Tag Archives: fedora

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/741257/rss

Security updates have been issued by Debian (chromium-browser, evince, pdns-recursor, and simplesamlphp), Fedora (ceph, dhcp, erlang, exim, fedora-arm-installer, firefox, libvirt, openssh, pdns-recursor, rubygem-yard, thunderbird, wordpress, and xen), Red Hat (rh-mysql57-mysql), SUSE (kernel), and Ubuntu (openssl).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/741158/rss

Security updates have been issued by CentOS (postgresql), Debian (firefox-esr, kernel, libxcursor, optipng, thunderbird, wireshark, and xrdp), Fedora (borgbackup, ca-certificates, collectd, couchdb, curl, docker, erlang-jiffy, fedora-arm-installer, firefox, git, linux-firmware, mupdf, openssh, thunderbird, transfig, wildmidi, wireshark, xen, and xrdp), Mageia (firefox and optipng), openSUSE (erlang, libXfont, and OBS toolchain), Oracle (kernel), Slackware (openssl), and SUSE (kernel and OBS toolchain).

About the Amazon Trust Services Migration

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/669-2/

Amazon Web Services is moving the certificates for our services—including Amazon SES—to use our own certificate authority, Amazon Trust Services. We have carefully planned this change to minimize the impact it will have on your workflow. Most customers will not have to take any action during this migration.

About the Certificates

The Amazon Trust Services Certificate Authority (CA) uses the Starfield Services CA, which has been valid since 2005. The Amazon Trust Services certificates are available in most major operating systems released in the past 10 years, and are also trusted by all modern web browsers.

If you send email through the Amazon SES SMTP interface using a mail server that you operate, we recommend that you confirm that the appropriate certificates are installed. You can test whether your server trusts the Amazon Trust Services CAs by visiting the following URLs (for example, by using cURL):

If you see a message stating that the certificate issuer is not recognized, then you should install the appropriate root certificate. You can download individual certificates from https://www.amazontrust.com/repository. The process of adding a trusted certificate to your server varies depending on the operating system you use. For more information, see “Adding New Certificates,” below.

AWS SDKs and CLI

Recent versions of the AWS SDKs and the AWS CLI are not impacted by this change. If you use an AWS SDK or a version of the AWS CLI released prior to February 5, 2015, you should upgrade to the latest version.

Potential Issues

If your system is configured to use a very restricted list of root CAs (for example, if you use certificate pinning), you may be impacted by this migration. In this situation, you must update your pinned certificates to include the Amazon Trust Services CAs.

Adding New Root Certificates

The following sections list the steps you can take to install the Amazon Root CA certificates on your systems if they are not already present.

macOS

To install a new certificate on a macOS server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain /path/to/certificatename.crt, replacing /path/to/certificatename.crt with the full path to the certificate file.

Windows Server

To install a new certificate on a Windows server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: certutil -addstore -f "ROOT" c:\path\to\certificatename.crt, replacing c:\path\to\certificatename.crt with the full path to the certificate file.

Ubuntu

To install a new certificate on an Ubuntu (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /usr/local/share/ca-certificates/
  4. At the command prompt, type the following command to update the certificate authority store: sudo update-ca-certificates

Red Hat Enterprise Linux/Fedora/CentOS

To install a new certificate on a Red Hat Enterprise Linux (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /etc/pki/ca-trust/source/anchors/
  4. At the command line, type the following command to enable dynamic certificate authority configuration: sudo update-ca-trust force-enable
  5. At the command line, type the following command to update the certificate authority store: sudo update-ca-trust extract

To learn more about this migration, see How to Prepare for AWS’s Move to Its Own Certificate Authority on the AWS Security Blog.

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/740721/rss

Security updates have been issued by Debian (libextractor), Fedora (java-9-openjdk, kernel, python, and qt5-qtwebengine), Oracle (sssd and thunderbird), Red Hat (firefox, liblouis, and sssd), Scientific Linux (firefox, liblouis, and sssd), and Ubuntu (libxml2).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/740605/rss

Security updates have been issued by Arch Linux (cacti, curl, exim, lib32-curl, lib32-libcurl-compat, lib32-libcurl-gnutls, lib32-libxcursor, libcurl-compat, libcurl-gnutls, libofx, libxcursor, procmail, samba, shadowsocks-libev, and thunderbird), Debian (tor), Fedora (kernel, moodle, mupdf, python-sanic, qbittorrent, qpid-cpp, and rb_libtorrent), Mageia (git, lame, memcached, nagios, perl-Catalyst-Plugin-Static-Simple, php-phpmailer, shadowsocks-libev, and varnish), openSUSE (binutils, libressl, lynx, openssl, tor, wireshark, and xen), Red Hat (thunderbird), Scientific Linux (kernel, qemu-kvm, and thunderbird), SUSE (kernel, ncurses, openvpn-openssl1, and xen), and Ubuntu (curl, evince, and firefox).

Security updates for Friday

Post Syndicated from jake original https://lwn.net/Articles/740431/rss

Security updates have been issued by Debian (curl, libxml2, optipng, and sox), Fedora (kernel, mediawiki, moodle, nodejs-balanced-match, nodejs-brace-expansion, and python-werkzeug), openSUSE (optipng), Oracle (kernel and qemu-kvm), Red Hat (kernel, kernel-rt, qemu-kvm, and qemu-kvm-rhev), SUSE (kernel), and Ubuntu (thunderbird).

Security updates for Wednesday

Post Syndicated from ris original https://lwn.net/Articles/740233/rss

Security updates have been issued by CentOS (apr and procmail), Debian (curl and xen), Fedora (cacti, git, jbig2dec, lucene4, mupdf, openssh, openssl, quagga, rpm, slurm, webkitgtk4, and xen), Oracle (apr and procmail), Red Hat (apr, java-1.7.1-ibm, java-1.8.0-ibm, procmail, samba4, and tcmu-runner), Scientific Linux (apr, procmail, and samba4), and Ubuntu (curl, openjdk-7, python2.7, and python3.4, python3.5).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/740133/rss

Security updates have been issued by Arch Linux (powerdns and powerdns-recursor), CentOS (curl and samba), Debian (ffmpeg and roundcube), Fedora (cacti and samba), openSUSE (thunderbird), Oracle (curl), Red Hat (java-1.8.0-ibm and rh-mysql56-mysql), Scientific Linux (curl), Slackware (samba), SUSE (kernel-firmware and samba), and Ubuntu (exim4, firefox, libxml-libxml-perl, optipng, and postgresql-common).

Potential impact of the Intel ME vulnerability

Post Syndicated from Matthew Garrett original https://mjg59.dreamwidth.org/49611.html

(Note: this is my personal opinion based on public knowledge around this issue. I have no knowledge of any non-public details of these vulnerabilities, and this should not be interpreted as the position or opinion of my employer)

Intel’s Management Engine (ME) is a small coprocessor built into the majority of Intel CPUs[0]. Older versions were based on the ARC architecture[1] running an embedded realtime operating system, but from version 11 onwards they’ve been small x86 cores running Minix. The precise capabilities of the ME have not been publicly disclosed, but it is at minimum capable of interacting with the network[2], display[3], USB, input devices and system flash. In other words, software running on the ME is capable of doing a lot, without requiring any OS permission in the process.

Back in May, Intel announced a vulnerability in the Advanced Management Technology (AMT) that runs on the ME. AMT offers functionality like providing a remote console to the system (so IT support can connect to your system and interact with it as if they were physically present), remote disk support (so IT support can reinstall your machine over the network) and various other bits of system management. The vulnerability meant that it was possible to log into systems with enabled AMT with an empty authentication token, making it possible to log in without knowing the configured password.

This vulnerability was less serious than it could have been for a couple of reasons – the first is that “consumer”[4] systems don’t ship with AMT, and the second is that AMT is almost always disabled (Shodan found only a few thousand systems on the public internet with AMT enabled, out of many millions of laptops). I wrote more about it here at the time.

How does this compare to the newly announced vulnerabilities? Good question. Two of the announced vulnerabilities are in AMT. The previous AMT vulnerability allowed you to bypass authentication, but restricted you to doing what AMT was designed to let you do. While AMT gives an authenticated user a great deal of power, it’s also designed with some degree of privacy protection in mind – for instance, when the remote console is enabled, an animated warning border is drawn on the user’s screen to alert them.

This vulnerability is different in that it allows an authenticated attacker to execute arbitrary code within the AMT process. This means that the attacker shouldn’t have any capabilities that AMT doesn’t, but it’s unclear where various aspects of the privacy protection are implemented – for instance, if the warning border is implemented in AMT rather than in hardware, an attacker could duplicate that functionality without drawing the warning. If the USB storage emulation for remote booting is implemented as a generic USB passthrough, the attacker could pretend to be an arbitrary USB device and potentially exploit the operating system through bugs in USB device drivers. Unfortunately we don’t currently know.

Note that this exploit still requires two things – first, AMT has to be enabled, and second, the attacker has to be able to log into AMT. If the attacker has physical access to your system and you don’t have a BIOS password set, they will be able to enable it – however, if AMT isn’t enabled and the attacker isn’t physically present, you’re probably safe. But if AMT is enabled and you haven’t patched the previous vulnerability, the attacker will be able to access AMT over the network without a password and then proceed with the exploit. This is bad, so you should probably (1) ensure that you’ve updated your BIOS and (2) ensure that AMT is disabled unless you have a really good reason to use it.

The AMT vulnerability applies to a wide range of versions, everything from version 6 (which shipped around 2008) and later. The other vulnerability that Intel describe is restricted to version 11 of the ME, which only applies to much more recent systems. This vulnerability allows an attacker to execute arbitrary code on the ME, which means they can do literally anything the ME is able to do. This probably also means that they are able to interfere with any other code running on the ME. While AMT has been the most frequently discussed part of this, various other Intel technologies are tied to ME functionality.

Intel’s Platform Trust Technology (PTT) is a software implementation of a Trusted Platform Module (TPM) that runs on the ME. TPMs are intended to protect access to secrets and encryption keys and record the state of the system as it boots, making it possible to determine whether a system has had part of its boot process modified and denying access to the secrets as a result. The most common usage of TPMs is to protect disk encryption keys – Microsoft Bitlocker defaults to storing its encryption key in the TPM, automatically unlocking the drive if the boot process is unmodified. In addition, TPMs support something called Remote Attestation (I wrote about that here), which allows the TPM to provide a signed copy of information about what the system booted to a remote site. This can be used for various purposes, such as not allowing a compute node to join a cloud unless it’s booted the correct version of the OS and is running the latest firmware version. Remote Attestation depends on the TPM having a unique cryptographic identity that is tied to the TPM and inaccessible to the OS.

PTT allows manufacturers to simply license some additional code from Intel and run it on the ME rather than having to pay for an additional chip on the system motherboard. This seems great, but if an attacker is able to run code on the ME then they potentially have the ability to tamper with PTT, which means they can obtain access to disk encryption secrets and circumvent Bitlocker. It also means that they can tamper with Remote Attestation, “attesting” that the system booted a set of software that it didn’t or copying the keys to another system and allowing that to impersonate the first. This is, uh, bad.

Intel also recently announced Intel Online Connect, a mechanism for providing the functionality of security keys directly in the operating system. Components of this are run on the ME in order to avoid scenarios where a compromised OS could be used to steal the identity secrets – if the ME is compromised, this may make it possible for an attacker to obtain those secrets and duplicate the keys.

It’s also not entirely clear how much of Intel’s Secure Guard Extensions (SGX) functionality depends on the ME. The ME does appear to be required for SGX Remote Attestation (which allows an application using SGX to prove to a remote site that it’s the SGX app rather than something pretending to be it), and again if those secrets can be extracted from a compromised ME it may be possible to compromise some of the security assumptions around SGX. Again, it’s not clear how serious this is because it’s not publicly documented.

Various other things also run on the ME, including stuff like video DRM (ensuring that high resolution video streams can’t be intercepted by the OS). It may be possible to obtain encryption keys from a compromised ME that allow things like Netflix streams to be decoded and dumped. From a user privacy or security perspective, these things seem less serious.

The big problem at the moment is that we have no idea what the actual process of compromise is. Intel state that it requires local access, but don’t describe what kind. Local access in this case could simply require the ability to send commands to the ME (possible on any system that has the ME drivers installed), could require direct hardware access to the exposed ME (which would require either kernel access or the ability to install a custom driver) or even the ability to modify system flash (possible only if the attacker has physical access and enough time and skill to take the system apart and modify the flash contents with an SPI programmer). The other thing we don’t know is whether it’s possible for an attacker to modify the system such that the ME is persistently compromised or whether it needs to be re-compromised every time the ME reboots. Note that even the latter is more serious than you might think – the ME may only be rebooted if the system loses power completely, so even a “temporary” compromise could affect a system for a long period of time.

It’s also almost impossible to determine if a system is compromised. If the ME is compromised then it’s probably possible for it to roll back any firmware updates but still report that it’s been updated, giving admins a false sense of security. The only way to determine for sure would be to dump the system flash and compare it to a known good image. This is impractical to do at scale.

So, overall, given what we know right now it’s hard to say how serious this is in terms of real world impact. It’s unlikely that this is the kind of vulnerability that would be used to attack individual end users – anyone able to compromise a system like this could just backdoor your browser instead with much less effort, and that already gives them your banking details. The people who have the most to worry about here are potential targets of skilled attackers, which means activists, dissidents and companies with interesting personal or business data. It’s hard to make strong recommendations about what to do here without more insight into what the vulnerability actually is, and we may not know that until this presentation next month.

Summary: Worst case here is terrible, but unlikely to be relevant to the vast majority of users.

[0] Earlier versions of the ME were built into the motherboard chipset, but as portions of that were incorporated onto the CPU package the ME followed
[1] A descendent of the SuperFX chip used in Super Nintendo cartridges such as Starfox, because why not
[2] Without any OS involvement for wired ethernet and for wireless networks in the system firmware, but requires OS support for wireless access once the OS drivers have loaded
[3] Assuming you’re using integrated Intel graphics
[4] “Consumer” is a bit of a misnomer here – “enterprise” laptops like Thinkpads ship with AMT, but are often bought by consumers.

comment count unavailable comments

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/740044/rss

Security updates have been issued by Arch Linux (varnish), Debian (libofx and python-werkzeug), Fedora (fedpkg, mediawiki, qt5-qtwebengine, and rpkg), Mageia (apr-util, bchunk, chromium-browser-stable, vlc, and webkit2), openSUSE (backintime, konversation, perl, tboot, and tnef), Oracle (samba), Red Hat (curl and samba), Scientific Linux (samba), and SUSE (kvm and samba).

Security updates for Wednesday

Post Syndicated from jake original https://lwn.net/Articles/739858/rss

Security updates have been issued by Arch Linux (roundcubemail), Debian (optipng, samba, and vlc), Fedora (compat-openssl10, fedpkg, git, jbig2dec, ldns, memcached, openssl, perl-Net-Ping-External, python-copr, python-XStatic-jquery-ui, rpkg, thunderbird, and xen), SUSE (tomcat), and Ubuntu (db, db4.8, db5.3, linux, linux-raspi2, linux-aws, linux-azure, linux-gcp, and samba).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/739746/rss

Security updates have been issued by Debian (ldns and swauth), Fedora (kernel and postgresql), Mageia (botan, krb5, and sssd), and Ubuntu (apport, linux, linux-aws, linux-gke, linux-kvm, linux-raspi2, linux-snapdragon, linux, linux-raspi2, linux-hwe, linux-lts-xenial, procmail, and samba).

Security updates for Monday

Post Syndicated from ris original https://lwn.net/Articles/739648/rss

Security updates have been issued by Arch Linux (icu and lib32-icu), CentOS (firefox), Debian (imagemagick, konversation, libspring-ldap-java, libxml-libxml-perl, lynx-cur, ming, opensaml2, poppler, procmail, shibboleth-sp2, and xen), Fedora (firefox, java-9-openjdk, jbig2dec, kernel, knot, knot-resolver, qt5-qtwebengine, and roundcubemail), Gentoo (adobe-flash, couchdb, icedtea-bin, and phpunit), Mageia (apr, bluez, firefox, jq, konversation, libextractor, and quagga), Oracle (firefox), Red Hat (firefox), and Scientific Linux (firefox).

Security updates for Thursday

Post Syndicated from jake original https://lwn.net/Articles/739318/rss

Security updates have been issued by Arch Linux (firefox, flashplugin, lib32-flashplugin, and mediawiki), CentOS (kernel and php), Debian (firefox-esr, jackson-databind, and mediawiki), Fedora (apr, apr-util, chromium, compat-openssl10, firefox, ghostscript, hostapd, icu, ImageMagick, jackson-databind, krb5, lame, liblouis, nagios, nodejs, perl-Catalyst-Plugin-Static-Simple, php, php-PHPMailer, poppler, poppler-data, rubygem-ox, systemd, webkitgtk4, wget, wordpress, and xen), Mageia (flash-player-plugin, icu, jackson-databind, php, and roundcubemail), Oracle (kernel and php), Red Hat (openstack-aodh), SUSE (wget and xen), and Ubuntu (apport and webkit2gtk).

Security updates for Tuesday

Post Syndicated from ris original https://lwn.net/Articles/738995/rss

Security updates have been issued by Arch Linux (konversation), Debian (graphicsmagick and konversation), Fedora (git-annex, ImageMagick, kernel, and libgcrypt), Oracle (kernel), Red Hat (httpd), SUSE (firefox, nss), and Ubuntu (perl and postgresql-9.3, postgresql-9.5, postgresql-9.6).