Tag Archives: history

Weekly roundup: Truth or Dare

Post Syndicated from Eevee original https://eev.ee/dev/2017/12/11/weekly-roundup-truth-or-dare/

Oops, I seem to have missed a week. I was doing Ludum Dare 40, but then I stopped, because— well hang on lemme just bullet this.

  • anise!!: I intended to enter Ludum Dare with glip; we were working on a game about Anise that we’d conceived about a month ago but never gotten around to. We made pretty decent progress, but realized we couldn’t fit anywhere near what we wanted into only three days, so we’re just… running with it. It’s going on a little longer than we wanted, but it’s getting pretty fun to play now, and I guess that’s pretty good progress given that we had absolutely nothing ten days ago. I’m even figuring out AI for once.

  • fox flux: Worked on some portraits and big text and underground tiles. Made some sound effects. Did a whole pretty cool footstep thing that combines particles with footstep noises and is very great.

  • other games: I discovered bitsy, the teeniest game engine I’ve ever seen, and wanted to make something with it — so I made Roguelike Simulator (and also wrote a release post).

  • cc: I got so frustrated with trying to find something in Unity Collab history that I cobbled together a thing for exporting Collab history to git. No, you can’t have it, I’m still not convinced it won’t delete my entire hard drive or something. Also I probably fixed a bug in the actual game somewhere in there.

  • blog: Finally finished that post about object models, only a month late! Hooray! Also wrote a game night post, which may or may not become a series?

Also some other stuff that I’m not ready to share yet.

I have a lot going on and can’t believe the month is a third over yet, but I’m charging forwards!

MQTT 5: Introduction to MQTT 5

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/mqtt-5-introduction-to-mqtt-5/

MQTT 5 Introduction

Introduction to MQTT 5

Welcome to our brand new blog post series MQTT 5 – Features and Hidden Gems. Without doubt, the MQTT protocol is the most popular and best received Internet of Things protocol as of today (see the Google Trends Chart below), supporting large scale use cases ranging from Connected Cars, Manufacturing Systems, Logistics, Military Use Cases to Enterprise Chat Applications, Mobile Apps and connecting constrained IoT devices. Of course, with huge amounts of production deployments, the wish list for future versions of the MQTT protocol grew bigger and bigger.

MQTT 5 is by far the most extensive and most feature-rich update to the MQTT protocol specification ever. We are going to explore all hidden gems and protocol features with use case discussion and useful background information – one blog post at a time.

Be sure to read the MQTT Essentials Blog Post series first before diving into our new MQTT 5 series. To get the most out of the new blog posts, it’s important to have a basic understanding of the MQTT 3.1.1 protocol as we are going to highlight key changes as well as all improvements.

CoderDojo: 2000 Dojos ever

Post Syndicated from Giustina Mizzoni original https://www.raspberrypi.org/blog/2000-dojos-ever/

Every day of the week, we verify new Dojos all around the world, and each Dojo is championed by passionate volunteers. Last week, a huge milestone for the CoderDojo community went by relatively unnoticed: in the history of the movement, more than 2000 Dojos have now been verified!

CoderDojo banner — 2000 Dojos

2000 Dojos

This is a phenomenal achievement for a movement that’s just six years old and powered by volunteers. Presently, there are more than 1650 active Dojos running weekly, fortnightly, or monthly, and all of them are free for participants — for example, the Dojos run by Joel Bayubasire in Kampala, Uganda:

Joel Bayubasire with Ninjas at his Ugandan Dojo — 2000 Dojos

Empowering refugee children

This week, Joel set up his second Dojo and verified it on our global map. Joel is a Congolese refugee living in Kampala, Uganda, where he is currently completing his PhD in Economics at Madison International Institute and Business School.

Joel understands first-hand the challenges faced by refugees who were forced to leave their country due to war or conflict. Uganda is currently hosting more than 1.2 million refugees, 60% of which are children (World Bank, 2017). As refugees, children are only allowed to attend local schools until the age of 12. This results in lower educational attainment, which will likely affect their future employment prospects.

Two girls at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Joel has the motivation to overcome these challenges, because he understands the power of education. Therefore, he initiated a number of community-based activities to provide educational opportunities for refugee children. As part of this, he founded his first Dojo earlier in the year, with the aim of giving these children a chance to compete in today’s global knowledge-based economy.

Two boys at a laptop. Joel Bayubasire CoderDojo — 2000 Dojos

Aware that securing volunteer mentors would be a challenge, Joel trained eight young people from the community to become youth mentors to their peers. He explains:

I believe that the mastery of computer coding allows talented young people to thrive professionally and enables them to not only be consumers but creators of the interconnected world of today!

Based on the success of Joel’s first Dojo, he has now expanded the CoderDojo initiative in his community; his plan is to provide computer science training for more than 300 refugee youths in Kampala by 2019. If you’d like to learn more about Joel’s efforts, head to this website.

Join the movement

If you are interested in creating opportunities for the young people in your community, then join the growing CoderDojo movement — you can volunteer to start a Dojo or to support an existing one today!

The post CoderDojo: 2000 Dojos ever appeared first on Raspberry Pi.

ETTV: How an Upload Bot Became a Pirate Hero

Post Syndicated from Ernesto original https://torrentfreak.com/ettv-how-an-upload-bot-became-a-pirate-hero-171210/

Earlier this year, the torrent community was hit hard when another major torrent site suddenly shut its doors.

Just a few months after celebrating its tenth anniversary, ExtraTorrent’s operator threw in the towel. While an official explanation was never provided, it’s likely that he was pressed to make this decision.

The ExtraTorrent site was a safe harbor for millions of regular users, who became homeless overnight. But it was more than that. It was also the birth ground of several popular releasers and distribution groups.

ETTV and ETHD turned into well-known brands themselves. While the ET is derived from ExtraTorrent, the groups have shared TV and movie torrents on several other large torrent sites, and they still do. They even have their own site now.

With millions of people sharing their uploads every week, they’ve become icons and heroes to many. But how did this all come to be? We sat down with the team, virtually, to find out more.

“The idea for ettv/ethd was brought up by ExtraTorrent users,” the ETTV team says.

There was demand for a new group that would upload scene releases faster than the original EZTV, which was the dominant TV-torrent distribution group around 2011, when it all started.

“At the time the real EZTV was still active. They released stuff hours after it was released from the scene, leaving sites to wait very long for shows to arrive in public. In no way was ettv intended for competitive purposes. We had a lot of respect for Nova and the original EZTV operators.”

While ETTV is regularly referred to as a “group,” it was a one-person operation initially. Just a guy with a seedbox, grabbing scene releases and posting them on torrent sites.

It didn’t take long before people got wind of the new distribution ‘group,’ and interest for the torrents quickly exploded. This meant that a single seedbox was no longer sufficient, but help was not far away.

“It started off with one operator and a seedbox, but it became popular too fast. That’s when former ExtraTorrent owners stepped in to give ETTV the support and funding it needed to keep the story going.”

One of the earliest ETTV uploads on ExtraTorrent

In addition to the available disk space and bandwidth, the team itself expanded as well. At its height, a handful of people were working on the group. However, when things became more and more automated this number reduced again.

What many people don’t realize is that ETTV and ETHD are mostly run by lines of code. The entire distribution process is automated and requires minimal intervention from the people behind it.

“Ettv/Ethd is a bot, it doesn’t require human attention. It grabs what you tell the script to,” the team tells us.

The bot is set up to grab the latest copies of predefined shows from private servers where the latest scene release are posted. These are transferred to the seedbox and the torrents are then pushed out to the public – on ETTV.tv, but also on The Pirate Bay and elsewhere. Everything is automated.

Even most of the maintenance is taken care of by the ‘bot’ itself. When disk space is running out older content is purged, allowing fresh releases to come through.

“The only persons involve with the bots are the bill payers of our new home ettv.tv. All they do check bot logs to see if it has any errors and correct them,” the team explains.

One problem that couldn’t be easily solved with some code was the shutdown of ExtraTorrent. While the bills for the seedboxes were paid in advance until the end of 2017, the groups had to find a new home.

“The shutdown of ExtraTorrent didn’t affect the bots from running, it just left ettv/ethd homeless and caused fans to lose their way trying to find us. Not many knew where else we uploaded or didn’t like the other sites we uploaded to.”

After a few months had passed it became clear that they were not going anywhere. Quite the contrary, they started their very own site, ETTV.tv, where all the latest releases are published.

ETTV.tv

In the near future, the team will focus on turning the site into a new home for its followers. Just a few weeks ago it launched a new release “tag,” ETMovies, which specializes in lower resolution films with a smaller file size, for example.

“We recently introduced ETMovies which is basically for SD Movies, other than that the only plan ettv/ethd has is to give a home to the members that suffered from the sudden shut down of ExtraTorrent.”

Just this week, the site also expanded its reach by adding new categories such as music, games, software, and Books, where approved uploaders will publish content.

While they are doing their best to keep the site up and running, it’s not a given that ETTV will be around forever. As long as there are plenty of funds and no concrete legal pressure they might. But if recent history has shown us anything, it’s that there are no guarantees.

“No one is here seeking to be a millionaire, if the traffic pays the bills we keep going, if not then all we can say is (sorry we tried) we will not be the heroes that saved the day.

“Again and again, the troublesome history of torrent sites is clear. It’s a war no site owner can win. If we are ever in danger, we will choose freedom. It’s not like followers can bail you out if the worst were to happen,” the ETTV team concludes.

For now, however, the bot keeps on running.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

How to Easily Apply Amazon Cloud Directory Schema Changes with In-Place Schema Upgrades

Post Syndicated from Mahendra Chheda original https://aws.amazon.com/blogs/security/how-to-easily-apply-amazon-cloud-directory-schema-changes-with-in-place-schema-upgrades/

Now, Amazon Cloud Directory makes it easier for you to apply schema changes across your directories with in-place schema upgrades. Your directory now remains available while Cloud Directory applies backward-compatible schema changes such as the addition of new fields. Without migrating data between directories or applying code changes to your applications, you can upgrade your schemas. You also can view the history of your schema changes in Cloud Directory by using version identifiers, which help you track and audit schema versions across directories. If you have multiple instances of a directory with the same schema, you can view the version history of schema changes to manage your directory fleet and ensure that all directories are running with the same schema version.

In this blog post, I demonstrate how to perform an in-place schema upgrade and use schema versions in Cloud Directory. I add additional attributes to an existing facet and add a new facet to a schema. I then publish the new schema and apply it to running directories, upgrading the schema in place. I also show how to view the version history of a directory schema, which helps me to ensure my directory fleet is running the same version of the schema and has the correct history of schema changes applied to it.

Note: I share Java code examples in this post. I assume that you are familiar with the AWS SDK and can use Java-based code to build a Cloud Directory code example. You can apply the concepts I cover in this post to other programming languages such as Python and Ruby.

Cloud Directory fundamentals

I will start by covering a few Cloud Directory fundamentals. If you are already familiar with the concepts behind Cloud Directory facets, schemas, and schema lifecycles, you can skip to the next section.

Facets: Groups of attributes. You use facets to define object types. For example, you can define a device schema by adding facets such as computers, phones, and tablets. A computer facet can track attributes such as serial number, make, and model. You can then use the facets to create computer objects, phone objects, and tablet objects in the directory to which the schema applies.

Schemas: Collections of facets. Schemas define which types of objects can be created in a directory (such as users, devices, and organizations) and enforce validation of data for each object class. All data within a directory must conform to the applied schema. As a result, the schema definition is essentially a blueprint to construct a directory with an applied schema.

Schema lifecycle: The four distinct states of a schema: Development, Published, Applied, and Deleted. Schemas in the Published and Applied states have version identifiers and cannot be changed. Schemas in the Applied state are used by directories for validation as applications insert or update data. You can change schemas in the Development state as many times as you need them to. In-place schema upgrades allow you to apply schema changes to an existing Applied schema in a production directory without the need to export and import the data populated in the directory.

How to add attributes to a computer inventory application schema and perform an in-place schema upgrade

To demonstrate how to set up schema versioning and perform an in-place schema upgrade, I will use an example of a computer inventory application that uses Cloud Directory to store relationship data. Let’s say that at my company, AnyCompany, we use this computer inventory application to track all computers we give to our employees for work use. I previously created a ComputerSchema and assigned its version identifier as 1. This schema contains one facet called ComputerInfo that includes attributes for SerialNumber, Make, and Model, as shown in the following schema details.

Schema: ComputerSchema
Version: 1

Facet: ComputerInfo
Attribute: SerialNumber, type: Integer
Attribute: Make, type: String
Attribute: Model, type: String

AnyCompany has offices in Seattle, Portland, and San Francisco. I have deployed the computer inventory application for each of these three locations. As shown in the lower left part of the following diagram, ComputerSchema is in the Published state with a version of 1. The Published schema is applied to SeattleDirectory, PortlandDirectory, and SanFranciscoDirectory for AnyCompany’s three locations. Implementing separate directories for different geographic locations when you don’t have any queries that cross location boundaries is a good data partitioning strategy and gives your application better response times with lower latency.

Diagram of ComputerSchema in Published state and applied to three directories

Legend for the diagrams in this post

The following code example creates the schema in the Development state by using a JSON file, publishes the schema, and then creates directories for the Seattle, Portland, and San Francisco locations. For this example, I assume the schema has been defined in the JSON file. The createSchema API creates a schema Amazon Resource Name (ARN) with the name defined in the variable, SCHEMA_NAME. I can use the putSchemaFromJson API to add specific schema definitions from the JSON file.

// The utility method to get valid Cloud Directory schema JSON
String validJson = getJsonFile("ComputerSchema_version_1.json")

String SCHEMA_NAME = "ComputerSchema";

String developmentSchemaArn = client.createSchema(new CreateSchemaRequest()
        .withName(SCHEMA_NAME))
        .getSchemaArn();

// Put the schema document in the Development schema
PutSchemaFromJsonResult result = client.putSchemaFromJson(new PutSchemaFromJsonRequest()
        .withSchemaArn(developmentSchemaArn)
        .withDocument(validJson));

The following code example takes the schema that is currently in the Development state and publishes the schema, changing its state to Published.

String SCHEMA_VERSION = "1";
String publishedSchemaArn = client.publishSchema(
        new PublishSchemaRequest()
        .withDevelopmentSchemaArn(developmentSchemaArn)
        .withVersion(SCHEMA_VERSION))
        .getPublishedSchemaArn();

// Our Published schema ARN is as follows
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1

The following code example creates a directory named SeattleDirectory and applies the published schema. The createDirectory API call creates a directory by using the published schema provided in the API parameters. Note that Cloud Directory stores a version of the schema in the directory in the Applied state. I will use similar code to create directories for PortlandDirectory and SanFranciscoDirectory.

String DIRECTORY_NAME = "SeattleDirectory"; 

CreateDirectoryResult directory = client.createDirectory(
        new CreateDirectoryRequest()
        .withName(DIRECTORY_NAME)
        .withSchemaArn(publishedSchemaArn));

String directoryArn = directory.getDirectoryArn();
String appliedSchemaArn = directory.getAppliedSchemaArn();

// This code section can be reused to create directories for Portland and San Francisco locations with the appropriate directory names

// Our directory ARN is as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX

// Our applied schema ARN is as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1

Revising a schema

Now let’s say my company, AnyCompany, wants to add more information for computers and to track which employees have been assigned a computer for work use. I modify the schema to add two attributes to the ComputerInfo facet: Description and OSVersion (operating system version). I make Description optional because it is not important for me to track this attribute for the computer objects I create. I make OSVersion mandatory because it is critical for me to track it for all computer objects so that I can make changes such as applying security patches or making upgrades. Because I make OSVersion mandatory, I must provide a default value that Cloud Directory will apply to objects that were created before the schema revision, in order to handle backward compatibility. Note that you can replace the value in any object with a different value.

I also add a new facet to track computer assignment information, shown in the following updated schema as the ComputerAssignment facet. This facet tracks these additional attributes: Name (the name of the person to whom the computer is assigned), EMail (the email address of the assignee), Department, and department CostCenter. Note that Cloud Directory refers to the previously available version identifier as the Major Version. Because I can now add a minor version to a schema, I also denote the changed schema as Minor Version A.

Schema: ComputerSchema
Major Version: 1
Minor Version: A 

Facet: ComputerInfo
Attribute: SerialNumber, type: Integer 
Attribute: Make, type: String
Attribute: Model, type: Integer
Attribute: Description, type: String, required: NOT_REQUIRED
Attribute: OSVersion, type: String, required: REQUIRED_ALWAYS, default: "Windows 7"

Facet: ComputerAssignment
Attribute: Name, type: String
Attribute: EMail, type: String
Attribute: Department, type: String
Attribute: CostCenter, type: Integer

The following diagram shows the changes that were made when I added another facet to the schema and attributes to the existing facet. The highlighted area of the diagram (bottom left) shows that the schema changes were published.

Diagram showing that schema changes were published

The following code example revises the existing Development schema by adding the new attributes to the ComputerInfo facet and by adding the ComputerAssignment facet. I use a new JSON file for the schema revision, and for the purposes of this example, I am assuming the JSON file has the full schema including planned revisions.

// The utility method to get a valid CloudDirectory schema JSON
String schemaJson = getJsonFile("ComputerSchema_version_1_A.json")

// Put the schema document in the Development schema
PutSchemaFromJsonResult result = client.putSchemaFromJson(
        new PutSchemaFromJsonRequest()
        .withSchemaArn(developmentSchemaArn)
        .withDocument(schemaJson));

Upgrading the Published schema

The following code example performs an in-place schema upgrade of the Published schema with schema revisions (it adds new attributes to the existing facet and another facet to the schema). The upgradePublishedSchema API upgrades the Published schema with backward-compatible changes from the Development schema.

// From an earlier code example, I know the publishedSchemaArn has this value: "arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1"

// Upgrade publishedSchemaArn to minorVersion A. The Development schema must be backward compatible with 
// the existing publishedSchemaArn. 

String minorVersion = "A"

UpgradePublishedSchemaResult upgradePublishedSchemaResult = client.upgradePublishedSchema(new UpgradePublishedSchemaRequest()
        .withDevelopmentSchemaArn(developmentSchemaArn)
        .withPublishedSchemaArn(publishedSchemaArn)
        .withMinorVersion(minorVersion));

String upgradedPublishedSchemaArn = upgradePublishedSchemaResult.getUpgradedSchemaArn();

// The Published schema ARN after the upgrade shows a minor version as follows 
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:schema/published/ComputerSchema/1/A

Upgrading the Applied schema

The following diagram shows the in-place schema upgrade for the SeattleDirectory directory. I am performing the schema upgrade so that I can reflect the new schemas in all three directories. As a reminder, I added new attributes to the ComputerInfo facet and also added the ComputerAssignment facet. After the schema and directory upgrade, I can create objects for the ComputerInfo and ComputerAssignment facets in the SeattleDirectory. Any objects that were created with the old facet definition for ComputerInfo will now use the default values for any additional attributes defined in the new schema.

Diagram of the in-place schema upgrade for the SeattleDirectory directory

I use the following code example to perform an in-place upgrade of the SeattleDirectory to a Major Version of 1 and a Minor Version of A. Note that you should change a Major Version identifier in a schema to make backward-incompatible changes such as changing the data type of an existing attribute or dropping a mandatory attribute from your schema. Backward-incompatible changes require directory data migration from a previous version to the new version. You should change a Minor Version identifier in a schema to make backward-compatible upgrades such as adding additional attributes or adding facets, which in turn may contain one or more attributes. The upgradeAppliedSchema API lets me upgrade an existing directory with a different version of a schema.

// This upgrades ComputerSchema version 1 of the Applied schema in SeattleDirectory to Major Version 1 and Minor Version A
// The schema must be backward compatible or the API will fail with IncompatibleSchemaException

UpgradeAppliedSchemaResult upgradeAppliedSchemaResult = client.upgradeAppliedSchema(new UpgradeAppliedSchemaRequest()
        .withDirectoryArn(directoryArn)
        .withPublishedSchemaArn(upgradedPublishedSchemaArn));

String upgradedAppliedSchemaArn = upgradeAppliedSchemaResult.getUpgradedSchemaArn();

// The Applied schema ARN after the in-place schema upgrade will appear as follows
// arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1

// This code section can be reused to upgrade directories for the Portland and San Francisco locations with the appropriate directory ARN

Note: Cloud Directory has excluded returning the Minor Version identifier in the Applied schema ARN for backward compatibility and to enable the application to work across older and newer versions of the directory.

The following diagram shows the changes that are made when I perform an in-place schema upgrade in the two remaining directories, PortlandDirectory and SanFranciscoDirectory. I make these calls sequentially, upgrading PortlandDirectory first and then upgrading SanFranciscoDirectory. I use the same code example that I used earlier to upgrade SeattleDirectory. Now, all my directories are running the most current version of the schema. Also, I made these schema changes without having to migrate data and while maintaining my application’s high availability.

Diagram showing the changes that are made with an in-place schema upgrade in the two remaining directories

Schema revision history

I can now view the schema revision history for any of AnyCompany’s directories by using the listAppliedSchemaArns API. Cloud Directory maintains the five most recent versions of applied schema changes. Similarly, to inspect the current Minor Version that was applied to my schema, I use the getAppliedSchemaVersion API. The listAppliedSchemaArns API returns the schema ARNs based on my schema filter as defined in withSchemaArn.

I use the following code example to query an Applied schema for its version history.

// This returns the five most recent Minor Versions associated with a Major Version
ListAppliedSchemaArnsResult listAppliedSchemaArnsResult = client.listAppliedSchemaArns(new ListAppliedSchemaArnsRequest()
        .withDirectoryArn(directoryArn)
        .withSchemaArn(upgradedAppliedSchemaArn));

// Note: The listAppliedSchemaArns API without the SchemaArn filter returns all the Major Versions in a directory

The listAppliedSchemaArns API returns the two ARNs as shown in the following output.

arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1
arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1/A

The following code example queries an Applied schema for current Minor Version by using the getAppliedSchemaVersion API.

// This returns the current Applied schema's Minor Version ARN 

GetAppliedSchemaVersion getAppliedSchemaVersionResult = client.getAppliedSchemaVersion(new GetAppliedSchemaVersionRequest()
	.withSchemaArn(upgradedAppliedSchemaArn));

The getAppliedSchemaVersion API returns the current Applied schema ARN with a Minor Version, as shown in the following output.

arn:aws:clouddirectory:us-west-2:XXXXXXXXXXXX:directory/XX_DIRECTORY_GUID_XX/schema/ComputerSchema/1/A

If you have a lot of directories, schema revision API calls can help you audit your directory fleet and ensure that all directories are running the same version of a schema. Such auditing can help you ensure high integrity of directories across your fleet.

Summary

You can use in-place schema upgrades to make changes to your directory schema as you evolve your data set to match the needs of your application. An in-place schema upgrade allows you to maintain high availability for your directory and applications while the upgrade takes place. For more information about in-place schema upgrades, see the in-place schema upgrade documentation.

If you have comments about this blog post, submit them in the “Comments” section below. If you have questions about implementing the solution in this post, start a new thread in the Directory Service forum or contact AWS Support.

– Mahendra

 

ISPs and Movie Industry Prepare Canadian Pirate Site Blocking Deal

Post Syndicated from Ernesto original https://torrentfreak.com/isps-and-movie-industry-prepare-canadian-pirate-site-blocking-deal-171205/

ISP blocking has become a prime measure for the entertainment industry to target pirate sites on the Internet.

In recent years sites have been blocked throughout Europe, in Asia, and even Down Under.

In most countries, these blockades are ordered by local courts, which compel Internet providers to restrict access to certain websites. In Canada, however, there’s a plan in the works to allow for website blockades without judicial oversight.

A coalition of movie industry companies and ISPs, including Bell, Rogers, and Cineplex are discussing a proposal to implement such measures. The Canadian blocklist would be maintained by a new non-profit organization called “Internet Piracy Review Agency” (IPRA) and enforced through the CTRC, Canadaland reports.

The plan doesn’t come as a total surprise as Bell alluded to a nationwide blocking mechanism during a recent Government hearing. What becomes clear from the new plans, however, is that the telco is not alone.

The new proposal is being discussed by various stakeholders including ISPs and local movie companies. As in other countries, major American movie companies are also in the loop, but they will not be listed as official applicants when the plan is submitted to the CRTC.

Canadian law professor Micheal Geist is very critical of the plans. Although the proposal would only cover sites that “blatantly, overwhelmingly or structurally” engage in or facilitate copyright infringement, this can be a blurry line.

“Recent history suggests that the list will quickly grow to cover tougher judgment calls. For example, Bell has targeted TVAddons, a site that contains considerable non-infringing content,” Geist notes.

“It can be expected that many other sites disliked by rights holders or broadcasters would find their way onto the block list,” he adds.

While the full list of applicants is not ready yet, it is expected that the coalition will file its proposal to the CRTC before the end of the month.

Thus far, the Government appears to be reluctant in its response. In comments to Canadaland spokesperson Karl Sasseville stressed that Canada maintains committed to an open Internet.

“Our government supports an open internet where Canadians have the ability to access the content of their choice in accordance to Canadian laws,” Sasseville says. “While other parts of the world are focused on building walls, we’re focused on opening doors‎.”

As we’ve seen in the past, “net neutrality” and website blocking are not mutually exclusive. Courts around the world, also in Canada, have ordered content to be blocked, open Internet or not. However, bypassing the judicial system may prove to be a problem.

Professor Geist is happy with the Government’s comments and notes that legal basis for the proposal is thin.

He stresses that the ISPs involved in these plans should seriously consider if they want to continue down this path, which isn’t necessarily in the best interest of their customers.

“The government rightly seems dismissive of the proposal in the Canadaland report but as leading Internet providers, Bell and Rogers should be ashamed for leading the charge on such a dangerous, anti-speech and anti-consumer proposal,” Geist concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Digital Rights Groups Warn Against Copyright “Parking Tickets” Bill

Post Syndicated from Ernesto original https://torrentfreak.com/digital-rights-groups-warn-against-copyright-parking-tickets-bill-171203/

Nearly five years ago, US lawmakers agreed to carry out a comprehensive review of United States copyright law.

In the following years, the House Judiciary Committee held dozens of hearings on various topics, from DMCA reform and fair use exemptions to the possibility of a small claims court for copyright offenses.

While many of the topics never got far beyond the discussion stage, there’s now a new bill on the table that introduces a small claims process for copyright offenses.

The CASE Act, short for Copyright Alternative in Small-Claims Enforcement, proposes to establish a small claims court to resolve copyright disputes outside the federal courts. This means that legal costs will be significantly reduced.

The idea behind the bill is to lower the barrier for smaller copyright holders with limited resources, who usually refrain from going to court. Starting a federal case with proper representation is quite costly, while the outcome is rather uncertain.

While this may sound noble, digital rights groups, including the Electronic Frontier Foundation (EFF) and Public Knowledge, warn that the bill could do more harm than good.

One of the problems they signal is that the proposed “Copyright Claims Board” would be connected to the US Copyright Office. Given this connection, the groups fear that the three judges might be somewhat biased towards copyright holders.

“Unfortunately, the Copyright Office has a history of putting copyright holders’ interests ahead of other important legal rights and policy concerns. We fear that any small claims process the Copyright Office conducts will tend to follow that pattern,” EFF’s Mitch Stoltz warns.

The copyright claims board will have three judges who can hear cases from all over the country. They can award damages awards of up to $15,000 per infringement, or $30,000 per case.

Participation is voluntary and potential defendants can opt-out. However, if they fail to do so, any order against them can still be binding and enforceable through a federal court.

An opt-in system would be much better, according to EFF, as that would prevent abuse by copyright holders who are looking for cheap default judgments.

“[A]n opt-in approach would help ensure that both participants affirmatively choose to litigate their dispute in this new court, and help prevent copyright holders from abusing the system to obtain inexpensive default judgments that will be hard to appeal.”

While smart defendants would opt-out in certain situations, those who are less familiar with the law might become the target of what are essentially copyright parking tickets.

“Knowledgeable defendants will opt out of such proceedings, while legally unsophisticated targets, including ordinary Internet users, could find themselves committed to an unfair, accelerated process handing out largely unappealable $5,000 copyright parking tickets,” EFF adds.

In its current form, the small claims court may prove to be an ideal tool for copyright trolls, including those who made a business out of filing federal cases against alleged BitTorrent pirates.

This copyright troll issue angle highlighted by both EFF and Public Knowlege, who urge lawmakers to revise the bill.

“[I]t’s not hard to see how trolls and default judgments could come to dominate the system,” Public Knowledge says.

“Instead of creating a reliable, fair mechanism for independent artists to pursue scaled infringement claims online, it would establish an opaque, unaccountable legislation mill that will likely get bogged down by copyright trolls and questionable claimants looking for a payout,” they conclude.

Various copyright holder groups are more positive about the bill. The Copyright Alliance, for example, says that it will empower creators with smaller budgets to protect their rights.

“The next generation of creators deserves copyright protection that is as pioneering and forward-thinking as they are. They deserve practical solutions to the real-life problems they face as creators. This bill is the first step.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

EU Court: Cloud-Based TV Recorder Requires Rightsholder Permission

Post Syndicated from Andy original https://torrentfreak.com/eu-court-cloud-based-tv-recorder-requires-rightsholder-permission-171130/

Over the years, many useful devices have come along which enable the public to make copies of copyright works, the VCR (video cassette recorder) being a prime example.

But while many such devices have been consumed by history, their modern equivalents still pose tricky questions for copyright law. One such service is VCAST, which markets itself as a Video Cloud Recorder. It functions in a notionally similar way to its older cousin but substitutes cassette storage for that in the cloud.

VCAST targets the Italian market, allowing users to sign up in order to gain access to more than 50 digital terrestrial TV channels. However, rather than simply watching live, the user can tell VCAST to receive TV shows (via its own antenna system) while recording them to private cloud storage (such as Google Drive) for subsequent viewing over the Internet.

VCAST attracted the negative interests of rightsholders, including Mediaset-owned RTI, who doubted the legality of the service. So, in response, VCAST sued RTI at the Turin Court of First Instance, seeking a judgment confirming the legality of its operations. The company believed that since the recordings are placed in users’ own cloud storage, the Italian private copying exception would apply and rightsholders would be compensated.

Perhaps unsurprisingly given the complexity of the case, the Turin Court decided to refer questions to the European Court of Justice. It essentially asked whether the private copying exception is applicable when the copying requires a service like VCAST and whether such a service is allowed to operate without permission from copyright holders.

In September, Advocate General Szpunar published his opinion, concluding that EU law prohibits this kind of service when copyright holders haven’t given their permission. Today, the ECJ handed down its decision, broadly agreeing with Szpunar’s conclusion.

“By today’s judgment, the Court finds that the service provided by VCAST has a dual functionality, consisting in ensuring both the reproduction and the making available of protected works. To the extent that the service offered by VCAST consists in the making available of protected works, it falls within communication to the public,” the ECJ announced.

“In that regard, the Court recalls that, according to the directive, any communication to the public, including the making available of a protected work or subject-matter, requires the rightholder’s consent, given that the right of communication of works to the public should be understood, in a broad sense, as covering any transmission or retransmission of a work to the public by wire or wireless means, including broadcasting.”

The ECJ notes that the original transmission made by RTI was intended for one audience. In turn, the transmission by VCAST was intended for another. In this respect, the subsequent VCAST transmission was made to a “new public”, which means that copyright holder permission is required under EU law.

“Accordingly, such a remote recording service cannot fall within the private copying exception,” the ECJ concludes.

The full text of the judgment can be found here.

The key ruling reads as follows:

Directive 2001/29/EC of the European Parliament and of the Council of 22 May 2001 on the harmonisation of certain aspects of copyright and related rights in the information society, in particular Article 5(2)(b) thereof, must be interpreted as precluding national legislation which permits a commercial undertaking to provide private individuals with a cloud service for the remote recording of private copies of works protected by copyright, by means of a computer system, by actively involving itself in the recording, without the rightholder’s consent.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Warrant Protections against Police Searches of Our Data

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2017/11/warrant_protect.html

The cell phones we carry with us constantly are the most perfect surveillance device ever invented, and our laws haven’t caught up to that reality. That might change soon.

This week, the Supreme Court will hear a case with profound implications on your security and privacy in the coming years. The Fourth Amendment’s prohibition of unlawful search and seizure is a vital right that protects us all from police overreach, and the way the courts interpret it is increasingly nonsensical in our computerized and networked world. The Supreme Court can either update current law to reflect the world, or it can further solidify an unnecessary and dangerous police power.

The case centers on cell phone location data and whether the police need a warrant to get it, or if they can use a simple subpoena, which is easier to obtain. Current Fourth Amendment doctrine holds that you lose all privacy protections over any data you willingly share with a third party. Your cellular provider, under this interpretation, is a third party with whom you’ve willingly shared your movements, 24 hours a day, going back months — even though you don’t really have any choice about whether to share with them. So police can request records of where you’ve been from cell carriers without any judicial oversight. The case before the court, Carpenter v. United States, could change that.

Traditionally, information that was most precious to us was physically close to us. It was on our bodies, in our homes and offices, in our cars. Because of that, the courts gave that information extra protections. Information that we stored far away from us, or gave to other people, afforded fewer protections. Police searches have been governed by the “third-party doctrine,” which explicitly says that information we share with others is not considered private.

The Internet has turned that thinking upside-down. Our cell phones know who we talk to and, if we’re talking via text or e-mail, what we say. They track our location constantly, so they know where we live and work. Because they’re the first and last thing we check every day, they know when we go to sleep and when we wake up. Because everyone has one, they know whom we sleep with. And because of how those phones work, all that information is naturally shared with third parties.

More generally, all our data is literally stored on computers belonging to other people. It’s our e-mail, text messages, photos, Google docs, and more ­ all in the cloud. We store it there not because it’s unimportant, but precisely because it is important. And as the Internet of Things computerizes the rest our lives, even more data will be collected by other people: data from our health trackers and medical devices, data from our home sensors and appliances, data from Internet-connected “listeners” like Alexa, Siri, and your voice-activated television.

All this data will be collected and saved by third parties, sometimes for years. The result is a detailed dossier of your activities more complete than any private investigator –­ or police officer –­ could possibly collect by following you around.

The issue here is not whether the police should be allowed to use that data to help solve crimes. Of course they should. The issue is whether that information should be protected by the warrant process that requires the police to have probable cause to investigate you and get approval by a court.

Warrants are a security mechanism. They prevent the police from abusing their authority to investigate someone they have no reason to suspect of a crime. They prevent the police from going on “fishing expeditions.” They protect our rights and liberties, even as we willingly give up our privacy to the legitimate needs of law enforcement.

The third-party doctrine never made a lot of sense. Just because I share an intimate secret with my spouse, friend, or doctor doesn’t mean that I no longer consider it private. It makes even less sense in today’s hyper-connected world. It’s long past time the Supreme Court recognized that a months’-long history of my movements is private, and my e-mails and other personal data deserve the same protections, whether they’re on my laptop or on Google’s servers.

This essay previously appeared in the Washington Post.

Details on the case. Two opinion pieces.

I signed on to two amicus briefs on the case.

EDITED TO ADD (12/1): Good commentary on the Supreme Court oral arguments.

GDPR – A Practical Guide For Developers

Post Syndicated from Bozho original https://techblog.bozho.net/gdpr-practical-guide-developers/

You’ve probably heard about GDPR. The new European data protection regulation that applies practically to everyone. Especially if you are working in a big company, it’s most likely that there’s already a process for gettign your systems in compliance with the regulation.

The regulation is basically a law that must be followed in all European countries (but also applies to non-EU companies that have users in the EU). In this particular case, it applies to companies that are not registered in Europe, but are having European customers. So that’s most companies. I will not go into yet another “12 facts about GDPR” or “7 myths about GDPR” posts/whitepapers, as they are often aimed at managers or legal people. Instead, I’ll focus on what GDPR means for developers.

Why am I qualified to do that? A few reasons – I was advisor to the deputy prime minister of a EU country, and because of that I’ve been both exposed and myself wrote some legislation. I’m familiar with the “legalese” and how the regulatory framework operates in general. I’m also a privacy advocate and I’ve been writing about GDPR-related stuff in the past, i.e. “before it was cool” (protecting sensitive data, the right to be forgotten). And finally, I’m currently working on a project that (among other things) aims to help with covering some GDPR aspects.

I’ll try to be a bit more comprehensive this time and cover as many aspects of the regulation that concern developers as I can. And while developers will mostly be concerned about how the systems they are working on have to change, it’s not unlikely that a less informed manager storms in in late spring, realizing GDPR is going to be in force tomorrow, asking “what should we do to get our system/website compliant”.

The rights of the user/client (referred to as “data subject” in the regulation) that I think are relevant for developers are: the right to erasure (the right to be forgotten/deleted from the system), right to restriction of processing (you still keep the data, but mark it as “restricted” and don’t touch it without further consent by the user), the right to data portability (the ability to export one’s data), the right to rectification (the ability to get personal data fixed), the right to be informed (getting human-readable information, rather than long terms and conditions), the right of access (the user should be able to see all the data you have about them), the right to data portability (the user should be able to get a machine-readable dump of their data).

Additionally, the relevant basic principles are: data minimization (one should not collect more data than necessary), integrity and confidentiality (all security measures to protect data that you can think of + measures to guarantee that the data has not been inappropriately modified).

Even further, the regulation requires certain processes to be in place within an organization (of more than 250 employees or if a significant amount of data is processed), and those include keeping a record of all types of processing activities carried out, including transfers to processors (3rd parties), which includes cloud service providers. None of the other requirements of the regulation have an exception depending on the organization size, so “I’m small, GDPR does not concern me” is a myth.

It is important to know what “personal data” is. Basically, it’s every piece of data that can be used to uniquely identify a person or data that is about an already identified person. It’s data that the user has explicitly provided, but also data that you have collected about them from either 3rd parties or based on their activities on the site (what they’ve been looking at, what they’ve purchased, etc.)

Having said that, I’ll list a number of features that will have to be implemented and some hints on how to do that, followed by some do’s and don’t’s.

  • “Forget me” – you should have a method that takes a userId and deletes all personal data about that user (in case they have been collected on the basis of consent, and not due to contract enforcement or legal obligation). It is actually useful for integration tests to have that feature (to cleanup after the test), but it may be hard to implement depending on the data model. In a regular data model, deleting a record may be easy, but some foreign keys may be violated. That means you have two options – either make sure you allow nullable foreign keys (for example an order usually has a reference to the user that made it, but when the user requests his data be deleted, you can set the userId to null), or make sure you delete all related data (e.g. via cascades). This may not be desirable, e.g. if the order is used to track available quantities or for accounting purposes. It’s a bit trickier for event-sourcing data models, or in extreme cases, ones that include some sort of blcokchain/hash chain/tamper-evident data structure. With event sourcing you should be able to remove a past event and re-generate intermediate snapshots. For blockchain-like structures – be careful what you put in there and avoid putting personal data of users. There is an option to use a chameleon hash function, but that’s suboptimal. Overall, you must constantly think of how you can delete the personal data. And “our data model doesn’t allow it” isn’t an excuse.
  • Notify 3rd parties for erasure – deleting things from your system may be one thing, but you are also obligated to inform all third parties that you have pushed that data to. So if you have sent personal data to, say, Salesforce, Hubspot, twitter, or any cloud service provider, you should call an API of theirs that allows for the deletion of personal data. If you are such a provider, obviously, your “forget me” endpoint should be exposed. Calling the 3rd party APIs to remove data is not the full story, though. You also have to make sure the information does not appear in search results. Now, that’s tricky, as Google doesn’t have an API for removal, only a manual process. Fortunately, it’s only about public profile pages that are crawlable by Google (and other search engines, okay…), but you still have to take measures. Ideally, you should make the personal data page return a 404 HTTP status, so that it can be removed.
  • Restrict processing – in your admin panel where there’s a list of users, there should be a button “restrict processing”. The user settings page should also have that button. When clicked (after reading the appropriate information), it should mark the profile as restricted. That means it should no longer be visible to the backoffice staff, or publicly. You can implement that with a simple “restricted” flag in the users table and a few if-clasues here and there.
  • Export data – there should be another button – “export data”. When clicked, the user should receive all the data that you hold about them. What exactly is that data – depends on the particular usecase. Usually it’s at least the data that you delete with the “forget me” functionality, but may include additional data (e.g. the orders the user has made may not be delete, but should be included in the dump). The structure of the dump is not strictly defined, but my recommendation would be to reuse schema.org definitions as much as possible, for either JSON or XML. If the data is simple enough, a CSV/XLS export would also be fine. Sometimes data export can take a long time, so the button can trigger a background process, which would then notify the user via email when his data is ready (twitter, for example, does that already – you can request all your tweets and you get them after a while).
  • Allow users to edit their profile – this seems an obvious rule, but it isn’t always followed. Users must be able to fix all data about them, including data that you have collected from other sources (e.g. using a “login with facebook” you may have fetched their name and address). Rule of thumb – all the fields in your “users” table should be editable via the UI. Technically, rectification can be done via a manual support process, but that’s normally more expensive for a business than just having the form to do it. There is one other scenario, however, when you’ve obtained the data from other sources (i.e. the user hasn’t provided their details to you directly). In that case there should still be a page where they can identify somehow (via email and/or sms confirmation) and get access to the data about them.
  • Consent checkboxes – this is in my opinion the biggest change that the regulation brings. “I accept the terms and conditions” would no longer be sufficient to claim that the user has given their consent for processing their data. So, for each particular processing activity there should be a separate checkbox on the registration (or user profile) screen. You should keep these consent checkboxes in separate columns in the database, and let the users withdraw their consent (by unchecking these checkboxes from their profile page – see the previous point). Ideally, these checkboxes should come directly from the register of processing activities (if you keep one). Note that the checkboxes should not be preselected, as this does not count as “consent”.
  • Re-request consent – if the consent users have given was not clear (e.g. if they simply agreed to terms & conditions), you’d have to re-obtain that consent. So prepare a functionality for mass-emailing your users to ask them to go to their profile page and check all the checkboxes for the personal data processing activities that you have.
  • “See all my data” – this is very similar to the “Export” button, except data should be displayed in the regular UI of the application rather than an XML/JSON format. For example, Google Maps shows you your location history – all the places that you’ve been to. It is a good implementation of the right to access. (Though Google is very far from perfect when privacy is concerned)
  • Age checks – you should ask for the user’s age, and if the user is a child (below 16), you should ask for parent permission. There’s no clear way how to do that, but my suggestion is to introduce a flow, where the child should specify the email of a parent, who can then confirm. Obviosuly, children will just cheat with their birthdate, or provide a fake parent email, but you will most likely have done your job according to the regulation (this is one of the “wishful thinking” aspects of the regulation).

Now some “do’s”, which are mostly about the technical measures needed to protect personal data. They may be more “ops” than “dev”, but often the application also has to be extended to support them. I’ve listed most of what I could think of in a previous post.

  • Encrypt the data in transit. That means that communication between your application layer and your database (or your message queue, or whatever component you have) should be over TLS. The certificates could be self-signed (and possibly pinned), or you could have an internal CA. Different databases have different configurations, just google “X encrypted connections. Some databases need gossiping among the nodes – that should also be configured to use encryption
  • Encrypt the data at rest – this again depends on the database (some offer table-level encryption), but can also be done on machine-level. E.g. using LUKS. The private key can be stored in your infrastructure, or in some cloud service like AWS KMS.
  • Encrypt your backups – kind of obvious
  • Implement pseudonymisation – the most obvious use-case is when you want to use production data for the test/staging servers. You should change the personal data to some “pseudonym”, so that the people cannot be identified. When you push data for machine learning purposes (to third parties or not), you can also do that. Technically, that could mean that your User object can have a “pseudonymize” method which applies hash+salt/bcrypt/PBKDF2 for some of the data that can be used to identify a person
  • Protect data integrity – this is a very broad thing, and could simply mean “have authentication mechanisms for modifying data”. But you can do something more, even as simple as a checksum, or a more complicated solution (like the one I’m working on). It depends on the stakes, on the way data is accessed, on the particular system, etc. The checksum can be in the form of a hash of all the data in a given database record, which should be updated each time the record is updated through the application. It isn’t a strong guarantee, but it is at least something.
  • Have your GDPR register of processing activities in something other than Excel – Article 30 says that you should keep a record of all the types of activities that you use personal data for. That sounds like bureaucracy, but it may be useful – you will be able to link certain aspects of your application with that register (e.g. the consent checkboxes, or your audit trail records). It wouldn’t take much time to implement a simple register, but the business requirements for that should come from whoever is responsible for the GDPR compliance. But you can advise them that having it in Excel won’t make it easy for you as a developer (imagine having to fetch the excel file internally, so that you can parse it and implement a feature). Such a register could be a microservice/small application deployed separately in your infrastructure.
  • Log access to personal data – every read operation on a personal data record should be logged, so that you know who accessed what and for what purpose
  • Register all API consumers – you shouldn’t allow anonymous API access to personal data. I’d say you should request the organization name and contact person for each API user upon registration, and add those to the data processing register. Note: some have treated article 30 as a requirement to keep an audit log. I don’t think it is saying that – instead it requires 250+ companies to keep a register of the types of processing activities (i.e. what you use the data for). There are other articles in the regulation that imply that keeping an audit log is a best practice (for protecting the integrity of the data as well as to make sure it hasn’t been processed without a valid reason)

Finally, some “don’t’s”.

  • Don’t use data for purposes that the user hasn’t agreed with – that’s supposed to be the spirit of the regulation. If you want to expose a new API to a new type of clients, or you want to use the data for some machine learning, or you decide to add ads to your site based on users’ behaviour, or sell your database to a 3rd party – think twice. I would imagine your register of processing activities could have a button to send notification emails to users to ask them for permission when a new processing activity is added (or if you use a 3rd party register, it should probably give you an API). So upon adding a new processing activity (and adding that to your register), mass email all users from whom you’d like consent.
  • Don’t log personal data – getting rid of the personal data from log files (especially if they are shipped to a 3rd party service) can be tedious or even impossible. So log just identifiers if needed. And make sure old logs files are cleaned up, just in case
  • Don’t put fields on the registration/profile form that you don’t need – it’s always tempting to just throw as many fields as the usability person/designer agrees on, but unless you absolutely need the data for delivering your service, you shouldn’t collect it. Names you should probably always collect, but unless you are delivering something, a home address or phone is unnecessary.
  • Don’t assume 3rd parties are compliant – you are responsible if there’s a data breach in one of the 3rd parties (e.g. “processors”) to which you send personal data. So before you send data via an API to another service, make sure they have at least a basic level of data protection. If they don’t, raise a flag with management.
  • Don’t assume having ISO XXX makes you compliant – information security standards and even personal data standards are a good start and they will probably 70% of what the regulation requires, but they are not sufficient – most of the things listed above are not covered in any of those standards

Overall, the purpose of the regulation is to make you take conscious decisions when processing personal data. It imposes best practices in a legal way. If you follow the above advice and design your data model, storage, data flow , API calls with data protection in mind, then you shouldn’t worry about the huge fines that the regulation prescribes – they are for extreme cases, like Equifax for example. Regulators (data protection authorities) will most likely have some checklists into which you’d have to somehow fit, but if you follow best practices, that shouldn’t be an issue.

I think all of the above features can be implemented in a few weeks by a small team. Be suspicious when a big vendor offers you a generic plug-and-play “GDPR compliance” solution. GDPR is not just about the technical aspects listed above – it does have organizational/process implications. But also be suspicious if a consultant claims GDPR is complicated. It’s not – it relies on a few basic principles that are in fact best practices anyway. Just don’t ignore them.

The post GDPR – A Practical Guide For Developers appeared first on Bozho's tech blog.

M5 – The Next Generation of General-Purpose EC2 Instances

Post Syndicated from Jeff Barr original https://aws.amazon.com/blogs/aws/m5-the-next-generation-of-general-purpose-ec2-instances/

I always advise new EC2 users to start with our general-purpose instances, run some stress tests, and to get a really good feel for the compute, memory, and networking profile of their application before taking a look at other instance types. With a broad selection of instances optimized for compute, memory, and storage, our customers have many options and the flexibility to choose the instance type that is the best fit for their needs.

As you can see from my EC2 Instance History post, the general-purpose (M) instances go all the way back to 2006 when we launched the m1.small. We continued to evolve along this branch of our family tree, launching the the M2 (2009), M3 (2012), and the M4 (2015) instances. Our customers use the general-purpose instances to run web & app servers, host enterprise applications, support online games, and build cache fleets.

New M5 Instances
Today we are taking the next step forward with the launch of our new M5 instances. These instances benefit from our commitment to continued innovation and offer even better price-performance than their predecessors. Based on Custom Intel® Xeon® Platinum 8175M series processors running at 2.5 GHz, the M5 instances are designed for highly demanding workloads and will deliver 14% better price/performance than the M4 instances on a per-core basis. Applications that use the AVX-512 instructions will crank out twice as many FLOPS per core. We’ve also added a new size at the high-end, giving you even more options.

Here are the M5 instances (all VPC-only, HVM-only, and EBS-Optimized):

Instance Name vCPUs
RAM
Network Bandwidth EBS-Optimized Bandwidth
m5.large 2 8 GiB Up to 10 Gbps Up to 2120 Mbps
m5.xlarge 4 16 GiB Up to 10 Gbps Up to 2120 Mbps
m5.2xlarge 8 32 GiB Up to 10 Gbps Up to 2120 Mbps
m5.4xlarge 16 64 GiB Up to 10 Gbps 2120 Mbps
m5.12xlarge 48 192 GiB 10 Gbps 5000 Mbps
m5.24xlarge 96 384 GiB 25 Gbps 10000 Mbps

At the top end of the lineup, the m5.24xlarge is second only to the X instances when it comes to vCPU count, giving you more room to scale up and to consolidate workloads. The instances support Enhanced Networking, and can deliver up to 25 Gbps when used within a Placement Group.

In addition to dedicated, EBS-Optimized bandwidth to EBS, access to EBS storage is enhanced by the use of NVMe (you’ll need to install the proper drivers if you are using older AMIs). The combination of more bandwidth and NVMe will increase the amount of data that your M5 instances can chew through.

Launch One Today
You can launch M5 instances today in the US East (Northern Virginia), US West (Oregon), and EU (Ireland) Regions in On-Demand and Spot form (Reserved Instances are also available), with additional Regions in the works.

One quick note: the current NVMe driver is not optimized for high-performance sequential workloads and we don’t recommend the use of M5 instances in conjunction with sc1 or st1 volumes. We are aware of this issue and have been working to optimize the driver for this important use case.

Jeff;

 

 

Police Seize Hundreds of Computers Over Pirate Movie Download in 2013

Post Syndicated from Andy original https://torrentfreak.com/police-seize-hundreds-of-computers-over-pirate-movie-download-in-2013-171125/

Late October 2016, we reported on an alarming situation in Poland, where police had visited hundreds of homes across the country, seizing computers alleged to have been involved in the sharing of a comedy movie titled “Screwed“.

In some cases, police reportedly advised suspects to settle with copyright holders rather than face legal action, something critics felt was particularly inappropriate in an unproven copyright case. Now it appears that history is repeating itself in the region, with people being targeted over downloads of a local thriller titled “Drogówka”.

While this is of concern in itself, the alleged offenses took place via BitTorrent way back in 2013, four whole years ago. Local journalist Marcin Maj at Bezprawnik, who’s also an IT security instructor at Niebezpiecznik, has been documenting the activities of copyright trolls in Poland for some time. He picked up the story this week after he learned that police had seized an alleged file-sharer’s computer.

After speaking with local police, he subsequently discovered that 200 to 300 other people had been given the same treatment.

Maj says that after presenting a long list of questions to authorities, he learned that these seizures have been going on continuously for about a year, following a criminal complaint filed by a law firm. It’s that this point that the uncomfortable nature of this whole operation becomes apparent.

“In 2013-2014, lawyer Artur Glass-Brudziński reported numerous copyright infringements (movie sharing) to the prosecutor’s office, and the prosecutor’s office started to identify people behind the indicated IP addresses,” Maj informs TF.

“It’s important to understand that in the Polish legal system, it’s impossible to sue someone who is unknown to a plaintiff [John Doe]. But you can always start a criminal proceeding.”

Such a criminal proceeding was filed in 2014 but it appears that Glass-Brudziński used the process to gain a secondary advantage.

“As a barrister of the [copyright holder], Artur Glass-Brudziński had access to the prosecutor’s documentation. So he used this to obtain identified names and addresses, without waiting for the end of the criminal proceeding. Those people were just witnesses, but Glass-Brudziński sent thousands of letters to them, suggesting they are suspects, which was not true,” Maj says.

So, in effect, a criminal action was used to gain access to personal details that were subsequently used in civil actions. That’s completely legal and quite common in Poland but many view the process as problematic.

“Polish lawyers see this as something not quite ethical,” Maj reports. “Now Glass-Brudziński faces a disciplinary court because his letters were quite misleading. Regardless of that, however, criminal proceedings are still underway.”

A hearing took place before the Disciplinary Court November 13 but a resolution will take some time to reach since there around 80 people involved in the case. In the meantime the current criminal case continues, with several problems.

For example, it’s quite likely that many people will have changed their computers since 2013, but the police are required to seize the ones people currently have. Also, Maj reports that after speaking to people who received demands for cash payment, many report having had nothing to do with the alleged offenses. But there is a broader problem around such cases in general.

As we reported last year, prosecutors admit that they do not verify the technical processes that the copyright holders use to identify the alleged infringers, meaning that hundreds of members of the public are subjected to property seizures based on untested evidence.

“Polish prosecutors often decide to seize computers just because they got an IP address list from a lawyer. Sometimes even prosecutors don’t want to do that, but copyright owners complain to the courts, and the courts issue an order to seize machines. That’s deeply absurd,” Maj says.

“Many times I have asked prosecutors if they check the method used to track pirates. Many times I have asked prosecutors if they have found evidence on every seized computer. The answers? No. They don’t check the method of tracking pirates, and evidence is found only ‘sometimes’.”

There are clearly mounting problems in Poland with both evidence and discovery-based loopholes providing copyright holders with a significant advantage. While questionable, it’s currently all legal, so it seems likely that as long as ‘victims’ can gain access to private information via criminal cases, the cash threats will continue. It’s a topic covered in a report compiled by Maj and the Modern Poland Foundation (Polish, pdf)

“Computer seizures and our report were discussed in the lower house of the Polish parliament in 2016, at the meeting of the Commision of Digitalization, Innovation and New Technologies. Many politicians are aware of the problem and they declare we should do something to stop bullying and seizures. Unfortunately, it all ended with was declarations,” Maj concludes.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Sci-Hub Loses Domain Names, But Remains Resilient

Post Syndicated from Ernesto original https://torrentfreak.com/sci-hub-loses-domain-names-but-remains-resilient-171122/

While Sci-Hub is praised by thousands of researchers and academics around the world, copyright holders are doing everything in their power to wipe the site from the web.

Following a $15 million defeat against Elsevier in June, the American Chemical Society won a default judgment of $4.8 million in copyright damages earlier this month.

The publisher was further granted a broad injunction, requiring various third-party services to stop providing access to the site. This includes domain registries, which have the power to suspend domains worldwide if needed.

Yesterday, several of Sci-Hub’s domain names became unreachable. While the site had some issues in recent weeks, several people noticed that the present problems are more permanent.

Sci-hub.io, sci-hub.cc, and sci-hub.ac now have the infamous “serverhold” status which suggests that the responsible registries intervened. The status, which has been used previously when domain names are flagged for copyright issues, strips domains of their DNS entries.

Serverhold

This effectively means that the domain names in question have been rendered useless. However, history has also shown that Sci-Hub’s operator Alexandra Elbakyan doesn’t easily back down. Quite the contrary.

In a message posted on the site’s VK page and Twitter, the operator points out that users can update their DNS servers to the IP-addresses 80.82.77.83 and 80.82.77.84, to access it freely again. This rigorous measure will direct all domain name lookups through Sci-Hub’s servers.

Sci-Hub’s tweet

In addition, the Sci-Hub.bz domain and the .onion address on the Tor network still appear to work just fine for most people.

It’s clear that Ukraine-born Elbakyan has no intention of throwing in the towel. By providing free access to published research, she sees it as simply helping millions of less privileged academics to do their work properly.

Authorized or not, among researchers there is still plenty of demand and support for Sci-Hub’s service. The site hosts dozens of millions of academic papers and receives millions of visitors per month.

Many visits come from countries where access to academic journals is limited, such as Iran, Russia and China. But even in countries where access is more common, a lot of researchers visit the site.

While the domain problems may temporarily make the site harder to find for some, it’s not likely to be the end for Sch-Hub.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Using AWS CodeCommit Pull Requests to request code reviews and discuss code

Post Syndicated from Chris Barclay original https://aws.amazon.com/blogs/devops/using-aws-codecommit-pull-requests-to-request-code-reviews-and-discuss-code/

Thank you to Michael Edge, Senior Cloud Architect, for a great blog on CodeCommit pull requests.

~~~~~~~

AWS CodeCommit is a fully managed service for securely hosting private Git repositories. CodeCommit now supports pull requests, which allows repository users to review, comment upon, and interactively iterate on code changes. Used as a collaboration tool between team members, pull requests help you to review potential changes to a CodeCommit repository before merging those changes into the repository. Each pull request goes through a simple lifecycle, as follows:

  • The new features to be merged are added as one or more commits to a feature branch. The commits are not merged into the destination branch.
  • The pull request is created, usually from the difference between two branches.
  • Team members review and comment on the pull request. The pull request might be updated with additional commits that contain changes made in response to comments, or include changes made to the destination branch.
  • Once team members are happy with the pull request, it is merged into the destination branch. The commits are applied to the destination branch in the same order they were added to the pull request.

Commenting is an integral part of the pull request process, and is used to collaborate between the developers and the reviewer. Reviewers add comments and questions to a pull request during the review process, and developers respond to these with explanations. Pull request comments can be added to the overall pull request, a file within the pull request, or a line within a file.

To make the comments more useful, sign in to the AWS Management Console as an AWS Identity and Access Management (IAM) user. The username will then be associated with the comment, indicating the owner of the comment. Pull request comments are a great quality improvement tool as they allow the entire development team visibility into what reviewers are looking for in the code. They also serve as a record of the discussion between team members at a point in time, and shouldn’t be deleted.

AWS CodeCommit is also introducing the ability to add comments to a commit, another useful collaboration feature that allows team members to discuss code changed as part of a commit. This helps you discuss changes made in a repository, including why the changes were made, whether further changes are necessary, or whether changes should be merged. As is the case with pull request comments, you can comment on an overall commit, on a file within a commit, or on a specific line or change within a file, and other repository users can respond to your comments. Comments are not restricted to commits, they can also be used to comment on the differences between two branches, or between two tags. Commit comments are separate from pull request comments, i.e. you will not see commit comments when reviewing a pull request – you will only see pull request comments.

A pull request example

Let’s get started by running through an example. We’ll take a typical pull request scenario and look at how we’d use CodeCommit and the AWS Management Console for each of the steps.

To try out this scenario, you’ll need:

  • An AWS CodeCommit repository with some sample code in the master branch. We’ve provided sample code below.
  • Two AWS Identity and Access Management (IAM) users, both with the AWSCodeCommitPowerUser managed policy applied to them.
  • Git installed on your local computer, and access configured for AWS CodeCommit.
  • A clone of the AWS CodeCommit repository on your local computer.

In the course of this example, you’ll sign in to the AWS CodeCommit console as one IAM user to create the pull request, and as the other IAM user to review the pull request. To learn more about how to set up your IAM users and how to connect to AWS CodeCommit with Git, see the following topics:

  • Information on creating an IAM user with AWS Management Console access.
  • Instructions on how to access CodeCommit using Git.
  • If you’d like to use the same ‘hello world’ application as used in this article, here is the source code:
package com.amazon.helloworld;

public class Main {
	public static void main(String[] args) {

		System.out.println("Hello, world");
	}
}

The scenario below uses the us-east-2 region.

Creating the branches

Before we jump in and create a pull request, we’ll need at least two branches. In this example, we’ll follow a branching strategy similar to the one described in GitFlow. We’ll create a new branch for our feature from the main development branch (the default branch). We’ll develop the feature in the feature branch. Once we’ve written and tested the code for the new feature in that branch, we’ll create a pull request that contains the differences between the feature branch and the main development branch. Our team lead (the second IAM user) will review the changes in the pull request. Once the changes have been reviewed, the feature branch will be merged into the development branch.

Figure 1: Pull request link

Sign in to the AWS CodeCommit console with the IAM user you want to use as the developer. You can use an existing repository or you can go ahead and create a new one. We won’t be merging any changes to the master branch of your repository, so it’s safe to use an existing repository for this example. You’ll find the Pull requests link has been added just above the Commits link (see Figure 1), and below Commits you’ll find the Branches link. Click Branches and create a new branch called ‘develop’, branched from the ‘master’ branch. Then create a new branch called ‘feature1’, branched from the ‘develop’ branch. You’ll end up with three branches, as you can see in Figure 2. (Your repository might contain other branches in addition to the three shown in the figure).

Figure 2: Create a feature branch

If you haven’t cloned your repo yet, go to the Code link in the CodeCommit console and click the Connect button. Follow the instructions to clone your repo (detailed instructions are here). Open a terminal or command line and paste the git clone command supplied in the Connect instructions for your repository. The example below shows cloning a repository named codecommit-demo:

git clone https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo

If you’ve previously cloned the repo you’ll need to update your local repo with the branches you created. Open a terminal or command line and make sure you’re in the root directory of your repo, then run the following command:

git remote update origin

You’ll see your new branches pulled down to your local repository.

$ git remote update origin
Fetching origin
From https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
 * [new branch]      develop    -> origin/develop
 * [new branch]      feature1   -> origin/feature1

You can also see your new branches by typing:

git branch --all

$ git branch --all
* master
  remotes/origin/develop
  remotes/origin/feature1
  remotes/origin/master

Now we’ll make a change to the ‘feature1’ branch. Open a terminal or command line and check out the feature1 branch by running the following command:

git checkout feature1

$ git checkout feature1
Branch feature1 set up to track remote branch feature1 from origin.
Switched to a new branch 'feature1'

Make code changes

Edit a file in the repo using your favorite editor and save the changes. Commit your changes to the local repository, and push your changes to CodeCommit. For example:

git commit -am 'added new feature'
git push origin feature1

$ git commit -am 'added new feature'
[feature1 8f6cb28] added new feature
1 file changed, 1 insertion(+), 1 deletion(-)

$ git push origin feature1
Counting objects: 9, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (4/4), done.
Writing objects: 100% (9/9), 617 bytes | 617.00 KiB/s, done.
Total 9 (delta 2), reused 0 (delta 0)
To https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
   2774a53..8f6cb28  feature1 -> feature1

Creating the pull request

Now we have a ‘feature1’ branch that differs from the ‘develop’ branch. At this point we want to merge our changes into the ‘develop’ branch. We’ll create a pull request to notify our team members to review our changes and check whether they are ready for a merge.

In the AWS CodeCommit console, click Pull requests. Click Create pull request. On the next page select ‘develop’ as the destination branch and ‘feature1’ as the source branch. Click Compare. CodeCommit will check for merge conflicts and highlight whether the branches can be automatically merged using the fast-forward option, or whether a manual merge is necessary. A pull request can be created in both situations.

Figure 3: Create a pull request

After comparing the two branches, the CodeCommit console displays the information you’ll need in order to create the pull request. In the ‘Details’ section, the ‘Title’ for the pull request is mandatory, and you may optionally provide comments to your reviewers to explain the code change you have made and what you’d like them to review. In the ‘Notifications’ section, there is an option to set up notifications to notify subscribers of changes to your pull request. Notifications will be sent on creation of the pull request as well as for any pull request updates or comments. And finally, you can review the changes that make up this pull request. This includes both the individual commits (a pull request can contain one or more commits, available in the Commits tab) as well as the changes made to each file, i.e. the diff between the two branches referenced by the pull request, available in the Changes tab. After you have reviewed this information and added a title for your pull request, click the Create button. You will see a confirmation screen, as shown in Figure 4, indicating that your pull request has been successfully created, and can be merged without conflicts into the ‘develop’ branch.

Figure 4: Pull request confirmation page

Reviewing the pull request

Now let’s view the pull request from the perspective of the team lead. If you set up notifications for this CodeCommit repository, creating the pull request would have sent an email notification to the team lead, and he/she can use the links in the email to navigate directly to the pull request. In this example, sign in to the AWS CodeCommit console as the IAM user you’re using as the team lead, and click Pull requests. You will see the same information you did during creation of the pull request, plus a record of activity related to the pull request, as you can see in Figure 5.

Figure 5: Team lead reviewing the pull request

Commenting on the pull request

You now perform a thorough review of the changes and make a number of comments using the new pull request comment feature. To gain an overall perspective on the pull request, you might first go to the Commits tab and review how many commits are included in this pull request. Next, you might visit the Changes tab to review the changes, which displays the differences between the feature branch code and the develop branch code. At this point, you can add comments to the pull request as you work through each of the changes. Let’s go ahead and review the pull request. During the review, you can add review comments at three levels:

  • The overall pull request
  • A file within the pull request
  • An individual line within a file

The overall pull request
In the Changes tab near the bottom of the page you’ll see a ‘Comments on changes’ box. We’ll add comments here related to the overall pull request. Add your comments as shown in Figure 6 and click the Save button.

Figure 6: Pull request comment

A specific file in the pull request
Hovering your mouse over a filename in the Changes tab will cause a blue ‘comments’ icon to appear to the left of the filename. Clicking the icon will allow you to enter comments specific to this file, as in the example in Figure 7. Go ahead and add comments for one of the files changed by the developer. Click the Save button to save your comment.

Figure 7: File comment

A specific line in a file in the pull request
A blue ‘comments’ icon will appear as you hover over individual lines within each file in the pull request, allowing you to create comments against lines that have been added, removed or are unchanged. In Figure 8, you add comments against a line that has been added to the source code, encouraging the developer to review the naming standards. Go ahead and add line comments for one of the files changed by the developer. Click the Save button to save your comment.

Figure 8: Line comment

A pull request that has been commented at all three levels will look similar to Figure 9. The pull request comment is shown expanded in the ‘Comments on changes’ section, while the comments at file and line level are shown collapsed. A ‘comment’ icon indicates that comments exist at file and line level. Clicking the icon will expand and show the comment. Since you are expecting the developer to make further changes based on your comments, you won’t merge the pull request at this stage, but will leave it open awaiting feedback. Each comment you made results in a notification being sent to the developer, who can respond to the comments. This is great for remote working, where developers and team lead may be in different time zones.

Figure 9: Fully commented pull request

Adding a little complexity

A typical development team is going to be creating pull requests on a regular basis. It’s highly likely that the team lead will merge other pull requests into the ‘develop’ branch while pull requests on feature branches are in the review stage. This may result in a change to the ‘Mergable’ status of a pull request. Let’s add this scenario into the mix and check out how a developer will handle this.

To test this scenario, we could create a new pull request and ask the team lead to merge this to the ‘develop’ branch. But for the sake of simplicity we’ll take a shortcut. Clone your CodeCommit repo to a new folder, switch to the ‘develop’ branch, and make a change to one of the same files that were changed in your pull request. Make sure you change a line of code that was also changed in the pull request. Commit and push this back to CodeCommit. Since you’ve just changed a line of code in the ‘develop’ branch that has also been changed in the ‘feature1’ branch, the ‘feature1’ branch cannot be cleanly merged into the ‘develop’ branch. Your developer will need to resolve this merge conflict.

A developer reviewing the pull request would see the pull request now looks similar to Figure 10, with a ‘Resolve conflicts’ status rather than the ‘Mergable’ status it had previously (see Figure 5).

Figure 10: Pull request with merge conflicts

Reviewing the review comments

Once the team lead has completed his review, the developer will review the comments and make the suggested changes. As a developer, you’ll see the list of review comments made by the team lead in the pull request Activity tab, as shown in Figure 11. The Activity tab shows the history of the pull request, including commits and comments. You can reply to the review comments directly from the Activity tab, by clicking the Reply button, or you can do this from the Changes tab. The Changes tab shows the comments for the latest commit, as comments on previous commits may be associated with lines that have changed or been removed in the current commit. Comments for previous commits are available to view and reply to in the Activity tab.

In the Activity tab, use the shortcut link (which looks like this </>) to move quickly to the source code associated with the comment. In this example, you will make further changes to the source code to address the pull request review comments, so let’s go ahead and do this now. But first, you will need to resolve the ‘Resolve conflicts’ status.

Figure 11: Pull request activity

Resolving the ‘Resolve conflicts’ status

The ‘Resolve conflicts’ status indicates there is a merge conflict between the ‘develop’ branch and the ‘feature1’ branch. This will require manual intervention to restore the pull request back to the ‘Mergable’ state. We will resolve this conflict next.

Open a terminal or command line and check out the develop branch by running the following command:

git checkout develop

$ git checkout develop
Switched to branch 'develop'
Your branch is up-to-date with 'origin/develop'.

To incorporate the changes the team lead made to the ‘develop’ branch, merge the remote ‘develop’ branch with your local copy:

git pull

$ git pull
remote: Counting objects: 9, done.
Unpacking objects: 100% (9/9), done.
From https://git-codecommit.us-east-2.amazonaws.com/v1/repos/codecommit-demo
   af13c82..7b36f52  develop    -> origin/develop
Updating af13c82..7b36f52
Fast-forward
 src/main/java/com/amazon/helloworld/Main.java | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

Then checkout the ‘feature1’ branch:

git checkout feature1

$ git checkout feature1
Switched to branch 'feature1'
Your branch is up-to-date with 'origin/feature1'.

Now merge the changes from the ‘develop’ branch into your ‘feature1’ branch:

git merge develop

$ git merge develop
Auto-merging src/main/java/com/amazon/helloworld/Main.java
CONFLICT (content): Merge conflict in src/main/java/com/amazon/helloworld/Main.java
Automatic merge failed; fix conflicts and then commit the result.

Yes, this fails. The file Main.java has been changed in both branches, resulting in a merge conflict that can’t be resolved automatically. However, Main.java will now contain markers that indicate where the conflicting code is, and you can use these to resolve the issues manually. Edit Main.java using your favorite IDE, and you’ll see it looks something like this:

package com.amazon.helloworld;

import java.util.*;

/**
 * This class prints a hello world message
 */

public class Main {
   public static void main(String[] args) {

<<<<<<< HEAD
        Date todaysdate = Calendar.getInstance().getTime();

        System.out.println("Hello, earthling. Today's date is: " + todaysdate);
=======
      System.out.println("Hello, earth");
>>>>>>> develop
   }
}

The code between HEAD and ‘===’ is the code the developer added in the ‘feature1’ branch (HEAD represents ‘feature1’ because this is the current checked out branch). The code between ‘===’ and ‘>>> develop’ is the code added to the ‘develop’ branch by the team lead. We’ll resolve the conflict by manually merging both changes, resulting in an updated Main.java:

package com.amazon.helloworld;

import java.util.*;

/**
 * This class prints a hello world message
 */

public class Main {
   public static void main(String[] args) {

        Date todaysdate = Calendar.getInstance().getTime();

        System.out.println("Hello, earth. Today's date is: " + todaysdate);
   }
}

After saving the change you can add and commit it to your local repo:

git add src/
git commit -m 'fixed merge conflict by merging changes'

Fixing issues raised by the reviewer

Now you are ready to address the comments made by the team lead. If you are no longer pointing to the ‘feature1’ branch, check out the ‘feature1’ branch by running the following command:

git checkout feature1

$ git checkout feature1
Branch feature1 set up to track remote branch feature1 from origin.
Switched to a new branch 'feature1'

Edit the source code in your favorite IDE and make the changes to address the comments. In this example, the developer has updated the source code as follows:

package com.amazon.helloworld;

import java.util.*;

/**
 *  This class prints a hello world message
 *
 * @author Michael Edge
 * @see HelloEarth
 * @version 1.0
 */

public class Main {
   public static void main(String[] args) {

        Date todaysDate = Calendar.getInstance().getTime();

        System.out.println("Hello, earth. Today's date is: " + todaysDate);
   }
}

After saving the changes, commit and push to the CodeCommit ‘feature1’ branch as you did previously:

git commit -am 'updated based on review comments'
git push origin feature1

Responding to the reviewer

Now that you’ve fixed the code issues you will want to respond to the review comments. In the AWS CodeCommit console, check that your latest commit appears in the pull request Commits tab. You now have a pull request consisting of more than one commit. The pull request in Figure 12 has four commits, which originated from the following activities:

  • 8th Nov: the original commit used to initiate this pull request
  • 10th Nov, 3 hours ago: the commit by the team lead to the ‘develop’ branch, merged into our ‘feature1’ branch
  • 10th Nov, 24 minutes ago: the commit by the developer that resolved the merge conflict
  • 10th Nov, 4 minutes ago: the final commit by the developer addressing the review comments

Figure 12: Pull request with multiple commits

Let’s reply to the review comments provided by the team lead. In the Activity tab, reply to the pull request comment and save it, as shown in Figure 13.

Figure 13: Replying to a pull request comment

At this stage, your code has been committed and you’ve updated your pull request comments, so you are ready for a final review by the team lead.

Final review

The team lead reviews the code changes and comments made by the developer. As team lead, you own the ‘develop’ branch and it’s your decision on whether to merge the changes in the pull request into the ‘develop’ branch. You can close the pull request with or without merging using the Merge and Close buttons at the bottom of the pull request page (see Figure 13). Clicking Close will allow you to add comments on why you are closing the pull request without merging. Merging will perform a fast-forward merge, incorporating the commits referenced by the pull request. Let’s go ahead and click the Merge button to merge the pull request into the ‘develop’ branch.

Figure 14: Merging the pull request

After merging a pull request, development of that feature is complete and the feature branch is no longer needed. It’s common practice to delete the feature branch after merging. CodeCommit provides a check box during merge to automatically delete the associated feature branch, as seen in Figure 14. Clicking the Merge button will merge the pull request into the ‘develop’ branch, as shown in Figure 15. This will update the status of the pull request to ‘Merged’, and will close the pull request.

Conclusion

This blog has demonstrated how pull requests can be used to request a code review, and enable reviewers to get a comprehensive summary of what is changing, provide feedback to the author, and merge the code into production. For more information on pull requests, see the documentation.

Original Torrentz Domain Names Listed For Sale

Post Syndicated from Ernesto original https://torrentfreak.com/original-torrentz-domain-names-listed-for-sale-171119/

Last year, the torrent ecosystem lost two of its biggest sites. First KickassTorrents was taken down following a criminal investigation by the FBI, resulting in indictments against the operators.

A few days later, Torrentz.eu decided to close its doors as well, albeit voluntarily. Without prior warning, all torrent listings were removed from the meta-search engine, which was the third largest torrent site at the time.

The site’s operator kept the website online, but instead of offering links to the usual torrents, its users were left with the following message: “Torrentz will always love you. Farewell.”

Today, more than a year later, not much has changed. Torrentz is still online but the torrent search engine is still not functional. This role was taken over by an unrelated site carrying the name Torrentz2, which has millions of daily visitors itself now.

However, according to a message posted on the original Torrentz site, things may change in the near future. The original Torrentz domain names, including Torrentz.eu, Torrentz.com and Torrentz.in, are for listed sale.

Torrentz for sale

Considering the history of the site and the fact that it still has quite a bit of traffic, this may pique the interest of some online entrepreneurs.

For sentimental Torrentz fans, a sale can go both ways. It could either be used for a new torrent related venture, or someone could scoop it up just to fill it with ads, or even worse.

One thing potential buyers have to be aware of is that the site is still blocked in several countries, including the UK. This, despite the fact that it hasn’t carried any links to infringing content for over a year.

TorrentFreak reached out to the owner of Torrentz to find out why he decided to sell the site now. At the time of writing we haven’t heard back yet, but it’s clear that he’s ready to move on.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

“The Commercial Usenet Stinks on All Sides,” Anti-Piracy Boss Says

Post Syndicated from Ernesto original https://torrentfreak.com/the-commercial-usenet-stinks-on-all-sides-anti-piracy-boss-says-171118/

Dutch anti-piracy group BREIN has targeted pirates of all shapes and sizes over the past several years.

It’s also one of the few groups keeping a close eye on Usenet piracy. Although Usenet and associated piracy are a few decades old already and relatively old-fashioned, the area still has millions of frequent users. This hasn’t escaped the attention of law enforcement.

Last week police in Germany launched one of the largest anti-piracy operations in recent history. Houses of dozens of suspects connected to Usenet forums were searched, with at least 1,000 gigabytes of data and numerous computers seized for evidence.

In their efforts, German authorities received help from international colleagues in the Netherlands, Spain, San Marino, Switzerland and Canada. Rightfully so, according to BREIN boss Tim Kuik, who describes Usenet as a refuge for pirates.

“Usenet was originally for text only. People were able to ask questions and exchange information via newsgroups. After it became possible to store video and music as Usenet text messages, it became a refuge for illegal copies of everything. That’s where the revenue model is based on today,” Kuik says.

BREIN states that uploaders, Usenet forums, and Usenet resellers all work in tandem. Resellers provide free accounts to popular uploaders, for example, which generates more traffic and demand for subscriptions. That’s how resellers and providers earn their money.

The same resellers also advertise on popular Usenet forums where links to pirated files are shared, suggesting that they specifically target these users. For example, one of the resellers targeted by BREIN in the past, was sponsoring one of the sites that were raided last week, BREIN notes.

Last year BREIN signed settlements with several Usenet uploaders. This was in part facilitated by a court order, directing Usenet provider Eweka to identify a former subscriber who supposedly shared infringing material.

Following this verdict, several Dutch Usenet servers were taken over by a San Marino company. But, according to BREIN this company can also be ordered to share customer information if needed.

“It is not unthinkable that this construction has been called into existence by Usenet companies who find themselves in hot water,” Kuik says.

According to BREIN it’s clear. Large parts of Usenet have turned into a playground for pirates and people who profit from copyright infringement. This all happens while the legitimate rightsholders don’t see a penny.

“For a long time, there’s been a certain smell to the commercial Usenet,” Kuik says. “It’s stinking on all sides.”

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Resume AWS Step Functions from Any State

Post Syndicated from Andy Katz original https://aws.amazon.com/blogs/compute/resume-aws-step-functions-from-any-state/


Yash Pant, Solutions Architect, AWS


Aaron Friedman, Partner Solutions Architect, AWS

When we discuss how to build applications with customers, we often align to the Well Architected Framework pillars of security, reliability, performance efficiency, cost optimization, and operational excellence. Designing for failure is an essential component to developing well architected applications that are resilient to spurious errors that may occur.

There are many ways you can use AWS services to achieve high availability and resiliency of your applications. For example, you can couple Elastic Load Balancing with Auto Scaling and Amazon EC2 instances to build highly available applications. Or use Amazon API Gateway and AWS Lambda to rapidly scale out a microservices-based architecture. Many AWS services have built in solutions to help with the appropriate error handling, such as Dead Letter Queues (DLQ) for Amazon SQS or retries in AWS Batch.

AWS Step Functions is an AWS service that makes it easy for you to coordinate the components of distributed applications and microservices. Step Functions allows you to easily design for failure, by incorporating features such as error retries and custom error handling from AWS Lambda exceptions. These features allow you to programmatically handle many common error modes and build robust, reliable applications.

In some rare cases, however, your application may fail in an unexpected manner. In these situations, you might not want to duplicate in a repeat execution those portions of your state machine that have already run. This is especially true when orchestrating long-running jobs or executing a complex state machine as part of a microservice. Here, you need to know the last successful state in your state machine from which to resume, so that you don’t duplicate previous work. In this post, we present a solution to enable you to resume from any given state in your state machine in the case of an unexpected failure.

Resuming from a given state

To resume a failed state machine execution from the state at which it failed, you first run a script that dynamically creates a new state machine. When the new state machine is executed, it resumes the failed execution from the point of failure. The script contains the following two primary steps:

  1. Parse the execution history of the failed execution to find the name of the state at which it failed, as well as the JSON input to that state.
  2. Create a new state machine, which adds an additional state to failed state machine, called "GoToState". "GoToState" is a choice state at the beginning of the state machine that branches execution directly to the failed state, allowing you to skip states that had succeeded in the previous execution.

The full script along with a CloudFormation template that creates a demo of this is available in the aws-sfn-resume-from-any-state GitHub repo.

Diving into the script

In this section, we walk you through the script and highlight the core components of its functionality. The script contains a main function, which adds a command line parameter for the failedExecutionArn so that you can easily call the script from the command line:

python gotostate.py --failedExecutionArn '<Failed_Execution_Arn>'

Identifying the failed state in your execution

First, the script extracts the name of the failed state along with the input to that state. It does so by using the failed state machine execution history, which is identified by the Amazon Resource Name (ARN) of the execution. The failed state is marked in the execution history, along with the input to that state (which is also the output of the preceding successful state). The script is able to parse these values from the log.

The script loops through the execution history of the failed state machine, and traces it backwards until it finds the failed state. If the state machine failed in a parallel state, then it must restart from the beginning of the parallel state. The script is able to capture the name of the parallel state that failed, rather than any substate within the parallel state that may have caused the failure. The following code is the Python function that does this.


def parseFailureHistory(failedExecutionArn):

    '''
    Parses the execution history of a failed state machine to get the name of failed state and the input to the failed state:
    Input failedExecutionArn = A string containing the execution ARN of a failed state machine y
    Output = A list with two elements: [name of failed state, input to failed state]
    '''
    failedAtParallelState = False
    try:
        #Get the execution history
        response = client.get\_execution\_history(
            executionArn=failedExecutionArn,
            reverseOrder=True
        )
        failedEvents = response['events']
    except Exception as ex:
        raise ex
    #Confirm that the execution actually failed, raise exception if it didn't fail.
    try:
        failedEvents[0]['executionFailedEventDetails']
    except:
        raise('Execution did not fail')
        
    '''
    If you have a 'States.Runtime' error (for example, if a task state in your state machine attempts to execute a Lambda function in a different region than the state machine), get the ID of the failed state, and use it to determine the failed state name and input.
    '''
    
    if failedEvents[0]['executionFailedEventDetails']['error'] == 'States.Runtime':
        failedId = int(filter(str.isdigit, str(failedEvents[0]['executionFailedEventDetails']['cause'].split()[13])))
        failedState = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['name']
        failedInput = failedEvents[-1 \* failedId]['stateEnteredEventDetails']['input']
        return (failedState, failedInput)
        
    '''
    You need to loop through the execution history, tracing back the executed steps.
    The first state you encounter is the failed state. If you failed on a parallel state, you need the name of the parallel state rather than the name of a state within a parallel state that it failed on. This is because you can only attach goToState to the parallel state, but not a substate within the parallel state.
    This loop starts with the ID of the latest event and uses the previous event IDs to trace back the execution to the beginning (id 0). However, it returns as soon it finds the name of the failed state.
    '''

    currentEventId = failedEvents[0]['id']
    while currentEventId != 0:
        #multiply event ID by -1 for indexing because you're looking at the reversed history
        currentEvent = failedEvents[-1 \* currentEventId]
        
        '''
        You can determine if the failed state was a parallel state because it and an event with 'type'='ParallelStateFailed' appears in the execution history before the name of the failed state
        '''

        if currentEvent['type'] == 'ParallelStateFailed':
            failedAtParallelState = True

        '''
        If the failed state is not a parallel state, then the name of failed state to return is the name of the state in the first 'TaskStateEntered' event type you run into when tracing back the execution history
        '''

        if currentEvent['type'] == 'TaskStateEntered' and failedAtParallelState == False:
            failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)

        '''
        If the failed state was a parallel state, then you need to trace execution back to the first event with 'type'='ParallelStateEntered', and return the name of the state
        '''

        if currentEvent['type'] == 'ParallelStateEntered' and failedAtParallelState:
            failedState = failedState = currentEvent['stateEnteredEventDetails']['name']
            failedInput = currentEvent['stateEnteredEventDetails']['input']
            return (failedState, failedInput)
        #Update the ID for the next execution of the loop
        currentEventId = currentEvent['previousEventId']
        

Create the new state machine

The script uses the name of the failed state to create the new state machine, with "GoToState" branching execution directly to the failed state.

To do this, the script requires the Amazon States Language (ASL) definition of the failed state machine. It modifies the definition to append "GoToState", and create a new state machine from it.

The script gets the ARN of the failed state machine from the execution ARN of the failed state machine. This ARN allows it to get the ASL definition of the failed state machine by calling the DesribeStateMachine API action. It creates a new state machine with "GoToState".

When the script creates the new state machine, it also adds an additional input variable called "resuming". When you execute this new state machine, you specify this resuming variable as true in the input JSON. This tells "GoToState" to branch execution to the state that had previously failed. Here’s the function that does this:

def attachGoToState(failedStateName, stateMachineArn):

    '''
    Given a state machine ARN and the name of a state in that state machine, create a new state machine that starts at a new choice state called 'GoToState'. "GoToState" branches to the named state, and sends the input of the state machine to that state, when a variable called "resuming" is set to True.
    Input failedStateName = A string with the name of the failed state
          stateMachineArn = A string with the ARN of the state machine
    Output response from the create_state_machine call, which is the API call that creates a new state machine
    '''

    try:
        response = client.describe\_state\_machine(
            stateMachineArn=stateMachineArn
        )
    except:
        raise('Could not get ASL definition of state machine')
    roleArn = response['roleArn']
    stateMachine = json.loads(response['definition'])
    #Create a name for the new state machine
    newName = response['name'] + '-with-GoToState'
    #Get the StartAt state for the original state machine, because you point the 'GoToState' to this state
    originalStartAt = stateMachine['StartAt']

    '''
    Create the GoToState with the variable $.resuming.
    If new state machine is executed with $.resuming = True, then the state machine skips to the failed state.
    Otherwise, it executes the state machine from the original start state.
    '''

    goToState = {'Type':'Choice', 'Choices':[{'Variable':'$.resuming', 'BooleanEquals':False, 'Next':originalStartAt}], 'Default':failedStateName}
    #Add GoToState to the set of states in the new state machine
    stateMachine['States']['GoToState'] = goToState
    #Add StartAt
    stateMachine['StartAt'] = 'GoToState'
    #Create new state machine
    try:
        response = client.create_state_machine(
            name=newName,
            definition=json.dumps(stateMachine),
            roleArn=roleArn
        )
    except:
        raise('Failed to create new state machine with GoToState')
    return response

Testing the script

Now that you understand how the script works, you can test it out.

The following screenshot shows an example state machine that has failed, called "TestMachine". This state machine successfully completed "FirstState" and "ChoiceState", but when it branched to "FirstMatchState", it failed.

Use the script to create a new state machine that allows you to rerun this state machine, but skip the "FirstState" and the "ChoiceState" steps that already succeeded. You can do this by calling the script as follows:

python gotostate.py --failedExecutionArn 'arn:aws:states:us-west-2:<AWS_ACCOUNT_ID>:execution:TestMachine-with-GoToState:b2578403-f41d-a2c7-e70c-7500045288595

This creates a new state machine called "TestMachine-with-GoToState", and returns its ARN, along with the input that had been sent to "FirstMatchState". You can then inspect the input to determine what caused the error. In this case, you notice that the input to "FirstMachState" was the following:

{
"foo": 1,
"Message": true
}

However, this state machine expects the "Message" field of the JSON to be a string rather than a Boolean. Execute the new "TestMachine-with-GoToState" state machine, change the input to be a string, and add the "resuming" variable that "GoToState" requires:

{
"foo": 1,
"Message": "Hello!",
"resuming":true
}

When you execute the new state machine, it skips "FirstState" and "ChoiceState", and goes directly to "FirstMatchState", which was the state that failed:

Look at what happens when you have a state machine with multiple parallel steps. This example is included in the GitHub repository associated with this post. The repo contains a CloudFormation template that sets up this state machine and provides instructions to replicate this solution.

The following state machine, "ParallelStateMachine", takes an input through two subsequent parallel states before doing some final processing and exiting, along with the JSON with the ASL definition of the state machine.

{
  "Comment": "An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
  "StartAt": "Parallel",
  "States": {
    "Parallel": {
      "Type": "Parallel",
      "ResultPath":"$.output",
      "Next": "Parallel 2",
      "Branches": [
        {
          "StartAt": "Parallel Step 1, Process 1",
          "States": {
            "Parallel Step 1, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 1, Process 2",
          "States": {
            "Parallel Step 1, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
              "End": true
            }
          }
        }
      ]
    },
    "Parallel 2": {
      "Type": "Parallel",
      "Next": "Final Processing",
      "Branches": [
        {
          "StartAt": "Parallel Step 2, Process 1",
          "States": {
            "Parallel Step 2, Process 1": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        },
        {
          "StartAt": "Parallel Step 2, Process 2",
          "States": {
            "Parallel Step 2, Process 2": {
              "Type": "Task",
              "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
              "End": true
            }
          }
        }
      ]
    },
    "Final Processing": {
      "Type": "Task",
      "Resource": "arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
      "End": true
    }
  }
}

First, use an input that initially fails:

{
  "Message": "Hello!"
}

This fails because the state machine expects you to have a variable in the input JSON called "foo" in the second parallel state to run "Parallel Step 2, Process 1" and "Parallel Step 2, Process 2". Instead, the original input gets processed by the first parallel state and produces the following output to pass to the second parallel state:

{
"output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
}

Run the script on the failed state machine to create a new state machine that allows it to resume directly at the second parallel state instead of having to redo the first parallel state. This creates a new state machine called "ParallelStateMachine-with-GoToState". The following JSON was created by the script to define the new state machine in ASL. It contains the "GoToState" value that was attached by the script.

{
   "Comment":"An example of the Amazon States Language using a parallel state to execute two branches at the same time.",
   "States":{
      "Final Processing":{
         "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaC",
         "End":true,
         "Type":"Task"
      },
      "GoToState":{
         "Default":"Parallel 2",
         "Type":"Choice",
         "Choices":[
            {
               "Variable":"$.resuming",
               "BooleanEquals":false,
               "Next":"Parallel"
            }
         ]
      },
      "Parallel":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 1, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 1"
            },
            {
               "States":{
                  "Parallel Step 1, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:LambdaA",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 1, Process 2"
            }
         ],
         "ResultPath":"$.output",
         "Type":"Parallel",
         "Next":"Parallel 2"
      },
      "Parallel 2":{
         "Branches":[
            {
               "States":{
                  "Parallel Step 2, Process 1":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 1"
            },
            {
               "States":{
                  "Parallel Step 2, Process 2":{
                     "Resource":"arn:aws:lambda:us-west-2:XXXXXXXXXXXX:function:LambdaB",
                     "End":true,
                     "Type":"Task"
                  }
               },
               "StartAt":"Parallel Step 2, Process 2"
            }
         ],
         "Type":"Parallel",
         "Next":"Final Processing"
      }
   },
   "StartAt":"GoToState"
}

You can then execute this state machine with the correct input by adding the "foo" and "resuming" variables:

{
  "foo": 1,
  "output": [
    {
      "Message": "Hello!"
    },
    {
      "Message": "Hello!"
    }
  ],
  "resuming": true
}

This yields the following result. Notice that this time, the state machine executed successfully to completion, and skipped the steps that had previously failed.


Conclusion

When you’re building out complex workflows, it’s important to be prepared for failure. You can do this by taking advantage of features such as automatic error retries in Step Functions and custom error handling of Lambda exceptions.

Nevertheless, state machines still have the possibility of failing. With the methodology and script presented in this post, you can resume a failed state machine from its point of failure. This allows you to skip the execution of steps in the workflow that had already succeeded, and recover the process from the point of failure.

To see more examples, please visit the Step Functions Getting Started page.

If you have questions or suggestions, please comment below.

Building a Multi-region Serverless Application with Amazon API Gateway and AWS Lambda

Post Syndicated from Stefano Buliani original https://aws.amazon.com/blogs/compute/building-a-multi-region-serverless-application-with-amazon-api-gateway-and-aws-lambda/

This post written by: Magnus Bjorkman – Solutions Architect

Many customers are looking to run their services at global scale, deploying their backend to multiple regions. In this post, we describe how to deploy a Serverless API into multiple regions and how to leverage Amazon Route 53 to route the traffic between regions. We use latency-based routing and health checks to achieve an active-active setup that can fail over between regions in case of an issue. We leverage the new regional API endpoint feature in Amazon API Gateway to make this a seamless process for the API client making the requests. This post does not cover the replication of your data, which is another aspect to consider when deploying applications across regions.

Solution overview

Currently, the default API endpoint type in API Gateway is the edge-optimized API endpoint, which enables clients to access an API through an Amazon CloudFront distribution. This typically improves connection time for geographically diverse clients. By default, a custom domain name is globally unique and the edge-optimized API endpoint would invoke a Lambda function in a single region in the case of Lambda integration. You can’t use this type of endpoint with a Route 53 active-active setup and fail-over.

The new regional API endpoint in API Gateway moves the API endpoint into the region and the custom domain name is unique per region. This makes it possible to run a full copy of an API in each region and then use Route 53 to use an active-active setup and failover. The following diagram shows how you do this:

Active/active multi region architecture

  • Deploy your Rest API stack, consisting of API Gateway and Lambda, in two regions, such as us-east-1 and us-west-2.
  • Choose the regional API endpoint type for your API.
  • Create a custom domain name and choose the regional API endpoint type for that one as well. In both regions, you are configuring the custom domain name to be the same, for example, helloworldapi.replacewithyourcompanyname.com
  • Use the host name of the custom domain names from each region, for example, xxxxxx.execute-api.us-east-1.amazonaws.com and xxxxxx.execute-api.us-west-2.amazonaws.com, to configure record sets in Route 53 for your client-facing domain name, for example, helloworldapi.replacewithyourcompanyname.com

The above solution provides an active-active setup for your API across the two regions, but you are not doing failover yet. For that to work, set up a health check in Route 53:

Route 53 Health Check

A Route 53 health check must have an endpoint to call to check the health of a service. You could do a simple ping of your actual Rest API methods, but instead provide a specific method on your Rest API that does a deep ping. That is, it is a Lambda function that checks the status of all the dependencies.

In the case of the Hello World API, you don’t have any other dependencies. In a real-world scenario, you could check on dependencies as databases, other APIs, and external dependencies. Route 53 health checks themselves cannot use your custom domain name endpoint’s DNS address, so you are going to directly call the API endpoints via their region unique endpoint’s DNS address.

Walkthrough

The following sections describe how to set up this solution. You can find the complete solution at the blog-multi-region-serverless-service GitHub repo. Clone or download the repository locally to be able to do the setup as described.

Prerequisites

You need the following resources to set up the solution described in this post:

  • AWS CLI
  • An S3 bucket in each region in which to deploy the solution, which can be used by the AWS Serverless Application Model (SAM). You can use the following CloudFormation templates to create buckets in us-east-1 and us-west-2:
    • us-east-1:
    • us-west-2:
  • A hosted zone registered in Amazon Route 53. This is used for defining the domain name of your API endpoint, for example, helloworldapi.replacewithyourcompanyname.com. You can use a third-party domain name registrar and then configure the DNS in Amazon Route 53, or you can purchase a domain directly from Amazon Route 53.

Deploy API with health checks in two regions

Start by creating a small “Hello World” Lambda function that sends back a message in the region in which it has been deployed.


"""Return message."""
import logging

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the hello world message."""

    region = context.invoked_function_arn.split(':')[3]

    logger.info("message: " + "Hello from " + region)
    
    return {
		"message": "Hello from " + region
    }

Also create a Lambda function for doing a health check that returns a value based on another environment variable (either “ok” or “fail”) to allow for ease of testing:


"""Return health."""
import logging
import os

logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)

def lambda_handler(event, context):
    """Lambda handler for getting the health."""

    logger.info("status: " + os.environ['STATUS'])
    
    return {
		"status": os.environ['STATUS']
    }

Deploy both of these using an AWS Serverless Application Model (SAM) template. SAM is a CloudFormation extension that is optimized for serverless, and provides a standard way to create a complete serverless application. You can find the full helloworld-sam.yaml template in the blog-multi-region-serverless-service GitHub repo.

A few things to highlight:

  • You are using inline Swagger to define your API so you can substitute the current region in the x-amazon-apigateway-integration section.
  • Most of the Swagger template covers CORS to allow you to test this from a browser.
  • You are also using substitution to populate the environment variable used by the “Hello World” method with the region into which it is being deployed.

The Swagger allows you to use the same SAM template in both regions.

You can only use SAM from the AWS CLI, so do the following from the command prompt. First, deploy the SAM template in us-east-1 with the following commands, replacing “<your bucket in us-east-1>” with a bucket in your account:


> cd helloworld-api
> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-east-1> --region us-east-1
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-east-1

Second, do the same in us-west-2:


> aws cloudformation package --template-file helloworld-sam.yaml --output-template-file /tmp/cf-helloworld-sam.yaml --s3-bucket <your bucket in us-west-2> --region us-west-2
> aws cloudformation deploy --template-file /tmp/cf-helloworld-sam.yaml --stack-name multiregionhelloworld --capabilities CAPABILITY_IAM --region us-west-2

The API was created with the default endpoint type of Edge Optimized. Switch it to Regional. In the Amazon API Gateway console, select the API that you just created and choose the wheel-icon to edit it.

API Gateway edit API settings

In the edit screen, select the Regional endpoint type and save the API. Do the same in both regions.

Grab the URL for the API in the console by navigating to the method in the prod stage.

API Gateway endpoint link

You can now test this with curl:


> curl https://2wkt1cxxxx.execute-api.us-west-2.amazonaws.com/prod/helloworld
{"message": "Hello from us-west-2"}

Write down the domain name for the URL in each region (for example, 2wkt1cxxxx.execute-api.us-west-2.amazonaws.com), as you need that later when you deploy the Route 53 setup.

Create the custom domain name

Next, create an Amazon API Gateway custom domain name endpoint. As part of using this feature, you must have a hosted zone and domain available to use in Route 53 as well as an SSL certificate that you use with your specific domain name.

You can create the SSL certificate by using AWS Certificate Manager. In the ACM console, choose Get started (if you have no existing certificates) or Request a certificate. Fill out the form with the domain name to use for the custom domain name endpoint, which is the same across the two regions:

Amazon Certificate Manager request new certificate

Go through the remaining steps and validate the certificate for each region before moving on.

You are now ready to create the endpoints. In the Amazon API Gateway console, choose Custom Domain Names, Create Custom Domain Name.

API Gateway create custom domain name

A few things to highlight:

  • The domain name is the same as what you requested earlier through ACM.
  • The endpoint configuration should be regional.
  • Select the ACM Certificate that you created earlier.
  • You need to create a base path mapping that connects back to your earlier API Gateway endpoint. Set the base path to v1 so you can version your API, and then select the API and the prod stage.

Choose Save. You should see your newly created custom domain name:

API Gateway custom domain setup

Note the value for Target Domain Name as you need that for the next step. Do this for both regions.

Deploy Route 53 setup

Use the global Route 53 service to provide DNS lookup for the Rest API, distributing the traffic in an active-active setup based on latency. You can find the full CloudFormation template in the blog-multi-region-serverless-service GitHub repo.

The template sets up health checks, for example, for us-east-1:


HealthcheckRegion1:
  Type: "AWS::Route53::HealthCheck"
  Properties:
    HealthCheckConfig:
      Port: "443"
      Type: "HTTPS_STR_MATCH"
      SearchString: "ok"
      ResourcePath: "/prod/healthcheck"
      FullyQualifiedDomainName: !Ref Region1HealthEndpoint
      RequestInterval: "30"
      FailureThreshold: "2"

Use the health check when you set up the record set and the latency routing, for example, for us-east-1:


Region1EndpointRecord:
  Type: AWS::Route53::RecordSet
  Properties:
    Region: us-east-1
    HealthCheckId: !Ref HealthcheckRegion1
    SetIdentifier: "endpoint-region1"
    HostedZoneId: !Ref HostedZoneId
    Name: !Ref MultiregionEndpoint
    Type: CNAME
    TTL: 60
    ResourceRecords:
      - !Ref Region1Endpoint

You can create the stack by using the following link, copying in the domain names from the previous section, your existing hosted zone name, and the main domain name that is created (for example, hellowordapi.replacewithyourcompanyname.com):

The following screenshot shows what the parameters might look like:
Serverless multi region Route 53 health check

Specifically, the domain names that you collected earlier would map according to following:

  • The domain names from the API Gateway “prod”-stage go into Region1HealthEndpoint and Region2HealthEndpoint.
  • The domain names from the custom domain name’s target domain name goes into Region1Endpoint and Region2Endpoint.

Using the Rest API from server-side applications

You are now ready to use your setup. First, demonstrate the use of the API from server-side clients. You can demonstrate this by using curl from the command line:


> curl https://hellowordapi.replacewithyourcompanyname.com/v1/helloworld/
{"message": "Hello from us-east-1"}

Testing failover of Rest API in browser

Here’s how you can use this from the browser and test the failover. Find all of the files for this test in the browser-client folder of the blog-multi-region-serverless-service GitHub repo.

Use this html file:


<!DOCTYPE HTML>
<html>
<head>
    <meta charset="utf-8"/>
    <meta http-equiv="X-UA-Compatible" content="IE=edge"/>
    <meta name="viewport" content="width=device-width, initial-scale=1"/>
    <title>Multi-Region Client</title>
</head>
<body>
<div>
   <h1>Test Client</h1>

    <p id="client_result">

    </p>

    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
    <script src="settings.js"></script>
    <script src="client.js"></script>
</body>
</html>

The html file uses this JavaScript file to repeatedly call the API and print the history of messages:


var messageHistory = "";

(function call_service() {

   $.ajax({
      url: helloworldMultiregionendpoint+'v1/helloworld/',
      dataType: "json",
      cache: false,
      success: function(data) {
         messageHistory+="<p>"+data['message']+"</p>";
         $('#client_result').html(messageHistory);
      },
      complete: function() {
         // Schedule the next request when the current one's complete
         setTimeout(call_service, 10000);
      },
      error: function(xhr, status, error) {
         $('#client_result').html('ERROR: '+status);
      }
   });

})();

Also, make sure to update the settings in settings.js to match with the API Gateway endpoints for the DNS-proxy and the multi-regional endpoint for the Hello World API: var helloworldMultiregionendpoint = "https://hellowordapi.replacewithyourcompanyname.com/";

You can now open the HTML file in the browser (you can do this directly from the file system) and you should see something like the following screenshot:

Serverless multi region browser test

You can test failover by changing the environment variable in your health check Lambda function. In the Lambda console, select your health check function and scroll down to the Environment variables section. For the STATUS key, modify the value to fail.

Lambda update environment variable

You should see the region switch in the test client:

Serverless multi region broker test switchover

During an emulated failure like this, the browser might take some additional time to switch over due to connection keep-alive functionality. If you are using a browser like Chrome, you can kill all the connections to see a more immediate fail-over: chrome://net-internals/#sockets

Summary

You have implemented a simple way to do multi-regional serverless applications that fail over seamlessly between regions, either being accessed from the browser or from other applications/services. You achieved this by using the capabilities of Amazon Route 53 to do latency based routing and health checks for fail-over. You unlocked the use of these features in a serverless application by leveraging the new regional endpoint feature of Amazon API Gateway.

The setup was fully scripted using CloudFormation, the AWS Serverless Application Model (SAM), and the AWS CLI, and it can be integrated into deployment tools to push the code across the regions to make sure it is available in all the needed regions. For more information about cross-region deployments, see Building a Cross-Region/Cross-Account Code Deployment Solution on AWS on the AWS DevOps blog.

Sci-Hub Won’t Be Blocked by US ISPs Anytime Soon

Post Syndicated from Ernesto original https://torrentfreak.com/sci-hub-wont-be-blocked-by-us-isps-anytime-soon-171111/

Sci-Hub, often referred to as the “Pirate Bay of Science,” hasn’t had a particularly good run in US courts so far.

Following a $15 million defeat against Elsevier in June, the American Chemical Society won a default judgment of $4.8 million in copyright damages late last week.

In addition, the publisher was granted an unprecedented injunction, requiring various third-party services to stop providing access to the site.

The order specifically mentions domain registrars and hosting companies, but also search engines and ISPs, although only those who are in “active concert or participation” with the site. This order sparked fears that Google, Comcast, and others would be ordered to take action, but that’s not the case.

After the news broke ACS issued a press release clarifying that it would not go after search engines and ISPs when they are not in “active participation” with Sci-Hub. The problem is that this can be interpreted quite broadly, leaving plenty of room for uncertainty.

Luckily, ACS Director Glenn Ruskin was willing to provide more clarity. He stressed that search engines and ISPs won’t be targeted for simply linking users to Sci-Hub. Companies that host the content are a target though.

“The court’s affirmative ruling does not apply to search engines writ large, but only to those entities who have been in active concert or participation with Sci-Hub, such as websites that host ACS content stolen by Sci-Hub,” Ruskin said.

When we asked whether this means that ISPs such as Comcast are not likely to be targeted, the answer was affirmative.

“That is correct, unless the internet service provider has been in active concert or participation with SciHub. Simply linking to SciHub does not rise to be in active concert or participation,” Ruskin clarified.

The above suggests that ACS will go after domain name registrars, hosting companies, and perhaps Cloudflare, but not any further. Still, even if that’s the case there is cause for worry among several digital rights activists.

The Electronic Frontier Foundation believes that these type of orders set a dangerous precedent. The concept of “active concert or participation” should only cover close associates and co-conspirators, not everyone who provides a service to the defendant. Domain registrars and registries have often been compelled to take action in similar cases, but EFF says this goes too far.

“The courts need to limit who can be bound by orders like this one, to prevent them from being abused,” EFF Senior Staff Attorney Mitch Stoltz informs TorrentFreak.

“In particular, domain name registrars and registries shouldn’t be ordered to help take down a website because of a dispute over the site’s contents. That invites others to use the domain name system as a tool for censorship.”

News of the Sci-Hub injunction has sparked controversy and confusion in recent days, not least because Sci-hub.cc became unavailable soon after. Instead of showing the usual search box, visitors now see a “403 Forbidden” error message. On top of that, the bulletproof Tor version of the site also went offline.

The error message indicates that there’s a hosting issue. While it’s easy to conclude that the court’s injunction has something to do with this, that might not necessarily be the case. Sci-Hub’s hosting company isn’t tied to the US and has a history of protecting sites from takedown efforts.

We reached out to Sci-Hub founder Alexandra Elbakyan for comment but we’re yet to receive a response. The site hasn’t posted any relevant updates on its social media pages either.

That said, the site is far from done. In addition to the Tor domain, Sci-Hub has several other backups in place such as Sci-Hub.io and Sci-Hub.ac, which are up and running as usual.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Skype Log Viewer Download – View Logs on Windows

Post Syndicated from Darknet original https://www.darknet.org.uk/2017/11/skype-log-viewer-download/?utm_source=rss&utm_medium=social&utm_campaign=darknetfeed

Skype Log Viewer Download – View Logs on Windows

Skype Log Viewer allows you to download and view the Skype history and log files, on Windows, without actually downloading the Skype client itself.

What does Skype Log Viewer do?

This program allows you to view all of your Skype chat logs and then easily export them as text files.

It correctly organizes them by conversation and makes sure that group conversations do not get jumbled with one on one chats.

Read the rest of Skype Log Viewer Download – View Logs on Windows now! Only available at Darknet.