Tag Archives: APIs

Recent EC2 Goodies – Launch Templates and Spread Placement

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/recent-ec2-goodies-launch-templates-and-spread-placement/

We launched some important new EC2 instance types and features at AWS re:Invent. I’ve already told you about the M5, H1, T2 Unlimited and Bare Metal instances, and about Spot features such as Hibernation and the New Pricing Model. Randall told you about the Amazon Time Sync Service. Today I would like to tell you about two of the features that we launched: Spread placement groups and Launch Templates. Both features are available in the EC2 Console and from the EC2 APIs, and can be used in all of the AWS Regions in the “aws” partition:

Launch Templates
You can use launch templates to store the instance, network, security, storage, and advanced parameters that you use to launch EC2 instances, and can also include any desired tags. Each template can include any desired subset of the full collection of parameters. You can, for example, define common configuration parameters such as tags or network configurations in a template, and allow the other parameters to be specified as part of the actual launch.

Templates give you the power to set up a consistent launch environment that spans instances launched in On-Demand and Spot form, as well as through EC2 Auto Scaling and as part of a Spot Fleet. You can use them to implement organization-wide standards and to enforce best practices, and you can give your IAM users the ability to launch instances via templates while withholding the ability to do so via the underlying APIs.

Templates are versioned and you can use any desired version when you launch an instance. You can create templates from scratch, base them on the previous version, or copy the parameters from a running instance.

Here’s how you create a launch template in the Console:

Here’s how to include network interfaces, storage volumes, tags, and security groups:

And here’s how to specify advanced and specialized parameters:

You don’t have to specify values for all of these parameters in your templates; enter the values that are common to multiple instances or launches and specify the rest at launch time.

When you click Create launch template, the template is created and can be used to launch On-Demand instances, create Auto Scaling Groups, and create Spot Fleets:

The Launch Instance button now gives you the option to launch from a template:

Simply choose the template and the version, and finalize all of the launch parameters:

You can also manage your templates and template versions from the Console:

To learn more about this feature, read Launching an Instance from a Launch Template.

Spread Placement Groups
Spread placement groups indicate that you do not want the instances in the group to share the same underlying hardware. Applications that rely on a small number of critical instances can launch them in a spread placement group to reduce the odds that one hardware failure will impact more than one instance. Here are a couple of things to keep in mind when you use spread placement groups:

  • Availability Zones – A single spread placement group can span multiple Availability Zones. You can have a maximum of seven running instances per Availability Zone per group.
  • Unique Hardware – Launch requests can fail if there is insufficient unique hardware available. The situation changes over time as overall usage changes and as we add additional hardware; you can retry failed requests at a later time.
  • Instance Types – You can launch a wide variety of M4, M5, C3, R3, R4, X1, X1e, D2, H1, I2, I3, HS1, F1, G2, G3, P2, and P3 instances types in spread placement groups.
  • Reserved Instances – Instances launched into a spread placement group can make use of reserved capacity. However, you cannot currently reserve capacity for a placement group and could receive an ICE (Insufficient Capacity Error) even if you have some RI’s available.
  • Applicability – You cannot use spread placement groups in conjunction with Dedicated Instances or Dedicated Hosts.

You can create and use spread placement groups from the AWS Management Console, the AWS Command Line Interface (CLI), the AWS Tools for Windows PowerShell, and the AWS SDKs. The console has a new feature that will help you to learn how to use the command line:

You can specify an existing placement group or create a new one when you launch an EC2 instance:

To learn more, read about Placement Groups.

Jeff;

Wanted: Sales Engineer

Post Syndicated from Yev original https://www.backblaze.com/blog/wanted-sales-engineer/

At inception, Backblaze was a consumer company. Thousands upon thousands of individuals came to our website and gave us $5/mo to keep their data safe. But, we didn’t sell business solutions. It took us years before we had a sales team. In the last couple of years, we’ve released products that businesses of all sizes love: Backblaze B2 Cloud Storage and Backblaze for Business Computer Backup. Those businesses want to integrate Backblaze deeply into their infrastructure, so it’s time to hire our first Sales Engineer!

Company Description:
Founded in 2007, Backblaze started with a mission to make backup software elegant and provide complete peace of mind. Over the course of almost a decade, we have become a pioneer in robust, scalable low cost cloud backup. Recently, we launched B2 – robust and reliable object storage at just $0.005/gb/mo. Part of our differentiation is being able to offer the lowest price of any of the big players while still being profitable.

We’ve managed to nurture a team oriented culture with amazingly low turnover. We value our people and their families. Don’t forget to check out our “About Us” page to learn more about the people and some of our perks.

We have built a profitable, high growth business. While we love our investors, we have maintained control over the business. That means our corporate goals are simple – grow sustainably and profitably.

Some Backblaze Perks:

  • Competitive healthcare plans
  • Competitive compensation and 401k
  • All employees receive Option grants
  • Unlimited vacation days
  • Strong coffee
  • Fully stocked Micro kitchen
  • Catered breakfast and lunches
  • Awesome people who work on awesome projects
  • Childcare bonus
  • Normal work hours
  • Get to bring your pets into the office
  • San Mateo Office – located near Caltrain and Highways 101 & 280.

Backblaze B2 cloud storage is a building block for almost any computing service that requires storage. Customers need our help integrating B2 into iOS apps to Docker containers. Some customers integrate directly to the API using the programming language of their choice, others want to solve a specific problem using ready made software, already integrated with B2.

At the same time, our computer backup product is deepening it’s integration into enterprise IT systems. We are commonly asked for how to set Windows policies, integrate with Active Directory, and install the client via remote management tools.

We are looking for a sales engineer who can help our customers navigate the integration of Backblaze into their technical environments.

Are you 1/2” deep into many different technologies, and unafraid to dive deeper?

Can you confidently talk with customers about their technology, even if you have to look up all the acronyms right after the call?

Are you excited to setup complicated software in a lab and write knowledge base articles about your work?

Then Backblaze is the place for you!

Enough about Backblaze already, what’s in it for me?
In this role, you will be given the opportunity to learn about the technologies that drive innovation today; diverse technologies that customers are using day in and out. And more importantly, you’ll learn how to learn new technologies.

Just as an example, in the past 12 months, we’ve had the opportunity to learn and become experts in these diverse technologies:

  • How to setup VM servers for lab environments, both on-prem and using cloud services.
  • Create an automatically “resetting” demo environment for the sales team.
  • Setup Microsoft Domain Controllers with Active Directory and AD Federation Services.
  • Learn the basics of OAUTH and web single sign on (SSO).
  • Archive video workflows from camera to media asset management systems.
  • How upload/download files from Javascript by enabling CORS.
  • How to install and monitor online backup installations using RMM tools, like JAMF.
  • Tape (LTO) systems. (Yes – people still use tape for storage!)

How can I know if I’ll succeed in this role?

You have:

  • Confidence. Be able to ask customers questions about their environments and convey to them your technical acumen.
  • Curiosity. Always want to learn about customers’ situations, how they got there and what problems they are trying to solve.
  • Organization. You’ll work with customers, integration partners, and Backblaze team members on projects of various lengths. You can context switch and either have a great memory or keep copious notes. Your checklists have their own checklists.

You are versed in:

  • The fundamentals of Windows, Linux and Mac OS X operating systems. You shouldn’t be afraid to use a command line.
  • Building, installing, integrating and configuring applications on any operating system.
  • Debugging failures – reading logs, monitoring usage, effective google searching to fix problems excites you.
  • The basics of TCP/IP networking and the HTTP protocol.
  • Novice development skills in any programming/scripting language. Have basic understanding of data structures and program flow.
  • Your background contains:

  • Bachelor’s degree in computer science or the equivalent.
  • 2+ years of experience as a pre or post-sales engineer.
  • The right extra credit:
    There are literally hundreds of previous experiences you can have had that would make you perfect for this job. Some experiences that we know would be helpful for us are below, but make sure you tell us your stories!

  • Experience using or programming against Amazon S3.
  • Experience with large on-prem storage – NAS, SAN, Object. And backing up data on such storage with tools like Veeam, Veritas and others.
  • Experience with photo or video media. Media archiving is a key market for Backblaze B2.
  • Program arduinos to automatically feed your dog.
  • Experience programming against web or REST APIs. (Point us towards your projects, if they are open source and available to link to.)
  • Experience with sales tools like Salesforce.
  • 3D print door stops.
  • Experience with Windows Servers, Active Directory, Group policies and the like.
  • What’s it like working with the Sales team?
    The Backblaze sales team collaborates. We help each other out by sharing ideas, templates, and our customer’s experiences. When we talk about our accomplishments, there is no “I did this,” only “we”. We are truly a team.

    We are honest to each other and our customers and communicate openly. We aim to have fun by embracing crazy ideas and creative solutions. We try to think not outside the box, but with no boxes at all. Customers are the driving force behind the success of the company and we care deeply about their success.

    If this all sounds like you:

    1. Send an email to [email protected] with the position in the subject line.
    2. Tell us a bit about your Sales Engineering experience.
    3. Include your resume.

    The post Wanted: Sales Engineer appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

    Serverless @ re:Invent 2017

    Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/serverless-reinvent-2017/

    At re:Invent 2014, we announced AWS Lambda, what is now the center of the serverless platform at AWS, and helped ignite the trend of companies building serverless applications.

    This year, at re:Invent 2017, the topic of serverless was everywhere. We were incredibly excited to see the energy from everyone attending 7 workshops, 15 chalk talks, 20 skills sessions and 27 breakout sessions. Many of these sessions were repeated due to high demand, so we are happy to summarize and provide links to the recordings and slides of these sessions.

    Over the course of the week leading up to and then the week of re:Invent, we also had over 15 new features and capabilities across a number of serverless services, including AWS Lambda, Amazon API Gateway, AWS [email protected], AWS SAM, and the newly announced AWS Serverless Application Repository!

    AWS Lambda

    Amazon API Gateway

    • Amazon API Gateway Supports Endpoint Integrations with Private VPCs – You can now provide access to HTTP(S) resources within your VPC without exposing them directly to the public internet. This includes resources available over a VPN or Direct Connect connection!
    • Amazon API Gateway Supports Canary Release Deployments – You can now use canary release deployments to gradually roll out new APIs. This helps you more safely roll out API changes and limit the blast radius of new deployments.
    • Amazon API Gateway Supports Access Logging – The access logging feature lets you generate access logs in different formats such as CLF (Common Log Format), JSON, XML, and CSV. The access logs can be fed into your existing analytics or log processing tools so you can perform more in-depth analysis or take action in response to the log data.
    • Amazon API Gateway Customize Integration Timeouts – You can now set a custom timeout for your API calls as low as 50ms and as high as 29 seconds (the default is 30 seconds).
    • Amazon API Gateway Supports Generating SDK in Ruby – This is in addition to support for SDKs in Java, JavaScript, Android and iOS (Swift and Objective-C). The SDKs that Amazon API Gateway generates save you development time and come with a number of prebuilt capabilities, such as working with API keys, exponential back, and exception handling.

    AWS Serverless Application Repository

    Serverless Application Repository is a new service (currently in preview) that aids in the publication, discovery, and deployment of serverless applications. With it you’ll be able to find shared serverless applications that you can launch in your account, while also sharing ones that you’ve created for others to do the same.

    AWS [email protected]

    [email protected] now supports content-based dynamic origin selection, network calls from viewer events, and advanced response generation. This combination of capabilities greatly increases the use cases for [email protected], such as allowing you to send requests to different origins based on request information, showing selective content based on authentication, and dynamically watermarking images for each viewer.

    AWS SAM

    Twitch Launchpad live announcements

    Other service announcements

    Here are some of the other highlights that you might have missed. We think these could help you make great applications:

    AWS re:Invent 2017 sessions

    Coming up with the right mix of talks for an event like this can be quite a challenge. The Product, Marketing, and Developer Advocacy teams for Serverless at AWS spent weeks reading through dozens of talk ideas to boil it down to the final list.

    From feedback at other AWS events and webinars, we knew that customers were looking for talks that focused on concrete examples of solving problems with serverless, how to perform common tasks such as deployment, CI/CD, monitoring, and troubleshooting, and to see customer and partner examples solving real world problems. To that extent we tried to settle on a good mix based on attendee experience and provide a track full of rich content.

    Below are the recordings and slides of breakout sessions from re:Invent 2017. We’ve organized them for those getting started, those who are already beginning to build serverless applications, and the experts out there already running them at scale. Some of the videos and slides haven’t been posted yet, and so we will update this list as they become available.

    Find the entire Serverless Track playlist on YouTube.

    Talks for people new to Serverless

    Advanced topics

    Expert mode

    Talks for specific use cases

    Talks from AWS customers & partners

    Looking to get hands-on with Serverless?

    At re:Invent, we delivered instructor-led skills sessions to help attendees new to serverless applications get started quickly. The content from these sessions is already online and you can do the hands-on labs yourself!
    Build a Serverless web application

    Still looking for more?

    We also recently completely overhauled the main Serverless landing page for AWS. This includes a new Resources page containing case studies, webinars, whitepapers, customer stories, reference architectures, and even more Getting Started tutorials. Check it out!

    Using Trusted Timestamping With Java

    Post Syndicated from Bozho original https://techblog.bozho.net/using-trusted-timestamping-java/

    Trusted timestamping is the process of having a trusted third party (“Time stamping authority”, TSA) certify the time of a given event in electronic form. The EU regulation eIDAS gives these timestamps legal strength – i.e. nobody can dispute the time or the content of the event if it was timestamped. It is applicable to multiple scenarios, including timestamping audit logs. (Note: timestamping is not sufficient for a good audit trail as it does not prevent a malicious actor from deleting the event altogether)

    There are a number of standards for trusted timestamping, the core one being RFC 3161. As most RFCs it is hard to read. Fortunately for Java users, BouncyCastle implements the standard. Unfortunately, as with most security APIs, working with it is hard, even abysmal. I had to implement it, so I’ll share the code needed to timestamp data.

    The whole gist can be found here, but I’ll try to explain the main flow. Obviously, there is a lot of code that’s there to simply follow the standard. The BouncyCastle classes are a maze that’s hard to navigate.

    The main method is obviously timestamp(hash, tsaURL, username, password):

    public TimestampResponseDto timestamp(byte[] hash, String tsaUrl, String tsaUsername, String tsaPassword) throws IOException {
        MessageImprint imprint = new MessageImprint(sha512oid, hash);
    
        TimeStampReq request = new TimeStampReq(imprint, null, new ASN1Integer(random.nextLong()),
                ASN1Boolean.TRUE, null);
    
        byte[] body = request.getEncoded();
        try {
            byte[] responseBytes = getTSAResponse(body, tsaUrl, tsaUsername, tsaPassword);
    
            ASN1StreamParser asn1Sp = new ASN1StreamParser(responseBytes);
            TimeStampResp tspResp = TimeStampResp.getInstance(asn1Sp.readObject());
            TimeStampResponse tsr = new TimeStampResponse(tspResp);
    
            checkForErrors(tsaUrl, tsr);
    
            // validate communication level attributes (RFC 3161 PKIStatus)
            tsr.validate(new TimeStampRequest(request));
    
            TimeStampToken token = tsr.getTimeStampToken();
                
            TimestampResponseDto response = new TimestampResponseDto();
            response.setTime(getSigningTime(token.getSignedAttributes()));
            response.setEncodedToken(Base64.getEncoder().encodeToString(token.getEncoded()));
               
            return response;
        } catch (RestClientException | TSPException | CMSException | OperatorCreationException | GeneralSecurityException e) {
            throw new IOException(e);
        }
    }
    

    It prepares the request by creating the message imprint. Note that you are passing the hash itself, but also the hashing algorithm used to make the hash. Why isn’t the API hiding that from you, I don’t know. In my case the hash is obtained in a more complicated way, so it’s useful, but still. Then we get the raw form of the request and send it to the TSA (time stamping authority). It is an HTTP request, sort of simple, but you have to take care of some request and response headers that are not necessarily consistent across TSAs. The username and password are optional, some TSAs offer the service (rate-limited) without authentication.

    When you have the raw response back, you parse it to a TimeStampResponse. Again, you have to go through 2 intermediate objects (ASN1StreamParser and TimeStampResp), which may be a proper abstraction, but is not a usable API.

    Then you check if the response was successful, and you also have to validate it – the TSA may have returned a bad response. Ideally all of that could’ve been hidden from you. Validation throws an exception, which in this case I just propagate by wrapping in an IOException.

    Finally, you get the token and return the response. The most important thing is the content of the token, which in my case was needed as Base64, so I encode it. It could just be the raw bytes as well. If you want to get any additional data from the token (e.g. the signing time), it’s not that simple; you have to parse the low-level attributes (seen in the gist).

    Okay, you have the token now, and you can store it in a database. Occasionally you may want to validate whether timestamps have not been tampered with (which is my usecase). The code is here, and I won’t even try to explain it – it’s a ton of boilerplate that is also accounting for variations in the way TSAs respond (I’ve tried a few). The fact that a DummyCertificate class is needed either means I got something very wrong, or confirms my critique for the BouncyCastle APIs. The DummyCertificate may not be needed for some TSAs, but it is for others, and you actually can’t instantiate it that easily. You need a real certificate to construct it (which is not included in the gist; using the init() method in the next gist you can create the dummy with dummyCertificate = new DummyCertificate(certificateHolder.toASN1Structure());). In my code these are all one class, but for presenting them I decided to split it, hence this little duplication.

    Okay, now we can timestamp and validate timestamps. That should be enough; but for testing purposes (or limited internal use) you may want to do the timestamping locally instead of asking a TSA. The code can be found here. It uses spring, but you can instead pass the keystore details as arguments to the init method. You need a JKS store with a keypair and a certificate, and I used KeyStore Explorer to create them. If you are running your application in AWS, you may want to encrypt your keystore using KMS (Key Management Service), and then decrypt it on application load, but that’s out of the scope of this article. For the local timestamping validation works as expected, and for timestamping – instead of calling the external service, just call localTSA.timestamp(req);

    How did I get to know which classes to instantiate and which parameters to pass – I don’t remember. Looking at tests, examples, answers, sources. It took a while, and so I’m sharing it, to potentially save some trouble of others.

    A list of TSAs you can test with: SafeCreative, FreeTSA, time.centum.pl.

    I realize this does not seem applicable to many scenarios, but I would recommend timestamping some critical pieces of your application data. And it is generally useful to have it in your “toolbox”, ready to use, rather than trying to read the standard and battling with BouncyCastle classes for days in order to achieve this allegedly simple task.

    The post Using Trusted Timestamping With Java appeared first on Bozho's tech blog.

    Managing AWS Lambda Function Concurrency

    Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency/

    One of the key benefits of serverless applications is the ease in which they can scale to meet traffic demands or requests, with little to no need for capacity planning. In AWS Lambda, which is the core of the serverless platform at AWS, the unit of scale is a concurrent execution. This refers to the number of executions of your function code that are happening at any given time.

    Thinking about concurrent executions as a unit of scale is a fairly unique concept. In this post, I dive deeper into this and talk about how you can make use of per function concurrency limits in Lambda.

    Understanding concurrency in Lambda

    Instead of diving right into the guts of how Lambda works, here’s an appetizing analogy: a magical pizza.
    Yes, a magical pizza!

    This magical pizza has some unique properties:

    • It has a fixed maximum number of slices, such as 8.
    • Slices automatically re-appear after they are consumed.
    • When you take a slice from the pizza, it does not re-appear until it has been completely consumed.
    • One person can take multiple slices at a time.
    • You can easily ask to have the number of slices increased, but they remain fixed at any point in time otherwise.

    Now that the magical pizza’s properties are defined, here’s a hypothetical situation of some friends sharing this pizza.

    Shawn, Kate, Daniela, Chuck, Ian and Avleen get together every Friday to share a pizza and catch up on their week. As there is just six of them, they can easily all enjoy a slice of pizza at a time. As they finish each slice, it re-appears in the pizza pan and they can take another slice again. Given the magical properties of their pizza, they can continue to eat all they want, but with two very important constraints:

    • If any of them take too many slices at once, the others may not get as much as they want.
    • If they take too many slices, they might also eat too much and get sick.

    One particular week, some of the friends are hungrier than the rest, taking two slices at a time instead of just one. If more than two of them try to take two pieces at a time, this can cause contention for pizza slices. Some of them would wait hungry for the slices to re-appear. They could ask for a pizza with more slices, but then run the same risk again later if more hungry friends join than planned for.

    What can they do?

    If the friends agreed to accept a limit for the maximum number of slices they each eat concurrently, both of these issues are avoided. Some could have a maximum of 2 of the 8 slices, or other concurrency limits that were more or less. Just so long as they kept it at or under eight total slices to be eaten at one time. This would keep any from going hungry or eating too much. The six friends can happily enjoy their magical pizza without worry!

    Concurrency in Lambda

    Concurrency in Lambda actually works similarly to the magical pizza model. Each AWS Account has an overall AccountLimit value that is fixed at any point in time, but can be easily increased as needed, just like the count of slices in the pizza. As of May 2017, the default limit is 1000 “slices” of concurrency per AWS Region.

    Also like the magical pizza, each concurrency “slice” can only be consumed individually one at a time. After consumption, it becomes available to be consumed again. Services invoking Lambda functions can consume multiple slices of concurrency at the same time, just like the group of friends can take multiple slices of the pizza.

    Let’s take our example of the six friends and bring it back to AWS services that commonly invoke Lambda:

    • Amazon S3
    • Amazon Kinesis
    • Amazon DynamoDB
    • Amazon Cognito

    In a single account with the default concurrency limit of 1000 concurrent executions, any of these four services could invoke enough functions to consume the entire limit or some part of it. Just like with the pizza example, there is the possibility for two issues to pop up:

    • One or more of these services could invoke enough functions to consume a majority of the available concurrency capacity. This could cause others to be starved for it, causing failed invocations.
    • A service could consume too much concurrent capacity and cause a downstream service or database to be overwhelmed, which could cause failed executions.

    For Lambda functions that are launched in a VPC, you have the potential to consume the available IP addresses in a subnet or the maximum number of elastic network interfaces to which your account has access. For more information, see Configuring a Lambda Function to Access Resources in an Amazon VPC. For information about elastic network interface limits, see Network Interfaces section in the Amazon VPC Limits topic.

    One way to solve both of these problems is applying a concurrency limit to the Lambda functions in an account.

    Configuring per function concurrency limits

    You can now set a concurrency limit on individual Lambda functions in an account. The concurrency limit that you set reserves a portion of your account level concurrency for a given function. All of your functions’ concurrent executions count against this account-level limit by default.

    If you set a concurrency limit for a specific function, then that function’s concurrency limit allocation is deducted from the shared pool and assigned to that specific function. AWS also reserves 100 units of concurrency for all functions that don’t have a specified concurrency limit set. This helps to make sure that future functions have capacity to be consumed.

    Going back to the example of the consuming services, you could set throttles for the functions as follows:

    Amazon S3 function = 350
    Amazon Kinesis function = 200
    Amazon DynamoDB function = 200
    Amazon Cognito function = 150
    Total = 900

    With the 100 reserved for all non-concurrency reserved functions, this totals the account limit of 1000.

    Here’s how this works. To start, create a basic Lambda function that is invoked via Amazon API Gateway. This Lambda function returns a single “Hello World” statement with an added sleep time between 2 and 5 seconds. The sleep time simulates an API providing some sort of capability that can take a varied amount of time. The goal here is to show how an API that is underloaded can reach its concurrency limit, and what happens when it does.
    To create the example function

    1. Open the Lambda console.
    2. Choose Create Function.
    3. For Author from scratch, enter the following values:
      1. For Name, enter a value (such as concurrencyBlog01).
      2. For Runtime, choose Python 3.6.
      3. For Role, choose Create new role from template and enter a name aligned with this function, such as concurrencyBlogRole.
    4. Choose Create function.
    5. The function is created with some basic example code. Replace that code with the following:
    
    import time
    from random import randint
    seconds = randint(2, 5)
    
    def lambda_handler(event, context):
    time.sleep(seconds)
    return {"statusCode": 200,
    "body": ("Hello world, slept " + str(seconds) + " seconds"),
    "headers":
    {
    "Access-Control-Allow-Headers": "Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token",
    "Access-Control-Allow-Methods": "GET,OPTIONS",
    }}
    
    
    1. Under Basic settings, set Timeout to 10 seconds. While this function should only ever take up to 5-6 seconds (with the 5-second max sleep), this gives you a little bit of room if it takes longer.

    1. Choose Save at the top right.

    At this point, your function is configured for this example. Test it and confirm this in the console:

    1. Choose Test.
    2. Enter a name (it doesn’t matter for this example).
    3. Choose Create.
    4. In the console, choose Test again.
    5. You should see output similar to the following:

    Now configure API Gateway so that you have an HTTPS endpoint to test against.

    1. In the Lambda console, choose Configuration.
    2. Under Triggers, choose API Gateway.
    3. Open the API Gateway icon now shown as attached to your Lambda function:

    1. Under Configure triggers, leave the default values for API Name and Deployment stage. For Security, choose Open.
    2. Choose Add, Save.

    API Gateway is now configured to invoke Lambda at the Invoke URL shown under its configuration. You can take this URL and test it in any browser or command line, using tools such as “curl”:

    
    $ curl https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
    Hello world, slept 2 seconds
    

    Throwing load at the function

    Now start throwing some load against your API Gateway + Lambda function combo. Right now, your function is only limited by the total amount of concurrency available in an account. For this example account, you might have 850 unreserved concurrency out of a full account limit of 1000 due to having configured a few concurrency limits already (also the 100 concurrency saved for all functions without configured limits). You can find all of this information on the main Dashboard page of the Lambda console:

    For generating load in this example, use an open source tool called “hey” (https://github.com/rakyll/hey), which works similarly to ApacheBench (ab). You test from an Amazon EC2 instance running the default Amazon Linux AMI from the EC2 console. For more help with configuring an EC2 instance, follow the steps in the Launch Instance Wizard.

    After the EC2 instance is running, SSH into the host and run the following:

    
    sudo yum install go
    go get -u github.com/rakyll/hey
    

    “hey” is easy to use. For these tests, specify a total number of tests (5,000) and a concurrency of 50 against the API Gateway URL as follows(replace the URL here with your own):

    
    $ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
    

    The output from “hey” tells you interesting bits of information:

    
    $ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
    
    Summary:
    Total: 381.9978 secs
    Slowest: 9.4765 secs
    Fastest: 0.0438 secs
    Average: 3.2153 secs
    Requests/sec: 13.0891
    Total data: 140024 bytes
    Size/request: 28 bytes
    
    Response time histogram:
    0.044 [1] |
    0.987 [2] |
    1.930 [0] |
    2.874 [1803] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
    3.817 [1518] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
    4.760 [719] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
    5.703 [917] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
    6.647 [13] |
    7.590 [14] |
    8.533 [9] |
    9.477 [4] |
    
    Latency distribution:
    10% in 2.0224 secs
    25% in 2.0267 secs
    50% in 3.0251 secs
    75% in 4.0269 secs
    90% in 5.0279 secs
    95% in 5.0414 secs
    99% in 5.1871 secs
    
    Details (average, fastest, slowest):
    DNS+dialup: 0.0003 secs, 0.0000 secs, 0.0332 secs
    DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0046 secs
    req write: 0.0000 secs, 0.0000 secs, 0.0005 secs
    resp wait: 3.2149 secs, 0.0438 secs, 9.4472 secs
    resp read: 0.0000 secs, 0.0000 secs, 0.0004 secs
    
    Status code distribution:
    [200] 4997 responses
    [502] 3 responses
    

    You can see a helpful histogram and latency distribution. Remember that this Lambda function has a random sleep period in it and so isn’t entirely representational of a real-life workload. Those three 502s warrant digging deeper, but could be due to Lambda cold-start timing and the “second” variable being the maximum of 5, causing the Lambda functions to time out. AWS X-Ray and the Amazon CloudWatch logs generated by both API Gateway and Lambda could help you troubleshoot this.

    Configuring a concurrency reservation

    Now that you’ve established that you can generate this load against the function, I show you how to limit it and protect a backend resource from being overloaded by all of these requests.

    1. In the console, choose Configure.
    2. Under Concurrency, for Reserve concurrency, enter 25.

    1. Click on Save in the top right corner.

    You could also set this with the AWS CLI using the Lambda put-function-concurrency command or see your current concurrency configuration via Lambda get-function. Here’s an example command:

    
    $ aws lambda get-function --function-name concurrencyBlog01 --output json --query Concurrency
    {
    "ReservedConcurrentExecutions": 25
    }
    

    Either way, you’ve set the Concurrency Reservation to 25 for this function. This acts as both a limit and a reservation in terms of making sure that you can execute 25 concurrent functions at all times. Going above this results in the throttling of the Lambda function. Depending on the invoking service, throttling can result in a number of different outcomes, as shown in the documentation on Throttling Behavior. This change has also reduced your unreserved account concurrency for other functions by 25.

    Rerun the same load generation as before and see what happens. Previously, you tested at 50 concurrency, which worked just fine. By limiting the Lambda functions to 25 concurrency, you should see rate limiting kick in. Run the same test again:

    
    $ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
    

    While this test runs, refresh the Monitoring tab on your function detail page. You see the following warning message:

    This is great! It means that your throttle is working as configured and you are now protecting your downstream resources from too much load from your Lambda function.

    Here is the output from a new “hey” command:

    
    $ ./go/bin/hey -n 5000 -c 50 https://ofixul557l.execute-api.us-east-1.amazonaws.com/prod/concurrencyBlog01
    Summary:
    Total: 379.9922 secs
    Slowest: 7.1486 secs
    Fastest: 0.0102 secs
    Average: 1.1897 secs
    Requests/sec: 13.1582
    Total data: 164608 bytes
    Size/request: 32 bytes
    
    Response time histogram:
    0.010 [1] |
    0.724 [3075] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
    1.438 [0] |
    2.152 [811] |∎∎∎∎∎∎∎∎∎∎∎
    2.866 [11] |
    3.579 [566] |∎∎∎∎∎∎∎
    4.293 [214] |∎∎∎
    5.007 [1] |
    5.721 [315] |∎∎∎∎
    6.435 [4] |
    7.149 [2] |
    
    Latency distribution:
    10% in 0.0130 secs
    25% in 0.0147 secs
    50% in 0.0205 secs
    75% in 2.0344 secs
    90% in 4.0229 secs
    95% in 5.0248 secs
    99% in 5.0629 secs
    
    Details (average, fastest, slowest):
    DNS+dialup: 0.0004 secs, 0.0000 secs, 0.0537 secs
    DNS-lookup: 0.0002 secs, 0.0000 secs, 0.0184 secs
    req write: 0.0000 secs, 0.0000 secs, 0.0016 secs
    resp wait: 1.1892 secs, 0.0101 secs, 7.1038 secs
    resp read: 0.0000 secs, 0.0000 secs, 0.0005 secs
    
    Status code distribution:
    [502] 3076 responses
    [200] 1924 responses
    

    This looks fairly different from the last load test run. A large percentage of these requests failed fast due to the concurrency throttle failing them (those with the 0.724 seconds line). The timing shown here in the histogram represents the entire time it took to get a response between the EC2 instance and API Gateway calling Lambda and being rejected. It’s also important to note that this example was configured with an edge-optimized endpoint in API Gateway. You see under Status code distribution that 3076 of the 5000 requests failed with a 502, showing that the backend service from API Gateway and Lambda failed the request.

    Other uses

    Managing function concurrency can be useful in a few other ways beyond just limiting the impact on downstream services and providing a reservation of concurrency capacity. Here are two other uses:

    • Emergency kill switch
    • Cost controls

    Emergency kill switch

    On occasion, due to issues with applications I’ve managed in the past, I’ve had a need to disable a certain function or capability of an application. By setting the concurrency reservation and limit of a Lambda function to zero, you can do just that.

    With the reservation set to zero every invocation of a Lambda function results in being throttled. You could then work on the related parts of the infrastructure or application that aren’t working, and then reconfigure the concurrency limit to allow invocations again.

    Cost controls

    While I mentioned how you might want to use concurrency limits to control the downstream impact to services or databases that your Lambda function might call, another resource that you might be cautious about is money. Setting the concurrency throttle is another way to help control costs during development and testing of your application.

    You might want to prevent against a function performing a recursive action too quickly or a development workload generating too high of a concurrency. You might also want to protect development resources connected to this function from generating too much cost, such as APIs that your Lambda function calls.

    Conclusion

    Concurrent executions as a unit of scale are a fairly unique characteristic about Lambda functions. Placing limits on how many concurrency “slices” that your function can consume can prevent a single function from consuming all of the available concurrency in an account. Limits can also prevent a function from overwhelming a backend resource that isn’t as scalable.

    Unlike monolithic applications or even microservices where there are mixed capabilities in a single service, Lambda functions encourage a sort of “nano-service” of small business logic directly related to the integration model connected to the function. I hope you’ve enjoyed this post and configure your concurrency limits today!

    Marvellous retrofitted home assistants

    Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retrofitted-home-assistants/

    As more and more digital home assistants are appearing on the consumer market, it’s not uncommon to see the towering Amazon Echo or sleek Google Home when visiting friends or family. But we, the maker community, are rarely happy unless our tech stands out from the rest. So without further ado, here’s a roundup of some fantastic retrofitted home assistant projects you can recreate and give pride of place in your kitchen, on your bookshelf, or wherever else you’d like to talk to your virtual, disembodied PA.

    Google AIY Robot Conversion

    Turned an 80s Tomy Mr Money into a little Google AIY / Raspberry Pi based assistant.

    Matt ‘Circuitbeard’ Brailsford’s Tomy Mr Money Google AIY Assistant is just one of many home-brew home assistants makers have built since the release of APIs for Amazon Alexa and Google Home. Here are some more…

    Teddy Ruxpin

    Oh Teddy, how exciting and mysterious you were when I unwrapped you back in the mideighties. With your awkwardly moving lips and twitching eyelids, you were the cream of the crop of robotic toys! How was I to know that during my thirties, you would become augmented with home assistant software and suddenly instil within me a fear unlike any I’d felt before? (Save for my lifelong horror of ET…)

    Alexa Ruxpin – Raspberry Pi & Alexa Powered Teddy Bear

    Please watch: “DIY Fidget LED Display – Part 1” https://www.youtube.com/watch?v=FAZIc82Duzk -~-~~-~~~-~~-~- There are tons of virtual assistants out on the market: Siri, Ok Google, Alexa, etc. I had this crazy idea…what if I made the virtual assistant real…kinda. I decided to take an old animatronic teddy bear and hack it so that it ran Amazon Alexa.

    Several makers around the world have performed surgery on Teddy to install a Raspberry Pi within his stomach and integrate him with Amazon Alexa Voice or Google’s AIY Projects Voice kit. And because these makers are talented, they’ve also managed to hijack Teddy’s wiring to make his lips move in time with his responses to your commands. Freaky…

    Speaking of freaky: check out Zack’s Furlexa — an Amazon Alexa Furby that will haunt your nightmares.

    Give old tech new life

    Devices that were the height of technology when you purchased them may now be languishing in your attic collecting dust. With new and improved versions of gadgets and gizmos being released almost constantly, it is likely that your household harbours a spare whosit or whatsit which you can dismantle and give a new Raspberry Pi heart and purpose.

    Take, for example, Martin Mander’s Google Pi intercom. By gutting and thoroughly cleaning a vintage intercom, Martin fashioned a suitable housing the Google AIY Projects Voice kit to create a new home assistant for his house:

    1986 Google Pi Intercom

    This is a 1986 Radio Shack Intercom that I’ve converted into a Google Home style device using a Raspberry Pi and the Google AIY (Artificial Intelligence Yourself) kit that came free with the MagPi magazine (issue 57). It uses the Google Assistant to answer questions and perform actions, using IFTTT to integrate with smart home accessories and other web services.

    Not only does this build look fantastic, it’s also a great conversation starter for any visitors who had a similar device during the eighties.

    Also take a look at Martin’s 1970s Amazon Alexa phone for more nostalgic splendour.

    Put it in a box

    …and then I’ll put that box inside of another box, and then I’ll mail that box to myself, and when it arrives…

    A GIF from the emperors new groove - Raspberry Pi Home Assistant

    A GIF. A harmless, little GIF…and proof of the comms team’s obsession with The Emperor’s New Groove.

    You don’t have to be fancy when it comes to housing your home assistant. And often, especially if you’re working with the smaller people in your household, the results of a simple homespun approach are just as delightful.

    Here are Hannah and her dad Tom, explaining how they built a home assistant together and fit it inside an old cigar box:

    Raspberry Pi 3 Amazon Echo – The Alexa Kids Build!

    My 7 year old daughter and I decided to play around with the Raspberry Pi and build ourselves an Amazon Echo (Alexa). The video tells you about what we did and the links below will take you to all the sites we used to get this up and running.

    Also see the Google AIY Projects Voice kit — the cardboard box-est of home assistant boxes.

    Make your own home assistant

    And now it’s your turn! I challenge you all (and also myself) to create a home assistant using the Raspberry Pi. Whether you decide to fit Amazon Alexa inside an old shoebox or Google Home inside your sister’s Barbie, I’d love to see what you create using the free home assistant software available online.

    Check out these other home assistants for Raspberry Pi, and keep an eye on our blog to see what I manage to create as part of the challenge.

    Ten virtual house points for everyone who shares their build with us online, either in the comments below or by tagging us on your social media account.

    The post Marvellous retrofitted home assistants appeared first on Raspberry Pi.

    AWS Cloud9 – Cloud Developer Environments

    Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-cloud9-cloud-developer-environments/

    One of the first things you learn when you start programming is that, just like any craftsperson, your tools matter. Notepad.exe isn’t going to cut it. A powerful editor and testing pipeline supercharge your productivity. I still remember learning to use Vim for the first time and being able to zip around systems and complex programs. Do you remember how hard it was to setup all your compilers and dependencies on a new machine? How many cycles have you wasted matching versions, tinkering with configs, and then writing documentation to onboard a new developer to a project?

    Today we’re launching AWS Cloud9, an Integrated Development Environment (IDE) for writing, running, and debugging code, all from your web browser. Cloud9 comes prepackaged with essential tools for many popular programming languages (Javascript, Python, PHP, etc.) so you don’t have to tinker with installing various compilers and toolchains. Cloud9 also provides a seamless experience for working with serverless applications allowing you to quickly switch between local and remote testing or debugging. Based on the popular open source Ace Editor and c9.io IDE (which we acquired last year), AWS Cloud9 is designed to make collaborative cloud development easy with extremely powerful pair programming features. There are more features than I could ever cover in this post but to give a quick breakdown I’ll break the IDE into 3 components: The editor, the AWS integrations, and the collaboration.

    Editing


    The Ace Editor at the core of Cloud9 is what lets you write code quickly, easily, and beautifully. It follows a UNIX philosophy of doing one thing and doing it well: writing code.

    It has all the typical IDE features you would expect: live syntax checking, auto-indent, auto-completion, code folding, split panes, version control integration, multiple cursors and selections, and it also has a few unique features I want to highlight. First of all, it’s fast, even for large (100000+ line) files. There’s no lag or other issues while typing. It has over two dozen themes built-in (solarized!) and you can bring all of your favorite themes from Sublime Text or TextMate as well. It has built-in support for 40+ language modes and customizable run configurations for your projects. Most importantly though, it has Vim mode (or emacs if your fingers work that way). It also has a keybinding editor that allows you to bend the editor to your will.

    The editor supports powerful keyboard navigation and commands (similar to Sublime Text or vim plugins like ctrlp). On a Mac, with ⌘+P you can open any file in your environment with fuzzy search. With ⌘+. you can open up the command pane which allows you to do invoke any of the editor commands by typing the name. It also helpfully displays the keybindings for a command in the pane, for instance to open to a terminal you can press ⌥+T. Oh, did I mention there’s a terminal? It ships with the AWS CLI preconfigured for access to your resources.

    The environment also comes with pre-installed debugging tools for many popular languages – but you’re not limited to what’s already installed. It’s easy to add in new programs and define new run configurations.

    The editor is just one, admittedly important, component in an IDE though. I want to show you some other compelling features.

    AWS Integrations

    The AWS Cloud9 IDE is the first IDE I’ve used that is truly “cloud native”. The service is provided at no additional charge, and you only charged for the underlying compute and storage resources. When you create an environment you’re prompted for either: an instance type and an auto-hibernate time, or SSH access to a machine of your choice.

    If you’re running in AWS the auto-hibernate feature will stop your instance shortly after you stop using your IDE. This can be a huge cost savings over running a more permanent developer desktop. You can also launch it within a VPC to give it secure access to your development resources. If you want to run Cloud9 outside of AWS, or on an existing instance, you can provide SSH access to the service which it will use to create an environment on the external machine. Your environment is provisioned with automatic and secure access to your AWS account so you don’t have to worry about copying credentials around. Let me say that again: you can run this anywhere.

    Serverless Development with AWS Cloud9

    I spend a lot of time on Twitch developing serverless applications. I have hundreds of lambda functions and APIs deployed. Cloud9 makes working with every single one of these functions delightful. Let me show you how it works.


    If you look in the top right side of the editor you’ll see an AWS Resources tab. Opening this you can see all of the lambda functions in your region (you can see functions in other regions by adjusting your region preferences in the AWS preference pane).

    You can import these remote functions to your local workspace just by double-clicking them. This allows you to edit, test, and debug your serverless applications all locally. You can create new applications and functions easily as well. If you click the Lambda icon in the top right of the pane you’ll be prompted to create a new lambda function and Cloud9 will automatically create a Serverless Application Model template for you as well. The IDE ships with support for the popular SAM local tool pre-installed. This is what I use in most of my local testing and serverless development. Since you have a terminal, it’s easy to install additional tools and use other serverless frameworks.

     

    Launching an Environment from AWS CodeStar

    With AWS CodeStar you can easily provision an end-to-end continuous delivery toolchain for development on AWS. Codestar provides a unified experience for building, testing, deploying, and managing applications using AWS CodeCommit, CodeBuild, CodePipeline, and CodeDeploy suite of services. Now, with a few simple clicks you can provision a Cloud9 environment to develop your application. Your environment will be pre-configured with the code for your CodeStar application already checked out and git credentials already configured.

    You can easily share this environment with your coworkers which leads me to another extremely useful set of features.

    Collaboration

    One of the many things that sets AWS Cloud9 apart from other editors are the rich collaboration tools. You can invite an IAM user to your environment with a few clicks.

    You can see what files they’re working on, where their cursors are, and even share a terminal. The chat features is useful as well.

    Things to Know

    • There are no additional charges for this service beyond the underlying compute and storage.
    • c9.io continues to run for existing users. You can continue to use all the features of c9.io and add new team members if you have a team account. In the future, we will provide tools for easy migration of your c9.io workspaces to AWS Cloud9.
    • AWS Cloud9 is available in the US West (Oregon), US East (Ohio), US East (N.Virginia), EU (Ireland), and Asia Pacific (Singapore) regions.

    I can’t wait to see what you build with AWS Cloud9!

    Randall

    Announcing Alexa for Business: Using Amazon Alexa’s Voice Enabled Devices for Workplaces

    Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-announcing-alexa-for-business-using-amazon-alexas-voice-enabled-devices-for-workplaces/

    There are only a few things more integrated into my day-to-day life than Alexa. I use my Echo device and the enabled Alexa Skills for turning on lights in my home, checking video from my Echo Show to see who is ringing my doorbell, keeping track of my extensive to-do list on a weekly basis, playing music, and lots more. I even have my family members enabling Alexa skills on their Echo devices for all types of activities that they now cannot seem to live without. My mother, who is in a much older generation (please don’t tell her I said that), uses her Echo and the custom Alexa skill I built for her to store her baking recipes. She also enjoys exploring skills that have the latest health and epicurean information. It’s no wonder then, that when I go to work I feel like something is missing. For example, I would love to be able to ask Alexa to read my flash briefing when I get to the office.

     

     

    For those of you that would love to have Alexa as your intelligent assistant at work, I have exciting news. I am delighted to announce Alexa for Business, a new service that enables businesses and organizations to bring Alexa into the workplace at scale. Alexa for Business not only brings Alexa into your workday to boost your productivity, but also provides tools and resources for organizations to set up and manage Alexa devices at scale, enable private skills, and enroll users.

    Making Workplaces Smarter with Alexa for Business

    Alexa for Business brings the Alexa you know and love into the workplace to help all types of workers to be more productive and organized on both personal and shared Echo devices. In the workplace, shared devices can be placed in common areas for anyone to use, and workers can use their personal devices to connect at work and at home.

    End users can use shared devices or personal devices. Here’s what they can do from each.

    Shared devices

    1. Join meetings in conference rooms: You can simply say “Alexa, start the meeting”. Alexa turns on the video conferencing equipment, dials into your conference call, and gets the meeting going.
    2. Help around the office: access custom skills to help with directions around the office, finding an open conference room, reporting a building equipment problem, or ordering new supplies.

    Personal devices

    1. Enable calling and messaging: Alexa helps make phone calls, hands free and can also send messages on your behalf.
    2. Automatically dial into conference calls: Alexa can join any meeting with a conference call number via voice from home, work, or on the go.
    3. Intelligent assistant: Alexa can quickly check calendars, help schedule meetings, manage to-do lists, and set reminders.
    4. Find information: Alexa can help find information in popular business applications like Salesforce, Concur, or Splunk.

    Here are some of the controls available to administrators:

    1. Provision & Manage Shared Alexa Devices: You can provision and manage shared devices around your workplace using the Alexa for Business console. For each device you can set a location, such as a conference room designation, and assign public and private skills for the device.
    2. Configure Conference Room Settings: Kick off your meetings with a simple “Alexa, start the meeting.” Alexa for Business allows you to configure your conference room settings so you can use Alexa to start your meetings and control your conference room equipment, or dial in directly from the Amazon Echo device in the room.
    3. Manage Users: You can invite users in your organization to enroll their personal Alexa account with your Alexa for Business account. Once your users have enrolled, you can enable your custom private skills for them to use on any of the devices in their personal Alexa account, at work or at home.
    4. Manage Skills: You can assign public skills and custom private skills your organization has created to your shared devices, and make private skills available to your enrolled users.  You can create skills groups, which you can then assign to specific shared devices.
    5. Build Private Skills & Use Alexa for Business APIs:  Dig into the Alexa Skills Kit and build your own skills.  Then you can make these available to the shared devices and enrolled users in your Alexa for Business account, all without having to publish them in the public Alexa Skills Store.  Alexa for Business offers additional APIs, which you can use to add context to your skills and automate administrative tasks.

    Let’s take a quick journey into Alexa for Business. I’ll first log into the AWS Console and go to the Alexa for Business service.

     

    Once I log in to the service, I am presented with the Alexa for Business dashboard. As you can see, I have access to manage Rooms, Shared devices, Users, and Skills, as well as the ability to control conferencing, calendars, and user invitations.

    First, I’ll start by setting up my Alexa devices. Alexa for Business provides a Device Setup Tool to setup multiple devices, connect them to your Wi-Fi network, and register them with your Alexa for Business account. This is quite different from the setup process for personal Alexa devices. With Alexa for Business, you can provision 25 devices at a time.

    Once my devices are provisioned, I can create location profiles for the locations where I want to put these devices (such as in my conference rooms). We call these locations “Rooms” in our Alexa for Business console. I can go to the Room profiles menu and create a Room profile. A Room profile contains common settings for the Alexa device in your room, such as the wake word for the device, the address, time zone, unit of measurement, and whether I want to enable outbound calling.

    The next step is to enable skills for the devices I set up. I can enable any skill from the Alexa Skills store, or use the private skills feature to enable skills I built myself and made available to my Alexa for Business account. To enable skills for my shared devices, I can go to the Skills menu option and enable skills. After I have enabled skills, I can add them to a skill group and assign the skill group to my rooms.

    Something I really like about Alexa for Business, is that I can use Alexa to dial into conference calls. To enable this, I go to the Conferencing menu option and select Add provider. At Amazon we use Amazon Chime, but you can choose from a list of different providers, or you can even add your own provider if you want to.

    Once I’ve set this up, I can say “Alexa, join my meeting”; Alexa asks for my Amazon Chime meeting ID, after which my Echo device will automatically dial into my Amazon Chime meeting. Alexa for Business also provides an intelligent way to start any meeting quickly. We’ve all been in the situation where we walk into a meeting room and can’t find the meeting ID or conference call number. With Alexa for Business, I can link to my corporate calendar, so Alexa can figure out the meeting information for me, and automatically dial in – I don’t even need my meeting ID. Here’s how you do that:

    Alexa can also control the video conferencing equipment in the room. To do this, all I need to do is select the skill for the equipment that I have, select the equipment provider, and enable it for my conference rooms. Now when I ask Alexa to join my meeting, Alexa will dial-in from the equipment in the room, and turn on the video conferencing system, without me needing to do anything else.

     

    Let’s switch to enrolled users next.

    I’ll start by setting up the User Invitation for my organization so that I can invite users to my Alexa for Business account. To allow a user to use Alexa for Business within an organization, you invite them to enroll their personal Alexa account with the service by sending a user invitation via email from the management console. If I choose, I can customize the user enrollment email to contain additional content. For example, I can add information about my organization’s Alexa skills that can be enabled after they’ve accepted the invitation and completed the enrollment process. My users must join in order to use the features of Alexa for Business, such as auto dialing into conference calls, linking their Microsoft Exchange calendars, or using private skills.

    Now that I have customized my User Invitation, I will invite users to take advantage of Alexa for Business for my organization by going to the Users menu on the Dashboard and entering their email address.  This will send an email with a link that can be used to join my organization. Users will join using the Amazon account that their personal Alexa devices are registered to. Let’s invite Jeff Barr to join my Alexa for Business organization.

    After Jeff has enrolled in my Alexa for Business account, he can discover the private skills I’ve enabled for enrolled users, and he can access his work skills and join conference calls from any of his personal devices, including the Echo in his home office.

    Summary

    We’ve only scratched the surface in our brief review of the Alexa for Business console and service features.  You can learn more about Alexa for Business by viewing the Alexa for Business website, reading the admin and API guides in the AWS documentation, or by watching the Getting Started videos within the Alexa for Business console.

    You can learn more about Alexa for Business by viewing the Alexa for Business website, watching the Alexa for Business overview video, reading the admin and API guides in the AWS documentation, or by watching the Getting Started videos within the Alexa for Business console.

    Alexa, Say Goodbye and Sign off the Blog Post.”

    Tara 

    GDPR – A Practical Guide For Developers

    Post Syndicated from Bozho original https://techblog.bozho.net/gdpr-practical-guide-developers/

    You’ve probably heard about GDPR. The new European data protection regulation that applies practically to everyone. Especially if you are working in a big company, it’s most likely that there’s already a process for gettign your systems in compliance with the regulation.

    The regulation is basically a law that must be followed in all European countries (but also applies to non-EU companies that have users in the EU). In this particular case, it applies to companies that are not registered in Europe, but are having European customers. So that’s most companies. I will not go into yet another “12 facts about GDPR” or “7 myths about GDPR” posts/whitepapers, as they are often aimed at managers or legal people. Instead, I’ll focus on what GDPR means for developers.

    Why am I qualified to do that? A few reasons – I was advisor to the deputy prime minister of a EU country, and because of that I’ve been both exposed and myself wrote some legislation. I’m familiar with the “legalese” and how the regulatory framework operates in general. I’m also a privacy advocate and I’ve been writing about GDPR-related stuff in the past, i.e. “before it was cool” (protecting sensitive data, the right to be forgotten). And finally, I’m currently working on a project that (among other things) aims to help with covering some GDPR aspects.

    I’ll try to be a bit more comprehensive this time and cover as many aspects of the regulation that concern developers as I can. And while developers will mostly be concerned about how the systems they are working on have to change, it’s not unlikely that a less informed manager storms in in late spring, realizing GDPR is going to be in force tomorrow, asking “what should we do to get our system/website compliant”.

    The rights of the user/client (referred to as “data subject” in the regulation) that I think are relevant for developers are: the right to erasure (the right to be forgotten/deleted from the system), right to restriction of processing (you still keep the data, but mark it as “restricted” and don’t touch it without further consent by the user), the right to data portability (the ability to export one’s data), the right to rectification (the ability to get personal data fixed), the right to be informed (getting human-readable information, rather than long terms and conditions), the right of access (the user should be able to see all the data you have about them), the right to data portability (the user should be able to get a machine-readable dump of their data).

    Additionally, the relevant basic principles are: data minimization (one should not collect more data than necessary), integrity and confidentiality (all security measures to protect data that you can think of + measures to guarantee that the data has not been inappropriately modified).

    Even further, the regulation requires certain processes to be in place within an organization (of more than 250 employees or if a significant amount of data is processed), and those include keeping a record of all types of processing activities carried out, including transfers to processors (3rd parties), which includes cloud service providers. None of the other requirements of the regulation have an exception depending on the organization size, so “I’m small, GDPR does not concern me” is a myth.

    It is important to know what “personal data” is. Basically, it’s every piece of data that can be used to uniquely identify a person or data that is about an already identified person. It’s data that the user has explicitly provided, but also data that you have collected about them from either 3rd parties or based on their activities on the site (what they’ve been looking at, what they’ve purchased, etc.)

    Having said that, I’ll list a number of features that will have to be implemented and some hints on how to do that, followed by some do’s and don’t’s.

    • “Forget me” – you should have a method that takes a userId and deletes all personal data about that user (in case they have been collected on the basis of consent, and not due to contract enforcement or legal obligation). It is actually useful for integration tests to have that feature (to cleanup after the test), but it may be hard to implement depending on the data model. In a regular data model, deleting a record may be easy, but some foreign keys may be violated. That means you have two options – either make sure you allow nullable foreign keys (for example an order usually has a reference to the user that made it, but when the user requests his data be deleted, you can set the userId to null), or make sure you delete all related data (e.g. via cascades). This may not be desirable, e.g. if the order is used to track available quantities or for accounting purposes. It’s a bit trickier for event-sourcing data models, or in extreme cases, ones that include some sort of blcokchain/hash chain/tamper-evident data structure. With event sourcing you should be able to remove a past event and re-generate intermediate snapshots. For blockchain-like structures – be careful what you put in there and avoid putting personal data of users. There is an option to use a chameleon hash function, but that’s suboptimal. Overall, you must constantly think of how you can delete the personal data. And “our data model doesn’t allow it” isn’t an excuse.
    • Notify 3rd parties for erasure – deleting things from your system may be one thing, but you are also obligated to inform all third parties that you have pushed that data to. So if you have sent personal data to, say, Salesforce, Hubspot, twitter, or any cloud service provider, you should call an API of theirs that allows for the deletion of personal data. If you are such a provider, obviously, your “forget me” endpoint should be exposed. Calling the 3rd party APIs to remove data is not the full story, though. You also have to make sure the information does not appear in search results. Now, that’s tricky, as Google doesn’t have an API for removal, only a manual process. Fortunately, it’s only about public profile pages that are crawlable by Google (and other search engines, okay…), but you still have to take measures. Ideally, you should make the personal data page return a 404 HTTP status, so that it can be removed.
    • Restrict processing – in your admin panel where there’s a list of users, there should be a button “restrict processing”. The user settings page should also have that button. When clicked (after reading the appropriate information), it should mark the profile as restricted. That means it should no longer be visible to the backoffice staff, or publicly. You can implement that with a simple “restricted” flag in the users table and a few if-clasues here and there.
    • Export data – there should be another button – “export data”. When clicked, the user should receive all the data that you hold about them. What exactly is that data – depends on the particular usecase. Usually it’s at least the data that you delete with the “forget me” functionality, but may include additional data (e.g. the orders the user has made may not be delete, but should be included in the dump). The structure of the dump is not strictly defined, but my recommendation would be to reuse schema.org definitions as much as possible, for either JSON or XML. If the data is simple enough, a CSV/XLS export would also be fine. Sometimes data export can take a long time, so the button can trigger a background process, which would then notify the user via email when his data is ready (twitter, for example, does that already – you can request all your tweets and you get them after a while).
    • Allow users to edit their profile – this seems an obvious rule, but it isn’t always followed. Users must be able to fix all data about them, including data that you have collected from other sources (e.g. using a “login with facebook” you may have fetched their name and address). Rule of thumb – all the fields in your “users” table should be editable via the UI. Technically, rectification can be done via a manual support process, but that’s normally more expensive for a business than just having the form to do it. There is one other scenario, however, when you’ve obtained the data from other sources (i.e. the user hasn’t provided their details to you directly). In that case there should still be a page where they can identify somehow (via email and/or sms confirmation) and get access to the data about them.
    • Consent checkboxes – this is in my opinion the biggest change that the regulation brings. “I accept the terms and conditions” would no longer be sufficient to claim that the user has given their consent for processing their data. So, for each particular processing activity there should be a separate checkbox on the registration (or user profile) screen. You should keep these consent checkboxes in separate columns in the database, and let the users withdraw their consent (by unchecking these checkboxes from their profile page – see the previous point). Ideally, these checkboxes should come directly from the register of processing activities (if you keep one). Note that the checkboxes should not be preselected, as this does not count as “consent”.
    • Re-request consent – if the consent users have given was not clear (e.g. if they simply agreed to terms & conditions), you’d have to re-obtain that consent. So prepare a functionality for mass-emailing your users to ask them to go to their profile page and check all the checkboxes for the personal data processing activities that you have.
    • “See all my data” – this is very similar to the “Export” button, except data should be displayed in the regular UI of the application rather than an XML/JSON format. For example, Google Maps shows you your location history – all the places that you’ve been to. It is a good implementation of the right to access. (Though Google is very far from perfect when privacy is concerned)
    • Age checks – you should ask for the user’s age, and if the user is a child (below 16), you should ask for parent permission. There’s no clear way how to do that, but my suggestion is to introduce a flow, where the child should specify the email of a parent, who can then confirm. Obviosuly, children will just cheat with their birthdate, or provide a fake parent email, but you will most likely have done your job according to the regulation (this is one of the “wishful thinking” aspects of the regulation).

    Now some “do’s”, which are mostly about the technical measures needed to protect personal data. They may be more “ops” than “dev”, but often the application also has to be extended to support them. I’ve listed most of what I could think of in a previous post.

    • Encrypt the data in transit. That means that communication between your application layer and your database (or your message queue, or whatever component you have) should be over TLS. The certificates could be self-signed (and possibly pinned), or you could have an internal CA. Different databases have different configurations, just google “X encrypted connections. Some databases need gossiping among the nodes – that should also be configured to use encryption
    • Encrypt the data at rest – this again depends on the database (some offer table-level encryption), but can also be done on machine-level. E.g. using LUKS. The private key can be stored in your infrastructure, or in some cloud service like AWS KMS.
    • Encrypt your backups – kind of obvious
    • Implement pseudonymisation – the most obvious use-case is when you want to use production data for the test/staging servers. You should change the personal data to some “pseudonym”, so that the people cannot be identified. When you push data for machine learning purposes (to third parties or not), you can also do that. Technically, that could mean that your User object can have a “pseudonymize” method which applies hash+salt/bcrypt/PBKDF2 for some of the data that can be used to identify a person
    • Protect data integrity – this is a very broad thing, and could simply mean “have authentication mechanisms for modifying data”. But you can do something more, even as simple as a checksum, or a more complicated solution (like the one I’m working on). It depends on the stakes, on the way data is accessed, on the particular system, etc. The checksum can be in the form of a hash of all the data in a given database record, which should be updated each time the record is updated through the application. It isn’t a strong guarantee, but it is at least something.
    • Have your GDPR register of processing activities in something other than Excel – Article 30 says that you should keep a record of all the types of activities that you use personal data for. That sounds like bureaucracy, but it may be useful – you will be able to link certain aspects of your application with that register (e.g. the consent checkboxes, or your audit trail records). It wouldn’t take much time to implement a simple register, but the business requirements for that should come from whoever is responsible for the GDPR compliance. But you can advise them that having it in Excel won’t make it easy for you as a developer (imagine having to fetch the excel file internally, so that you can parse it and implement a feature). Such a register could be a microservice/small application deployed separately in your infrastructure.
    • Log access to personal data – every read operation on a personal data record should be logged, so that you know who accessed what and for what purpose
    • Register all API consumers – you shouldn’t allow anonymous API access to personal data. I’d say you should request the organization name and contact person for each API user upon registration, and add those to the data processing register. Note: some have treated article 30 as a requirement to keep an audit log. I don’t think it is saying that – instead it requires 250+ companies to keep a register of the types of processing activities (i.e. what you use the data for). There are other articles in the regulation that imply that keeping an audit log is a best practice (for protecting the integrity of the data as well as to make sure it hasn’t been processed without a valid reason)

    Finally, some “don’t’s”.

    • Don’t use data for purposes that the user hasn’t agreed with – that’s supposed to be the spirit of the regulation. If you want to expose a new API to a new type of clients, or you want to use the data for some machine learning, or you decide to add ads to your site based on users’ behaviour, or sell your database to a 3rd party – think twice. I would imagine your register of processing activities could have a button to send notification emails to users to ask them for permission when a new processing activity is added (or if you use a 3rd party register, it should probably give you an API). So upon adding a new processing activity (and adding that to your register), mass email all users from whom you’d like consent.
    • Don’t log personal data – getting rid of the personal data from log files (especially if they are shipped to a 3rd party service) can be tedious or even impossible. So log just identifiers if needed. And make sure old logs files are cleaned up, just in case
    • Don’t put fields on the registration/profile form that you don’t need – it’s always tempting to just throw as many fields as the usability person/designer agrees on, but unless you absolutely need the data for delivering your service, you shouldn’t collect it. Names you should probably always collect, but unless you are delivering something, a home address or phone is unnecessary.
    • Don’t assume 3rd parties are compliant – you are responsible if there’s a data breach in one of the 3rd parties (e.g. “processors”) to which you send personal data. So before you send data via an API to another service, make sure they have at least a basic level of data protection. If they don’t, raise a flag with management.
    • Don’t assume having ISO XXX makes you compliant – information security standards and even personal data standards are a good start and they will probably 70% of what the regulation requires, but they are not sufficient – most of the things listed above are not covered in any of those standards

    Overall, the purpose of the regulation is to make you take conscious decisions when processing personal data. It imposes best practices in a legal way. If you follow the above advice and design your data model, storage, data flow , API calls with data protection in mind, then you shouldn’t worry about the huge fines that the regulation prescribes – they are for extreme cases, like Equifax for example. Regulators (data protection authorities) will most likely have some checklists into which you’d have to somehow fit, but if you follow best practices, that shouldn’t be an issue.

    I think all of the above features can be implemented in a few weeks by a small team. Be suspicious when a big vendor offers you a generic plug-and-play “GDPR compliance” solution. GDPR is not just about the technical aspects listed above – it does have organizational/process implications. But also be suspicious if a consultant claims GDPR is complicated. It’s not – it relies on a few basic principles that are in fact best practices anyway. Just don’t ignore them.

    The post GDPR – A Practical Guide For Developers appeared first on Bozho's tech blog.

    Amazon MQ – Managed Message Broker Service for ActiveMQ

    Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/amazon-mq-managed-message-broker-service-for-activemq/

    Messaging holds the parts of a distributed application together, while also adding resiliency and enabling the implementation of highly scalable architectures. For example, earlier this year, Amazon Simple Queue Service (SQS) and Amazon Simple Notification Service (SNS) supported the processing of customer orders on Prime Day, collectively processing 40 billion messages at a rate of 10 million per second, with no customer-visible issues.

    SQS and SNS have been used extensively for applications that were born in the cloud. However, many of our larger customers are already making use of open-sourced or commercially-licensed message brokers. Their applications are mission-critical, and so is the messaging that powers them. Our customers describe the setup and on-going maintenance of their messaging infrastructure as “painful” and report that they spend at least 10 staff-hours per week on this chore.

    New Amazon MQ
    Today we are launching Amazon MQ – a managed message broker service for Apache ActiveMQ that lets you get started in minutes with just three clicks! As you may know, ActiveMQ is a popular open-source message broker that is fast & feature-rich. It offers queues and topics, durable and non-durable subscriptions, push-based and poll-based messaging, and filtering.

    As a managed service, Amazon MQ takes care of the administration and maintenance of ActiveMQ. This includes responsibility for broker provisioning, patching, failure detection & recovery for high availability, and message durability. With Amazon MQ, you get direct access to the ActiveMQ console and industry standard APIs and protocols for messaging, including JMS, NMS, AMQP, STOMP, MQTT, and WebSocket. This allows you to move from any message broker that uses these standards to Amazon MQ–along with the supported applications–without rewriting code.

    You can create a single-instance Amazon MQ broker for development and testing, or an active/standby pair that spans AZs, with quick, automatic failover. Either way, you get data replication across AZs and a pay-as-you-go model for the broker instance and message storage.

    Amazon MQ is a full-fledged part of the AWS family, including the use of AWS Identity and Access Management (IAM) for authentication and authorization to use the service API. You can use Amazon CloudWatch metrics to keep a watchful eye metrics such as queue depth and initiate Auto Scaling of your consumer fleet as needed.

    Launching an Amazon MQ Broker
    To get started, I open up the Amazon MQ Console, select the desired AWS Region, enter a name for my broker, and click on Next step:

    Then I choose the instance type, indicate that I want to create a standby , and click on Create broker (I can select a VPC and fine-tune other settings in the Advanced settings section):

    My broker will be created and ready to use in 5-10 minutes:

    The URLs and endpoints that I use to access my broker are all available at a click:

    I can access the ActiveMQ Web Console at the link provided:

    The broker publishes instance, topic, and queue metrics to CloudWatch. Here are the instance metrics:

    Available Now
    Amazon MQ is available now and you can start using it today in the US East (Northern Virginia), US East (Ohio), US West (Oregon), EU (Ireland), EU (Frankfurt), and Asia Pacific (Sydney) Regions.

    The AWS Free Tier lets you use a single-AZ micro instance for up to 750 hours and to store up to 1 gigabyte each month, for one year. After that, billing is based on instance-hours and message storage, plus charges Internet data transfer if the broker is accessed from outside of AWS.

    Jeff;

    AWS PrivateLink Update – VPC Endpoints for Your Own Applications & Services

    Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-privatelink-update-vpc-endpoints-for-your-own-applications-services/

    Earlier this month, my colleague Colm MacCárthaigh told you about AWS PrivateLink and showed you how to use it to access AWS services such as Amazon Kinesis Streams, AWS Service Catalog, EC2 Systems Manager, the EC2 APIs, and the ELB APIs by way of VPC Endpoints. The endpoint (represented by one or more Elastic Network Interfaces or ENIs) resides within your VPC and has IP addresses drawn from the VPC’s subnets, without the need for an Internet or NAT Gateway. This model is clear and easy to understand, not to mention secure and scalable!

    Endpoints for Private Connectivity
    Today we are building upon the initial launch and extending the PrivateLink model, allowing you to set up and use VPC Endpoints to access your own services and those made available by others. Even before we launched PrivateLink for AWS services, we had a lot of requests for this feature, so I expect it to be pretty popular. For example, one customer told us that they plan to create hundreds of VPCs, each hosting and providing a single microservice (read Microservices on AWS to learn more).

    Companies can now create services and offer them for sale to other AWS customers, for access via a private connection. They create a service that accepts TCP traffic, host it behind a Network Load Balancer, and then make the service available, either directly or in AWS Marketplace. They will be notified of new subscription requests and can choose to accept or reject each one. I expect that this feature will be used to create a strong, vibrant ecosystem of service providers in 2018.

    The service provider and the service consumer run in separate VPCs and AWS accounts and communicate solely through the endpoint, with all traffic flowing across Amazon’s private network. Service consumers don’t have to worry about overlapping IP addresses, arrange for VPC peering, or use a VPC Gateway. You can also use AWS Direct Connect to connect your existing data center to one of your VPCs in order to allow your cloud-based applications to access services running on-premises, or vice versa.

    Providing and Consuming Services
    This new feature puts a lot of power at your fingertips. You can set it all up using the VPC APIs, the VPC CLI, or the AWS Management Console. I’ll use the console, and will show you how to provide and then consume a service. I am going to do both within a single AWS account, but that’s just for demo purposes.

    Let’s talk about providing a service. It must run behind a Network Load Balancer and must be accessible over TCP. It can be hosted on EC2 instances, ECS containers, or on-premises (configured as an IP target), and should be able to scale in order to meet the expected level of demand. For low latency and fault tolerance, we recommend using an NLB with targets in every AZ of its region. Here’s mine:

    I open up the VPC Console and navigate to Endpoint Services, then click on Create Endpoint Service:

    I choose my NLB (just one in this case, but I can choose two or more and they will be mapped to consumers on a round-robin basis). By clicking on Acceptance required, I get to control access to my endpoint on a request-by-request basis:

    I click on Create service and my service is ready immediately:

    If I was going to make this service available in AWS Marketplace, I would go ahead and create a listing now. Since I am going to be the producer and the consumer in this blog post, I’ll skip that step. I will, however, copy the Service name for use in the next step.

    I return to the VPC Dashboard and navigate to Endpoints, then click on Create endpoint. Then I select Find service by name, paste the service name, and click on Verify to move ahead. Then I select the desired AZs, and a subnet in each one, pick my security groups, and click on Create endpoint:

    Because I checked Acceptance required when I created the endpoint service, the connection is pending acceptance:

    Back on the endpoint service side (typically in a separate AWS account), I can see and accept the pending request:

    The endpoint becomes available and ready to use within a minute or so. If I was creating a service and selling access on a paid basis, I would accept the request as part of a larger, and perhaps automated, onboarding workflow for a new customer.

    On the consumer side, my new endpoint is accessible via DNS name:

    Services provided by AWS and services in AWS Marketplace are accessible through split-horizon DNS. Accessing the service through this name will resolve to the “best” endpoint, taking Region and Availability Zone into consideration.

    In the Marketplace
    As I noted earlier, this new PrivateLink feature creates an opportunity for new and existing sellers in AWS Marketplace. The following SaaS offerings are already available as endpoints and I expect many more to follow (read Sell on AWS Marketplace to get started):

    CA TechnologiesCA App Experience Analytics Essentials.

    Aqua SecurityAqua Container Image Security Scanner.

    DynatraceCloud-Native Monitoring powered by AI.

    Cisco StealthwatchPublic Cloud Monitoring – Metered, Public Cloud Monitoring – Contracts.

    SigOptML Optimization & Tuning.

    Available Today
    This new PrivateLink feature is available now and you can start using it today!

    Jeff;

     

    AWS Media Services – Process, Store, and Monetize Cloud-Based Video

    Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/aws-media-services-process-store-and-monetize-cloud-based-video/

    Do you remember what web video was like in the early days? Standalone players, video no larger than a postage stamp, slow & cantankerous connections, overloaded servers, and the ever-present buffering messages were the norm less than two decades ago.

    Today, thanks to technological progress and a broad array of standards, things are a lot better. Video consumers are now in control. They use devices of all shapes, sizes, and vintages to enjoy live and recorded content that is broadcast, streamed, or sent over-the-top (OTT, as they say), and expect immediate access to content that captures and then holds their attention. Meeting these expectations presents a challenge for content creators and distributors. Instead of generating video in a one-size-fits-all format, they (or their media servers) must be prepared to produce video that spans a broad range of sizes, formats, and bit rates, taking care to be ready to deal with planned or unplanned surges in demand. In the face of all of this complexity, they must backstop their content with a monetization model that supports the content and the infrastructure to deliver it.

    New AWS Media Services
    Today we are launching an array of broadcast-quality media services, each designed to address one or more aspects of the challenge that I outlined above. You can use them together to build a complete end-to-end video solution or you can use one or more in building-block style. In true AWS fashion, you can spend more time innovating and less time setting up and running infrastructure, leaving you ready to focus on creating, delivering, and monetizing your content. The services are all elastic, allowing you to ramp up processing power, connections, and storage and giving you the ability to handle million-user (and beyond) spikes with ease.

    Here are the services (all accessible from a set of interactive consoles as well as through a comprehensive set of APIs):

    AWS Elemental MediaConvert – File-based transcoding for OTT, broadcast, or archiving, with support for a long list of formats and codecs. Features include multi-channel audio, graphic overlays, closed captioning, and several DRM options.

    AWS Elemental MediaLive – Live encoding to deliver video streams in real time to both televisions and multiscreen devices. Allows you to deploy highly reliable live channels in minutes, with full control over encoding parameters. It supports ad insertion, multi-channel audio, graphic overlays, and closed captioning.

    AWS Elemental MediaPackage – Video origination and just-in-time packaging. Starting from a single input, produces output for multiple devices representing a long list of current and legacy formats. Supports multiple monetization models, time-shifted live streaming, ad insertion, DRM, and blackout management.

    AWS Elemental MediaStore – Media-optimized storage that enables high performance and low latency applications such as live streaming, while taking advantage of the scale and durability of Amazon Simple Storage Service (S3).

    AWS Elemental MediaTailor – Monetization service that supports ad serving and server-side ad insertion, a broad range of devices, transcoding, and accurate reporting of server-side and client-side ad insertion.

    Instead of listing out all of the features in the sections below, I’ve simply included as many screen shots as possible with the expectation that this will give you a better sense of the rich set of features, parameters, and settings that you get with this set of services.

    AWS Elemental MediaConvert
    MediaConvert allows you to transcode content that is stored in files. You can process individual files or entire media libraries, or anything in-between. You simply create a conversion job that specifies the content and the desired outputs, and submit it to MediaConvert. There’s no software to install or patch and the service scales to meet your needs without affecting turnaround time or performance.

    The MediaConvert Console lets you manage Output presets, Job templates, Queues, and Jobs:

    You can use a built-in system preset or you can make one of your own. You have full control over the settings when you make your own:

    Jobs templates are named, and produce one or more output groups. You can add a new group to a template with a click:

    When everything is ready to go, you create a job and make some final selections, then click on Create:

    Each account starts with a default queue for jobs, where incoming work is processed in parallel using all processing resources available to the account. Adding queues does not add processing resources, but does cause them to be apportioned across queues. You can temporarily pause one queue in order to devote more resources to the others. You can submit jobs to paused queues and you can also cancel any that have yet to start.

    Pricing for this service is based on the amount of video that you process and the features that you use.

    AWS Elemental MediaLive
    This service is for live encoding, and can be run 24×7. MediaLive channels are deployed on redundant resources distributed in two physically separated Availability Zones in order to provide the reliability expected by our customers in the broadcast industry. You can specify your inputs and define your channels in the MediaLive Console:

    After you create an Input, you create a Channel and attach it to the Input:

    You have full control over the settings for each channel:

     

    AWS Elemental MediaPackage
    This service lets you deliver video to many devices from a single source. It focuses on protection and just-in-time packaging, giving you the ability to provide your users with the desired content on the device of their choice. You simply create a channel to get started:

    Then you add one or more endpoints. Once again, plenty of options and full control, including a startover window and a time delay:

    You find the input URL, user name, and password for your channel and route your live video stream to it for packaging:

    AWS Elemental MediaStore
    MediaStore offers the performance, consistency, and latency required for live and on-demand media delivery. Objects are written and read into a new “temporal” tier of object storage for a limited amount of time, then move silently into S3 for long-lived durability. You simply create a storage container to group your media content:

    The container is available within a minute or so:

    Like S3 buckets, MediaStore containers have access policies and no limits on the number of objects or storage capacity.

    MediaStore helps you to take full advantage of S3 by managing the object key names so as to maximize storage and retrieval throughput, in accord with the Request Rate and Performance Considerations.

    AWS Elemental MediaTailor
    This service takes care of server-side ad insertion while providing a broadcast-quality viewer experience by transcoding ad assets on the fly. Your customer’s video player asks MediaTailor for a playlist. MediaTailor, in turn, calls your Ad Decision Server and returns a playlist that references the origin server for your original video and the ads recommended by the Ad Decision Server. The video player makes all of its requests to a single endpoint in order to ensure that client-side ad-blocking is ineffective. You simply create a MediaTailor Configuration:

    Context information is passed to the Ad Decision Server in the URL:

    Despite the length of this post I have barely scratched the surface of the AWS Media Services. Once AWS re:Invent is in the rear view mirror I hope to do a deep dive and show you how to use each of these services.

    Available Now
    The entire set of AWS Media Services is available now and you can start using them today! Pricing varies by service, but is built around a pay-as-you-go model.

    Jeff;