Tag Archives: fedora

Initial thoughts on MongoDB’s new Server Side Public License

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/51230.html

MongoDB just announced that they were relicensing under their new Server Side Public License. This is basically the Affero GPL except with section 13 largely replaced with new text, as follows:

If you make the functionality of the Program or a modified version available to third parties as a service, you must make the Service Source Code available via network download to everyone at no charge, under the terms of this License. Making the functionality of the Program or modified version available to third parties as a service includes, without limitation, enabling third parties to interact with the functionality of the Program or modified version remotely through a computer network, offering a service the value of which entirely or primarily derives from the value of the Program or modified version, or offering a service that accomplishes for users the primary purpose of the Software or modified version.

“Service Source Code” means the Corresponding Source for the Program or the modified version, and the Corresponding Source for all programs that you use to make the Program or modified version available as a service, including, without limitation, management software, user interfaces, application program interfaces, automation software, monitoring software, backup software, storage software and hosting software, all such that a user could run an instance of the service using the Service Source Code you make available.

MongoDB admit that this license is not currently open source in the sense of being approved by the Open Source Initiative, but say:We believe that the SSPL meets the standards for an open source license and are working to have it approved by the OSI.

At the broadest level, AGPL requires you to distribute the source code to the AGPLed work[1] while the SSPL requires you to distribute the source code to everything involved in providing the service. Having a license place requirements around things that aren’t derived works of the covered code is unusual but not entirely unheard of – the GPL requires you to provide build scripts even if they’re not strictly derived works, and you could probably make an argument that the anti-Tivoisation provisions of GPL3 fall into this category.

A stranger point is that you’re required to provide all of this under the terms of the SSPL. If you have any code in your stack that can’t be released under those terms then it’s literally impossible for you to comply with this license. I’m not a lawyer, so I’ll leave it up to them to figure out whether this means you’re now only allowed to deploy MongoDB on BSD because the license would require you to relicense Linux away from the GPL. This feels sloppy rather than deliberate, but if it is deliberate then it’s a massively greater reach than any existing copyleft license.

You can definitely make arguments that this is just a maximalist copyleft license, the AGPL taken to extreme, and therefore it fits the open source criteria. But there’s a point where something is so far from the previously accepted scenarios that it’s actually something different, and should be examined as a new category rather than already approved categories. I suspect that this license has been written to conform to a strict reading of the Open Source Definition, and that any attempt by OSI to declare it as not being open source will receive pushback. But definitions don’t exist to be weaponised against the communities that they seek to protect, and a license that has overly onerous terms should be rejected even if that means changing the definition.

In general I am strongly in favour of licenses ensuring that users have the freedom to take advantage of modifications that people have made to free software, and I’m a fan of the AGPL. But my initial feeling is that this license is a deliberate attempt to make it practically impossible to take advantage of the freedoms that the license nominally grants, and this impression is strengthened by it being something that’s been announced with immediate effect rather than something that’s been developed with community input. I think there’s a bunch of worthwhile discussion to have about whether the AGPL is strong and clear enough to achieve its goals, but I don’t think that this SSPL is the answer to that – and I lean towards thinking that it’s not a good faith attempt to produce a usable open source license.

(It should go without saying that this is my personal opinion as a member of the free software community, and not that of my employer)

[1] There’s some complexities around GPL3 code that’s incorporated into the AGPLed work, but if it’s not part of the AGPLed work then it’s not covered

comment count unavailable comments

The Commons Clause doesn’t help the commons

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/51177.html

The Commons Clause was announced recently, along with several projects moving portions of their codebase under it. It’s an additional restriction intended to be applied to existing open source licenses with the effect of preventing the work from being sold[1], where the definition of being sold includes being used as a component of an online pay-for service. As described in the FAQ, this changes the effective license of the work from an open source license to a source-available license. However, the site doesn’t go into a great deal of detail as to why you’d want to do that.

Fortunately one of the VCs behind this move wrote an opinion article that goes into more detail. The central argument is that Amazon make use of a great deal of open source software and integrate it into commercial products that are incredibly lucrative, but give little back to the community in return. By adopting the commons clause, Amazon will be forced to negotiate with the projects before being able to use covered versions of the software. This will, apparently, prevent behaviour that is not conducive to sustainable open-source communities.

But this is where things get somewhat confusing. The author continues:

Our view is that open-source software was never intended for cloud infrastructure companies to take and sell. That is not the original ethos of open source.

which is a pretty astonishingly unsupported argument. Open source code has been incorporated into proprietary applications without giving back to the originating community since before the term open source even existed. MIT-licensed X11 became part of not only multiple Unixes, but also a variety of proprietary commercial products for non-Unix platforms. Large portions of BSD ended up in a whole range of proprietary operating systems (including older versions of Windows). The only argument in favour of this assertion is that cloud infrastructure companies didn’t exist at that point in time, so they weren’t taken into consideration[2] – but no argument is made as to why cloud infrastructure companies are fundamentally different to proprietary operating system companies in this respect. Both took open source code, incorporated it into other products and sold them on without (in most cases) giving anything back.

There’s one counter-argument. When companies sold products based on open source code, they distributed it. Copyleft licenses like the GPL trigger on distribution, and as a result selling products based on copyleft code meant that the community would gain access to any modifications the vendor had made – improvements could be incorporated back into the original work, and everyone benefited. Incorporating open source code into a cloud product generally doesn’t count as distribution, and so the source code disclosure requirements don’t trigger. So perhaps that’s the distinction being made?

Well, no. The GNU Affero GPL has a clause that covers this case – if you provide a network service based on AGPLed code then you must provide the source code in a similar way to if you distributed it under a more traditional copyleft license. But the article’s author goes on to say:

AGPL makes it inconvenient but does not prevent cloud infrastructure providers from engaging in the abusive behavior described above. It simply says that they must release any modifications they make while engaging in such behavior.

IE, the problem isn’t that cloud providers aren’t giving back code, it’s that they’re using the code without contributing financially. There’s no difference between what cloud providers are doing now and what proprietary operating system vendors were doing 30 years ago. The argument that “open source” was never intended to permit this sort of behaviour is simply untrue. The use of permissive licenses has always allowed large companies to benefit disproportionately when compared to the authors of said code. There’s nothing new to see here.

But that doesn’t mean that the status quo is good – the argument for why the commons clause is required may be specious, but that doesn’t mean it’s bad. We’ve seen multiple cases of open source projects struggling to obtain the resources required to make a project sustainable, even as many large companies make significant amounts of money off that work. Does the commons clause help us here?

As hinted at in the title, the answer’s no. The commons clause attempts to change the power dynamic of the author/user role, but it does so in a way that’s fundamentally tied to a business model and in a way that prevents many of the things that make open source software interesting to begin with. Let’s talk about some problems.

The power dynamic still doesn’t favour contributors

The commons clause only really works if there’s a single copyright holder – if not, selling the code requires you to get permission from multiple people. But the clause does nothing to guarantee that the people who actually write the code benefit, merely that whoever holds the copyright does. If I rewrite a large part of a covered work and that code is merged (presumably after I’ve signed a CLA that assigns a copyright grant to the project owners), I have no power in any negotiations with any cloud providers. There’s no guarantee that the project stewards will choose to reward me in any way. I contribute to them but get nothing back in return – instead, my improved code allows the project owners to charge more and provide stronger returns for the VCs. The inequity has shifted, but individual contributors still lose out.

It discourages use of covered projects

One of the benefits of being able to use open source software is that you don’t need to fill out purchase orders or start commercial negotiations before you’re able to deploy. Turns out the project doesn’t actually fill your needs? Revert it, and all you’ve lost is some development time. Adding additional barriers is going to reduce uptake of covered projects, and that does nothing to benefit the contributors.

You can no longer meaningfully fork a project

One of the strengths of open source projects is that if the original project stewards turn out to violate the trust of their community, someone can fork it and provide a reasonable alternative. But if the project is released with the commons clause, it’s impossible to sell any forked versions – anyone who wishes to do so would still need the permission of the original copyright holder, and they can refuse that in order to prevent a fork from gaining any significant uptake.

It doesn’t inherently benefit the commons

The entire argument here is that the cloud providers are exploiting the commons, and by forcing them to pay for a license that allows them to make use of that software the commons will benefit. But there’s no obvious link between these things. Maybe extra money will result in more development work being done and the commons benefiting, but maybe extra money will instead just result in greater payout to shareholders. Forcing cloud providers to release their modifications to the wider world would be of benefit to the commons, but this is explicitly ruled out as a goal. The clause isn’t inherently incompatible with this – the negotiations between a vendor and a project to obtain a license to be permitted to sell the code could include a commitment to provide patches rather money, for instance, but the focus on money makes it clear that this wasn’t the authors’ priority.

What we’re left with is a license condition that does nothing to benefit individual contributors or other users, and costs us the opportunity to fork projects in response to disagreements over design decisions or governance. What it does is ensure that a range of VC-backed projects are in a better position to improve their returns, without any guarantee that the commons will be left better off. It’s an attempt to solve a problem that’s existed since before the term “open source” was even coined, by simply layering on a business model that’s also existed since before the term “open source” was even coined[3]. It’s not anything new, and open source derives from an explicit rejection of this sort of business model.

That’s not to say we’re in a good place at the moment. It’s clear that there is a giant level of power disparity between many projects and the consumers of those projects. But we’re not going to fix that by simply discarding many of the benefits of open source and going back to an older way of doing things. Companies like Tidelift[4] are trying to identify ways of making this sustainable without losing the things that make open source a better way of doing software development in the first place, and that’s what we should be focusing on rather than just admitting defeat to satisfy a small number of VC-backed firms that have otherwise failed to develop a sustainable business model.

[1] It is unclear how this interacts with licenses that include clauses that assert you can remove any additional restrictions that have been applied
[2] Although companies like Hotmail were making money from running open source software before the open source definition existed, so this still seems like a reach
[3] “Source available” predates my existence, let alone any existing open source licenses
[4] Disclosure: I know several people involved in Tidelift, but have no financial involvement in the company

comment count unavailable comments

Porting Coreboot to the 51NB X210

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/50924.html

The X210 is a strange machine. A set of Chinese enthusiasts developed a series of motherboards that slot into old Thinkpad chassis, providing significantly more up to date hardware. The X210 has a Kabylake CPU, supports up to 32GB of RAM, has an NVMe-capable M.2 slot and has eDP support – and it fits into an X200 or X201 chassis, which means it also comes with a classic Thinkpad keyboard . We ordered some from a Facebook page (a process that involved wiring a large chunk of money to a Chinese bank which wasn’t at all stressful), and a couple of weeks later they arrived. Once I’d put mine together I had a quad-core i7-8550U with 16GB of RAM, a 512GB NVMe drive and a 1920×1200 display. I’d transplanted over the drive from my XPS13, so I was running stock Fedora for most of this development process.

The other fun thing about it is that none of the firmware flashing protection is enabled, including Intel Boot Guard. This means running a custom firmware image is possible, and what would a ridiculous custom Thinkpad be without ridiculous custom firmware? A shadow of its potential, that’s what. So, I read the Coreboot[1] motherboard porting guide and set to.

My life was made a great deal easier by the existence of a port for the Purism Librem 13v2. This is a Skylake system, and Skylake and Kabylake are very similar platforms. So, the first job was to just copy that into a new directory and start from there. The first step was to update the Inteltool utility so it understood the chipset – this commit shows what was necessary there. It’s mostly just adding new PCI IDs, but it also needed some adjustment to account for the GPIO allocation being different on mobile parts when compared to desktop ones. One thing that bit me – Inteltool relies on being able to mmap() arbitrary bits of physical address space, and the kernel doesn’t allow that if CONFIG_STRICT_DEVMEM is enabled. I had to disable that first.

The GPIO pins got dropped into gpio.h. I ended up just pushing the raw values into there rather than parsing them back into more semantically meaningful definitions, partly because I don’t understand what these things do that well and largely because I’m lazy. Once that was done, on to the next step.

High Definition Audio devices (or HDA) have a standard interface, but the codecs attached to the HDA device vary – both in terms of their own configuration, and in terms of dealing with how the board designer may have laid things out. Thankfully the existing configuration could be copied from /sys/class/sound/card0/hwC0D0/init_pin_configs[2] and then hda_verb.h could be updated.

One more piece of hardware-specific configuration is the Video BIOS Table, or VBT. This contains information used by the graphics drivers (firmware or OS-level) to configure the display correctly, and again is somewhat system-specific. This can be grabbed from /sys/kernel/debug/dri/0/i915_vbt.

A lot of the remaining platform-specific configuration has been split out into board-specific config files. and this also needed updating. Most stuff was the same, but I confirmed the GPE and genx_dec register values by using Inteltool to dump them from the vendor system and copy them over. lspci -t gave me the bus topology and told me which PCIe root ports were in use, and lsusb -t gave me port numbers for USB. That let me update the root port and USB tables.

The final code update required was to tell the OS how to communicate with the embedded controller. Various ACPI functions are actually handled by this autonomous device, but it’s still necessary for the OS to know how to obtain information from it. This involves writing some ACPI code, but that’s largely a matter of cutting and pasting from the vendor firmware – the EC layout depends on the EC firmware rather than the system firmware, and we weren’t planning on changing the EC firmware in any way. Using ifdtool told me that the vendor firmware image wasn’t using the EC region of the flash, so my assumption was that the EC had its own firmware stored somewhere else. I was ready to flash.

The first attempt involved isis’ machine, using their Beaglebone Black as a flashing device – the lack of protection in the firmware meant we ought to be able to get away with using flashrom directly on the host SPI controller, but using an external flasher meant we stood a better chance of being able to recover if something went wrong. We flashed, plugged in the power and… nothing. Literally. The power LED didn’t turn on. The machine was very, very dead.

Things like managing battery charging and status indicators are up to the EC, and the complete absence of anything going on here meant that the EC wasn’t running. The most likely reason for that was that the system flash did contain the EC’s firmware even though the descriptor said it didn’t, and now the system was very unhappy. Worse, the flash wouldn’t speak to us any more – the power supply from the Beaglebone to the flash chip was sufficient to power up the EC, and the EC was then holding onto the SPI bus desperately trying to read its firmware. Bother. This was made rather more embarrassing because isis had explicitly raised concern about flashing an image that didn’t contain any EC firmware, and now I’d killed their laptop.

After some digging I was able to find EC firmware for a related 51NB system, and looking at that gave me a bunch of strings that seemed reasonably identifiable. Looking at the original vendor ROM showed very similar code located at offset 0x00200000 into the image, so I added a small tool to inject the EC firmware (basing it on an existing tool that does something similar for the EC in some HP laptops). I now had an image that I was reasonably confident would get further, but we couldn’t flash it. Next step seemed like it was going to involve desoldering the flash from the board, which is a colossal pain. Time to sleep on the problem.

The next morning we were able to borrow a Dediprog SPI flasher. These are much faster than doing SPI over GPIO lines, and also support running the flash at different voltage. At 3.5V the behaviour was the same as we’d seen the previous night – nothing. According to the datasheet, the flash required at least 2.7V to run, but flashrom listed 1.8V as the next lower voltage so we tried. And, amazingly, it worked – not reliably, but sufficiently. Our hypothesis is that the chip is marginally able to run at that voltage, but that the EC isn’t – we were no longer powering the EC up, so could communicated with the flash. After a couple of attempts we were able to write enough that we had EC firmware on there, at which point we could shift back to flashing at 3.5V because the EC was leaving the flash alone.

So, we flashed again. And, amazingly, we ended up staring at a UEFI shell prompt[3]. USB wasn’t working, and nor was the onboard keyboard, but we had graphics and were executing actual firmware code. I was able to get USB working fairly quickly – it turns out that Linux numbers USB ports from 1 and the FSP numbers them from 0, and fixing that up gave us working USB. We were able to boot Linux! Except there were a whole bunch of errors complaining about EC timeouts, and also we only had half the RAM we should.

After some discussion on the Coreboot IRC channel, we figured out the RAM issue – the Librem13 only has one DIMM slot. The FSP expects to be given a set of i2c addresses to probe, one for each DIMM socket. It is then able to read back the DIMM configuration and configure the memory controller appropriately. Running i2cdetect against the system SMBus gave us a range of devices, including one at 0x50 and one at 0x52. The detected DIMM was at 0x50, which made 0x52 seem like a reasonable bet – and grepping the tree showed that several other systems used 0x52 as the address for their second socket. Adding that to the list of addresses and passing it to the FSP gave us all our RAM.

So, now we just had to deal with the EC. One thing we noticed was that if we flashed the vendor firmware, ran it, flashed Coreboot and then rebooted without cutting the power, the EC worked. This strongly suggested that there was some setup code happening in the vendor firmware that configured the EC appropriately, and if we duplicated that it would probably work. Unfortunately, figuring out what that code was was difficult. I ended up dumping the PCI device configuration for the vendor firmware and for Coreboot in case that would give us any clues, but the only thing that seemed relevant at all was that the LPC controller was configured to pass io ports 0x4e and 0x4f to the LPC bus with the vendor firmware, but not with Coreboot. Unfortunately the EC was supposed to be listening on 0x62 and 0x66, so this wasn’t the problem.

I ended up solving this by using UEFITool to extract all the code from the vendor firmware, and then disassembled every object and grepped them for port io. x86 systems have two separate io buses – memory and port IO. Port IO is well suited to simple devices that don’t need a lot of bandwidth, and the EC is definitely one of these – there’s no way to talk to it other than using port IO, so any configuration was almost certainly happening that way. I found a whole bunch of stuff that touched the EC, but was clearly depending on it already having been enabled. I found a wide range of cases where port IO was being used for early PCI configuration. And, finally, I found some code that reconfigured the LPC bridge to route 0x4e and 0x4f to the LPC bus (explaining the configuration change I’d seen earlier), and then wrote a bunch of values to those addresses. I mimicked those, and suddenly the EC started responding.

It turns out that the writes that made this work weren’t terribly magic. PCs used to have a SuperIO chip that provided most of the legacy port functionality, including the floppy drive controller and parallel and serial ports. Individual components (called logical devices, or LDNs) could be enabled and disabled using a sequence of writes that was fairly consistent between vendors. Someone on the Coreboot IRC channel recognised that the writes that enabled the EC were simply using that protocol to enable a series of LDNs, which apparently correspond to things like “Working EC” and “Working keyboard”. And with that, we were done.

Coreboot doesn’t currently have ACPI support for the latest Intel graphics chipsets, so right now my image doesn’t have working backlight control. But other than that, everything seems to work (although there’s probably a bunch of power management optimisation to do). I started this process knowing almost nothing about Coreboot, but thanks to the help of people on IRC I was able to get things working in about two days of work[4] and now have firmware that’s about as custom as my laptop.

[1] Why not Libreboot? Because modern Intel SoCs haven’t had their memory initialisation code reverse engineered, so the only way to boot them is to use the proprietary Intel Firmware Support Package.
[2] Card 0, device 0
[3] After a few false starts – it turns out that the initial memory training can take a surprisingly long time, and we kept giving up before that had happened
[4] Spread over 5 or so days of real time

comment count unavailable comments

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/756489/rss

Security updates have been issued by CentOS (procps, xmlrpc, and xmlrpc3), Debian (batik, prosody, redmine, wireshark, and zookeeper), Fedora (jasper, kernel, poppler, and xmlrpc), Mageia (git and wireshark), Red Hat (rh-java-common-xmlrpc), Slackware (git), SUSE (bzr, dpdk-thunderxdpdk, and ocaml), and Ubuntu (exempi).

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/756260/rss

Security updates have been issued by Debian (kernel, procps, and tiff), Fedora (ca-certificates, chromium, and git), Mageia (kernel, kernel-linus, kernel-tmb, and libvirt), openSUSE (chromium and xen), Oracle (procps, xmlrpc, and xmlrpc3), Red Hat (xmlrpc and xmlrpc3), Scientific Linux (procps, xmlrpc, and xmlrpc3), SUSE (HA kernel modules and kernel), and Ubuntu (libytnef and python-oslo.middleware).

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/756164/rss

Security updates have been issued by CentOS (389-ds-base, corosync, firefox, java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, librelp, libvirt, libvncserver, libvorbis, PackageKit, patch, pcs, and qemu-kvm), Fedora (asterisk, ca-certificates, gifsicle, ncurses, nodejs-base64-url, nodejs-mixin-deep, and wireshark), Mageia (thunderbird), Red Hat (procps), SUSE (curl, kvm, and libvirt), and Ubuntu (apport, haproxy, and tomcat7, tomcat8).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/755796/rss

Security updates have been issued by Debian (batik, cups, gitlab, ming, and xdg-utils), Fedora (dpdk, firefox, glibc, nodejs-deep-extend, strongswan, thunderbird, thunderbird-enigmail, wavpack, xdg-utils, and xen), Gentoo (ntp, rkhunter, and zsh), openSUSE (Chromium, GraphicsMagick, jasper, opencv, pdns, and wireshark), SUSE (jasper, java-1_7_1-ibm, krb5, libmodplug, and openstack-nova), and Ubuntu (thunderbird).

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/755667/rss

Security updates have been issued by Arch Linux (bind, libofx, and thunderbird), Debian (thunderbird, xdg-utils, and xen), Fedora (procps-ng), Mageia (gnupg2, mbedtls, pdns, and pdns-recursor), openSUSE (bash, GraphicsMagick, icu, and kernel), Oracle (thunderbird), Red Hat (java-1.7.1-ibm, java-1.8.0-ibm, and thunderbird), Scientific Linux (thunderbird), and Ubuntu (curl).

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/755540/rss

Security updates have been issued by Debian (imagemagick), Fedora (curl, glibc, kernel, and thunderbird-enigmail), openSUSE (enigmail, knot, and python), Oracle (procps-ng), Red Hat (librelp, procps-ng, redhat-virtualization-host, rhev-hypervisor7, and unboundid-ldapsdk), Scientific Linux (procps-ng), SUSE (bash, ceph, icu, kvm, and qemu), and Ubuntu (procps and spice, spice-protocol).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/755386/rss

Security updates have been issued by CentOS (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Debian (procps), Fedora (curl, mariadb, and procps-ng), Gentoo (samba, shadow, and virtualbox), openSUSE (opencv, openjpeg2, pdns, qemu, and wget), Oracle (java-1.8.0-openjdk and kernel), Red Hat (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, kernel-rt, libvirt, qemu-kvm, qemu-kvm-rhev, redhat-virtualization-host, and vdsm), Scientific Linux (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Slackware (kernel, mozilla, and procps), SUSE (ghostscript-library, kernel, mariadb, python, qemu, and wget), and Ubuntu (linux-raspi2 and linux-raspi2, linux-snapdragon).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/755205/rss

Security updates have been issued by Debian (gitlab and packagekit), Fedora (glibc, postgresql, and webkitgtk4), Oracle (java-1.7.0-openjdk, java-1.8.0-openjdk, kernel, libvirt, and qemu-kvm), Red Hat (java-1.7.0-openjdk, kernel-rt, qemu-kvm, and qemu-kvm-rhev), SUSE (openjpeg2, qemu, and squid3), and Ubuntu (kernel, linux, linux-aws, linux-azure, linux-gcp, linux-kvm, linux-oem, linux, linux-aws, linux-kvm,, linux-hwe, linux-azure, linux-gcp, linux-oem, linux-lts-trusty, linux-lts-xenial, linux-aws, qemu, and xdg-utils).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/755076/rss

Security updates have been issued by Arch Linux (lib32-curl, lib32-libcurl-compat, lib32-libcurl-gnutls, libcurl-compat, and libcurl-gnutls), CentOS (firefox), Debian (imagemagick), Fedora (exiv2, LibRaw, and love), Gentoo (chromium), Mageia (kernel, librelp, and miniupnpc), openSUSE (curl, enigmail, ghostscript, libvorbis, lilypond, and thunderbird), Red Hat (Red Hat OpenStack Platform director), and Ubuntu (firefox).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/754773/rss

Security updates have been issued by Arch Linux (runc), Debian (curl), Fedora (xdg-utils), Mageia (firefox), openSUSE (libreoffice, librsvg, and php5), Slackware (curl and php), SUSE (curl, firefox, kernel, kvm, libapr1, libvorbis, and memcached), and Ubuntu (curl, dpdk, php5, and qemu).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/754653/rss

Security updates have been issued by CentOS (dhcp), Debian (xen), Fedora (dhcp, flac, kubernetes, leptonica, libgxps, LibRaw, matrix-synapse, mingw-LibRaw, mysql-mmm, patch, seamonkey, webkitgtk4, and xen), Mageia (389-ds-base, exempi, golang, graphite2, libpam4j, libraw, libsndfile, libtiff, perl, quassel, spring-ldap, util-linux, and wget), Oracle (dhcp and kernel), Red Hat (389-ds-base, chromium-browser, dhcp, docker-latest, firefox, kernel-alt, libvirt, qemu-kvm, redhat-vertualization-host, rh-haproxy18-haproxy, and rhvm-appliance), Scientific Linux (389-ds-base, dhcp, firefox, libvirt, and qemu-kvm), and Ubuntu (poppler).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/754430/rss

Security updates have been issued by Debian (tiff and tiff3), Fedora (glusterfs, kernel, libgxps, LibRaw, postgresql, seamonkey, webkit2gtk3, wget, and xen), Mageia (afflib, flash-player-plugin, imagemagick, qpdf, and transmission), openSUSE (Chromium, opencv, and xen), SUSE (kernel), and Ubuntu (firefox).

Security updates for Friday

Post Syndicated from ris original https://lwn.net/Articles/754257/rss

Security updates have been issued by Arch Linux (libmupdf, mupdf, mupdf-gl, and mupdf-tools), Debian (firebird2.5, firefox-esr, and wget), Fedora (ckeditor, drupal7, firefox, kubernetes, papi, perl-Dancer2, and quassel), openSUSE (cairo, firefox, ImageMagick, libapr1, nodejs6, php7, and tiff), Red Hat (qemu-kvm-rhev), Slackware (mariadb), SUSE (xen), and Ubuntu (openjdk-8).

Security updates for Thursday

Post Syndicated from ris original https://lwn.net/Articles/754145/rss

Security updates have been issued by Arch Linux (freetype2, libraw, and powerdns), CentOS (389-ds-base and kernel), Debian (php5, prosody, and wavpack), Fedora (ckeditor, fftw, flac, knot-resolver, patch, perl, and perl-Dancer2), Mageia (cups, flac, graphicsmagick, libcdio, libid3tag, and nextcloud), openSUSE (apache2), Oracle (389-ds-base and kernel), Red Hat (389-ds-base and flash-plugin), Scientific Linux (389-ds-base), Slackware (firefox and wget), SUSE (xen), and Ubuntu (wget).