Tag Archives: academicpapers

John Mueller and Mark Stewart on the Risks of Terrorism

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/john_mueller_an.html

Another excellent paper by the Mueller/Stewart team: “Terrorism and Bathtubs: Comparing and Assessing the Risks“:

Abstract: The likelihood that anyone outside a war zone will be killed by an Islamist extremist terrorist is extremely small. In the United States, for example, some six people have perished each year since 9/11 at the hands of such terrorists — vastly smaller than the number of people who die in bathtub drownings. Some argue, however, that the incidence of terrorist destruction is low because counterterrorism measures are so effective. They also contend that terrorism may well become more frequent and destructive in the future as terrorists plot and plan and learn from experience, and that terrorism, unlike bathtubs, provides no benefit and exacts costs far beyond those in the event itself by damagingly sowing fear and anxiety and by requiring policy makers to adopt countermeasures that are costly and excessive. This paper finds these arguments to be wanting. In the process, it concludes that terrorism is rare outside war zones because, to a substantial degree, terrorists don’t exist there. In general, as with rare diseases that kill few, it makes more policy sense to expend limited funds on hazards that inflict far more damage. It also discusses the issue of risk communication for this hazard.

New Ways to Track Internet Browsing

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/new_ways_to_tra.html

Interesting research on web tracking: “Who Left Open the Cookie Jar? A Comprehensive Evaluation of Third-Party Cookie Policies:

Abstract: Nowadays, cookies are the most prominent mechanism to identify and authenticate users on the Internet. Although protected by the Same Origin Policy, popular browsers include cookies in all requests, even when these are cross-site. Unfortunately, these third-party cookies enable both cross-site attacks and third-party tracking. As a response to these nefarious consequences, various countermeasures have been developed in the form of browser extensions or even protection mechanisms that are built directly into the browser.

In this paper, we evaluate the effectiveness of these defense mechanisms by leveraging a framework that automatically evaluates the enforcement of the policies imposed to third-party requests. By applying our framework, which generates a comprehensive set of test cases covering various web mechanisms, we identify several flaws in the policy implementations of the 7 browsers and 46 browser extensions that were evaluated. We find that even built-in protection mechanisms can be circumvented by multiple novel techniques we discover. Based on these results, we argue that our proposed framework is a much-needed tool to detect bypasses and evaluate solutions to the exposed leaks. Finally, we analyze the origin of the identified bypass techniques, and find that these are due to a variety of implementation, configuration and design flaws.

The researchers discovered many new tracking techniques that work despite all existing anonymous browsing tools. These have not yet been seen in the wild, but that will change soon.

Three news articles. BoingBoing post.

Measuring the Rationality of Security Decisions

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/08/measuring_the_r.html

Interesting research: “Dancing Pigs or Externalities? Measuring the Rationality of
Security Decisions

Abstract: Accurately modeling human decision-making in security is critical to thinking about when, why, and how to recommend that users adopt certain secure behaviors. In this work, we conduct behavioral economics experiments to model the rationality of end-user security decision-making in a realistic online experimental system simulating a bank account. We ask participants to make a financially impactful security choice, in the face of transparent risks of account compromise and benefits offered by an optional security behavior (two-factor authentication). We measure the cost and utility of adopting the security behavior via measurements of time spent executing the behavior and estimates of the participant’s wage. We find that more than 50% of our participants made rational (e.g., utility optimal) decisions, and we find that participants are more likely to behave rationally in the face of higher risk. Additionally, we find that users’ decisions can be modeled well as a function of past behavior (anchoring effects), knowledge of costs, and to a lesser extent, users’ awareness of risks and context (R2=0.61). We also find evidence of endowment effects, as seen in other areas of economic and psychological decision-science literature, in our digital-security setting. Finally, using our data, we show theoretically that a “one-size-fits-all” emphasis on security can lead to market losses, but that adoption by a subset of users with higher risks or lower costs can lead to market gains

Major Bluetooth Vulnerability

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/major_bluetooth.html

Bluetooth has a serious security vulnerability:

In some implementations, the elliptic curve parameters are not all validated by the cryptographic algorithm implementation, which may allow a remote attacker within wireless range to inject an invalid public key to determine the session key with high probability. Such an attacker can then passively intercept and decrypt all device messages, and/or forge and inject malicious messages.

Paper. Website. Three news articles.

This is serious. Update your software now, and try not to think about all of the Bluetooth applications that can’t be updated.

Recovering Keyboard Inputs through Thermal Imaging

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/recovering_keyb.html

Researchers at the University of California, Irvine, are able to recover user passwords by way of thermal imaging. The tech is pretty straightforward, but it’s interesting to think about the types of scenarios in which it might be pulled off.

Abstract: As a warm-blooded mammalian species, we humans routinely leave thermal residues on various objects with which we come in contact. This includes common input devices, such as keyboards, that are used for entering (among other things) secret information, such as passwords and PINs. Although thermal residue dissipates over time, there is always a certain time window during which thermal energy readings can be harvested from input devices to recover recently entered, and potentially sensitive, information.

To-date, there has been no systematic investigation of thermal profiles of keyboards, and thus no efforts have been made to secure them. This serves as our main motivation for constructing a means for password harvesting from keyboard thermal emanations. Specifically, we introduce Thermanator, a new post factum insider attack based on heat transfer caused by a user typing a password on a typical external keyboard. We conduct and describe a user study that collected thermal residues from 30 users entering 10 unique passwords (both weak and strong) on 4 popular commodity keyboards. Results show that entire sets of key-presses can be recovered by non-expert users as late as 30 seconds after initial password entry, while partial sets can be recovered as late as 1 minute after entry. Furthermore, we find that Hunt-and-Peck typists are particularly vulnerable. We also discuss some Thermanator mitigation strategies.

The main take-away of this work is three-fold: (1) using external keyboards to enter (already much-maligned) passwords is even less secure than previously recognized, (2) post factum (planned or impromptu) thermal imaging attacks are realistic, and finally (3) perhaps it is time to either stop using keyboards for password entry, or abandon passwords altogether.

News article.

Traffic Analysis of the LTE Mobile Standard

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/07/traffic_analysi.html

Interesting research in using traffic analysis to learn things about encrypted traffic. It’s hard to know how critical these vulnerabilities are. They’re very hard to close without wasting a huge amount of bandwidth.

The active attacks are more interesting.

EDITED TO ADD (7/3): More information.

I have been thinking about this, and now believe the attacks are more serious than I previously wrote.

Conservation of Threat

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/conservation_of.html

Here’s some interesting research about how we perceive threats. Basically, as the environment becomes safer we basically manufacture new threats. From an essay about the research:

To study how concepts change when they become less common, we brought volunteers into our laboratory and gave them a simple task ­– to look at a series of computer-generated faces and decide which ones seem “threatening.” The faces had been carefully designed by researchers to range from very intimidating to very harmless.

As we showed people fewer and fewer threatening faces over time, we found that they expanded their definition of “threatening” to include a wider range of faces. In other words, when they ran out of threatening faces to find, they started calling faces threatening that they used to call harmless. Rather than being a consistent category, what people considered “threats” depended on how many threats they had seen lately.

This has a lot of implications in security systems where humans have to make judgments about threat and risk: TSA agents, police noticing “suspicious” activities, “see something say something” campaigns, and so on.

The academic paper.

Regulating Bitcoin

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/regulating_bitc.html

Ross Anderson has a new paper on cryptocurrency exchanges. From his blog:

Bitcoin Redux explains what’s going wrong in the world of cryptocurrencies. The bitcoin exchanges are developing into a shadow banking system, which do not give their customers actual bitcoin but rather display a “balance” and allow them to transact with others. However if Alice sends Bob a bitcoin, and they’re both customers of the same exchange, it just adjusts their balances rather than doing anything on the blockchain. This is an e-money service, according to European law, but is the law enforced? Not where it matters. We’ve been looking at the details.

The paper.

Friday Squid Blogging: Do Cephalopods Contain Alien DNA?

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/06/friday_squid_bl_627.html

Maybe not DNA, but biological somethings.

Cause of Cambrian explosion — Terrestrial or Cosmic?“:

Abstract: We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ~500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion — life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.

Two commentaries.

This is almost certainly not true.

As usual, you can also use this squid post to talk about the security stories in the news that I haven’t covered.

Read my blog posting guidelines here.

Detecting Lies through Mouse Movements

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/detecting_lies_.html

Interesting research: “The detection of faked identity using unexpected questions and mouse dynamics,” by Merulin Monaro, Luciano Gamberini, and Guiseppe Sartori.

Abstract: The detection of faked identities is a major problem in security. Current memory-detection techniques cannot be used as they require prior knowledge of the respondent’s true identity. Here, we report a novel technique for detecting faked identities based on the use of unexpected questions that may be used to check the respondent identity without any prior autobiographical information. While truth-tellers respond automatically to unexpected questions, liars have to “build” and verify their responses. This lack of automaticity is reflected in the mouse movements used to record the responses as well as in the number of errors. Responses to unexpected questions are compared to responses to expected and control questions (i.e., questions to which a liar also must respond truthfully). Parameters that encode mouse movement were analyzed using machine learning classifiers and the results indicate that the mouse trajectories and errors on unexpected questions efficiently distinguish liars from truth-tellers. Furthermore, we showed that liars may be identified also when they are responding truthfully. Unexpected questions combined with the analysis of mouse movement may efficiently spot participants with faked identities without the need for any prior information on the examinee.

Boing Boing post.

Airline Ticket Fraud

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/airline_ticket_.html

New research: “Leaving on a jet plane: the trade in fraudulently obtained airline tickets:”

Abstract: Every day, hundreds of people fly on airline tickets that have been obtained fraudulently. This crime script analysis provides an overview of the trade in these tickets, drawing on interviews with industry and law enforcement, and an analysis of an online blackmarket. Tickets are purchased by complicit travellers or resellers from the online blackmarket. Victim travellers obtain tickets from fake travel agencies or malicious insiders. Compromised credit cards used to be the main method to purchase tickets illegitimately. However, as fraud detection systems improved, offenders displaced to other methods, including compromised loyalty point accounts, phishing, and compromised business accounts. In addition to complicit and victim travellers, fraudulently obtained tickets are used for transporting mules, and for trafficking and smuggling. This research details current prevention approaches, and identifies additional interventions, aimed at the act, the actor, and the marketplace.

Blog post.

LC4: Another Pen-and-Paper Cipher

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/lc4_another_pen.html

Interesting symmetric cipher: LC4:

Abstract: ElsieFour (LC4) is a low-tech cipher that can be computed by hand; but unlike many historical ciphers, LC4 is designed to be hard to break. LC4 is intended for encrypted communication between humans only, and therefore it encrypts and decrypts plaintexts and ciphertexts consisting only of the English letters A through Z plus a few other characters. LC4 uses a nonce in addition to the secret key, and requires that different messages use unique nonces. LC4 performs authenticated encryption, and optional header data can be included in the authentication. This paper defines the LC4 encryption and decryption algorithms, analyzes LC4’s security, and describes a simple appliance for computing LC4 by hand.

Almost two decades ago I designed Solitaire, a pen-and-paper cipher that uses a deck of playing cards to store the cipher’s state. This algorithm uses specialized tiles. This gives the cipher designer more options, but it can be incriminating in a way that regular playing cards are not.

Still, I like seeing more designs like this.

Hacker News thread.

COPPA Compliance

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/coppa_complianc.html

Interesting research: “‘Won’t Somebody Think of the Children?’ Examining COPPA Compliance at Scale“:

Abstract: We present a scalable dynamic analysis framework that allows for the automatic evaluation of the privacy behaviors of Android apps. We use our system to analyze mobile apps’ compliance with the Children’s Online Privacy Protection Act (COPPA), one of the few stringent privacy laws in the U.S. Based on our automated analysis of 5,855 of the most popular free children’s apps, we found that a majority are potentially in violation of COPPA, mainly due to their use of third-party SDKs. While many of these SDKs offer configuration options to respect COPPA by disabling tracking and behavioral advertising, our data suggest that a majority of apps either do not make use of these options or incorrectly propagate them across mediation SDKs. Worse, we observed that 19% of children’s apps collect identifiers or other personally identifiable information (PII) via SDKs whose terms of service outright prohibit their use in child-directed apps. Finally, we show that efforts by Google to limit tracking through the use of a resettable advertising ID have had little success: of the 3,454 apps that share the resettable ID with advertisers, 66% transmit other, non-resettable, persistent identifiers as well, negating any intended privacy-preserving properties of the advertising ID.

Subverting Backdoored Encryption

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/04/subverting_back.html

This is a really interesting research result. This paper proves that two parties can create a secure communications channel using a communications system with a backdoor. It’s a theoretical result, so it doesn’t talk about how easy that channel is to create. And the assumptions on the adversary are pretty reasonable: that each party can create his own randomness, and that the government isn’t literally eavesdropping on every single part of the network at all times.

This result reminds me a lot of the work about subliminal channels from the 1980s and 1990s, and the notions of how to build an anonymous communications system on top of an identified system. Basically, it’s always possible to overlay a system around and outside any closed system.

How to Subvert Backdoored Encryption: Security Against Adversaries that Decrypt All Ciphertexts,” by Thibaut Horel and Sunoo Park and Silas Richelson and Vinod Vaikuntanathan.

Abstract: In this work, we examine the feasibility of secure and undetectable point-to-point communication in a world where governments can read all the encrypted communications of their citizens. We consider a world where the only permitted method of communication is via a government-mandated encryption scheme, instantiated with government-mandated keys. Parties cannot simply encrypt ciphertexts of some other encryption scheme, because citizens caught trying to communicate outside the government’s knowledge (e.g., by encrypting strings which do not appear to be natural language plaintexts) will be arrested. The one guarantee we suppose is that the government mandates an encryption scheme which is semantically secure against outsiders: a perhaps reasonable supposition when a government might consider it advantageous to secure its people’s communication against foreign entities. But then, what good is semantic security against an adversary that holds all the keys and has the power to decrypt?

We show that even in the pessimistic scenario described, citizens can communicate securely and undetectably. In our terminology, this translates to a positive statement: all semantically secure encryption schemes support subliminal communication. Informally, this means that there is a two-party protocol between Alice and Bob where the parties exchange ciphertexts of what appears to be a normal conversation even to someone who knows the secret keys and thus can read the corresponding plaintexts. And yet, at the end of the protocol, Alice will have transmitted her secret message to Bob. Our security definition requires that the adversary not be able to tell whether Alice and Bob are just having a normal conversation using the mandated encryption scheme, or they are using the mandated encryption scheme for subliminal communication.

Our topics may be thought to fall broadly within the realm of steganography: the science of hiding secret communication within innocent-looking messages, or cover objects. However, we deal with the non-standard setting of an adversarially chosen distribution of cover objects (i.e., a stronger-than-usual adversary), and we take advantage of the fact that our cover objects are ciphertexts of a semantically secure encryption scheme to bypass impossibility results which we show for broader classes of steganographic schemes. We give several constructions of subliminal communication schemes under the assumption that key exchange protocols with pseudorandom messages exist (such as Diffie-Hellman, which in fact has truly random messages). Each construction leverages the assumed semantic security of the adversarially chosen encryption scheme, in order to achieve subliminal communication.

Another Branch Prediction Attack

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/another_branch_.html

When Spectre and Meltdown were first announced earlier this year, pretty much everyone predicted that there would be many more attacks targeting branch prediction in microprocessors. Here’s another one:

In the new attack, an attacker primes the PHT and running branch instructions so that the PHT will always assume a particular branch is taken or not taken. The victim code then runs and makes a branch, which is potentially disturbing the PHT. The attacker then runs more branch instructions of its own to detect that disturbance to the PHT; the attacker knows that some branches should be predicted in a particular direction and tests to see if the victim’s code has changed that prediction.

The researchers looked only at Intel processors, using the attacks to leak information protected using Intel’s SGX (Software Guard Extensions), a feature found on certain chips to carve out small sections of encrypted code and data such that even the operating system (or virtualization software) cannot access it. They also described ways the attack could be used against address space layout randomization and to infer data in encryption and image libraries.

Research paper.