Why ACPI?

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/68350.html

“Why does ACPI exist” – – the greatest thread in the history of forums, locked by a moderator after 12,239 pages of heated debate, wait no let me start again.

Why does ACPI exist? In the beforetimes power management on x86 was done by jumping to an opaque BIOS entry point and hoping it would do the right thing. It frequently didn’t. We called this Advanced Power Management (Advanced because before this power management involved custom drivers for every machine and everyone agreed that this was a bad idea), and it involved the firmware having to save and restore the state of every piece of hardware in the system. This meant that assumptions about hardware configuration were baked into the firmware – failed to program your graphics card exactly the way the BIOS expected? Hurrah! It’s only saved and restored a subset of the state that you configured and now potential data corruption for you. The developers of ACPI made the reasonable decision that, well, maybe since the OS was the one setting state in the first place, the OS should restore it.

So far so good. But some state is fundamentally device specific, at a level that the OS generally ignores. How should this state be managed? One way to do that would be to have the OS know about the device specific details. Unfortunately that means you can’t ship the computer without having OS support for it, which means having OS support for every device (exactly what we’d got away from with APM). This, uh, was not an option the PC industry seriously considered. The alternative is that you ship something that abstracts the details of the specific hardware and makes that abstraction available to the OS. This is what ACPI does, and it’s also what things like Device Tree do. Both provide static information about how the platform is configured, which can then be consumed by the OS and avoid needing device-specific drivers or configuration to be built-in.

The main distinction between Device Tree and ACPI is that Device Tree is purely a description of the hardware that exists, and so still requires the OS to know what’s possible – if you add a new type of power controller, for instance, you need to add a driver for that to the OS before you can express that via Device Tree. ACPI decided to include an interpreted language to allow vendors to expose functionality to the OS without the OS needing to know about the underlying hardware. So, for instance, ACPI allows you to associate a device with a function to power down that device. That function may, when executed, trigger a bunch of register accesses to a piece of hardware otherwise not exposed to the OS, and that hardware may then cut the power rail to the device to power it down entirely. And that can be done without the OS having to know anything about the control hardware.

How is this better than just calling into the firmware to do it? Because the fact that ACPI declares that it’s going to access these registers means the OS can figure out that it shouldn’t, because it might otherwise collide with what the firmware is doing. With APM we had no visibility into that – if the OS tried to touch the hardware at the same time APM did, boom, almost impossible to debug failures (This is why various hardware monitoring drivers refuse to load by default on Linux – the firmware declares that it’s going to touch those registers itself, so Linux decides not to in order to avoid race conditions and potential hardware damage. In many cases the firmware offers a collaborative interface to obtain the same data, and a driver can be written to get that. this bug comment discusses this for a specific board)

Unfortunately ACPI doesn’t entirely remove opaque firmware from the equation – ACPI methods can still trigger System Management Mode, which is basically a fancy way to say “Your computer stops running your OS, does something else for a while, and you have no idea what”. This has all the same issues that APM did, in that if the hardware isn’t in exactly the state the firmware expects, bad things can happen. While historically there were a bunch of ACPI-related issues because the spec didn’t define every single possible scenario and also there was no conformance suite (eg, should the interpreter be multi-threaded? Not defined by spec, but influences whether a specific implementation will work or not!), these days overall compatibility is pretty solid and the vast majority of systems work just fine – but we do still have some issues that are largely associated with System Management Mode.

One example is a recent Lenovo one, where the firmware appears to try to poke the NVME drive on resume. There’s some indication that this is intended to deal with transparently unlocking self-encrypting drives on resume, but it seems to do so without taking IOMMU configuration into account and so things explode. It’s kind of understandable why a vendor would implement something like this, but it’s also kind of understandable that doing so without OS cooperation may end badly.

This isn’t something that ACPI enabled – in the absence of ACPI firmware vendors would just be doing this unilaterally with even less OS involvement and we’d probably have even more of these issues. Ideally we’d “simply” have hardware that didn’t support transitioning back to opaque code, but we don’t (ARM has basically the same issue with TrustZone). In the absence of the ideal world, by and large ACPI has been a net improvement in Linux compatibility on x86 systems. It certainly didn’t remove the “Everything is Windows” mentality that many vendors have, but it meant we largely only needed to ensure that Linux behaved the same way as Windows in a finite number of ways (ie, the behaviour of the ACPI interpreter) rather than in every single hardware driver, and so the chances that a new machine will work out of the box are much greater than they were in the pre-ACPI period.

There’s an alternative universe where we decided to teach the kernel about every piece of hardware it should run on. Fortunately (or, well, unfortunately) we’ve seen that in the ARM world. Most device-specific simply never reaches mainline, and most users are stuck running ancient kernels as a result. Imagine every x86 device vendor shipping their own kernel optimised for their hardware, and now imagine how well that works out given the quality of their firmware. Does that really seem better to you?

It’s understandable why ACPI has a poor reputation. But it’s also hard to figure out what would work better in the real world. We could have built something similar on top of Open Firmware instead but the distinction wouldn’t be terribly meaningful – we’d just have Forth instead of the ACPI bytecode language. Longing for a non-ACPI world without presenting something that’s better and actually stands a reasonable chance of adoption doesn’t make the world a better place.

comment count unavailable comments