Tag Archives: hard drive

Needed: Software Engineering Director

Post Syndicated from Yev original https://www.backblaze.com/blog/needed-software-engineering-director/

Company Description:

Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2, robust and reliable object storage at just $0.005/gb/mo. We offer the lowest price of any of the big players and are still profitable.

Backblaze has a culture of openness. The hardware designs for our storage pods are open source. Key parts of the software, including the Reed-Solomon erasure coding are open-source. Backblaze is the only company that publishes hard drive reliability statistics.

We’ve managed to nurture a team-oriented culture with amazingly low turnover. We value our people and their families. The team is distributed across the U.S., but we work in Pacific Time, so work is limited to work time, leaving evenings and weekends open for personal and family time. Check out our “About Us” page to learn more about the people and some of our perks.

We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.

Our engineering team is 10 software engineers, and 2 quality assurance engineers. Most engineers are experienced, and a couple are more junior. The team will be growing as the company grows to meet the demand for our products; we plan to add at least 6 more engineers in 2018. The software includes the storage systems that run in the data center, the web APIs that clients access, the web site, and client programs that run on phones, tablets, and computers.

The Job:

As the Director of Engineering, you will be:

  • managing the software engineering team
  • ensuring consistent delivery of top-quality services to our customers
  • collaborating closely with the operations team
  • directing engineering execution to scale the business and build new services
  • transforming a self-directed, scrappy startup team into a mid-size engineering organization

A successful director will have the opportunity to grow into the role of VP of Engineering. Backblaze expects to continue our exponential growth of our storage services in the upcoming years, with matching growth in the engineering team..

This position is located in San Mateo, California.


We are a looking for a director who:

  • has a good understanding of software engineering best practices
  • has experience scaling a large, distributed system
  • gets energized by creating an environment where engineers thrive
  • understands the trade-offs between building a solid foundation and shipping new features
  • has a track record of building effective teams

Required for all Backblaze Employees:

  • Good attitude and willingness to do whatever it takes to get the job done
  • Strong desire to work for a small fast-paced company
  • Desire to learn and adapt to rapidly changing technologies and work environment
  • Rigorous adherence to best practices
  • Relentless attention to detail
  • Excellent interpersonal skills and good oral/written communication
  • Excellent troubleshooting and problem solving skills

Some Backblaze Perks:

  • Competitive healthcare plans
  • Competitive compensation and 401k
  • All employees receive Option grants
  • Unlimited vacation days
  • Strong coffee
  • Fully stocked Micro kitchen
  • Catered breakfast and lunches
  • Awesome people who work on awesome projects
  • New Parent Childcare bonus
  • Normal work hours
  • Get to bring your pets into the office
  • San Mateo Office — located near Caltrain and Highways 101 & 280.

Contact Us:

If this sounds like you, follow these steps:

  1. Send an email to jobscontact@backblaze.com with the position in the subject line.
  2. Include your resume.
  3. Tell us a bit about your experience.

Backblaze is an Equal Opportunity Employer.

The post Needed: Software Engineering Director appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Your Hard Drive Crashed — Get Working Again Fast with Backblaze

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/how-to-recover-your-files-with-backblaze/

holding a hard drive and diagnostic tools
The worst thing for a computer user has happened. The hard drive on your computer crashed, or your computer is lost or completely unusable.

Fortunately, you’re a Backblaze customer with a current backup in the cloud. That’s great. The challenge is that you’ve got a presentation to make in just 48 hours and the document and materials you need for the presentation were on the hard drive that crashed.

Relax. Backblaze has your data (and your back). The question is, how do you get what you need to make that presentation deadline?

Here are some strategies you could use.

One — The first approach is to get back the presentation file and materials you need to meet your presentation deadline as quickly as possible. You can use another computer (maybe even your smartphone) to make that presentation.

Two — The second approach is to get your computer (or a new computer, if necessary) working again and restore all the files from your Backblaze backup.

Let’s start with Option One, which gets you back to work with just the files you need now as quickly as possible.

Option One — You’ve Got a Deadline and Just Need Your Files

Getting Back to Work Immediately

You want to get your computer working again as soon as possible, but perhaps your top priority is getting access to the files you need for your presentation. The computer can wait.

Find a Computer to Use

First of all. You’re going to need a computer to use. If you have another computer handy, you’re all set. If you don’t, you’re going to need one. Here are some ideas on where to find one:

  • Family and Friends
  • Work
  • Neighbors
  • Local library
  • Local school
  • Community or religious organization
  • Local computer shop
  • Online store

Laptop computer

If you have a smartphone that you can use to give your presentation or to print materials, that’s great. With the Backblaze app for iOS and Android, you can download files directly from your Backblaze account to your smartphone. You also have the option with your smartphone to email or share files from your Backblaze backup so you can use them elsewhere.

Laptop with smartphone

Download The File(s) You Need

Once you have the computer, you need to connect to your Backblaze backup through a web browser or the Backblaze smartphone app.

Backblaze Web Admin

Sign into your Backblaze account. You can download the files directly or use the share link to share files with yourself or someone else.

If you need step-by-step instructions on retrieving your files, see Restore the Files to the Drive section below. You also can find help at https://help.backblaze.com/hc/en-us/articles/217665888-How-to-Create-a-Restore-from-Your-Backblaze-Backup.

Smartphone App

If you have an iOS or Android smartphone, you can use the Backblaze app and retrieve the files you need. You then could view the file on your phone, use a smartphone app with the file, or email it to yourself or someone else.

Backblaze Smartphone app (iOS)

Backblaze Smartphone app (iOS)

Using one of the approaches above, you got your files back in time for your presentation. Way to go!

Now, the next step is to get the computer with the bad drive running again and restore all your files, or, if that computer is no longer usable, restore your Backblaze backup to a new computer.

Option Two — You Need a Working Computer Again

Getting the Computer with the Failed Drive Running Again (or a New Computer)

If the computer with the failed drive can’t be saved, then you’re going to need a new computer. A new computer likely will come with the operating system installed and ready to boot. If you’ve got a running computer and are ready to restore your files from Backblaze, you can skip forward to Restore the Files to the Drive.

If you need to replace the hard drive in your computer before you restore your files, you can continue reading.

Buy a New Hard Drive to Replace the Failed Drive

The hard drive is gone, so you’re going to need a new drive. If you have a computer or electronics store nearby, you could get one there. Another choice is to order a drive online and pay for one or two-day delivery. You have a few choices:

  1. Buy a hard drive of the same type and size you had
  2. Upgrade to a drive with more capacity
  3. Upgrade to an SSD. SSDs cost more but they are faster, more reliable, and less susceptible to jolts, magnetic fields, and other hazards that can affect a drive. Otherwise, they work the same as a hard disk drive (HDD) and most likely will work with the same connector.

Hard Disk Drive (HDD)Solid State Drive (SSD)

Hard Disk Drive (HDD)

Solid State Drive (SSD)

Be sure that the drive dimensions are compatible with where you’re going to install the drive in your computer, and the drive connector is compatible with your computer system (SATA, PCIe, etc.) Here’s some help.

Install the Drive

If you’re handy with computers, you can install the drive yourself. It’s not hard, and there are numerous videos on YouTube and elsewhere on how to do this. Just be sure to note how everything was connected so you can get everything connected and put back together correctly. Also, be sure that you discharge any static electricity from your body by touching something metallic before you handle anything inside the computer. If all this sounds like too much to handle, find a friend or a local computer store to help you.

Note:  If the drive that failed is a boot drive for your operating system (either Macintosh or Windows), you need to make sure that the drive is bootable and has the operating system files on it. You may need to reinstall from an operating system source disk or install files.

Restore the Files to the Drive

To start, you will need to sign in to the Backblaze website with your registered email address and password. Visit https://secure.backblaze.com/user_signin.htm to login.

Sign In to Your Backblaze Account

Selecting the Backup

Once logged in, you will be brought to the account Overview page. On this page, all of the computers registered for backup under your account are shown with some basic information about each. Select the backup from which you wish to restore data by using the appropriate “Restore” button.

Screenshot of Admin for Selecting the Type of Restore

Selecting the Type of Restore

Backblaze offers three different ways in which you can receive your restore data: downloadable ZIP file, USB flash drive, or USB hard drive. The downloadable ZIP restore option will create a ZIP file of the files you request that is made available for download for 7 days. ZIP restores do not have any additional cost and are a great option for individual files or small sets of data.

Depending on the speed of your internet connection to the Backblaze data center, downloadable restores may not always be the best option for restoring very large amounts of data. ZIP restores are limited to 500 GB per request and a maximum of 5 active requests can be submitted under a single account at any given time.

USB flash and hard drive restores are built with the data you request and then shipped to an address of your choosing via FedEx Overnight or FedEx Priority International. USB flash restores cost $99 and can contain up to 128 GB (110,000 MB of data) and USB hard drive restores cost $189 and can contain up to 4TB max (3,500,000 MB of data). Both include the cost of shipping.

You can return the ZIP drive within 30 days for a full refund with our Restore Return Refund Program, effectively making the process of restoring free, even with a shipped USB drive.

Screenshot of Admin for Selecting the Backup

Selecting Files for Restore

Using the left hand file viewer, navigate to the location of the files you wish to restore. You can use the disclosure triangles to see subfolders. Clicking on a folder name will display the folder’s files in the right hand file viewer. If you are attempting to restore files that have been deleted or are otherwise missing or files from a failed or disconnected secondary or external hard drive, you may need to change the time frame parameters.

Put checkmarks next to disks, files or folders you’d like to recover. Once you have selected the files and folders you wish to restore, select the “Continue with Restore” button above or below the file viewer. Backblaze will then build the restore via the option you select (ZIP or USB drive). You’ll receive an automated email notifying you when the ZIP restore has been built and is ready for download or when the USB restore drive ships.

If you are using the downloadable ZIP option, and the restore is over 2 GB, we highly recommend using the Backblaze Downloader for better speed and reliability. We have a guide on using the Backblaze Downloader for Mac OS X or for Windows.

For additional assistance, visit our help files at https://help.backblaze.com/hc/en-us/articles/217665888-How-to-Create-a-Restore-from-Your-Backblaze-Backup

Screenshot of Admin for Selecting Files for Restore

Extracting the ZIP

Recent versions of both macOS and Windows have built-in capability to extract files from a ZIP archive. If the built-in capabilities aren’t working for you, you can find additional utilities for Macintosh and Windows.

Reactivating your Backblaze Account

Now that you’ve got a working computer again, you’re going to need to reinstall Backblaze Backup (if it’s not on the system already) and connect with your existing account. Start by downloading and reinstalling Backblaze.

If you’ve restored the files from your Backblaze Backup to your new computer or drive, you don’t want to have to reupload the same files again to your Backblaze backup. To let Backblaze know that this computer is on the same account and has the same files, you need to use “Inherit Backup State.” See https://help.backblaze.com/hc/en-us/articles/217666358-Inherit-Backup-State

Screenshot of Admin for Inherit Backup State

That’s It

You should be all set, either with the files you needed for your presentation, or with a restored computer that is again ready to do productive work.

We hope your presentation wowed ’em.

If you have any additional questions on restoring from a Backblaze backup, please ask away in the comments. Also, be sure to check out our help resources at https://www.backblaze.com/help.html.

The post Your Hard Drive Crashed — Get Working Again Fast with Backblaze appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

HDD vs SSD: What Does the Future for Storage Hold?

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/ssd-vs-hdd-future-of-storage/

SSD 60 TB drive

This is part one of a series. Use the Join button above to receive notification of future posts on this and other topics.

Customers frequently ask us whether and when we plan to move our cloud backup and data storage to SSDs (Solid-State Drives). That’s not a surprising question considering the many advantages SSDs have over magnetic platter type drives, also known as HDDs (Hard-Disk Drives).

We’re a large user of HDDs in our data centers (currently 100,000 hard drives holding over 500 petabytes of data). We want to provide the best performance, reliability, and economy for our cloud backup and cloud storage services, so we continually evaluate which drives to use for operations and in our data centers. While we use SSDs for some applications, which we’ll describe below, there are reasons why HDDs will continue to be the primary drives of choice for us and other cloud providers for the foreseeable future.

HDDs vs SSDs


The laptop computer I am writing this on has a single 512GB SSD, which has become a common feature in higher end laptops. The SSD’s advantages for a laptop are easy to understand: they are smaller than an HDD, faster, quieter, last longer, and are not susceptible to vibration and magnetic fields. They also have much lower latency and access times.

Today’s typical online price for a 2.5” 512GB SSD is $140 to $170. The typical online price for a 3.5” 512 GB HDD is $44 to $65. That’s a pretty significant difference in price, but since the SSD helps make the laptop lighter, enables it to be more resistant to the inevitable shocks and jolts it will experience in daily use, and adds of benefits of faster booting, faster waking from sleep, and faster launching of applications and handling of big files, the extra cost for the SSD in this case is worth it.

Some of these SSD advantages, chiefly speed, also will apply to a desktop computer, so desktops are increasingly outfitted with SSDs, particularly to hold the operating system, applications, and data that is accessed frequently. Replacing a boot drive with an SSD has become a popular upgrade option to breathe new life into a computer, especially one that seems to take forever to boot or is used for notoriously slow-loading applications such as Photoshop.

We covered upgrading your computer with an SSD in our blog post SSD 101: How to Upgrade Your Computer With An SSD.

Data centers are an entirely different kettle of fish. The primary concerns for data center storage are reliability, storage density, and cost. While SSDs are strong in the first two areas, it’s the third where they are not yet competitive. At Backblaze we adopt higher density HDDs as they become available — we’re currently using both 10TB and 12TB drives (among other capacities) in our data centers. Higher density drives provide greater storage density per Storage Pod and Vault and reduce our overhead cost through less required maintenance and lower total power requirements. Comparable SSDs in those sizes would cost roughly $1,000 per terabyte, considerably higher than the corresponding HDD. Simply put, SSDs are not yet in the price range to make their use economical for the benefits they provide, which is the reason why we expect to be using HDDs as our primary storage media for the foreseeable future.

What Are HDDs?

HDDs have been around over 60 years since IBM introduced them in 1956. The first disk drive was the size of a car, stored a mere 3.75 megabytes, and cost $300,000 in today’s dollars.

IBM 350 Disk Storage System — 3.75MB in 1956

The 350 Disk Storage System was a major component of the IBM 305 RAMAC (Random Access Method of Accounting and Control) system, which was introduced in September 1956. It consisted of 40 platters and a dual read/write head on a single arm that moved up and down the stack of magnetic disk platters.

The basic mechanism of an HDD remains unchanged since then, though it has undergone continual refinement. An HDD uses magnetism to store data on a rotating platter. A read/write head is affixed to an arm that floats above the spinning platter reading and writing data. The faster the platter spins, the faster an HDD can perform. Typical laptop drives today spin at either 5400 RPM (revolutions per minute) or 7200 RPM, though some server-based platters spin at even higher speeds.

Exploded drawing of a hard drive

Exploded drawing of a hard drive

The platters inside the drives are coated with a magnetically sensitive film consisting of tiny magnetic grains. Data is recorded when a magnetic write-head flies just above the spinning disk; the write head rapidly flips the magnetization of one magnetic region of grains so that its magnetic pole points up or down, to encode a 1 or a 0 in binary code. If all this sounds like an HDD is vulnerable to shocks and vibration, you’d be right. They also are vulnerable to magnets, which is one way to destroy the data on an HDD if you’re getting rid of it.

The major advantage of an HDD is that it can store lots of data cheaply. One and two terabyte (1,024 and 2,048 gigabytes) hard drives are not unusual for a laptop these days, and 10TB and 12TB drives are now available for desktops and servers. Densities and rotation speeds continue to grow. However, if you compare the cost of common HDDs vs SSDs for sale online, the SSDs are roughly 3-5x the cost per gigabyte. So if you want cheap storage and lots of it, using a standard hard drive is definitely the more economical way to go.

What are the best uses for HDDs?

  • Disk arrays (NAS, RAID, etc.) where high capacity is needed
  • Desktops when low cost is priority
  • Media storage (photos, videos, audio not currently being worked on)
  • Drives with extreme number of reads and writes

What Are SSDs?

SSDs go back almost as far as HDDs, with the first semiconductor storage device compatible with a hard drive interface introduced in 1978, the StorageTek 4305.

Storage Technology 4305 SSD

The StorageTek was an SSD aimed at the IBM mainframe compatible market. The STC 4305 was seven times faster than IBM’s popular 2305 HDD system (and also about half the price). It consisted of a cabinet full of charge-coupled devices and cost $400,000 for 45MB capacity with throughput speeds up to 1.5 MB/sec.

SSDs are based on a type of non-volatile memory called NAND (named for the Boolean operator “NOT AND,” and one of two main types of flash memory). Flash memory stores data in individual memory cells, which are made of floating-gate transistors. Though they are semiconductor-based memory, they retain their information when no power is applied to them — a feature that’s obviously a necessity for permanent data storage.

Samsung SSD

Samsung SSD 850 Pro

Compared to an HDD, SSDs have higher data-transfer rates, higher areal storage density, better reliability, and much lower latency and access times. For most users, it’s the speed of an SSD that primarily attracts them. When discussing the speed of drives, what we are referring to is the speed at which they can read and write data.

For HDDs, the speed at which the platters spin strongly determines the read/write times. When data on an HDD is accessed, the read/write head must physically move to the location where the data was encoded on a magnetic section on the platter. If the file being read was written sequentially to the disk, it will be read quickly. As more data is written to the disk, however, it’s likely that the file will be written across multiple sections, resulting in fragmentation of the data. Fragmented data takes longer to read with an HDD as the read head has to move to different areas of the platter(s) to completely read all the data requested.

Because SSDs have no moving parts, they can operate at speeds far above those of a typical HDD. Fragmentation is not an issue for SSDs. Files can be written anywhere with little impact on read/write times, resulting in read times far faster than any HDD, regardless of fragmentation.

Samsung SSD 850 Pro (back)

Due to the way data is written and read to the drive, however, SSD cells can wear out over time. SSD cells push electrons through a gate to set its state. This process wears on the cell and over time reduces its performance until the SSD wears out. This effect takes a long time and SSDs have mechanisms to minimize this effect, such as the TRIM command. Flash memory writes an entire block of storage no matter how few pages within the block are updated. This requires reading and caching the existing data, erasing the block and rewriting the block. If an empty block is available, a write operation is much faster. The TRIM command, which must be supported in both the OS and the SSD, enables the OS to inform the drive which blocks are no longer needed. It allows the drive to erase the blocks ahead of time in order to make empty blocks available for subsequent writes.

The effect of repeated reading and erasing on an SSD is cumulative and an SSD can slow down and even display errors with age. It’s more likely, however, that the system using the SSD will be discarded for obsolescence before the SSD begins to display read/write errors. Hard drives eventually wear out from constant use as well, since they use physical recording methods, so most users won’t base their selection of an HDD or SSD drive based on expected longevity.

SSD internals

SSD circuit board

Overall, SSDs are considered far more durable than HDDs due to a lack of mechanical parts. The moving mechanisms within an HDD are susceptible to not only wear and tear over time, but to damage due to movement or forceful contact. If one were to drop a laptop with an HDD, there is a high likelihood that all those moving parts will collide, resulting in potential data loss and even destructive physical damage that could kill the HDD outright. SSDs have no moving parts so, while they hold the risk of a potentially shorter life span due to high use, they can survive the rigors we impose upon our portable devices and laptops.

What are the best uses for SSDs?

  • Notebooks, laptops, where performance, lightweight, areal storage density, resistance to shock and general ruggedness are desirable
  • Boot drives holding operating system and applications, which will speed up booting and application launching
  • Working files (media that is being edited: photos, video, audio, etc.)
  • Swap drives where SSD will speed up disk paging
  • Cache drives
  • Database servers
  • Revitalizing an older computer. If you’ve got a computer that seems slow to start up and slow to load applications and files, updating the boot drive with an SSD could make it seem, if not new, at least as if it just came back refreshed from spending some time on the beach.

Stay Tuned for Part 2 of HDD vs SSD

That’s it for part 1. In our second part we’ll take a deeper look at the differences between HDDs and SSDs, how both HDD and SSD technologies are evolving, and how Backblaze takes advantage of SSDs in our operations and data centers.

Here's a tip!Here’s a tip on finding all the posts tagged with SSD on our blog. Just follow https://www.backblaze.com/blog/tag/ssd/.

Don’t miss future posts on HDDs, SSDs, and other topics, including hard drive stats, cloud storage, and tips and tricks for backing up to the cloud. Use the Join button above to receive notification of future posts on our blog.

The post HDD vs SSD: What Does the Future for Storage Hold? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

The Challenges of Opening a Data Center — Part 2

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/factors-for-choosing-data-center/

Rows of storage pods in a data center

This is part two of a series on the factors that an organization needs to consider when opening a data center and the challenges that must be met in the process.

In Part 1 of this series, we looked at the different types of data centers, the importance of location in planning a data center, data center certification, and the single most expensive factor in running a data center, power.

In Part 2, we continue to look at factors that need to considered both by those interested in a dedicated data center and those seeking to colocate in an existing center.

Power (continued from Part 1)

In part 1, we began our discussion of the power requirements of data centers.

As we discussed, redundancy and failover is a chief requirement for data center power. A redundantly designed power supply system is also a necessity for maintenance, as it enables repairs to be performed on one network, for example, without having to turn off servers, databases, or electrical equipment.

Power Path

The common critical components of a data center’s power flow are:

  • Utility Supply
  • Generators
  • Transfer Switches
  • Distribution Panels
  • Uninterruptible Power Supplies (UPS)
  • PDUs

Utility Supply is the power that comes from one or more utility grids. While most of us consider the grid to be our primary power supply (hats off to those of you who manage to live off the grid), politics, economics, and distribution make utility supply power susceptible to outages, which is why data centers must have autonomous power available to maintain availability.

Generators are used to supply power when the utility supply is unavailable. They convert mechanical energy, usually from motors, to electrical energy.

Transfer Switches are used to transfer electric load from one source or electrical device to another, such as from one utility line to another, from a generator to a utility, or between generators. The transfer could be manually activated or automatic to ensure continuous electrical power.

Distribution Panels get the power where it needs to go, taking a power feed and dividing it into separate circuits to supply multiple loads.

A UPS, as we touched on earlier, ensures that continuous power is available even when the main power source isn’t. It often consists of batteries that can come online almost instantaneously when the current power ceases. The power from a UPS does not have to last a long time as it is considered an emergency measure until the main power source can be restored. Another function of the UPS is to filter and stabilize the power from the main power supply.

Data Center UPS

Data center UPSs

PDU stands for the Power Distribution Unit and is the device that distributes power to the individual pieces of equipment.


After power, the networking connections to the data center are of prime importance. Can the data center obtain and maintain high-speed networking connections to the building? With networking, as with all aspects of a data center, availability is a primary consideration. Data center designers think of all possible ways service can be interrupted or lost, even briefly. Details such as the vulnerabilities in the route the network connections make from the core network (the backhaul) to the center, and where network connections enter and exit a building, must be taken into consideration in network and data center design.

Routers and switches are used to transport traffic between the servers in the data center and the core network. Just as with power, network redundancy is a prime factor in maintaining availability of data center services. Two or more upstream service providers are required to ensure that availability.

How fast a customer can transfer data to a data center is affected by: 1) the speed of the connections the data center has with the outside world, 2) the quality of the connections between the customer and the data center, and 3) the distance of the route from customer to the data center. The longer the length of the route and the greater the number of packets that must be transferred, the more significant a factor will be played by latency in the data transfer. Latency is the delay before a transfer of data begins following an instruction for its transfer. Generally latency, not speed, will be the most significant factor in transferring data to and from a data center. Packets transferred using the TCP/IP protocol suite, which is the conceptual model and set of communications protocols used on the internet and similar computer networks, must be acknowledged when received (ACK’d) and requires a communications roundtrip for each packet. If the data is in larger packets, the number of ACKs required is reduced, so latency will be a smaller factor in the overall network communications speed.

Latency generally will be less significant for data storage transfers than for cloud computing. Optimizations such as multi-threading, which is used in Backblaze’s Cloud Backup service, will generally improve overall transfer throughput if sufficient bandwidth is available.

Those interested in testing the overall speed and latency of their connection to Backblaze’s data centers can use the Check Your Bandwidth tool on our website.
Data center telecommunications equipment

Data center telecommunications equipment

Data center under floor cable runs

Data center under floor cable runs


Computer, networking, and power generation equipment generates heat, and there are a number of solutions employed to rid a data center of that heat. The location and climate of the data center is of great importance to the data center designer because the climatic conditions dictate to a large degree what cooling technologies should be deployed that in turn affect the power used and the cost of using that power. The power required and cost needed to manage a data center in a warm, humid climate will vary greatly from managing one in a cool, dry climate. Innovation is strong in this area and many new approaches to efficient and cost-effective cooling are used in the latest data centers.

Switch's uninterruptible, multi-system, HVAC Data Center Cooling Units

Switch’s uninterruptible, multi-system, HVAC Data Center Cooling Units

There are three primary ways data center cooling can be achieved:

Room Cooling cools the entire operating area of the data center. This method can be suitable for small data centers, but becomes more difficult and inefficient as IT equipment density and center size increase.

Row Cooling concentrates on cooling a data center on a row by row basis. In its simplest form, hot aisle/cold aisle data center design involves lining up server racks in alternating rows with cold air intakes facing one way and hot air exhausts facing the other. The rows composed of rack fronts are called cold aisles. Typically, cold aisles face air conditioner output ducts. The rows the heated exhausts pour into are called hot aisles. Typically, hot aisles face air conditioner return ducts.

Rack Cooling tackles cooling on a rack by rack basis. Air-conditioning units are dedicated to specific racks. This approach allows for maximum densities to be deployed per rack. This works best in data centers with fully loaded racks, otherwise there would be too much cooling capacity, and the air-conditioning losses alone could exceed the total IT load.


Data Centers are high-security facilities as they house business, government, and other data that contains personal, financial, and other secure information about businesses and individuals.

This list contains the physical-security considerations when opening or co-locating in a data center:

Layered Security Zones. Systems and processes are deployed to allow only authorized personnel in certain areas of the data center. Examples include keycard access, alarm systems, mantraps, secure doors, and staffed checkpoints.

Physical Barriers. Physical barriers, fencing and reinforced walls are used to protect facilities. In a colocation facility, one customers’ racks and servers are often inaccessible to other customers colocating in the same data center.

Backblaze racks secured in the data center

Backblaze racks secured in the data center

Monitoring Systems. Advanced surveillance technology monitors and records activity on approaching driveways, building entrances, exits, loading areas, and equipment areas. These systems also can be used to monitor and detect fire and water emergencies, providing early detection and notification before significant damage results.

Top-tier providers evaluate their data center security and facilities on an ongoing basis. Technology becomes outdated quickly, so providers must stay-on-top of new approaches and technologies in order to protect valuable IT assets.

To pass into high security areas of a data center requires passing through a security checkpoint where credentials are verified.

Data Center security

The gauntlet of cameras and steel bars one must pass before entering this data center

Facilities and Services

Data center colocation providers often differentiate themselves by offering value-added services. In addition to the required space, power, cooling, connectivity and security capabilities, the best solutions provide several on-site amenities. These accommodations include offices and workstations, conference rooms, and access to phones, copy machines, and office equipment.

Additional features may consist of kitchen facilities, break rooms and relaxation lounges, storage facilities for client equipment, and secure loading docks and freight elevators.

Moving into A Data Center

Moving into a data center is a major job for any organization. We wrote a post last year, Desert To Data in 7 Days — Our New Phoenix Data Center, about what it was like to move into our new data center in Phoenix, Arizona.

Desert To Data in 7 Days — Our New Phoenix Data Center

Visiting a Data Center

Our Director of Product Marketing Andy Klein wrote a popular post last year on what it’s like to visit a data center called A Day in the Life of a Data Center.

A Day in the Life of a Data Center

Would you Like to Know More about The Challenges of Opening and Running a Data Center?

That’s it for part 2 of this series. If readers are interested, we could write a post about some of the new technologies and trends affecting data center design and use. Please let us know in the comments.

Here's a tip!Here’s a tip on finding all the posts tagged with data center on our blog. Just follow https://www.backblaze.com/blog/tag/data-center/.

Don’t miss future posts on data centers and other topics, including hard drive stats, cloud storage, and tips and tricks for backing up to the cloud. Use the Join button above to receive notification of future posts on our blog.

The post The Challenges of Opening a Data Center — Part 2 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Jumping Air Gaps

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/02/jumping_air_gap_2.html

Nice profile of Mordechai Guri, who researches a variety of clever ways to steal data over air-gapped computers.

Guri and his fellow Ben-Gurion researchers have shown, for instance, that it's possible to trick a fully offline computer into leaking data to another nearby device via the noise its internal fan generates, by changing air temperatures in patterns that the receiving computer can detect with thermal sensors, or even by blinking out a stream of information from a computer hard drive LED to the camera on a quadcopter drone hovering outside a nearby window. In new research published today, the Ben-Gurion team has even shown that they can pull data off a computer protected by not only an air gap, but also a Faraday cage designed to block all radio signals.

Here’s a page with all the research results.

BoingBoing post.

All-In on Unlimited Backup

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/all-in-on-unlimited-backup/

chips on computer with cloud backup

The cloud backup industry has seen its share of tumultuousness. BitCasa, Dell DataSafe, Xdrive, and a dozen others have closed up shop. Mozy, Amazon, and Microsoft offered, but later canceled, their unlimited offerings. Recently, CrashPlan for Home customers were notified that their service was being end-of-lifed. Then today we’ve heard from Carbonite customers who are frustrated by this morning’s announcement of a price increase from Carbonite.

We believe that the fundamental goal of a cloud backup is having peace-of-mind: knowing your data — all of it — is safe. For over 10 years Backblaze has been providing that peace-of-mind by offering completely unlimited cloud backup to our customers. And we continue to be committed to that. Knowing that your cloud backup vendor is not going to disappear or fundamentally change their service is an essential element in achieving that peace-of-mind.

Committed to Unlimited Backup

When Mozy discontinued their unlimited backup on Jan 31, 2011, a lot of people asked, “Does this mean Backblaze will discontinue theirs as well?” At that time I wrote the blog post Backblaze is committed to unlimited backup. That was seven years ago. Since then we’ve continued to make Backblaze cloud backup better: dramatically speeding up backups and restores, offering the unique and very popular Restore Return Refund program, enabling direct access and sharing of any file in your backup, and more. We also introduced Backblaze Groups to enable businesses and families to manage backups — all at no additional cost.

How That’s Possible

I’d like to answer the question of “How have you been able to do this when others haven’t?

First, commitment. It’s not impossible to offer unlimited cloud backup, but it’s not easy. The Backblaze team has been committed to unlimited as a core tenet.

Second, we have pursued the technical, business, and cultural steps required to make it happen. We’ve designed our own servers, written our cloud storage software, run our own operations, and been continually focused on every place we could optimize a penny out of the cost of storage. We’ve built a culture at Backblaze that cares deeply about that.

Ensuring Peace-of-Mind

Price increases and plan changes happen in our industry, but Backblaze has consistently been the low price leader, and continues to stand by the foundational element of our service — truly unlimited backup storage. Carbonite just announced a price increase from $60 to $72/year, and while that’s not an astronomical increase, it’s important to keep in mind the service that they are providing at that rate. The basic Carbonite plan provides a service that doesn’t back up videos or external hard drives by default. We think that’s dangerous. No one wants to discover that their videos weren’t backed up after their computer dies, or have to worry about the safety and durability of their data. That is why we have continued to build on our foundation of unlimited, as well as making our service faster and more accessible. All of these serve the goal of ensuring peace-of-mind for our customers.

3 Months Free For You & A Friend

As part of our commitment to unlimited, refer your friends to receive three months of Backblaze service through March 15, 2018. When you Refer-a-Friend with your personal referral link, and they subscribe, both of you will receive three months of service added to your account. See promotion details on our Refer-a-Friend page.

Want A Reminder When Your Carbonite Subscription Runs Out?

If you’re considering switching from Carbonite, we’d love to be your new backup provider. Enter your email and the date you’d like to be reminded in the form below and you’ll get a friendly reminder email from us to start a new backup plan with Backblaze. Or, you could start a free trial today.

We think you’ll be glad you switched, and you’ll have a chance to experience some of that Backblaze peace-of-mind for your data.

Please Send Me a Reminder When I Need a New Backup Provider


The post All-In on Unlimited Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Backblaze Hard Drive Stats for 2017

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/hard-drive-stats-for-2017/

Backbalze Drive Stats 2017 Review

Beginning in April 2013, Backblaze has recorded and saved daily hard drive statistics from the drives in our data centers. Each entry consists of the date, manufacturer, model, serial number, status (operational or failed), and all of the SMART attributes reported by that drive. As of the end of 2017, there are about 88 million entries totaling 23 GB of data. You can download this data from our website if you want to do your own research, but for starters here’s what we found.


At the end of 2017 we had 93,240 spinning hard drives. Of that number, there were 1,935 boot drives and 91,305 data drives. This post looks at the hard drive statistics of the data drives we monitor. We’ll review the stats for Q4 2017, all of 2017, and the lifetime statistics for all of the drives Backblaze has used in our cloud storage data centers since we started keeping track. Along the way we’ll share observations and insights on the data presented and we look forward to you doing the same in the comments.

Hard Drive Reliability Statistics for Q4 2017

At the end of Q4 2017 Backblaze was monitoring 91,305 hard drives used to store data. For our evaluation we remove from consideration those drives which were used for testing purposes and those drive models for which we did not have at least 45 drives (read why after the chart). This leaves us with 91,243 hard drives. The table below is for the period of Q4 2017.

Hard Drive Annualized Failure Rates for Q4 2017

A few things to remember when viewing this chart:

  • The failure rate listed is for just Q4 2017. If a drive model has a failure rate of 0%, it means there were no drive failures of that model during Q4 2017.
  • There were 62 drives (91,305 minus 91,243) that were not included in the list above because we did not have at least 45 of a given drive model. The most common reason we would have fewer than 45 drives of one model is that we needed to replace a failed drive and we had to purchase a different model as a replacement because the original model was no longer available. We use 45 drives of the same model as the minimum number to qualify for reporting quarterly, yearly, and lifetime drive statistics.
  • Quarterly failure rates can be volatile, especially for models that have a small number of drives and/or a small number of drive days. For example, the Seagate 4 TB drive, model ST4000DM005, has a annualized failure rate of 29.08%, but that is based on only 1,255 drive days and 1 (one) drive failure.
  • AFR stands for Annualized Failure Rate, which is the projected failure rate for a year based on the data from this quarter only.

Bulking Up and Adding On Storage

Looking back over 2017, we not only added new drives, we “bulked up” by swapping out functional and smaller 2, 3, and 4TB drives with larger 8, 10, and 12TB drives. The changes in drive quantity by quarter are shown in the chart below:

Backblaze Drive Population by Drive Size

For 2017 we added 25,746 new drives, and lost 6,442 drives to retirement for a net of 19,304 drives. When you look at storage space, we added 230 petabytes and retired 19 petabytes, netting us an additional 211 petabytes of storage in our data center in 2017.

2017 Hard Drive Failure Stats

Below are the lifetime hard drive failure statistics for the hard drive models that were operational at the end of Q4 2017. As with the quarterly results above, we have removed any non-production drives and any models that had fewer than 45 drives.

Hard Drive Annualized Failure Rates

The chart above gives us the lifetime view of the various drive models in our data center. The Q4 2017 chart at the beginning of the post gives us a snapshot of the most recent quarter of the same models.

Let’s take a look at the same models over time, in our case over the past 3 years (2015 through 2017), by looking at the annual failure rates for each of those years.

Annual Hard Drive Failure Rates by Year

The failure rate for each year is calculated for just that year. In looking at the results the following observations can be made:

  • The failure rates for both of the 6 TB models, Seagate and WDC, have decreased over the years while the number of drives has stayed fairly consistent from year to year.
  • While it looks like the failure rates for the 3 TB WDC drives have also decreased, you’ll notice that we migrated out nearly 1,000 of these WDC drives in 2017. While the remaining 180 WDC 3 TB drives are performing very well, decreasing the data set that dramatically makes trend analysis suspect.
  • The Toshiba 5 TB model and the HGST 8 TB model had zero failures over the last year. That’s impressive, but with only 45 drives in use for each model, not statistically useful.
  • The HGST/Hitachi 4 TB models delivered sub 1.0% failure rates for each of the three years. Amazing.

A Few More Numbers

To save you countless hours of looking, we’ve culled through the data to uncover the following tidbits regarding our ever changing hard drive farm.

  • 116,833 — The number of hard drives for which we have data from April 2013 through the end of December 2017. Currently there are 91,305 drives (data drives) in operation. This means 25,528 drives have either failed or been removed from service due for some other reason — typically migration.
  • 29,844 — The number of hard drives that were installed in 2017. This includes new drives, migrations, and failure replacements.
  • 81.76 — The number of hard drives that were installed each day in 2017. This includes new drives, migrations, and failure replacements.
  • 95,638 — The number of drives installed since we started keeping records in April 2013 through the end of December 2017.
  • 55.41 — The average number of hard drives installed per day from April 2013 to the end of December 2017. The installations can be new drives, migration replacements, or failure replacements.
  • 1,508 — The number of hard drives that were replaced as failed in 2017.
  • 4.13 — The average number of hard drives that have failed each day in 2017.
  • 6,795 — The number of hard drives that have failed from April 2013 until the end of December 2017.
  • 3.94 — The average number of hard drives that have failed each day from April 2013 until the end of December 2017.

Can’t Get Enough Hard Drive Stats?

We’ll be presenting the webinar “Backblaze Hard Drive Stats for 2017” on Thursday February 9, 2017 at 10:00 Pacific time. The webinar will dig deeper into the quarterly, yearly, and lifetime hard drive stats and include the annual and lifetime stats by drive size and manufacturer. You will need to subscribe to the Backblaze BrightTALK channel to view the webinar. Sign up today.

As a reminder, the complete data set used to create the information used in this review is available on our Hard Drive Test Data page. You can download and use this data for free for your own purpose. All we ask are three things: 1) you cite Backblaze as the source if you use the data, 2) you accept that you are solely responsible for how you use the data, and 3) you do not sell this data to anyone — it is free.

Good luck and let us know if you find anything interesting.

The post Backblaze Hard Drive Stats for 2017 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

500 Petabytes And Counting

Post Syndicated from Yev original https://www.backblaze.com/blog/500-petabytes-and-counting/

500 Petabytes = 500,000,000 Gigabytes

It seems like only yesterday that we crossed the 350 petabyte mark. It was actually June 2017, but boy have we been growing since. In October 2017 we crossed 400 petabytes. Today, we’re proud to announce we’ve crossed the 500 petabyte mark. That’s a very healthy clip, see for yourself!

Whether you have 50 GB, 500 GB or are just an avid blog reader, thank you for being on this incredible journey with us through the years.

…we’re literally moving at 1,000,000 files per hour.

We’re extremely proud of our track record. Throughout these 11 years we’ve striven to be the simplest, fastest, and most affordable online backup (and now cloud storage) solution available. We’re not just focusing on data ingress, but also adhering to our original goal of making sure that “no one ever loses data again.” How quickly are we restoring data? On average, we’re literally moving at 1,000,000 files per hour.

Even after all these years, one of the most frequent questions asked is, “How has Backblaze maintained such affordable pricing, particularly when the industry continues to move away from unlimited data plans?”

The cloud storage industry is very competitive, with cloud sync, storage, and backup providers leaving the unlimited market every single day: OneDrive, Amazon Cloud Storage, and most recently CrashPlan. Other providers either have tiered pricing (iDrive), or charge almost double or even triple for all the features we provide for our unlimited backup service (Carbonite). So how do we do it?

The answer comes down to our relentless pursuit of lowering costs. Our open-source Backblaze Storage Pods comprise our Backblaze Vaults, and the less expensive and more performant our Storage Pods are, the better the service that we can provide. This all directly translates into the service and pricing we can offer you.

A key part of our service is to be as open as possible with our costs and structure. After all, you are entrusting us with some of your most valuable assets. Still, it is very difficult to find an apples to apples comparison to what our competitors are doing. For example, we can gain some insight from a 2011 interview with Carbonite’s CEO, who gave an interview in which he said Carbonite’s cost of storing a petabyte was $250,000. At the time, our cost to store a petabyte was $76,481 (more on that calculation can be found here and here). If Backblaze’s fundamental cost to store data is one-third that of Carbonite’s, it makes sense that Carbonite’s cost to its customers would be more than Backblaze’s. Today, Backblaze backup is $50/year and Carbonite’s equivalent service is $149.99.

Our continued focus on reducing costs has allowed us to maintain a healthy business. And after accepting customer data for almost 10 years, we sincerely want to thank you all for giving us your trust, and allowing us to protect your important data and memories for you. Here’s to the next 500 petabytes; they’ll be here before we know it.

Update 2/5/18

Since publishing this post, we have posted the latest in our series of Hard Drive Stats, in which we summarize the performance of the hard drives we used in our data centers in 2017 and previously.

The post 500 Petabytes And Counting appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Police Shut Down Pirate Streaming TV Provider, Three Men Arrested

Post Syndicated from Andy original https://torrentfreak.com/police-shut-down-pirate-streaming-tv-provider-three-men-arrested-180120/

As prices for official multi-channel cable and satellite packages continue to increase, unauthorized streaming TV providers are providing an interesting alternative for those who demand the greatest variety of channels at a cut-down price.

Of course, none of this is legal and as such, authorities are clamping down. Today brings news of yet another pirate raid, this time in the city of Lublin, Poland.

A statement from the Provincial Police Headquarters reveals that officers from the Cybercrime and Economic Crime units conducted an investigation under the supervision of the District Prosecutor’s Office in Lublin. Locations in three provinces – Dolnośląskie, Zachodniopomorskie and Wielkopolskie – were searched.

According to prosecutors, the operators of the website illegally streamed the majority of all television channels available locally, including digital TV and state television. More than 160 channels were supplied via the site without permission. Users were initially given free access to the currently unnamed service but were then encouraged to subscribe to a premium package.

Pirate Streaming TV service (Credit: Polish police)

“The funds obtained from this procedure were invested in the further development of criminal activity and in foreign and Polish companies, of which [the suspects] were owners,” a police statement notes.

Local reports indicate three men, aged 30, 42 and 57, were arrested and brought to the prosecutor’s office. There they faced allegations of illegally distributing pay television and using the revenue as a permanent source of income.

“We estimate that the suspects could have benefited to the tune of nearly 3.5 million zlotys [840,663 euros] via their illegal practices,” police add.

Pirate Streaming TV service (Credit: Polish police)

In addition to the arrests, police also seized equipment including 12 computers, nine servers, tablets, decoders, telephones, more than 60 hard drives and similar devices, plus documentation.

The news of these raids in Poland follows on the heels of a Europol led operation to close down an IPTV operation said to be one of the largest in the world. The still-unnamed provider allegedly serviced around 500,000 subscribers from a base in Bulgaria, where a local ISP has come under the spotlight.

A video of the Polish operation, including a suspect under arrest, is available here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Early Challenges: Managing Cash Flow

Post Syndicated from Gleb Budman original https://www.backblaze.com/blog/managing-cash-flow/

Cash flow projection charts

This post by Backblaze’s CEO and co-founder Gleb Budman is the eighth in a series about entrepreneurship. You can choose posts in the series from the list below:

  1. How Backblaze got Started: The Problem, The Solution, and the Stuff In-Between
  2. Building a Competitive Moat: Turning Challenges Into Advantages
  3. From Idea to Launch: Getting Your First Customers
  4. How to Get Your First 1,000 Customers
  5. Surviving Your First Year
  6. How to Compete with Giants
  7. The Decision on Transparency
  8. Early Challenges: Managing Cash Flow

Use the Join button above to receive notification of new posts in this series.

Running out of cash is one of the quickest ways for a startup to go out of business. When you are starting a company the question of where to get cash is usually the top priority, but managing cash flow is critical for every stage in the lifecycle of a company. As a primarily bootstrapped but capital-intensive business, managing cash flow at Backblaze was and still is a key element of our success and requires continued focus. Let’s look at what we learned over the years.

Raising Your Initial Funding

When starting a tech business in Silicon Valley, the default assumption is that you will immediately try to raise venture funding. There are certainly many advantages to raising funding — not the least of which is that you don’t need to be cash-flow positive since you have cash in the bank and the expectation is that you will have a “burn rate,” i.e. you’ll be spending more than you make.

Note: While you’re not expected to be cash-flow positive, that doesn’t mean you don’t have to worry about cash. Cash-flow management will determine your burn rate. Whether you can get to cash-flow breakeven or need to raise another round of funding is a direct byproduct of your cash flow management.

Also, raising funding takes time (most successful fundraising cycles take 3-6 months start-to-finish), and time at a startup is in short supply. Constantly trying to raise funding can take away from product development and pursuing growth opportunities. If you’re not successful in raising funding, you then have to either shut down or find an alternate method of funding the business.

Sources of Funding

Depending on the stage of the company, type of company, and other factors, you may have access to different sources of funding. Let’s list a number of them:


Sales — the best kind of funding. It is non-dilutive, doesn’t have to be paid back, and is a direct metric of the success of your company.

Pre-Sales — some customers may be willing to pay you for a product in beta, a test, or pre-pay for a product they’ll receive when finished. Pre-Sales income also is great because it shares the characteristics of cash from sales, but you get the cash early. It also can be a good sign that the product you’re building fills a market need. We started charging for Backblaze computer backup while it was still in private beta, which allowed us to not only collect cash from customers, but also test the billing experience and users’ real desire for the service.

Services — if you’re a service company and customers are paying you for that, great. You can effectively scale for the number of hours available in a day. As demand grows, you can add more employees to increase the total number of billable hours.

Note: If you’re a product company and customers are paying you to consult, that can provide much needed cash, and could provide feedback toward the right product. However, it can also distract from your core business, send you down a path where you’re building a product for a single customer, and addict you to a path that prevents you from building a scalable business.


Yourself — you likely are putting your time into the business, and deferring salary in the process. You may also put your own cash into the business either as an investment or a loan.

Angels — angels are ideal as early investors since they are used to investing in businesses with little to no traction. AngelList is a good place to find them, though finding people you’re connected with through someone that knows you well is best.

Crowdfunding — a component of the JOBS Act permitted entrepreneurs to raise money from nearly anyone since May 2016. The SEC imposes limits on both investors and the companies. This article goes into some depth on the options and sites available.

VCs — VCs are ideal for companies that need to raise at least a few million dollars and intend to build a business that will be worth over $1 billion.


Friends & Family — F&F are often the first people to give you money because they are investing in you. It’s great to have some early supporters, but it also can be risky to take money from people who aren’t used to the risks. The key advice here is to only take money from people who won’t mind losing it. If someone is talking about using their children’s college funds or borrowing from their 401k, say ‘no thank you’ — even if they’re sure they want to loan you money.

Bank Loans — a variety of loan types exist, but most either require the company to have been operational for a couple years, be able to borrow against money the company has or is making, or be able to get a personal guarantee from the founders whereby their own credit is on the line. Fundera provides a good overview of loan options and can help secure some, but most will not be an option for a brand new startup.


Government — in some areas there is the potential for government grants to facilitate research. The SBIR program facilitates some such grants.

At Backblaze, we used a number of these options:

• Investors/Yourself
We loaned a cumulative total of a couple hundred thousand dollars to the company and invested our time by going without a salary for a year and a half.
• Customers/Pre-Sales
We started selling the Backblaze service while it was still in beta.
• Customers/Sales
We launched v1.0 and kept selling.
• Investors/Angels
After a year and a half, we raised $370k from 11 angels. All of them were either people whom we knew personally or were a strong recommendation from a mutual friend.
• Debt/Loans
After a couple years we were able to get equipment leases whereby the Storage Pods and hard drives were used as collateral to secure the lease on them.
• Investors/VCs
Ater five years we raised $5m from TMT Investments to add to the balance sheet and invest in growth.

The variety and quantity of sources we used is by no means uncommon.

GAAP vs. Cash

Most companies start tracking financials based on cash, and as they scale they switch to GAAP (Generally Accepted Accounting Principles). Cash is easier to track — we got paid $XXXX and spent $YYY — and as often mentioned, is required for the business to stay alive. GAAP has more subtlety and complexity, but provides a clearer picture of how the business is really doing. Backblaze was on a ‘cash’ system for the first few years, then switched to GAAP. For this post, I’m going to focus on things that help cash flow, not GAAP profitability.

Stages of Cash Flow Management


In a pure service business (e.g. solo proprietor law firm), you may have no expenses other than your time, so this stage doesn’t exist. However, in a product business there is a period of time where you are building the product and have nothing to sell. You have zero cash coming in, but have cash going out. Your cash-flow is completely negative and you need funds to cover that.


Starting to see cash come in from customers is thrilling. I initially had our system set up to email me with every $5 payment we received. You’re making sales, but not covering expenses.


But it takes a lot of $5 payments to pay for servers and salaries, so for a while expenses are likely to outstrip sales. Getting to ramen-profitable is a critical stage where sales cover the business expenses and are “paying enough for the founders to eat ramen.” This extends the runway for a business, but is not completely sustainable, since presumably the founders can’t (or won’t) live forever on a subsistence salary.


This is the ultimate stage whereby the business is truly profitable, including paying everyone market-rate salaries. A business at this stage is self-sustaining. (Of course, market shifts and plenty of other challenges can kill the business, but cash-flow issues alone will not.)

Note, I’m using the word ‘profitable’ here to mean this is still on a cash-basis.

Backblaze was in the all-spend stage for just over a year, during which time we built the service and hadn’t yet made the service available to customers. Backblaze was in the sales-generating stage for nearly another year before the company was barely ramen-profitable where sales were covering the company expenses and paying the founders minimum wage. (I say ‘barely’ since minimum wage in the SF Bay Area is arguably never subsistence.) It took almost three more years before the company was business-profitable, paying everyone including the founders market-rate.

Cash Flow Forecasting

When raising funding it’s helpful to think of milestones reached. You don’t necessarily need enough cash on day one to last for the next 100 years of the company. Some good milestones to consider are how much cash you need to prove there is a market need, prove you can build a product to meet that need, or get to ramen-profitable.

Two things to consider:

1) Unit Economics (COGS)

If your product is 100% software, this may not be relevant. Once software is built it costs effectively nothing to deliver the product to one customer or one million customers. However, in most businesses there is some incremental cost to provide the product. If you’re selling a hardware device, perhaps you sell it for $100 but it costs you $50 to make it. This is called “COGS” (Cost of Goods Sold).

Many products rely on cloud services where the costs scale with growth. That model works great, but it’s still important to understand what the costs are for the cloud service you use per unit of product you sell.

Support is often done by the founders early-on in a business, but that is another real cost to factor in and estimate on a per-user basis. Taking all of the per unit costs combined, you may charge $10/month/user for your service, but if it costs you $7/month/user in cloud services, you’re only netting $3/month/user.

2) Operating Expenses (OpEx)

These are expenses that don’t scale with the number of product units you sell. Typically this includes research & development, sales & marketing, and general & administrative expenses. Presumably there is a certain level of these functions required to build the product, market it, sell it, and run the organization. You can choose to invest or cut back on these, but you’ll still make the same amount per product unit.

Incremental Net Profit Per Unit

If you’ve calculated your COGS and your unit economics are “upside down,” where the amount you charge is less than that it costs you to provide your service, it’s worth thinking hard about how that’s going to change over time. If it will not change, there is no scale that will make the business work. Presuming you do make money on each unit of product you sell — what is sometimes referred to as “Contribution Margin” — consider how many of those product units you need to sell to cover your operating expenses as described above.

Calculating Your Profit

The math on getting to ramen-profitable is simple:

(Number of Product Units Sold x Contribution Margin) - Operating Expenses = Profit

If your operating expenses include subsistence salaries for the founders and profit > $0, you’re ramen-profitable.

Improving Cash Flow

Having access to sources of cash, whether from selling to customers or other methods, is excellent. But needing less cash gives you more choices and allows you to either dilute less, owe less, or invest more.

There are two ways to improve cash flow:

1) Collect More Cash

The best way to collect more cash is to provide more value to your customers and as a result have them pay you more. Additional features/products/services can allow this. However, you can also collect more cash by changing how you charge for your product. If you have a subscription, changing from charging monthly to yearly dramatically improves your cash flow. If you have a product that customers use up, selling a year’s supply instead of selling them one-by-one can help.

2) Spend Less Cash

Reducing COGS is a fantastic way to spend less cash in a scalable way. If you can do this without harming the product or customer experience, you win. There are a myriad of ways to also reduce operating expenses, including taking sub-market salaries, using your home instead of renting office space, staying focused on your core product, etc.

Ultimately, collecting more and spending less cash dramatically simplifies the process of getting to ramen-profitable and later to business-profitable.

Be Careful (Why GAAP Matters)

A word of caution: while running out of cash will put you out of business immediately, overextending yourself will likely put you out of business not much later. GAAP shows how a business is really doing; cash doesn’t. If you only focus on cash, it is possible to commit yourself to both delivering products and repaying loans in the future in an unsustainable fashion. If you’re taking out loans, watch the total balance and monthly payments you’re committing to. If you’re asking customers for pre-payment, make sure you believe you can deliver on what they’ve paid for.


There are numerous challenges to building a business, and ensuring you have enough cash is amongst the most important. Having the cash to keep going lets you keep working on all of the other challenges. The frameworks above were critical for maintaining Backblaze’s cash flow and cash balance. Hopefully you can take some of the lessons we learned and apply them to your business. Let us know what works for you in the comments below.

The post Early Challenges: Managing Cash Flow appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Wanted: Datacenter Technician

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-datacenter-technician/

As we shoot way past 400 Petabytes of data under management we need some help scaling up our datacenters! We’re on the lookout for some datacenter technicians that can help us. This role is located near the Sacramento, California area. If you want to join a dynamic team that helps keep our almost 90,000+ hard drives spinning, this might be the job for you!


  • Work as Backblaze’s physical presence in Sacramento area datacenter(s).
  • Help maintain physical infrastructure including racking equipment, replacing hard drives and other system components.
  • Repair and troubleshoot defective equipment with minimal supervision.
  • Support datacenter’s 24×7 staff to install new equipment, handle after hours emergencies and other tasks.
  • Help manage onsite inventory of hard drives, cables, rails and other spare parts.
  • RMA defective components.
  • Setup, test and activate new equipment via the Linux command line.
  • Help train new Datacenter Technicians as needed.
  • Help with projects to install new systems and services as time allows.
  • Follow and improve Datacenter best practices and documentation.
  • Maintain a clean and well organized work environment.
  • On-call responsibilities require being within an hour of the SunGard’s Rancho Cordova/Roseville facility and occasional trips onsite 24×7 to resolve issues that can’t be handled remotely.
  • Work days may include Saturday and/or Sunday (e.g. working Tuesday – Saturday).


  • Excellent communication, time management, problem solving and organizational skills.
  • Ability to learn quickly.
  • Ability to lift/move 50-75 lbs and work down near the floor on a daily basis.
  • Position based near Sacramento, California and may require periodic visits to the corporate office in San Mateo.
  • May require travel to other Datacenters to provide coverage and/or to assist
    with new site set-up.

Backblaze Employees Have:

  • Good attitude and willingness to do whatever it takes to get the job done.
  • Strong desire to work for a small, fast-paced company.
  • Desire to learn and adapt to rapidly changing technologies and work environment.
  • Comfortable with well-behaved pets in the office.
  • This position is located near Sacramento, California.

Backblaze is an Equal Opportunity Employer and we offer competitive salary and benefits, including our no policy vacation policy.

If This Sounds Like You:
Send an email to [email protected] with:

  1. Datacenter Tech in the subject line
  2. Your resume attached
  3. An overview of your relevant experience

The post Wanted: Datacenter Technician appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Pirate Bay Founder: Netflix and Spotify Are a Threat, No Solution

Post Syndicated from Ernesto original https://torrentfreak.com/pirate-bay-founder-netflix-and-spotify-are-a-threat-no-solution-180107/

Ten years ago the Internet was an entirely different place. Piracy was rampant, as it is today, but the people behind the largest torrent sites were more vocal then.

There was a battle going on for the right to freely share content online. This was very much a necessity at the time, as legal options were scarce, but for many it was also an idealistic battle.

As the spokesperson of The Pirate Bay, Peter Sunde was one of the leading voices at the time. He believed, and still does, that people should be able to share anything without restrictions. Period.

For Peter and three others associated with The Pirate Bay, this eventually resulted in jail sentences. They were not the only ones to feel the consequences. Over the past decade, dozens of torrent sites were shut down under legal pressure, forcing those operators that remain to go into hiding.

Today, ten years after we spoke to Peter about the future of torrent sites and file-sharing, we reach out to him again. A lot has changed, but how does The Pirate Bay’s co-founder look at things now?

“On the personal side, all is great, and I’m working on a TV-series about activism that will air next year. On top of that of course working on Njalla, Ipredator and other known projects,” Peter says.

“In general, I think that projects for me are still about the same thing as a decade ago, but just trying different approaches!”

While Peter stays true to his activist roots, fighting for privacy and freedom on the Internet, his outlook is not as positive as it once was.

He is proud that The Pirate Bay never caved and that they fought their cases to the end. The moral struggle was won, but he also realizes that the greater battle was lost.

“I’m proud and happy to be able to look myself in the mirror every morning with a feeling of doing right. A lot of corrupt people involved in our cases probably feel quite shitty. Well, if they have feelings,” Peter says.

The Pirate Bay’s former spokesperson doesn’t have any regrets really. The one thing that comes to mind, when we ask about things that he would have done differently, is to tell fellow Pirate Bay founder Anakata to encrypt his hard drive.

Brokep (Peter) and Anakata (Gottfrid)

Looking at the current media climate, Peter doesn’t think we are better off. On the contrary. While it might be easier in some counties to access content legally online, this also means that control is now firmly in the hands of a few major companies.

The Pirate Bay and others always encouraged free sharing for creators and consumers. This certainly hasn’t improved. Instead, media today is contained in large centralized silos.

“I’m surprised that people are so short-sighted. The ‘solution’ to file sharing was never centralizing content control back to a few entities – that was the struggle we were fighting for.

“Netflix, Spotify etc are not a solution but a loss. And it surprises me that the pirate movement is not trying to talk more about that,” he adds.

The Netflixes and Spotifies of this world are often portrayed as a solution to piracy. However, Peter sees things differently. He believes that these services put more control in the hands of powerful companies.

“The same companies we fought own these platforms. Either they own the shares in the companies, or they have deals with them which makes it impossible for these companies to not follow their rules.

“Artists can’t choose to be or not to be on Spotify in reality, because there’s nothing else in the end. If Spotify doesn’t follow the rules from these companies, they are fucked as well. The dependence is higher than ever.”

The first wave of mass Internet piracy well over a decade ago was a wake-up call to the entertainment industry. The immense popularity of torrent sites showed that people demanded something they weren’t offering.

In a way, these early pirate sites are the reason why Netflix and Spotify were able to do what they do. Literally, in the case of Spotify, which used pirated music to get the service going.

Peter doesn’t see them as the answer though. The only solution in his book is to redefine and legalize piracy.

“The solution to piracy is to re-define piracy. Make things available to everyone, without that being a crime,” Peter says.

In this regard, not much has changed in ten years. However, having witnessed this battle closer than anyone else, he also realizes that the winners are likely on the other end.

Piracy will decrease over time, but not the way Peter hopes it will.

“I think we’ll have less piracy because of the problems we see today. With net neutrality being infringed upon and more laws against individual liberties and access to culture, instead of actually benefiting people.

“The media industry will be happy to know that their lobbying efforts and bribes are paying off,” he concludes.

This is the second and final post in our torrent pioneers series. The first interview with isoHunt founder Gary Fung is available here.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Backblaze Cloud Backup Release 5.2

Post Syndicated from Yev original https://www.backblaze.com/blog/backblaze-cloud-backup-release-5-2/

We’re pleased to start the year off the right way, with an update to Backblaze Cloud Backup, version 5.2! This is a smaller release, but does increase backup speeds, optimizes the backup client, and addresses a few minor bugs that we’re excited to lay to rest.

What’s New

  • Increased transmission speed of files between 30MB and 400MB+.
  • Optimized indexing to decrease system resource usage and lower the performance impact on computers that are backing up to Backblaze.
  • Adjusted external hard drive monitoring and increased the speed of indexing.
  • Changed copyright to 2018.

Release Version Number:

  • Mac — 5.2.0
  • PC — 5.2.0

Backblaze Personal Backup
Backblaze Business Backup

January 4, 2018

Upgrade Methods:

  • Immediately as a download from: files.backblaze.com
  • Rolling out soon when performing a “Check for Updates” (right-click on the Backblaze icon and then select “Check for Updates”).
  • Rolling out soon as a download from: https://secure.backblaze.com/update.htm.
  • Rolling out soon as the default download from: www.backblaze.com.
  • Auto-update will begin in a couple of weeks.

This is a free update for all Backblaze Cloud Backup consumer and business customers and active trial users.

The post Backblaze Cloud Backup Release 5.2 appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Acoustical Attacks against Hard Drives

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/12/acoustical_atta.html

Interesting destructive attack: “Acoustic Denial of Service Attacks on HDDs“:

Abstract: Among storage components, hard disk drives (HDDs) have become the most commonly-used type of non-volatile storage due to their recent technological advances, including, enhanced energy efficacy and significantly-improved areal density. Such advances in HDDs have made them an inevitable part of numerous computing systems, including, personal computers, closed-circuit television (CCTV) systems, medical bedside monitors, and automated teller machines (ATMs). Despite the widespread use of HDDs and their critical role in real-world systems, there exist only a few research studies on the security of HDDs. In particular, prior research studies have discussed how HDDs can potentially leak critical private information through acoustic or electromagnetic emanations. Borrowing theoretical principles from acoustics and mechanics, we propose a novel denial-of-service (DoS) attack against HDDs that exploits a physical phenomenon, known as acoustic resonance. We perform a comprehensive examination of physical characteristics of several HDDs and create acoustic signals that cause significant vibrations in HDDs internal components. We demonstrate that such vibrations can negatively influence the performance of HDDs embedded in real-world systems. We show the feasibility of the proposed attack in two real-world case studies, namely, personal computers and CCTVs.

Power Tips for Backblaze Backup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/data-backup-tips/

Backup Power Tips

2017 has been a busy year for Backblaze. We’ve reached a total of over 400 petabytes of data stored for our customers — that’s a lot!, released a major upgrade to our backup product — Backblaze Cloud Backup 5.0, added Groups to our consumer and business backup products, further enhanced account security, and welcomed a whole lot of new customers to Backblaze.

For all of our new users (and maybe some of you more experienced ones, too), we’d like to share some power tips that will help you get the most out of Backblaze Backup for home and business.

Blazing Power Tips for Backblaze Backup

Back Up All of Your Valuable Data

Backblaze logo

Include Directly-Attached External Drives in Your Backup

Backblaze can back up external drives attached via USB, Thunderbolt, or Firewire.

Backblaze logo

Back Up Virtual Machines Installed on Your Computer

Virtual machines, such as those created by Parallels, VMware Fusion, VirtualBox, Hyper-V, or other programs, can be backed up with Backblaze.

Backblaze logo

You Can Back Up Your Mobile Phone to Backblaze

Gain extra peace-of-mind by backing up your iPhone or Android phone to your computer and including that in your computer backup.

Backblaze logo

Bring on Your Big Files

By default, Backblaze has no restrictions on the size of the files you are backing up, even that large high school reunion video you want to be sure to keep.

Backblaze logo

Rescan Your Hard Drive to Check for Changes

Backblaze works quietly and continuously in the background to keep you backed up, but you can ask Backblaze to immediately check whether anything needs backing up by holding down the Alt key and clicking on the Restore Options button in the Backblaze client.

Manage and Restore Your Backed Up Files

Backblaze logo

You Can Share Files You’ve Backed Up

You can share files with anyone directly from your Backblaze account.

Backblaze logo

Select and Restore Individual Files

You can restore a single file without zipping it using the Backblaze web interface.

Backblaze logo

Receive Your Restores from Backblaze by Mail

You have a choice of how to receive your data from Backblaze. You can download individual files, download a ZIP of the files you choose, or request that your data be shipped to you anywhere in the world via FedEx.

Backblaze logo

Put Your Account on Hold for Six Months

As long as your account is current, all the data you’ve backed up is maintained for up to six months if you’re traveling or not using your computer and don’t connect to our servers. (For active accounts, data is maintained up to 30 days.)

Backblaze logo

Groups Make Managing Business or Family Members Easy

For businesses, families, or organizations, our Groups feature makes it easy to manage billing, group membership, and individual user access to files and accounts — all at no incremental charge.

Backblaze logo

You Can Browse and Restore Previous Versions of a File

Visit the View/Restore Files page to go back in time to earlier or deleted versions of your files.

Backblaze logo

Mass Deploy Backblaze Remotely to Many Computers

Companies, organizations, schools, non-profits, and others can deploy Backblaze computer backup remotely across all their computers without any end-user interaction.

Backblaze logo

Move Your Account and Preserve Backups on a New or Restored Computer

You can move your Backblaze account to a new or restored computer with the same data — and preserve the backups you have already completed — using the Inherit Backup State feature.

Backblaze logo

Reinstall Backblaze under a Different Account

Backblaze remembers the account information when it is uninstalled and reinstalled. To install Backblaze under a different account, hold down the ALT key and click the Install Now button.

Keep Your Data Secure

Backblaze logo

Protect Your Account with Two-Factor Verification

You can (and should) protect your Backblaze account with two-factor verification. You can use backup codes and SMS verification in case you lose access to your smartphone and the authentication app. Sign in to your account to set that up.

Backblaze logo

Add Additional Security to Your Data

All transmissions of your data between your system and our servers is encrypted. For extra account security, you can add an optional private encryption key (PEK) to the data on our servers. Just be sure to remember your encryption key because it’s required to restore your data.

Get the Best Data Transfer Speeds

Backblaze logo

How Fast is your Connection to Backblaze?

You can check the speed and latency of your internet connection between your location and Backblaze’s data centers at https://www.backblaze.com/speedtest/.

Backblaze logo

Fine-Tune Your Upload Speed with Multiple Threads

Our auto-threading feature adjusts Backblaze’s CPU usage to give you the best upload speeds, but for those of you who like to tinker, the Backblaze client on Windows and Macintosh lets you fine-tune the number of threads our client is using to upload your files to our data centers.

Backblaze logo

Use the Backblaze Downloader To Get Your Restores Faster

If you are downloading a large ZIP restore, we recommend that you use the Backblaze Downloader application for Macintosh or Windows for maximum speed.

Want to Learn More About Backblaze Backup?

You can find more information on Backblaze Backup (including a free trial) on our website, and more tips about backing up in our help pages and in our Backup Guide.

Do you have a friend who should be backing up, but doesn’t? Why not give the gift of Backblaze?

The post Power Tips for Backblaze Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Backing Up More Effective and Less Costly than Data Recovery in NBC News Story

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/data-recovery-vs-cloud-backup/

Gleb Budman on NBC Bay Area

David Platt thought that his computer was adequately backed up, but when his hard drive crashed, he was forced to turn to a data recovery company to get back specific files and emails he needed.

When the company recovered some data — but not the files and emails he wanted — and David was charged $383 anyway, he turned to NBC Bay Area Responds, the consumer action group at the San Francisco Bay area NBC TV affiliate.

Their investigation showed that even though the firm hadn’t recovered the data he needed, David was obliged to pay them the full data recovery cost anyway. If David had wanted the recovery done in a hurry, his cost could have been as high as $999, and he still wouldn’t have gotten back the files he needed.

NBC Bay Area Responds contacted 33 data recovery companies around the country and discovered that 24 of the 33 also charge full price even if they only recover one file from the drive — any file.

Gleb Budman, Backblaze CEO, who was interviewed for the story, advised viewers that it’s far more effective, and less expensive, to be fully backed up with a backup solution like Backblaze. Backblaze backs up everything on your computer, even the files and folders you might not think you need, but might contain valuable data, such as in David’s case. A 3-2-1 backup policy (three copies of your data, two locally, and one in the cloud), is a good policy to follow.

“On average, one out of every two people lose data every year,” said Gleb Budman, CEO of Backblaze, a San Mateo company that aims to prevent lost files. “In the case of Backblaze, it’s $5 a month and we back up all of the data,” Budman said. “Then… it’s a bummer if your hard drive dies, but you don’t lose any data.”

David Platt now uses Backblaze and has a full backup of his hard drive stored in the cloud. Every file is there.

“We’ve kinda upped the game of backing up of our personal data,” he said.

You can view the full story at NBC KNTV, Man’s Data Recovery Dilemma Costs Hundreds, or watch the video below.

Note:  Video contains pre-roll advertisement.

The post Backing Up More Effective and Less Costly than Data Recovery in NBC News Story appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Lorelei Joins The Operations Crew

Post Syndicated from Yev original https://www.backblaze.com/blog/lorelei-joins-operations-crew/

We’ve eclipsed the 400 Petabyte mark and our data center continues to grow. What does that mean? It means we need more great people working in our data centers making sure that the hard drives keep spinning and that sputtering drives are promptly dealt with. Lorelei is the newest Data Center Technician to join our ranks. Let’s learn a bit more about Lorelei, shall we?

What is your Backblaze Title?
DC Tech!! I’m the saucy one.

Where are you originally from?
San Francisco/Bowling Green, Ohio. Just moved up to Sacramento this year, and it’s so nice to have four seasons again. I’m drowning in leaves but I’m totally OK with it.

What attracted you to Backblaze?
I was a librarian in my previous life, mainly because I believe that information should be open to everyone. I was familiar with Backblaze prior to joining the team, and I’m a huge fan of their fresh approach to sharing information and openness. The interview process was also the coolest one I’ll ever have!

What do you expect to learn while being at Backblaze?
A lot about Linux!

Where else have you worked?
A chocolate factory and a popular culture library.

Where did you go to school?
CSU East Bay, Bowling Green State University (go Falcons), and Clarion.

Favorite place you’ve traveled?
Stockholm & Tokyo! I hope to travel more in Asia and Europe.

Favorite hobby?
Music is not magic, but music is…
Come sing with me @ karaoke!

Favorite food?
I love trying new food. I love anything that’s acidic, sweet, fresh, salty, flavorful. Fruit is the best food, but everything else is good too. I’m one of those Yelp people: always seeking & giving food recs!

Why do you like certain things?
I like things that make me happy and that make other people happy. Have fun & enjoy life. Yeeeeehaw.

Welcome to the team Lorelei. And thank you very much for leaving Yelp reviews. It’s nice to give back to the community!

The post Lorelei Joins The Operations Crew appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/hamr-hard-drives/

HAMR drive illustration

During Q4, Backblaze deployed 100 petabytes worth of Seagate hard drives to our data centers. The newly deployed Seagate 10 and 12 TB drives are doing well and will help us meet our near term storage needs, but we know we’re going to need more drives — with higher capacities. That’s why the success of new hard drive technologies like Heat-Assisted Magnetic Recording (HAMR) from Seagate are very relevant to us here at Backblaze and to the storage industry in general. In today’s guest post we are pleased to have Mark Re, CTO at Seagate, give us an insider’s look behind the hard drive curtain to tell us how Seagate engineers are developing the HAMR technology and making it market ready starting in late 2018.

What is HAMR and How Does It Enable the High-Capacity Needs of the Future?

Guest Blog Post by Mark Re, Seagate Senior Vice President and Chief Technology Officer

Earlier this year Seagate announced plans to make the first hard drives using Heat-Assisted Magnetic Recording, or HAMR, available by the end of 2018 in pilot volumes. Even as today’s market has embraced 10TB+ drives, the need for 20TB+ drives remains imperative in the relative near term. HAMR is the Seagate research team’s next major advance in hard drive technology.

HAMR is a technology that over time will enable a big increase in the amount of data that can be stored on a disk. A small laser is attached to a recording head, designed to heat a tiny spot on the disk where the data will be written. This allows a smaller bit cell to be written as either a 0 or a 1. The smaller bit cell size enables more bits to be crammed into a given surface area — increasing the areal density of data, and increasing drive capacity.

It sounds almost simple, but the science and engineering expertise required, the research, experimentation, lab development and product development to perfect this technology has been enormous. Below is an overview of the HAMR technology and you can dig into the details in our technical brief that provides a point-by-point rundown describing several key advances enabling the HAMR design.

As much time and resources as have been committed to developing HAMR, the need for its increased data density is indisputable. Demand for data storage keeps increasing. Businesses’ ability to manage and leverage more capacity is a competitive necessity, and IT spending on capacity continues to increase.

History of Increasing Storage Capacity

For the last 50 years areal density in the hard disk drive has been growing faster than Moore’s law, which is a very good thing. After all, customers from data centers and cloud service providers to creative professionals and game enthusiasts rarely go shopping looking for a hard drive just like the one they bought two years ago. The demands of increasing data on storage capacities inevitably increase, thus the technology constantly evolves.

According to the Advanced Storage Technology Consortium, HAMR will be the next significant storage technology innovation to increase the amount of storage in the area available to store data, also called the disk’s “areal density.” We believe this boost in areal density will help fuel hard drive product development and growth through the next decade.

Why do we Need to Develop Higher-Capacity Hard Drives? Can’t Current Technologies do the Job?

Why is HAMR’s increased data density so important?

Data has become critical to all aspects of human life, changing how we’re educated and entertained. It affects and informs the ways we experience each other and interact with businesses and the wider world. IDC research shows the datasphere — all the data generated by the world’s businesses and billions of consumer endpoints — will continue to double in size every two years. IDC forecasts that by 2025 the global datasphere will grow to 163 zettabytes (that is a trillion gigabytes). That’s ten times the 16.1 ZB of data generated in 2016. IDC cites five key trends intensifying the role of data in changing our world: embedded systems and the Internet of Things (IoT), instantly available mobile and real-time data, cognitive artificial intelligence (AI) systems, increased security data requirements, and critically, the evolution of data from playing a business background to playing a life-critical role.

Consumers use the cloud to manage everything from family photos and videos to data about their health and exercise routines. Real-time data created by connected devices — everything from Fitbit, Alexa and smart phones to home security systems, solar systems and autonomous cars — are fueling the emerging Data Age. On top of the obvious business and consumer data growth, our critical infrastructure like power grids, water systems, hospitals, road infrastructure and public transportation all demand and add to the growth of real-time data. Data is now a vital element in the smooth operation of all aspects of daily life.

All of this entails a significant infrastructure cost behind the scenes with the insatiable, global appetite for data storage. While a variety of storage technologies will continue to advance in data density (Seagate announced the first 60TB 3.5-inch SSD unit for example), high-capacity hard drives serve as the primary foundational core of our interconnected, cloud and IoT-based dependence on data.

HAMR Hard Drive Technology

Seagate has been working on heat assisted magnetic recording (HAMR) in one form or another since the late 1990s. During this time we’ve made many breakthroughs in making reliable near field transducers, special high capacity HAMR media, and figuring out a way to put a laser on each and every head that is no larger than a grain of salt.

The development of HAMR has required Seagate to consider and overcome a myriad of scientific and technical challenges including new kinds of magnetic media, nano-plasmonic device design and fabrication, laser integration, high-temperature head-disk interactions, and thermal regulation.

A typical hard drive inside any computer or server contains one or more rigid disks coated with a magnetically sensitive film consisting of tiny magnetic grains. Data is recorded when a magnetic write-head flies just above the spinning disk; the write head rapidly flips the magnetization of one magnetic region of grains so that its magnetic pole points up or down, to encode a 1 or a 0 in binary code.

Increasing the amount of data you can store on a disk requires cramming magnetic regions closer together, which means the grains need to be smaller so they won’t interfere with each other.

Heat Assisted Magnetic Recording (HAMR) is the next step to enable us to increase the density of grains — or bit density. Current projections are that HAMR can achieve 5 Tbpsi (Terabits per square inch) on conventional HAMR media, and in the future will be able to achieve 10 Tbpsi or higher with bit patterned media (in which discrete dots are predefined on the media in regular, efficient, very dense patterns). These technologies will enable hard drives with capacities higher than 100 TB before 2030.

The major problem with packing bits so closely together is that if you do that on conventional magnetic media, the bits (and the data they represent) become thermally unstable, and may flip. So, to make the grains maintain their stability — their ability to store bits over a long period of time — we need to develop a recording media that has higher coercivity. That means it’s magnetically more stable during storage, but it is more difficult to change the magnetic characteristics of the media when writing (harder to flip a grain from a 0 to a 1 or vice versa).

That’s why HAMR’s first key hardware advance required developing a new recording media that keeps bits stable — using high anisotropy (or “hard”) magnetic materials such as iron-platinum alloy (FePt), which resist magnetic change at normal temperatures. Over years of HAMR development, Seagate researchers have tested and proven out a variety of FePt granular media films, with varying alloy composition and chemical ordering.

In fact the new media is so “hard” that conventional recording heads won’t be able to flip the bits, or write new data, under normal temperatures. If you add heat to the tiny spot on which you want to write data, you can make the media’s coercive field lower than the magnetic field provided by the recording head — in other words, enable the write head to flip that bit.

So, a challenge with HAMR has been to replace conventional perpendicular magnetic recording (PMR), in which the write head operates at room temperature, with a write technology that heats the thin film recording medium on the disk platter to temperatures above 400 °C. The basic principle is to heat a tiny region of several magnetic grains for a very short time (~1 nanoseconds) to a temperature high enough to make the media’s coercive field lower than the write head’s magnetic field. Immediately after the heat pulse, the region quickly cools down and the bit’s magnetic orientation is frozen in place.

Applying this dynamic nano-heating is where HAMR’s famous “laser” comes in. A plasmonic near-field transducer (NFT) has been integrated into the recording head, to heat the media and enable magnetic change at a specific point. Plasmonic NFTs are used to focus and confine light energy to regions smaller than the wavelength of light. This enables us to heat an extremely small region, measured in nanometers, on the disk media to reduce its magnetic coercivity,

Moving HAMR Forward

HAMR write head

As always in advanced engineering, the devil — or many devils — is in the details. As noted earlier, our technical brief provides a point-by-point short illustrated summary of HAMR’s key changes.

Although hard work remains, we believe this technology is nearly ready for commercialization. Seagate has the best engineers in the world working towards a goal of a 20 Terabyte drive by 2019. We hope we’ve given you a glimpse into the amount of engineering that goes into a hard drive. Keeping up with the world’s insatiable appetite to create, capture, store, secure, manage, analyze, rapidly access and share data is a challenge we work on every day.

With thousands of HAMR drives already being made in our manufacturing facilities, our internal and external supply chain is solidly in place, and volume manufacturing tools are online. This year we began shipping initial units for customer tests, and production units will ship to key customers by the end of 2018. Prepare for breakthrough capacities.

The post What is HAMR and How Does It Enable the High-Capacity Needs of the Future? appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.