systemd Status Update

Post Syndicated from Lennart Poettering original https://0pointer.net/blog/projects/systemd-update-3.html

It
has been way too long since my last status update on
systemd
. Here’s another short, incomprehensive status update on
what we worked on for systemd since
then.

We have been working hard to turn systemd into the most viable set
of components to build operating systems, appliances and devices from,
and make it the best choice for servers, for desktops and for embedded
environments alike. I think we have a really convincing set of
features now, but we are actively working on making it even
better.

Here’s a list of some more and some less interesting features, in
no particular order:

  1. We added an automatic pager to systemctl (and related tools), similar
    to how git has it.
  2. systemctl learnt a new switch --failed, to show only
    failed services.
  3. You may now start services immediately, overrding all dependency
    logic by passing --ignore-dependencies to
    systemctl. This is mostly a debugging tool and nothing people
    should use in real life.
  4. Sending SIGKILL as final part of the implicit shutdown
    logic of services is now optional and may be configured with the
    SendSIGKILL= option individually for each service.
  5. We split off the Vala/Gtk tools into its own project systemd-ui.
  6. systemd-tmpfiles learnt file globbing and creating FIFO
    special files as well as character and block device nodes, and
    symlinks. It also is capable of relabelling certain directories at
    boot now (in the SELinux sense).
  7. Immediately before shuttding dow we will now invoke all binaries
    found in /lib/systemd/system-shutdown/, which is useful for
    debugging late shutdown.
  8. You may now globally control where STDOUT/STDERR of services goes
    (unless individual service configuration overrides it).
  9. There’s a new ConditionVirtualization= option, that makes
    systemd skip a specific service if a certain virtualization technology
    is found or not found. Similar, we now have a new option to detect
    whether a certain security technology (such as SELinux) is available,
    called ConditionSecurity=. There’s also
    ConditionCapability= to check whether a certain process
    capability is in the capability bounding set of the system. There’s
    also a new ConditionFileIsExecutable=,
    ConditionPathIsMountPoint=,
    ConditionPathIsReadWrite=,
    ConditionPathIsSymbolicLink=.
  10. The file system condition directives now support globbing.
  11. Service conditions may now be “triggering” and “mandatory”, meaning that
    they can be a necessary requirement to hold for a service to start, or
    simply one trigger among many.
  12. At boot time we now print warnings if: /usr
    is on a split-off partition but not already mounted by an initrd
    ;
    if /etc/mtab is not a symlink to /proc/mounts; CONFIG_CGROUPS
    is not enabled in the kernel
    . We’ll also expose this as
    tainted flag on the bus.
  13. You may now boot the same OS image on a bare metal machine and in
    Linux namespace containers and will get a clean boot in both
    cases. This is more complicated than it sounds since device management
    with udev or write access to /sys, /proc/sys or
    things like /dev/kmsg is not available in a container. This
    makes systemd a first-class choice for managing thin container
    setups. This is all tested with systemd’s own systemd-nspawn
    tool but should work fine in LXC setups, too. Basically this means
    that you do not have to adjust your OS manually to make it work in a
    container environment, but will just work out of the box. It also
    makes it easier to convert real systems into containers.
  14. We now automatically spawn gettys on HVC ttys when booting in VMs.
  15. We introduced /etc/machine-id as a generalization of
    D-Bus machine ID logic. See this
    blog story for more information
    . On stateless/read-only systems
    the machine ID is initialized randomly at boot. In virtualized
    environments it may be passed in from the machine manager (with qemu’s
    -uuid switch, or via the container
    interface
    ).
  16. All of the systemd-specific /etc/fstab mount options are
    now in the x-systemd-xyz format.
  17. To make it easy to find non-converted services we will now
    implicitly prefix all LSB and SysV init script descriptions with the
    strings “LSB:” resp. “SYSV:“.
  18. We introduced /run and made it a hard dependency of
    systemd. This directory is now widely accepted and implemented on all
    relevant Linux distributions.
  19. systemctl can now execute all its operations remotely too (-H switch).
  20. We now ship systemd-nspawn,
    a really powerful tool that can be used to start containers for
    debugging, building and testing, much like chroot(1). It is useful to
    just get a shell inside a build tree, but is good enough to boot up a
    full system in it, too.
  21. If we query the user for a hard disk password at boot he may hit
    TAB to hide the asterisks we normally show for each key that is
    entered, for extra paranoia.
  22. We don’t enable udev-settle.service anymore, which is
    only required for certain legacy software that still hasn’t been
    updated to follow devices coming and going cleanly.
  23. We now include a tool that can plot boot speed graphs, similar to
    bootchartd, called systemd-analyze.
  24. At boot, we now initialize the kernel’s binfmt_misc logic with the data from /etc/binfmt.d.
  25. systemctl now recognizes if it is run in a chroot()
    environment and will work accordingly (i.e. apply changes to the tree
    it is run in, instead of talking to the actual PID 1 for this). It also has a new --root= switch to work on an OS tree from outside of it.
  26. There’s a new unit dependency type OnFailureIsolate= that
    allows entering a different target whenever a certain unit fails. For
    example, this is interesting to enter emergency mode if file system
    checks of crucial file systems failed.
  27. Socket units may now listen on Netlink sockets, special files
    from /proc and POSIX message queues, too.
  28. There’s a new IgnoreOnIsolate= flag which may be used to
    ensure certain units are left untouched by isolation requests. There’s
    a new IgnoreOnSnapshot= flag which may be used to exclude
    certain units from snapshot units when they are created.
  29. There’s now small mechanism services for
    changing the local hostname and other host meta data
    , changing
    the system locale and console settings
    and the system
    clock
    .
  30. We now limit the capability bounding set for a number of our
    internal services by default.
  31. Plymouth may now be disabled globally with
    plymouth.enable=0 on the kernel command line.
  32. We now disallocate VTs when a getty finished running (and
    optionally other tools run on VTs). This adds extra security since it
    clears up the scrollback buffer so that subsequent users cannot get
    access to a user’s session output.
  33. In socket units there are now options to control the
    IP_TRANSPARENT, SO_BROADCAST, SO_PASSCRED,
    SO_PASSSEC socket options.
  34. The receive and send buffers of socket units may now be set larger
    than the default system settings if needed by using
    SO_{RCV,SND}BUFFORCE.
  35. We now set the hardware timezone as one of the first things in PID
    1, in order to avoid time jumps during normal userspace operation, and
    to guarantee sensible times on all generated logs. We also no longer
    save the system clock to the RTC on shutdown, assuming that this is
    done by the clock control tool when the user modifies the time, or
    automatically by the kernel if NTP is enabled.
  36. The SELinux directory got moved from /selinux to
    /sys/fs/selinux.
  37. We added a small service systemd-logind that keeps tracks
    of logged in users and their sessions. It creates control groups for
    them, implements the XDG_RUNTIME_DIR
    specification
    for them, maintains seats and device node ACLs and
    implements shutdown/idle inhibiting for clients. It auto-spawns gettys
    on all local VTs when the user switches to them (instead of starting
    six of them unconditionally), thus reducing the resource foot print by
    default. It has a D-Bus interface as well as a
    simple synchronous library interface
    . This mechanism obsoletes
    ConsoleKit which is now deprecated and should no longer be used.
  38. There’s now full, automatic multi-seat support, and this is
    enabled in GNOME 3.4. Just by pluging in new seat hardware you get a
    new login screen on your seat’s screen.
  39. There is now an option ControlGroupModify= to allow
    services to change the properties of their control groups dynamically,
    and one to make control groups persistent in the tree
    (ControlGroupPersistent=) so that they can be created and
    maintained by external tools.
  40. We now jump back into the initrd in shutdown, so that it can
    detach the root file system and the storage devices backing it. This
    allows (for the first time!) to reliably undo complex storage setups
    on shutdown and leave them in a clean state.
  41. systemctl now supports presets, a way for distributions and
    administrators to define their own policies on whether services should
    be enabled or disabled by default on package installation.
  42. systemctl now has high-level verbs for masking/unmasking
    units. There’s also a new command (systemctl list-unit-files)
    for determining the list of all installed unit file files and whether
    they are enabled or not.
  43. We now apply sysctl variables to each new network device, as it
    appears. This makes /etc/sysctl.d compatible with hot-plug
    network devices.
  44. There’s limited profiling for SELinux start-up perfomance built
    into PID 1.
  45. There’s a new switch PrivateNetwork=
    to turn of any network access for a specific service.
  46. Service units may now include configuration for control group
    parameters. A few (such as MemoryLimit=) are exposed with
    high-level options, and all others are available via the generic
    ControlGroupAttribute= setting.
  47. There’s now the option to mount certain cgroup controllers
    jointly at boot. We do this now for cpu and
    cpuacct by default.
  48. We added the
    journal
    and turned it on by default.
  49. All service output is now written to the Journal by default,
    regardless whether it is sent via syslog or simply written to
    stdout/stderr. Both message streams end up in the same location and
    are interleaved the way they should. All log messages even from the
    kernel and from early boot end up in the journal. Now, no service
    output gets unnoticed and is saved and indexed at the same
    location.
  50. systemctl status will now show the last 10 log lines for
    each service, directly from the journal.
  51. We now show the progress of fsck at boot on the console,
    again. We also show the much loved colorful [ OK ] status
    messages at boot again, as known from most SysV implementations.
  52. We merged udev into systemd.
  53. We implemented and documented interfaces to container
    managers
    and initrds
    for passing execution data to systemd. We also implemented and
    documented an
    interface for storage daemons that are required to back the root file
    system
    .
  54. There are two new options in service files to propagate reload requests between several units.
  55. systemd-cgls won’t show kernel threads by default anymore, or show empty control groups.
  56. We added a new tool systemd-cgtop that shows resource
    usage of whole services in a top(1) like fasion.
  57. systemd may now supervise services in watchdog style. If enabled
    for a service the daemon daemon has to ping PID 1 in regular intervals
    or is otherwise considered failed (which might then result in
    restarting it, or even rebooting the machine, as configured). Also,
    PID 1 is capable of pinging a hardware watchdog. Putting this
    together, the hardware watchdogs PID 1 and PID 1 then watchdogs
    specific services. This is highly useful for high-availability servers
    as well as embedded machines. Since watchdog hardware is noawadays
    built into all modern chipsets (including desktop chipsets), this
    should hopefully help to make this a more widely used
    functionality.
  58. We added support for a new kernel command line option
    systemd.setenv= to set an environment variable
    system-wide.
  59. By default services which are started by systemd will have SIGPIPE
    set to ignored. The Unix SIGPIPE logic is used to reliably implement
    shell pipelines and when left enabled in services is usually just a
    source of bugs and problems.
  60. You may now configure the rate limiting that is applied to
    restarts of specific services. Previously the rate limiting parameters
    were hard-coded (similar to SysV).
  61. There’s now support for loading the IMA integrity policy into the
    kernel early in PID 1, similar to how we already did it with the
    SELinux policy.
  62. There’s now an official API to schedule and query scheduled shutdowns.
  63. We changed the license from GPL2+ to LGPL2.1+.
  64. We made systemd-detect-virt
    an official tool in the tool set. Since we already had code to detect
    certain VM and container environments we now added an official tool
    for administrators to make use of in shell scripts and suchlike.
  65. We documented numerous
    interfaces
    systemd introduced.

Much of the stuff above is already available in Fedora 15 and 16,
or will be made available in the upcoming Fedora 17.

And that’s it for now. There’s a lot of other stuff in the git commits, but
most of it is smaller and I will it thus spare you.

I’d like to thank everybody who contributed to systemd over the past years.

Thanks for your interest!