates with Amazon Quicksight for visualization of your data and brings the power of machine learning through integration with Jupyter Notebooks.

Benefits of AWS IoT Analytics

  • Helps with predictive analysis of data by providing access to pre-built analytical functions
  • Provides ability to visualize analytical output from service
  • Provides tools to clean up data
  • Can help identify patterns in the gathered data

Be In the Know: IoT Analytics Concepts

  • Channel: archives the raw, unprocessed messages and collects data from MQTT topics.
  • Pipeline: consumes messages from channels and allows message processing.
    • Activities: perform transformations on your messages including filtering attributes and invoking lambda functions advanced processing.
  • Data Store: Used as a queryable repository for processed messages. Provide ability to have multiple datastores for messages coming from different devices or locations or filtered by message attributes.
  • Data Set: Data retrieval view from a data store, can be generated by a recurring schedule. 

Getting Started with AWS IoT Analytics

First, I’ll create a channel to receive incoming messages.  This channel can be used to ingest data sent to the channel via MQTT or messages directed from the Rules Engine. To create a channel, I’ll select the Channels menu option and then click the Create a channel button.

I’ll name my channel, TaraIoTAnalyticsID and give the Channel a MQTT topic filter of Temperature. To complete the creation of my channel, I will click the Create Channel button.

Now that I have my Channel created, I need to create a Data Store to receive and store the messages received on the Channel from my IoT device. Remember you can set up multiple Data Stores for more complex solution needs, but I’ll just create one Data Store for my example. I’ll select Data Stores from menu panel and click Create a data store.

 

I’ll name my Data Store, TaraDataStoreID, and once I click the Create the data store button and I would have successfully set up a Data Store to house messages coming from my Channel.

Now that I have my Channel and my Data Store, I will need to connect the two using a Pipeline. I’ll create a simple pipeline that just connects my Channel and Data Store, but you can create a more robust pipeline to process and filter messages by adding Pipeline activities like a Lambda activity.

To create a pipeline, I’ll select the Pipelines menu option and then click the Create a pipeline button.

I will not add an Attribute for this pipeline. So I will click Next button.

As we discussed there are additional pipeline activities that I can add to my pipeline for the processing and transformation of messages but I will keep my first pipeline simple and hit the Next button.

The final step in creating my pipeline is for me to select my previously created Data Store and click Create Pipeline.

All that is left for me to take advantage of the AWS IoT Analytics service is to create an IoT rule that sends data to an AWS IoT Analytics channel.  Wow, that was a super easy process to set up analytics for IoT devices.

If I wanted to create a Data Set as a result of queries run against my data for visualization with Amazon Quicksight or integrate with Jupyter Notebooks to perform more advanced analytical functions, I can choose the Analyze menu option to bring up the screens to create data sets and access the Juypter Notebook instances.

Summary

As you can see, it was a very simple process to set up the advanced data analysis for AWS IoT. With AWS IoT Analytics, you have the ability to collect, visualize, process, query and store large amounts of data generated from your AWS IoT connected device. Additionally, you can access the AWS IoT Analytics service in a myriad of different ways; the AWS Command Line Interface (AWS CLI), the AWS IoT API, language-specific AWS SDKs, and AWS IoT Device SDKs.

AWS IoT Analytics is available today for you to dig into the analysis of your IoT data. To learn more about AWS IoT and AWS IoT Analytics go to the AWS IoT Analytics product page and/or the AWS IoT documentation.

Tara

Amazon EC2 Update – Streamlined Access to Spot Capacity, Smooth Price Changes, Instance Hibernation

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-ec2-update-streamlined-access-to-spot-capacity-smooth-price-changes-instance-hibernation/

EC2 Spot Instances give you access to spare compute capacity in the AWS Cloud. Our customers use fleets of Spot Instances to power their CI/CD environments & traffic generators, host web servers & microservices, render movies, and to run many types of analytics jobs, all at prices that offer significant savings in comparison to On-Demand Instances.

New Streamlined Access
Today we are introducing a new, streamlined access model for Spot Instances. You simply indicate your desire to use Spot capacity when you launch an instance via the RunInstances function, the run-instances command, or the AWS Management Console to submit a request that will be fulfilled as long as the capacity is available. With no extra effort on your part you’ll save up to 90% off of the On-Demand price for the instance type, allowing you to boost your overall application throughput by up to 10x for the same budget. The instances that you launch in this way will continue to run until you terminate them or if EC2 needs to reclaim them for On-Demand usage. At that point the instance will be given the usual 2-minute warning and then reclaimed, making this a great fit for applications that are fault-tolerant.

Unlike the old model which required an understanding of Spot markets, bidding, and calls to a standalone asynchronous API, the new model is synchronous and as easy to use as On-Demand. Your code or your script receives an Instance ID immediately and need not check back to see if the request has been processed and accepted.

We’ve made this as clean and as simple as possible, with the expectation that it will be easy to modify many current scripts and applications to request and make use of Spot capacity. If you want to exercise additional control over your Spot instance budget, you have the option to specify a maximum price when you make a request for capacity. If you use Spot capacity to power your Amazon EMR, Amazon ECS, or AWS Batch clusters, or if you launch Spot instances by way of a AWS CloudFormation template or Auto Scaling Group, you will benefit from this new model without having to make any changes.

Applications that are built around RequestSpotInstances or RequestSpotFleet will continue to work just fine with no changes. However, you now have the option to make requests that do not include the SpotPrice parameter.

Smooth Price Changes
As part of today’s launch we are also changing the way that Spot prices change, moving to a model where prices adjust more gradually, based on longer-term trends in supply and demand. As I mentioned earlier, you will continue to save an average of 70-90% off the On-Demand price, and you will continue to pay the Spot price that’s in effect for the time period your instances are running. Applications built around our Spot Fleet feature will continue to automatically diversify placement of their Spot Instances across the most cost-effective pools based on the configuration you specified when you created the fleet.

Spot in Action
To launch a Spot Instance from the command line; simply specify the Spot market:

$ aws ec2 run-instances –-market Spot --image-id ami-1a2b3c4d --count 1 --instance-type c3.large 

Instance Hibernation
If you run workloads that keep a lot of state in memory, you will love this new feature!

You can arrange for instances to save their in-memory state when they are reclaimed, allowing the instances and the applications on them to pick up where they left off when capacity is once again available, just like closing and then opening your laptop. This feature works on C3, C4, and certain sizes of R3, R4, and M4 instances running Amazon Linux, Ubuntu, or Windows Server, and is supported by the EC2 Hibernation Agent.

The in-memory state is written to the root EBS volume of the instance using space that is set-aside when the instance launches. The private IP address and any Elastic IP Addresses are also preserved across a stop/start cycle.

Jeff;