Tag Archives: hive

Measuring the throughput for Amazon MQ using the JMS Benchmark

Post Syndicated from Rachel Richardson original https://aws.amazon.com/blogs/compute/measuring-the-throughput-for-amazon-mq-using-the-jms-benchmark/

This post is courtesy of Alan Protasio, Software Development Engineer, Amazon Web Services

Just like compute and storage, messaging is a fundamental building block of enterprise applications. Message brokers (aka “message-oriented middleware”) enable different software systems, often written in different languages, on different platforms, running in different locations, to communicate and exchange information. Mission-critical applications, such as CRM and ERP, rely on message brokers to work.

A common performance consideration for customers deploying a message broker in a production environment is the throughput of the system, measured as messages per second. This is important to know so that application environments (hosts, threads, memory, etc.) can be configured correctly.

In this post, we demonstrate how to measure the throughput for Amazon MQ, a new managed message broker service for ActiveMQ, using JMS Benchmark. It should take between 15–20 minutes to set up the environment and an hour to run the benchmark. We also provide some tips on how to configure Amazon MQ for optimal throughput.

Benchmarking throughput for Amazon MQ

ActiveMQ can be used for a number of use cases. These use cases can range from simple fire and forget tasks (that is, asynchronous processing), low-latency request-reply patterns, to buffering requests before they are persisted to a database.

The throughput of Amazon MQ is largely dependent on the use case. For example, if you have non-critical workloads such as gathering click events for a non-business-critical portal, you can use ActiveMQ in a non-persistent mode and get extremely high throughput with Amazon MQ.

On the flip side, if you have a critical workload where durability is extremely important (meaning that you can’t lose a message), then you are bound by the I/O capacity of your underlying persistence store. We recommend using mq.m4.large for the best results. The mq.t2.micro instance type is intended for product evaluation. Performance is limited, due to the lower memory and burstable CPU performance.

Tip: To improve your throughput with Amazon MQ, make sure that you have consumers processing messaging as fast as (or faster than) your producers are pushing messages.

Because it’s impossible to talk about how the broker (ActiveMQ) behaves for each and every use case, we walk through how to set up your own benchmark for Amazon MQ using our favorite open-source benchmarking tool: JMS Benchmark. We are fans of the JMS Benchmark suite because it’s easy to set up and deploy, and comes with a built-in visualizer of the results.

Non-Persistent Scenarios – Queue latency as you scale producer throughput

JMS Benchmark nonpersistent scenarios

Getting started

At the time of publication, you can create an mq.m4.large single-instance broker for testing for $0.30 per hour (US pricing).

This walkthrough covers the following tasks:

  1.  Create and configure the broker.
  2. Create an EC2 instance to run your benchmark
  3. Configure the security groups
  4.  Run the benchmark.

Step 1 – Create and configure the broker
Create and configure the broker using Tutorial: Creating and Configuring an Amazon MQ Broker.

Step 2 – Create an EC2 instance to run your benchmark
Launch the EC2 instance using Step 1: Launch an Instance. We recommend choosing the m5.large instance type.

Step 3 – Configure the security groups
Make sure that all the security groups are correctly configured to let the traffic flow between the EC2 instance and your broker.

  1. Sign in to the Amazon MQ console.
  2. From the broker list, choose the name of your broker (for example, MyBroker)
  3. In the Details section, under Security and network, choose the name of your security group or choose the expand icon ( ).
  4. From the security group list, choose your security group.
  5. At the bottom of the page, choose Inbound, Edit.
  6. In the Edit inbound rules dialog box, add a role to allow traffic between your instance and the broker:
    • Choose Add Rule.
    • For Type, choose Custom TCP.
    • For Port Range, type the ActiveMQ SSL port (61617).
    • For Source, leave Custom selected and then type the security group of your EC2 instance.
    • Choose Save.

Your broker can now accept the connection from your EC2 instance.

Step 4 – Run the benchmark
Connect to your EC2 instance using SSH and run the following commands:

$ cd ~
$ curl -L https://github.com/alanprot/jms-benchmark/archive/master.zip -o master.zip
$ unzip master.zip
$ cd jms-benchmark-master
$ chmod a+x bin/*
$ env \
  SERVER_SETUP=false \
  SERVER_ADDRESS={activemq-endpoint} \
  ACTIVEMQ_TRANSPORT=ssl\
  ACTIVEMQ_PORT=61617 \
  ACTIVEMQ_USERNAME={activemq-user} \
  ACTIVEMQ_PASSWORD={activemq-password} \
  ./bin/benchmark-activemq

After the benchmark finishes, you can find the results in the ~/reports directory. As you may notice, the performance of ActiveMQ varies based on the number of consumers, producers, destinations, and message size.

Amazon MQ architecture

The last bit that’s important to know so that you can better understand the results of the benchmark is how Amazon MQ is architected.

Amazon MQ is architected to be highly available (HA) and durable. For HA, we recommend using the multi-AZ option. After a message is sent to Amazon MQ in persistent mode, the message is written to the highly durable message store that replicates the data across multiple nodes in multiple Availability Zones. Because of this replication, for some use cases you may see a reduction in throughput as you migrate to Amazon MQ. Customers have told us they appreciate the benefits of message replication as it helps protect durability even in the face of the loss of an Availability Zone.

Conclusion

We hope this gives you an idea of how Amazon MQ performs. We encourage you to run tests to simulate your own use cases.

To learn more, see the Amazon MQ website. You can try Amazon MQ for free with the AWS Free Tier, which includes up to 750 hours of a single-instance mq.t2.micro broker and up to 1 GB of storage per month for one year.

Japan’s Directorate for Signals Intelligence

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/05/japans_director.html

The Intercept has a long article on Japan’s equivalent of the NSA: the Directorate for Signals Intelligence. Interesting, but nothing really surprising.

The directorate has a history that dates back to the 1950s; its role is to eavesdrop on communications. But its operations remain so highly classified that the Japanese government has disclosed little about its work ­ even the location of its headquarters. Most Japanese officials, except for a select few of the prime minister’s inner circle, are kept in the dark about the directorate’s activities, which are regulated by a limited legal framework and not subject to any independent oversight.

Now, a new investigation by the Japanese broadcaster NHK — produced in collaboration with The Intercept — reveals for the first time details about the inner workings of Japan’s opaque spy community. Based on classified documents and interviews with current and former officials familiar with the agency’s intelligence work, the investigation shines light on a previously undisclosed internet surveillance program and a spy hub in the south of Japan that is used to monitor phone calls and emails passing across communications satellites.

The article includes some new documents from the Snowden archive.

A Peek Behind the Mail Curtain

Post Syndicated from marcelatoath original https://yahooeng.tumblr.com/post/174023151641

USE IMAP TO ACCESS SOME UNIQUE FEATURES

By Libby Lin, Principal Product Manager

Well, we actually won’t show you how we create the magic in our big OATH consumer mail factory. But nevertheless we wanted to share how interested developers could leverage some of our unique features we offer for our Yahoo and AOL Mail customers.

To drive experiences like our travel and shopping smart views or message threading, we tag qualified mails with something we call DECOS and THREADID. While we will not indulge in explaining how exactly we use them internally, we wanted to share how they can be used and accessed through IMAP.

So let’s just look at a sample IMAP command chain. We’ll just assume that you are familiar with the IMAP protocol at this point and you know how to properly talk to an IMAP server.

So here’s how you would retrieve DECO and THREADIDs for specific messages:

1. CONNECT

   openssl s_client -crlf -connect imap.mail.yahoo.com:993

2. LOGIN

   a login username password

   a OK LOGIN completed

3. LIST FOLDERS

   a list “” “*”

   * LIST (\Junk \HasNoChildren) “/” “Bulk Mail”

   * LIST (\Archive \HasNoChildren) “/” “Archive”

   * LIST (\Drafts \HasNoChildren) “/” “Draft”

   * LIST (\HasNoChildren) “/” “Inbox”

   * LIST (\HasNoChildren) “/” “Notes”

   * LIST (\Sent \HasNoChildren) “/” “Sent”

   * LIST (\Trash \HasChildren) “/” “Trash”

   * LIST (\HasNoChildren) “/” “Trash/l2”

   * LIST (\HasChildren) “/” “test level 1”

   * LIST (\HasNoChildren) “/” “test level 1/nestedfolder”

   * LIST (\HasNoChildren) “/” “test level 1/test level 2”

   * LIST (\HasNoChildren) “/” “&T2BZfXso-”

   * LIST (\HasNoChildren) “/” “&gQKAqk7WWr12hA-”

   a OK LIST completed

4.SELECT FOLDER

   a select inbox

   * 94 EXISTS

   * 0 RECENT

   * OK [UIDVALIDITY 1453335194] UIDs valid

   * OK [UIDNEXT 40213] Predicted next UID

   * FLAGS (\Answered \Deleted \Draft \Flagged \Seen $Forwarded $Junk $NotJunk)

   * OK [PERMANENTFLAGS (\Answered \Deleted \Draft \Flagged \Seen $Forwarded $Junk $NotJunk)] Permanent flags

   * OK [HIGHESTMODSEQ 205]

   a OK [READ-WRITE] SELECT completed; now in selected state

5. SEARCH FOR UID

   a uid search 1:*

   * SEARCH 1 2 3 4 11 12 14 23 24 75 76 77 78 114 120 121 124 128 129 130 132 133 134 135 136 137 138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148     40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40172 40173 40174 40175 40176     40177 40178 40179 40182 40183 40184 40185 40186 40187 40188 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204     40205 40206 40207 40208 40209 40211 40212

   a OK UID SEARCH completed

6. FETCH DECOS BASED ON UID

   a uid fetch 40212 (X-MSG-DECOS X-MSG-ID X-MSG-THREADID)

   * 94 FETCH (UID 40212 X-MSG-THREADID “108” X-MSG-ID “ACfIowseFt7xWtj0og0L2G0T1wM” X-MSG-DECOS (“FTI” “F1” “EML”))

   a OK UID FETCH completed

What’s new in HiveMQ 3.4

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/whats-new-in-hivemq-3-4

We are pleased to announce the release of HiveMQ 3.4. This version of HiveMQ is the most resilient and advanced version of HiveMQ ever. The main focus in this release was directed towards addressing the needs for the most ambitious MQTT deployments in the world for maximum performance and resilience for millions of concurrent MQTT clients. Of course, deployments of all sizes can profit from the improvements in the latest and greatest HiveMQ.

This version is a drop-in replacement for HiveMQ 3.3 and of course supports rolling upgrades with zero-downtime.

HiveMQ 3.4 brings many features that your users, administrators and plugin developers are going to love. These are the highlights:

 

New HiveMQ 3.4 features at a glance

Cluster

HiveMQ 3.4 brings various improvements in terms of scalability, availability, resilience and observability for the cluster mechanism. Many of the new features remain under the hood, but several additions stand out:

Cluster Overload Protection

The new version has a first-of-its-kind Cluster Overload Protection. The whole cluster is able to spot MQTT clients that cause overload on nodes or the cluster as a whole and protects itself from the overload. This mechanism also protects the deployment from cascading failures due to slow or failing underlying hardware (as sometimes seen on cloud providers). This feature is enabled by default and you can learn more about the mechanism in our documentation.

Dynamic Replicates

HiveMQ’s sophisticated cluster mechanism is able to scale in a linear fashion due to extremely efficient and true data distribution mechanics based on a configured replication factor. The most important aspect of every cluster is availability, which is achieved by having eventual consistency functions in place for edge cases. The 3.4 version adds dynamic replicates to the cluster so even the most challenging edge cases involving network splits don’t lead to the sacrifice of consistency for the most important MQTT operations.

Node Stress Level Metrics

All MQTT cluster nodes are now aware of their own stress level and the stress levels of other cluster members. While all stress mitigation is handled internally by HiveMQ, experienced operators may want to monitor the individual node’s stress level (e.g with Grafana) in order to start investigating what caused the increase of load.

WebUI

Operators worldwide love the HiveMQ WebUI introduced with HiveMQ 3.3. We gathered all the fantastic feedback from our users and polished the WebUI, so it’s even more useful for day-to-day broker operations and remote debugging of MQTT clients. The most important changes and additions are:

Trace Recording Download

The unique Trace Recordings functionality is without doubt a lifesaver when the behavior of individual MQTT clients needs further investigation as all interactions with the broker can be traced — at runtime and at scale! Huge production deployments may accumulate multiple gigabytes of trace recordings. HiveMQ now offers a convenient way to collect all trace recordings from all nodes, zips them and allows the download via a simple button on the WebUI. Remote debugging was never easier!

Additional Client Detail Information in WebUI

The mission of the HiveMQ WebUI is to provide easy insights to the whole production MQTT cluster for operators and administrators. Individual MQTT client investigations are a piece of cake, as all available information about clients can be viewed in detail. We further added the ability to view the restrictions a concrete client has:

  • Maximum Inflight Queue Size
  • Client Offline Queue Messages Size
  • Client Offline Message Drop Strategy

Session Invalidation

MQTT persistent sessions are one of the outstanding features of the MQTT protocol specification. Sessions which do not expire but are never reused unnecessarily consume disk space and memory. Administrators can now invalidate individual session directly in the HiveMQ WebUI for client sessions, which can be deleted safely. HiveMQ 3.4 will take care and release the resources on all cluster nodes after a session was invalidated

Web UI Polishing

Most texts on the WebUI were revisited and are now clearer and crisper. The help texts also received a major overhaul and should now be more, well, helpful. In addition, many small improvements were added, which are most of the time invisible but are here to help when you need them most. For example, the WebUI now displays a warning if cluster nodes with old versions are in the cluster (which may happen if a rolling upgrade was not finished properly)

Plugin System

One of the most popular features of HiveMQ is the extensive Plugin System, which virtually enables the integration of HiveMQ to any system and allows hooking into all aspects of the MQTT lifecycle. We listened to the feedback and are pleased to announce many improvements, big and small, for the Plugin System:

Client Session Time-to-live for individual clients

HiveMQ 3.3 offered a global configuration for setting the Time-To-Live for MQTT sessions. With the advent of HiveMQ 3.4, users can now programmatically set Time-To-Live values for individual MQTT clients and can discard a MQTT session immediately.

Individual Inflight Queues

While the Inflight Queue configuration is typically sufficient in the HiveMQ default configuration, there are some use cases that require the adjustment of this configuration. It’s now possible to change the Inflight Queue size for individual clients via the Plugin System.
 
 

Plugin Service Overload Protection

The HiveMQ Plugin System is a power-user tool and it’s possible to do unbelievably useful modifications as well as putting major stress on the system as a whole if the programmer is not careful. In order to protect the HiveMQ instances from accidental overload, a Plugin Service Overload Protection can be configured. This rate limits the Plugin Service usage and gives feedback to the application programmer in case the rate limit is exceeded. This feature is disabled by default but we strongly recommend updating your plugins to profit from this feature.

Session Attribute Store putIfNewer

This is one of the small bits you almost never need but when you do, you’re ecstatic for being able to use it. The Session Attribute Store now offers methods to put values, if the values you want to put are newer or fresher than the values already written. This is extremely useful, if multiple cluster nodes want to write to the Session Attribute Store simultaneously, as this guarantees that outdated values can no longer overwrite newer values.
 
 
 
 

Disconnection Timestamp for OnDisconnectCallback

As the OnDisconnectCallback is executed asynchronously, the client might already be gone when the callback is executed. It’s now easy to obtain the exact timestamp when a MQTT client disconnected, even if the callback is executed later on. This feature might be very interesting for many plugin developers in conjunction with the Session Attribute Store putIfNewer functionality.

Operations

We ❤️ Operators and we strive to provide all the tools needed for operating and administrating a MQTT broker cluster at scale in any environment. A key strategy for successful operations of any system is monitoring. We added some interesting new metrics you might find useful.

System Metrics

In addition to JVM Metrics, HiveMQ now also gathers Operating System Metrics for Linux Systems. So HiveMQ is able to see for itself how the operating system views the process, including native memory, the real CPU usage, and open file usage. These metrics are particularly useful, if you don’t have a monitoring agent for Linux systems setup. All metrics can be found here.

Client Disconnection Metrics

The reality of many MQTT scenarios is that not all clients are able to disconnect gracefully by sending MQTT DISCONNECT messages. HiveMQ now also exposes metrics about clients that disconnected by closing the TCP connection instead of sending a DISCONNECT packet first. This is especially useful for monitoring, if you regularly deal with clients that don’t have a stable connection to the MQTT brokers.

 

JMX enabled by default

JMX, the Java Monitoring Extension, is now enabled by default. Many HiveMQ operators use Application Performance Monitoring tools, which are able to hook into the metrics via JMX or use plain JMX for on-the-fly debugging. While we recommend to use official off-the-shelf plugins for monitoring, it’s now easier than ever to just use JMX if other solutions are not available to you.

Other notable improvements

The 3.4 release of HiveMQ is full of hidden gems and improvements. While it would be too much to highlight all small improvements, these notable changes stand out and contribute to the best HiveMQ release ever.

Topic Level Distribution Configuration

Our recommendation for all huge deployments with millions of devices is: Start with separate topic prefixes by bringing the dynamic topic parts directly to the beginning. The reality is that many customers have topics that are constructed like the following: “devices/{deviceId}/status”. So what happens is that all topics in this example start with a common prefix, “devices”, which is the first topic level. Unfortunately the first topic level doesn’t include a dynamic topic part. In order to guarantee the best scalability of the cluster and the best performance of the topic tree, customers can now configure how many topic levels are used for distribution. In the example outlined here, a topic level distribution of 2 would be perfect and guarantees the best scalability.

Mass disconnect performance improvements

Mass disconnections of MQTT clients can happen. This might be the case when e.g. a load balancer in front of the MQTT broker cluster drops the connections or if a mobile carrier experiences connectivity problems. Prior to HiveMQ 3.4, mass disconnect events caused stress on the cluster. Mass disconnect events are now massively optimized and even tens of millions of connection losses at the same time won’t bring the cluster into stress situations.

 
 
 
 
 
 

Replication Performance Improvements

Due to the distributed nature of a HiveMQ, data needs to be replicated across the cluster in certain events, e.g. when cluster topology changes occur. There are various internal improvements in HiveMQ version 3.4, which increase the replication performance significantly. Our engineers put special love into the replication of Queued Messages, which is now faster than ever, even for multiple millions of Queued Messages that need to be transferred across the cluster.

Updated Native SSL Libraries

The Native SSL Integration of HiveMQ was updated to the newest BoringSSL version. This results in better performance and increased security. In case you’re using SSL and you are not yet using the native SSL integration, we strongly recommend to give it a try, more than 40% performance improvement can be observed for most deployments.

 
 

Improvements for Java 9

While Java 9 was already supported for older HiveMQ versions, HiveMQ 3.4 has full-blown Java 9 support. The minimum Java version still remains Java 7, although we strongly recommend to use Java 8 or newer for the best performance of HiveMQ.

Analyze data in Amazon DynamoDB using Amazon SageMaker for real-time prediction

Post Syndicated from YongSeong Lee original https://aws.amazon.com/blogs/big-data/analyze-data-in-amazon-dynamodb-using-amazon-sagemaker-for-real-time-prediction/

Many companies across the globe use Amazon DynamoDB to store and query historical user-interaction data. DynamoDB is a fast NoSQL database used by applications that need consistent, single-digit millisecond latency.

Often, customers want to turn their valuable data in DynamoDB into insights by analyzing a copy of their table stored in Amazon S3. Doing this separates their analytical queries from their low-latency critical paths. This data can be the primary source for understanding customers’ past behavior, predicting future behavior, and generating downstream business value. Customers often turn to DynamoDB because of its great scalability and high availability. After a successful launch, many customers want to use the data in DynamoDB to predict future behaviors or provide personalized recommendations.

DynamoDB is a good fit for low-latency reads and writes, but it’s not practical to scan all data in a DynamoDB database to train a model. In this post, I demonstrate how you can use DynamoDB table data copied to Amazon S3 by AWS Data Pipeline to predict customer behavior. I also demonstrate how you can use this data to provide personalized recommendations for customers using Amazon SageMaker. You can also run ad hoc queries using Amazon Athena against the data. DynamoDB recently released on-demand backups to create full table backups with no performance impact. However, it’s not suitable for our purposes in this post, so I chose AWS Data Pipeline instead to create managed backups are accessible from other services.

To do this, I describe how to read the DynamoDB backup file format in Data Pipeline. I also describe how to convert the objects in S3 to a CSV format that Amazon SageMaker can read. In addition, I show how to schedule regular exports and transformations using Data Pipeline. The sample data used in this post is from Bank Marketing Data Set of UCI.

The solution that I describe provides the following benefits:

  • Separates analytical queries from production traffic on your DynamoDB table, preserving your DynamoDB read capacity units (RCUs) for important production requests
  • Automatically updates your model to get real-time predictions
  • Optimizes for performance (so it doesn’t compete with DynamoDB RCUs after the export) and for cost (using data you already have)
  • Makes it easier for developers of all skill levels to use Amazon SageMaker

All code and data set in this post are available in this .zip file.

Solution architecture

The following diagram shows the overall architecture of the solution.

The steps that data follows through the architecture are as follows:

  1. Data Pipeline regularly copies the full contents of a DynamoDB table as JSON into an S3
  2. Exported JSON files are converted to comma-separated value (CSV) format to use as a data source for Amazon SageMaker.
  3. Amazon SageMaker renews the model artifact and update the endpoint.
  4. The converted CSV is available for ad hoc queries with Amazon Athena.
  5. Data Pipeline controls this flow and repeats the cycle based on the schedule defined by customer requirements.

Building the auto-updating model

This section discusses details about how to read the DynamoDB exported data in Data Pipeline and build automated workflows for real-time prediction with a regularly updated model.

Download sample scripts and data

Before you begin, take the following steps:

  1. Download sample scripts in this .zip file.
  2. Unzip the src.zip file.
  3. Find the automation_script.sh file and edit it for your environment. For example, you need to replace 's3://<your bucket>/<datasource path>/' with your own S3 path to the data source for Amazon ML. In the script, the text enclosed by angle brackets—< and >—should be replaced with your own path.
  4. Upload the json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar file to your S3 path so that the ADD jar command in Apache Hive can refer to it.

For this solution, the banking.csv  should be imported into a DynamoDB table.

Export a DynamoDB table

To export the DynamoDB table to S3, open the Data Pipeline console and choose the Export DynamoDB table to S3 template. In this template, Data Pipeline creates an Amazon EMR cluster and performs an export in the EMRActivity activity. Set proper intervals for backups according to your business requirements.

One core node(m3.xlarge) provides the default capacity for the EMR cluster and should be suitable for the solution in this post. Leave the option to resize the cluster before running enabled in the TableBackupActivity activity to let Data Pipeline scale the cluster to match the table size. The process of converting to CSV format and renewing models happens in this EMR cluster.

For a more in-depth look at how to export data from DynamoDB, see Export Data from DynamoDB in the Data Pipeline documentation.

Add the script to an existing pipeline

After you export your DynamoDB table, you add an additional EMR step to EMRActivity by following these steps:

  1. Open the Data Pipeline console and choose the ID for the pipeline that you want to add the script to.
  2. For Actions, choose Edit.
  3. In the editing console, choose the Activities category and add an EMR step using the custom script downloaded in the previous section, as shown below.

Paste the following command into the new step after the data ­­upload step:

s3://#{myDDBRegion}.elasticmapreduce/libs/script-runner/script-runner.jar,s3://<your bucket name>/automation_script.sh,#{output.directoryPath},#{myDDBRegion}

The element #{output.directoryPath} references the S3 path where the data pipeline exports DynamoDB data as JSON. The path should be passed to the script as an argument.

The bash script has two goals, converting data formats and renewing the Amazon SageMaker model. Subsequent sections discuss the contents of the automation script.

Automation script: Convert JSON data to CSV with Hive

We use Apache Hive to transform the data into a new format. The Hive QL script to create an external table and transform the data is included in the custom script that you added to the Data Pipeline definition.

When you run the Hive scripts, do so with the -e option. Also, define the Hive table with the 'org.openx.data.jsonserde.JsonSerDe' row format to parse and read JSON format. The SQL creates a Hive EXTERNAL table, and it reads the DynamoDB backup data on the S3 path passed to it by Data Pipeline.

Note: You should create the table with the “EXTERNAL” keyword to avoid the backup data being accidentally deleted from S3 if you drop the table.

The full automation script for converting follows. Add your own bucket name and data source path in the highlighted areas.

#!/bin/bash
hive -e "
ADD jar s3://<your bucket name>/json-serde-1.3.6-SNAPSHOT-jar-with-dependencies.jar ; 
DROP TABLE IF EXISTS blog_backup_data ;
CREATE EXTERNAL TABLE blog_backup_data (
 customer_id map<string,string>,
 age map<string,string>, job map<string,string>, 
 marital map<string,string>,education map<string,string>, 
 default map<string,string>, housing map<string,string>,
 loan map<string,string>, contact map<string,string>, 
 month map<string,string>, day_of_week map<string,string>, 
 duration map<string,string>, campaign map<string,string>,
 pdays map<string,string>, previous map<string,string>, 
 poutcome map<string,string>, emp_var_rate map<string,string>, 
 cons_price_idx map<string,string>, cons_conf_idx map<string,string>,
 euribor3m map<string,string>, nr_employed map<string,string>, 
 y map<string,string> ) 
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe' 
LOCATION '$1/';

INSERT OVERWRITE DIRECTORY 's3://<your bucket name>/<datasource path>/' 
SELECT concat( customer_id['s'],',', 
 age['n'],',', job['s'],',', 
 marital['s'],',', education['s'],',', default['s'],',', 
 housing['s'],',', loan['s'],',', contact['s'],',', 
 month['s'],',', day_of_week['s'],',', duration['n'],',', 
 campaign['n'],',',pdays['n'],',',previous['n'],',', 
 poutcome['s'],',', emp_var_rate['n'],',', cons_price_idx['n'],',',
 cons_conf_idx['n'],',', euribor3m['n'],',', nr_employed['n'],',', y['n'] ) 
FROM blog_backup_data
WHERE customer_id['s'] > 0 ; 

After creating an external table, you need to read data. You then use the INSERT OVERWRITE DIRECTORY ~ SELECT command to write CSV data to the S3 path that you designated as the data source for Amazon SageMaker.

Depending on your requirements, you can eliminate or process the columns in the SELECT clause in this step to optimize data analysis. For example, you might remove some columns that have unpredictable correlations with the target value because keeping the wrong columns might expose your model to “overfitting” during the training. In this post, customer_id  columns is removed. Overfitting can make your prediction weak. More information about overfitting can be found in the topic Model Fit: Underfitting vs. Overfitting in the Amazon ML documentation.

Automation script: Renew the Amazon SageMaker model

After the CSV data is replaced and ready to use, create a new model artifact for Amazon SageMaker with the updated dataset on S3.  For renewing model artifact, you must create a new training job.  Training jobs can be run using the AWS SDK ( for example, Amazon SageMaker boto3 ) or the Amazon SageMaker Python SDK that can be installed with “pip install sagemaker” command as well as the AWS CLI for Amazon SageMaker described in this post.

In addition, consider how to smoothly renew your existing model without service impact, because your model is called by applications in real time. To do this, you need to create a new endpoint configuration first and update a current endpoint with the endpoint configuration that is just created.

#!/bin/bash
## Define variable 
REGION=$2
DTTIME=`date +%Y-%m-%d-%H-%M-%S`
ROLE="<your AmazonSageMaker-ExecutionRole>" 


# Select containers image based on region.  
case "$REGION" in
"us-west-2" )
    IMAGE="174872318107.dkr.ecr.us-west-2.amazonaws.com/linear-learner:latest"
    ;;
"us-east-1" )
    IMAGE="382416733822.dkr.ecr.us-east-1.amazonaws.com/linear-learner:latest" 
    ;;
"us-east-2" )
    IMAGE="404615174143.dkr.ecr.us-east-2.amazonaws.com/linear-learner:latest" 
    ;;
"eu-west-1" )
    IMAGE="438346466558.dkr.ecr.eu-west-1.amazonaws.com/linear-learner:latest" 
    ;;
 *)
    echo "Invalid Region Name"
    exit 1 ;  
esac

# Start training job and creating model artifact 
TRAINING_JOB_NAME=TRAIN-${DTTIME} 
S3OUTPUT="s3://<your bucket name>/model/" 
INSTANCETYPE="ml.m4.xlarge"
INSTANCECOUNT=1
VOLUMESIZE=5 
aws sagemaker create-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --algorithm-specification TrainingImage=${IMAGE},TrainingInputMode=File --role-arn ${ROLE}  --input-data-config '[{ "ChannelName": "train", "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://<your bucket name>/<datasource path>/", "S3DataDistributionType": "FullyReplicated" } }, "ContentType": "text/csv", "CompressionType": "None" , "RecordWrapperType": "None"  }]'  --output-data-config S3OutputPath=${S3OUTPUT} --resource-config  InstanceType=${INSTANCETYPE},InstanceCount=${INSTANCECOUNT},VolumeSizeInGB=${VOLUMESIZE} --stopping-condition MaxRuntimeInSeconds=120 --hyper-parameters feature_dim=20,predictor_type=binary_classifier  

# Wait until job completed 
aws sagemaker wait training-job-completed-or-stopped --training-job-name ${TRAINING_JOB_NAME}  --region ${REGION}

# Get newly created model artifact and create model
MODELARTIFACT=`aws sagemaker describe-training-job --training-job-name ${TRAINING_JOB_NAME} --region ${REGION}  --query 'ModelArtifacts.S3ModelArtifacts' --output text `
MODELNAME=MODEL-${DTTIME}
aws sagemaker create-model --region ${REGION} --model-name ${MODELNAME}  --primary-container Image=${IMAGE},ModelDataUrl=${MODELARTIFACT}  --execution-role-arn ${ROLE}

# create a new endpoint configuration 
CONFIGNAME=CONFIG-${DTTIME}
aws sagemaker  create-endpoint-config --region ${REGION} --endpoint-config-name ${CONFIGNAME}  --production-variants  VariantName=Users,ModelName=${MODELNAME},InitialInstanceCount=1,InstanceType=ml.m4.xlarge

# create or update the endpoint
STATUS=`aws sagemaker describe-endpoint --endpoint-name  ServiceEndpoint --query 'EndpointStatus' --output text --region ${REGION} `
if [[ $STATUS -ne "InService" ]] ;
then
    aws sagemaker  create-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}    
else
    aws sagemaker  update-endpoint --endpoint-name  ServiceEndpoint  --endpoint-config-name ${CONFIGNAME} --region ${REGION}
fi

Grant permission

Before you execute the script, you must grant proper permission to Data Pipeline. Data Pipeline uses the DataPipelineDefaultResourceRole role by default. I added the following policy to DataPipelineDefaultResourceRole to allow Data Pipeline to create, delete, and update the Amazon SageMaker model and data source in the script.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:CreateModel",
 "sagemaker:CreateEndpointConfig",
 "sagemaker:DescribeEndpoint",
 "sagemaker:CreateEndpoint",
 "sagemaker:UpdateEndpoint",
 "iam:PassRole"
 ],
 "Resource": "*"
 }
 ]
}

Use real-time prediction

After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint. This approach is useful for interactive web, mobile, or desktop applications.

Following, I provide a simple Python code example that queries against Amazon SageMaker endpoint URL with its name (“ServiceEndpoint”) and then uses them for real-time prediction.

=== Python sample for real-time prediction ===

#!/usr/bin/env python
import boto3
import json 

client = boto3.client('sagemaker-runtime', region_name ='<your region>' )
new_customer_info = '34,10,2,4,1,2,1,1,6,3,190,1,3,4,3,-1.7,94.055,-39.8,0.715,4991.6'
response = client.invoke_endpoint(
    EndpointName='ServiceEndpoint',
    Body=new_customer_info, 
    ContentType='text/csv'
)
result = json.loads(response['Body'].read().decode())
print(result)
--- output(response) ---
{u'predictions': [{u'score': 0.7528127431869507, u'predicted_label': 1.0}]}

Solution summary

The solution takes the following steps:

  1. Data Pipeline exports DynamoDB table data into S3. The original JSON data should be kept to recover the table in the rare event that this is needed. Data Pipeline then converts JSON to CSV so that Amazon SageMaker can read the data.Note: You should select only meaningful attributes when you convert CSV. For example, if you judge that the “campaign” attribute is not correlated, you can eliminate this attribute from the CSV.
  2. Train the Amazon SageMaker model with the new data source.
  3. When a new customer comes to your site, you can judge how likely it is for this customer to subscribe to your new product based on “predictedScores” provided by Amazon SageMaker.
  4. If the new user subscribes your new product, your application must update the attribute “y” to the value 1 (for yes). This updated data is provided for the next model renewal as a new data source. It serves to improve the accuracy of your prediction. With each new entry, your application can become smarter and deliver better predictions.

Running ad hoc queries using Amazon Athena

Amazon Athena is a serverless query service that makes it easy to analyze large amounts of data stored in Amazon S3 using standard SQL. Athena is useful for examining data and collecting statistics or informative summaries about data. You can also use the powerful analytic functions of Presto, as described in the topic Aggregate Functions of Presto in the Presto documentation.

With the Data Pipeline scheduled activity, recent CSV data is always located in S3 so that you can run ad hoc queries against the data using Amazon Athena. I show this with example SQL statements following. For an in-depth description of this process, see the post Interactive SQL Queries for Data in Amazon S3 on the AWS News Blog. 

Creating an Amazon Athena table and running it

Simply, you can create an EXTERNAL table for the CSV data on S3 in Amazon Athena Management Console.

=== Table Creation ===
CREATE EXTERNAL TABLE datasource (
 age int, 
 job string, 
 marital string , 
 education string, 
 default string, 
 housing string, 
 loan string, 
 contact string, 
 month string, 
 day_of_week string, 
 duration int, 
 campaign int, 
 pdays int , 
 previous int , 
 poutcome string, 
 emp_var_rate double, 
 cons_price_idx double,
 cons_conf_idx double, 
 euribor3m double, 
 nr_employed double, 
 y int 
)
ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' ESCAPED BY '\\' LINES TERMINATED BY '\n' 
LOCATION 's3://<your bucket name>/<datasource path>/';

The following query calculates the correlation coefficient between the target attribute and other attributes using Amazon Athena.

=== Sample Query ===

SELECT corr(age,y) AS correlation_age_and_target, 
 corr(duration,y) AS correlation_duration_and_target, 
 corr(campaign,y) AS correlation_campaign_and_target,
 corr(contact,y) AS correlation_contact_and_target
FROM ( SELECT age , duration , campaign , y , 
 CASE WHEN contact = 'telephone' THEN 1 ELSE 0 END AS contact 
 FROM datasource 
 ) datasource ;

Conclusion

In this post, I introduce an example of how to analyze data in DynamoDB by using table data in Amazon S3 to optimize DynamoDB table read capacity. You can then use the analyzed data as a new data source to train an Amazon SageMaker model for accurate real-time prediction. In addition, you can run ad hoc queries against the data on S3 using Amazon Athena. I also present how to automate these procedures by using Data Pipeline.

You can adapt this example to your specific use case at hand, and hopefully this post helps you accelerate your development. You can find more examples and use cases for Amazon SageMaker in the video AWS 2017: Introducing Amazon SageMaker on the AWS website.

 


Additional Reading

If you found this post useful, be sure to check out Serving Real-Time Machine Learning Predictions on Amazon EMR and Analyzing Data in S3 using Amazon Athena.

 


About the Author

Yong Seong Lee is a Cloud Support Engineer for AWS Big Data Services. He is interested in every technology related to data/databases and helping customers who have difficulties in using AWS services. His motto is “Enjoy life, be curious and have maximum experience.”

 

 

Audit Trail Overview

Post Syndicated from Bozho original https://techblog.bozho.net/audit-trail-overview/

As part of my current project (secure audit trail) I decided to make a survey about the use of audit trail “in the wild”.

I haven’t written in details about this project of mine (unlike with some other projects). Mostly because it’s commercial and I don’t want to use my blog as a direct promotion channel (though I am doing that at the moment, ironically). But the aim of this post is to shed some light on how audit trail is used.

The survey can be found here. The questions are basically: does your current project have audit trail functionality, and if yes, is it protected from tampering. If not – do you think you should have such functionality.

The results are interesting (although with only around 50 respondents)

So more than half of the systems (on which respondents are working) don’t have audit trail. While audit trail is recommended by information security and related standards, it may not find place in the “busy schedule” of a software project, even though it’s fairly easy to provide a trivial implementation (e.g. I’ve written how to quickly setup one with Hibernate and Spring)

A trivial implementation might do in many cases but if the audit log is critical (e.g. access to sensitive data, performing financial operations etc.), then relying on a trivial implementation might not be enough. In other words – if the sysadmin can access the database and delete or modify the audit trail, then it doesn’t serve much purpose. Hence the next question – how is the audit trail protected from tampering:

And apparently, from the less than 50% of projects with audit trail, around 50% don’t have technical guarantees that the audit trail can’t be tampered with. My guess is it’s more, because people have different understanding of what technical measures are sufficient. E.g. someone may think that digitally signing your log files (or log records) is sufficient, but in fact it isn’t, as whole files (or records) can be deleted (or fully replaced) without a way to detect that. Timestamping can help (and a good audit trail solution should have that), but it doesn’t guarantee the order of events or prevent a malicious actor from deleting or inserting fake ones. And if timestamping is done on a log file level, then any not-yet-timestamped log file is vulnerable to manipulation.

I’ve written about event logs before and their two flavours – event sourcing and audit trail. An event log can effectively be considered audit trail, but you’d need additional security to avoid the problems mentioned above.

So, let’s see what would various levels of security and usefulness of audit logs look like. There are many papers on the topic (e.g. this and this), and they often go into the intricate details of how logging should be implemented. I’ll try to give an overview of the approaches:

  • Regular logs – rely on regular INFO log statements in the production logs to look for hints of what has happened. This may be okay, but is harder to look for evidence (as there is non-auditable data in those log files as well), and it’s not very secure – usually logs are collected (e.g. with graylog) and whoever has access to the log collector’s database (or search engine in the case of Graylog), can manipulate the data and not be caught
  • Designated audit trail – whether it’s stored in the database or in logs files. It has the proper business-event level granularity, but again doesn’t prevent or detect tampering. With lower risk systems that may is perfectly okay.
  • Timestamped logs – whether it’s log files or (harder to implement) database records. Timestamping is good, but if it’s not an external service, a malicious actor can get access to the local timestamping service and issue fake timestamps to either re-timestamp tampered files. Even if the timestamping is not compromised, whole entries can be deleted. The fact that they are missing can sometimes be deduced based on other factors (e.g. hour of rotation), but regularly verifying that is extra effort and may not always be feasible.
  • Hash chaining – each entry (or sequence of log files) could be chained (just as blockchain transactions) – the next one having the hash of the previous one. This is a good solution (whether it’s local, external or 3rd party), but it has the risk of someone modifying or deleting a record, getting your entire chain and re-hashing it. All the checks will pass, but the data will not be correct
  • Hash chaining with anchoring – the head of the chain (the hash of the last entry/block) could be “anchored” to an external service that is outside the capabilities of a malicious actor. Ideally, a public blockchain, alternatively – paper, a public service (twitter), email, etc. That way a malicious actor can’t just rehash the whole chain, because any check against the external service would fail.
  • WORM storage (write once, ready many). You could send your audit logs almost directly to WORM storage, where it’s impossible to replace data. However, that is not ideal, as WORM storage can be slow and expensive. For example AWS Glacier has rather big retrieval times and searching through recent data makes it impractical. It’s actually cheaper than S3, for example, and you can have expiration policies. But having to support your own WORM storage is expensive. It is a good idea to eventually send the logs to WORM storage, but “fresh” audit trail should probably not be “archived” so that it’s searchable and some actionable insight can be gained from it.
  • All-in-one – applying all of the above “just in case” may be unnecessary for every project out there, but that’s what I decided to do at LogSentinel. Business-event granularity with timestamping, hash chaining, anchoring, and eventually putting to WORM storage – I think that provides both security guarantees and flexibility.

I hope the overview is useful and the results from the survey shed some light on how this aspect of information security is underestimated.

The post Audit Trail Overview appeared first on Bozho's tech blog.

Backblaze at NAB 2018 in Las Vegas

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/backblaze-at-nab-2018-in-las-vegas/

Backblaze B2 Cloud Storage NAB Booth

Backblaze just returned from exhibiting at NAB in Las Vegas, April 9-12, where the response to our recent announcements was tremendous. In case you missed the news, Backblaze B2 Cloud Storage continues to extend its lead as the most affordable, high performance cloud on the planet.

Backblaze’s News at NAB

Backblaze at NAB 2018 in Las Vegas

The Backblaze booth just before opening

What We Were Asked at NAB

Our booth was busy from start to finish with attendees interested in learning more about Backblaze and B2 Cloud Storage. Here are the questions we were asked most often in the booth.

Q. How long has Backblaze been in business?
A. The company was founded in 2007. Today, we have over 500 petabytes of data from customers in over 150 countries.

B2 Partners at NAB 2018

Q. Where is your data stored?
A. We have data centers in California and Arizona and expect to expand to Europe by the end of the year.

Q. How can your services be so inexpensive?
A. Backblaze’s goal from the beginning was to offer cloud backup and storage that was easy to use and affordable. All the existing options were simply too expensive to be viable, so we created our own infrastructure. Our purpose-built storage system — the Backblaze’s Storage Pod — is recognized as one of the most cost efficient storage platforms available.

Q. Tell me about your hardware.
A. Backblaze’s Storage Pods hold 60 HDDs each, containing as much as 720TB data per pod, stored using Reed-Solomon error correction. Storage Pods are arranged in Tomes with twenty Storage Pods making up a Vault.

Q. Where do you fit in the data workflow?
A. People typically use B2 in for archiving completed projects. All data is readily available for download from B2, making it more convenient than off-line storage. In addition, DAM and MAM systems such as CatDV, axle ai, Cantemo, and others have integrated with B2 to store raw images behind the proxies.

Q. Who uses B2 in the M&E business?
A. KLRU-TV, the PBS station in Austin Texas, uses B2 to archive their entire 43 year catalog of Austin City Limits episodes and related materials. WunderVu, the production house for Pixvana, uses B2 to back up and archive their local storage systems on which they build virtual reality experiences for their customers.

Q. You’re the company that publishes the hard drive stats, right?
A. Yes, we are!

Backblaze Case Studies and Swag at NAB 2018 in Las Vegas

Were You at NAB?

If you were, we hope you stopped by the Backblaze booth to say hello. We’d like to hear what you saw at the show that was interesting or exciting. Please tell us in the comments.

The post Backblaze at NAB 2018 in Las Vegas appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

TV Broadcaster Wants App Stores Blocked to Prevent Piracy

Post Syndicated from Andy original https://torrentfreak.com/tv-broadcaster-wants-app-stores-blocked-to-prevent-piracy-180416/

After first targeting torrent and regular streaming platforms with blocking injunctions, last year Village Roadshow and studios including Disney, Universal, Warner Bros, Twentieth Century Fox, and Paramount began looking at a new threat.

The action targeted HDSubs+, a reasonably popular IPTV service that provides hundreds of otherwise premium live channels, movies, and sports for a relatively small monthly fee. The application was filed during October 2017 and targeted Australia’s largest ISPs.

In parallel, Hong Kong-based broadcaster Television Broadcasts Limited (TVB) launched a similar action, demanding that the same ISPs (including Telstra, Optus, TPG, and Vocus, plus subsidiaries) block several ‘pirate’ IPTV services, named in court as A1, BlueTV, EVPAD, FunTV, MoonBox, Unblock, and hTV5.

Due to the similarity of the cases, both applications were heard in Federal Court in Sydney on Friday. Neither case is as straightforward as blocking a torrent or basic streaming portal, so both applicants are having to deal with additional complexities.

The TVB case is of particular interest. Up to a couple of dozen URLs maintain the services, which are used to provide the content, an EPG (electronic program guide), updates and sundry other features. While most of these appear to fit the description of an “online location” designed to assist copyright infringement, where the Android-based software for the IPTV services is hosted provides an interesting dilemma.

ComputerWorld reports that the apps – which offer live broadcasts, video-on-demand, and catch-up TV – are hosted on as-yet-unnamed sites which are functionally similar to Google Play or Apple’s App Store. They’re repositories of applications that also carry non-infringing apps, such as those for Netflix and YouTube.

Nevertheless, despite clear knowledge of this dual use, TVB wants to have these app marketplaces blocked by Australian ISPs, which would not only render the illicit apps inaccessible to the public but all of the non-infringing ones too. Part of its argument that this action would be reasonable appears to be that legal apps – such as Netflix’s for example – can also be freely accessed elsewhere.

It will be up to Justice Nicholas to decide whether the “primary purpose” of these marketplaces is to infringe or facilitate the infringement of TVB’s copyrights. However, TVB also appears to have another problem which is directly connected to the copyright status in Australia of its China-focused live programming.

Justice Nicholas questioned whether watching a stream in Australia of TVB’s live Chinese broadcasts would amount to copyright infringement because no copy of that content is being made.

“If most of what is occurring here is a reproduction of broadcasts that are not protected by copyright, then the primary purpose is not to facilitate copyright infringement,” Justice Nicholas said.

One of the problems appears to be that China is not a party to the 1961 Rome Convention for the Protection of Performers, Producers of Phonograms and Broadcasting Organisations. However, TVB is arguing that it should still receive protection because it airs pre-recorded content and the live broadcasts are also archived for re-transmission via catch-up services.

The question over whether unchoreographed live broadcasts receive protection has been raised in other regions but in most cases, a workaround has been found. The presence of broadcaster logos on screen (which receive copyright protection) is a factor and it’s been reported that broadcasters are able to record the ‘live’ action and transmit a copy just a couple of seconds later, thereby broadcasting an already-copyrighted work.

While TVB attempts to overcome its issues, Village Roadshow is facing some of its own in its efforts to take down HDSubs+.

It appears that at least partly in response to the Roadshow legal action, the service has undergone some modifications, including a change of brand to ‘Press Play Extra’. As reported by ZDNet, there have been structural changes too, which means that Roadshow can no longer “see under the hood”.

According to Justice Nicholas, there is no evidence that the latest version of the app infringes copyright but according to counsel for Village Roadshow, the new app is merely transitional and preparing for a possible future change.

“We submit the difference to be drawn is reactive to my clients serving on the operators a notice,” counsel for Roadshow argued, with an expert describing the new app as “almost like a placeholder.”

In short, Roadshow still wants all of the target domains in its original application blocked because the company believes there’s a good chance they’ll be reactivated in the future.

None of the ISPs involved in either case turned up to the hearings on Friday, which removes one layer of complexity in what appears thus far to be less than straightforward cases.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN reviews, discounts, offers and coupons.

AWS Online Tech Talks – April & Early May 2018

Post Syndicated from Betsy Chernoff original https://aws.amazon.com/blogs/aws/aws-online-tech-talks-april-early-may-2018/

We have several upcoming tech talks in the month of April and early May. Come join us to learn about AWS services and solution offerings. We’ll have AWS experts online to help answer questions in real-time. Sign up now to learn more, we look forward to seeing you.

Note – All sessions are free and in Pacific Time.

April & early May — 2018 Schedule

Compute

April 30, 2018 | 01:00 PM – 01:45 PM PTBest Practices for Running Amazon EC2 Spot Instances with Amazon EMR (300) – Learn about the best practices for scaling big data workloads as well as process, store, and analyze big data securely and cost effectively with Amazon EMR and Amazon EC2 Spot Instances.

May 1, 2018 | 01:00 PM – 01:45 PM PTHow to Bring Microsoft Apps to AWS (300) – Learn more about how to save significant money by bringing your Microsoft workloads to AWS.

May 2, 2018 | 01:00 PM – 01:45 PM PTDeep Dive on Amazon EC2 Accelerated Computing (300) – Get a technical deep dive on how AWS’ GPU and FGPA-based compute services can help you to optimize and accelerate your ML/DL and HPC workloads in the cloud.

Containers

April 23, 2018 | 11:00 AM – 11:45 AM PTNew Features for Building Powerful Containerized Microservices on AWS (300) – Learn about how this new feature works and how you can start using it to build and run modern, containerized applications on AWS.

Databases

April 23, 2018 | 01:00 PM – 01:45 PM PTElastiCache: Deep Dive Best Practices and Usage Patterns (200) – Learn about Redis-compatible in-memory data store and cache with Amazon ElastiCache.

April 25, 2018 | 01:00 PM – 01:45 PM PTIntro to Open Source Databases on AWS (200) – Learn how to tap the benefits of open source databases on AWS without the administrative hassle.

DevOps

April 25, 2018 | 09:00 AM – 09:45 AM PTDebug your Container and Serverless Applications with AWS X-Ray in 5 Minutes (300) – Learn how AWS X-Ray makes debugging your Container and Serverless applications fun.

Enterprise & Hybrid

April 23, 2018 | 09:00 AM – 09:45 AM PTAn Overview of Best Practices of Large-Scale Migrations (300) – Learn about the tools and best practices on how to migrate to AWS at scale.

April 24, 2018 | 11:00 AM – 11:45 AM PTDeploy your Desktops and Apps on AWS (300) – Learn how to deploy your desktops and apps on AWS with Amazon WorkSpaces and Amazon AppStream 2.0

IoT

May 2, 2018 | 11:00 AM – 11:45 AM PTHow to Easily and Securely Connect Devices to AWS IoT (200) – Learn how to easily and securely connect devices to the cloud and reliably scale to billions of devices and trillions of messages with AWS IoT.

Machine Learning

April 24, 2018 | 09:00 AM – 09:45 AM PT Automate for Efficiency with Amazon Transcribe and Amazon Translate (200) – Learn how you can increase the efficiency and reach your operations with Amazon Translate and Amazon Transcribe.

April 26, 2018 | 09:00 AM – 09:45 AM PT Perform Machine Learning at the IoT Edge using AWS Greengrass and Amazon Sagemaker (200) – Learn more about developing machine learning applications for the IoT edge.

Mobile

April 30, 2018 | 11:00 AM – 11:45 AM PTOffline GraphQL Apps with AWS AppSync (300) – Come learn how to enable real-time and offline data in your applications with GraphQL using AWS AppSync.

Networking

May 2, 2018 | 09:00 AM – 09:45 AM PT Taking Serverless to the Edge (300) – Learn how to run your code closer to your end users in a serverless fashion. Also, David Von Lehman from Aerobatic will discuss how they used [email protected] to reduce latency and cloud costs for their customer’s websites.

Security, Identity & Compliance

April 30, 2018 | 09:00 AM – 09:45 AM PTAmazon GuardDuty – Let’s Attack My Account! (300) – Amazon GuardDuty Test Drive – Practical steps on generating test findings.

May 3, 2018 | 09:00 AM – 09:45 AM PTProtect Your Game Servers from DDoS Attacks (200) – Learn how to use the new AWS Shield Advanced for EC2 to protect your internet-facing game servers against network layer DDoS attacks and application layer attacks of all kinds.

Serverless

April 24, 2018 | 01:00 PM – 01:45 PM PTTips and Tricks for Building and Deploying Serverless Apps In Minutes (200) – Learn how to build and deploy apps in minutes.

Storage

May 1, 2018 | 11:00 AM – 11:45 AM PTBuilding Data Lakes That Cost Less and Deliver Results Faster (300) – Learn how Amazon S3 Select And Amazon Glacier Select increase application performance by up to 400% and reduce total cost of ownership by extending your data lake into cost-effective archive storage.

May 3, 2018 | 11:00 AM – 11:45 AM PTIntegrating On-Premises Vendors with AWS for Backup (300) – Learn how to work with AWS and technology partners to build backup & restore solutions for your on-premises, hybrid, and cloud native environments.

Artefacts in the classroom with Museum in a Box

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/museum-in-a-box/

Museum in a Box bridges the gap between museums and schools by creating a more hands-on approach to conservation education through 3D printing and digital making.

Artefacts in the classroom with Museum in a Box || Raspberry Pi Stories

Learn more: http://rpf.io/ Subscribe to our YouTube channel: http://rpf.io/ytsub Help us reach a wider audience by translating our video content: http://rpf.io/yttranslate Buy a Raspberry Pi from one of our Approved Resellers: http://rpf.io/ytproducts Find out more about the Raspberry Pi Foundation: Raspberry Pi http://rpf.io/ytrpi Code Club UK http://rpf.io/ytccuk Code Club International http://rpf.io/ytcci CoderDojo http://rpf.io/ytcd Check out our free online training courses: http://rpf.io/ytfl Find your local Raspberry Jam event: http://rpf.io/ytjam Work through our free online projects: http://rpf.io/ytprojects Do you have a question about your Raspberry Pi?

Fantastic collections and where to find them

Large, impressive statues are truly a sight to be seen. Take for example the 2.4m Hoa Hakananai’a at the British Museum. Its tall stature looms over you as you read its plaque to learn of the statue’s journey from Easter Island to the UK under the care of Captain Cook in 1774, and you can’t help but wonder at how it made it here in one piece.

Hoa Hakananai’a Captain Cook British Museum
Hoa Hakananai’a Captain Cook British Museum

But unless you live near a big city where museums are plentiful, you’re unlikely to see the likes of Hoa Hakananai’a in person. Instead, you have to content yourself with online photos or videos of world-famous artefacts.

And that only accounts for the objects that are on display: conservators estimate that only approximately 5 to 10% of museums’ overall collections are actually on show across the globe. The rest is boxed up in storage, inaccessible to the public due to risk of damage, or simply due to lack of space.

Museum in a Box

Museum in a Box aims to “put museum collections and expert knowledge into your hand, wherever you are in the world,” through modern maker practices such as 3D printing and digital making. With the help of the ‘Scan the World’ movement, an “ambitious initiative whose mission is to archive objects of cultural significance using 3D scanning technologies”, the Museum in a Box team has been able to print small, handheld replicas of some of the world’s most recognisable statues and sculptures.

Museum in a Box Raspberry Pi

Each 3D print gets NFC tags so it can initiate audio playback from a Raspberry Pi that sits snugly within the laser-cut housing of a ‘brain box’. Thus the print can talk directly to us through the magic of wireless technology, replacing the dense, dry text of a museum plaque with engaging speech.

Museum in a Box Raspberry Pi

The Museum in a Box team headed by CEO George Oates (featured in the video above) makes use of these 3D-printed figures alongside original artefacts, postcards, and more to bridge the gap between large, crowded, distant museums and local schools. Modeled after the museum handling collections that used to be sent to schools, Museum in a Box is a cheaper, more accessible alternative. Moreover, it not only allows for hands-on learning, but also encourages children to get directly involved by hacking its technology! With NFC technology readily available to the public, students can curate their own collections about their local area, record their own messages, and send their own box-sized museums on to schools in other towns or countries. In this way, Museum in a Box enables students to explore, and expand the reach of, their own histories.

Moving forward

With the technology perfected and interest in the project ever-growing, Museum in a Box has a busy year ahead. Supporting the new ‘Unstacked’ learning initiative, the team will soon be delivering ten boxes to the Smithsonian Libraries. The team has curated two collections specifically for this: an exploration into Asia-Pacific America experiences of migration to the USA throughout the 20th century, and a look into the history of science.

Smithsonian Library Museum in a Box Raspberry Pi

The team will also be making a box for the British Museum to support their Iraq Scheme initiative, and another box will be heading to the V&A to support their See Red programme. While primarily installed in the Lansbury Micro Museum, the box will also take to the road to visit the local Spotlight high school.

Museum in a Box at Raspberry Fields

Lastly, by far the most exciting thing the Museum in a Box team will be doing this year — in our opinion at least — is showcasing at Raspberry Fields! This is our brand-new festival of digital making that’s taking place on 30 June and 1 July 2018 here in Cambridge, UK. Find more information about it and get your ticket here.

The post Artefacts in the classroom with Museum in a Box appeared first on Raspberry Pi.

American Public Television Embraces the Cloud — And the Future

Post Syndicated from Andy Klein original https://www.backblaze.com/blog/american-public-television-embraces-the-cloud-and-the-future/

American Public Television website

American Public Television was like many organizations that have been around for a while. They were entrenched using an older technology — in their case, tape storage and distribution — that once met their needs but was limiting their productivity and preventing them from effectively collaborating with their many media partners. APT’s VP of Technology knew that he needed to move into the future and embrace cloud storage to keep APT ahead of the game.
Since 1961, American Public Television (APT) has been a leading distributor of groundbreaking, high-quality, top-rated programming to the nation’s public television stations. Gerry Field is the Vice President of Technology at APT and is responsible for delivering their extensive program catalog to 350+ public television stations nationwide.

In the time since Gerry  joined APT in 2007, the industry has been in digital overdrive. During that time APT has continued to acquire and distribute the best in public television programming to their technically diverse subscribers.

This created two challenges for Gerry. First, new technology and format proliferation were driving dramatic increases in digital storage. Second, many of APT’s subscribers struggled to keep up with the rapidly changing industry. While some subscribers had state-of-the-art satellite systems to receive programming, others had to wait for the post office to drop off programs recorded on tape weeks earlier. With no slowdown on the horizon of innovation in the industry, Gerry knew that his storage and distribution systems would reach a crossroads in no time at all.

American Public Television logo

Living the tape paradigm

The digital media industry is only a few years removed from its film, and later videotape, roots. Tape was the input and the output of the industry for many years. As a consequence, the tools and workflows used by the industry were built and designed to work with tape. Over time, the “file” slowly replaced the tape as the object to be captured, edited, stored and distributed. Trouble was, many of the systems and more importantly workflows were based on processing tape, and these have proven to be hard to change.

At APT, Gerry realized the limits of the tape paradigm and began looking for technologies and solutions that enabled workflows based on file and object based storage and distribution.

Thinking file based storage and distribution

For data (digital media) storage, APT, like everyone else, started by installing onsite storage servers. As the amount of digital data grew, more storage was added. In addition, APT was expanding its distribution footprint by creating or partnering with distribution channels such as CreateTV and APT Worldwide. This dramatically increased the number of programming formats and the amount of data that had to be stored. As a consequence, updating, maintaining, and managing the APT storage systems was becoming a major challenge and a major resource hog.

APT Online

Knowing that his in-house storage system was only going to cost more time and money, Gerry decided it was time to look at cloud storage. But that wasn’t the only reason he looked at the cloud. While most people consider cloud storage as just a place to back up and archive files, Gerry was envisioning how the ubiquity of the cloud could help solve his distribution challenges. The trouble was the price of cloud storage from vendors like Amazon S3 and Microsoft Azure was a non-starter, especially for a non-profit. Then Gerry came across Backblaze. B2 Cloud Storage service met all of his performance requirements, and at $0.005/GB/month for storage and $0.01/GB for downloads it was nearly 75% less than S3 or Azure.

Gerry did the math and found that he could economically incorporate B2 Cloud Storage into his IT portfolio, using it for both program submission and for active storage and archiving of the APT programs. In addition, B2 now gives him the foundation necessary to receive and distribute programming content over the Internet. This is especially useful for organizations that can’t conveniently access satellite distribution systems. Not to mention downloading from the cloud is much faster than sending a tape through the mail.

Adding B2 Cloud Storage to their infrastructure has helped American Public Television address two key challenges. First, they now have “unlimited” storage in the cloud without having to add any hardware. In addition, with B2, they only pay for the storage they use. That means they don’t have to buy storage upfront trying to match the maximum amount of storage they’ll ever need. Second, by using B2 as a distribution source for their programming APT subscribers, especially the smaller and remote ones, can get content faster and more reliably without having to perform costly upgrades to their infrastructure.

The road ahead

As APT gets used to their file based infrastructure and workflow, there are a number of cost saving and income generating ideas they are pondering which are now worth considering. Here are a few:

Program Submissions — New content can be uploaded from anywhere using a web browser, an Internet connection, and a login. For example, a producer in Cambodia can upload their film to B2. From there the film is downloaded to an in-house system where it is processed and transcoded using compute. The finished film is added to the APT catalog and added to B2. Once there, the program is instantly available for subscribers to order and download.

“The affordability and performance of Backblaze B2 is what allowed us to make the B2 cloud part of the APT data storage and distribution strategy into the future.” — Gerry Field

Easier Previews — At any time, work in process or finished programs can be made available for download from the B2 cloud. One place this could be useful is where a subscriber needs to review a program to comply with local policies and practices before airing. In the old system, each “one-off” was a time consuming manual process.

Instant Subscriptions — There are many organizations such as schools and businesses that want to use just one episode of a desired show. With an e-commerce based website, current or even archived programming kept in B2 could be available to download or stream for a minimal charge.

At APT there were multiple technologies needed to make their file-based infrastructure work, but as Gerry notes, having an affordable, trustworthy, cloud storage service like B2 is one of the critical building blocks needed to make everything work together.

The post American Public Television Embraces the Cloud — And the Future appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

HiveMQ 3.3.4 released

Post Syndicated from The HiveMQ Team original https://www.hivemq.com/blog/hivemq-3-3-4-released/

The HiveMQ team is pleased to announce the availability of HiveMQ 3.3.4. This is a maintenance release for the 3.3 series and brings the following improvements:

  • Increased performance when a node joins an existing cluster with a lot of stored queued messages
  • Fixed subscription metric showing incorrect values after cluster topology change
  • Improved cleanup of expired information in the cluster to reduce memory usage with lots of short lived clients
  • Fixed a reference counting issue when there is a conflict for outgoing messages flows after network split
  • Fixed an issue with rolling upgrades in an edge case where a new node is joining during network-split
  • Improved compatibility of operating system metrics and Java 9

You can download the new HiveMQ version here.

We strongly recommend to upgrade if you are an HiveMQ 3.3.x user.

Have a great day,
The HiveMQ Team

How to migrate a Hue database from an existing Amazon EMR cluster

Post Syndicated from Anvesh Ragi original https://aws.amazon.com/blogs/big-data/how-to-migrate-a-hue-database-from-an-existing-amazon-emr-cluster/

Hadoop User Experience (Hue) is an open-source, web-based, graphical user interface for use with Amazon EMR and Apache Hadoop. The Hue database stores things like users, groups, authorization permissions, Apache Hive queries, Apache Oozie workflows, and so on.

There might come a time when you want to migrate your Hue database to a new EMR cluster. For example, you might want to upgrade from an older version of the Amazon EMR AMI (Amazon Machine Image), but your Hue application and its database have had a lot of customization.You can avoid re-creating these user entities and retain query/workflow histories in Hue by migrating the existing Hue database, or remote database in Amazon RDS, to a new cluster.

By default, Hue user information and query histories are stored in a local MySQL database on the EMR cluster’s master node. However, you can create one or more Hue-enabled clusters using a configuration stored in Amazon S3 and a remote MySQL database in Amazon RDS. This allows you to preserve user information and query history that Hue creates without keeping your Amazon EMR cluster running.

This post describes the step-by-step process for migrating the Hue database from an existing EMR cluster.

Note: Amazon EMR supports different Hue versions across different AMI releases. Keep in mind the compatibility of Hue versions between the old and new clusters in this migration activity. Currently, Hue 3.x.x versions are not compatible with Hue 4.x.x versions, and therefore a migration between these two Hue versions might create issues. In addition, Hue 3.10.0 is not backward compatible with its previous 3.x.x versions.

Before you begin

First, let’s create a new testUser in Hue on an existing EMR cluster, as shown following:

You will use these credentials later to log in to Hue on the new EMR cluster and validate whether you have successfully migrated the Hue database.

Let’s get started!

Migration how-to

Follow these steps to migrate your database to a new EMR cluster and then validate the migration process.

1.) Make a backup of the existing Hue database.

Use SSH to connect to the master node of the old cluster, as shown following (if you are using Linux/Unix/macOS), and dump the Hue database to a JSON file.

$ ssh -i ~/key.pem [email protected]
$ /usr/lib/hue/build/env/bin/hue dumpdata > ./hue-mysql.json

Edit the hue-mysql.json output file by removing all JSON objects that have useradmin.userprofile in the model field, and save the file. For example, remove the objects as shown following:

{
  "pk": 1,
  "model": "useradmin.userprofile",
  "fields": {
    "last_activity": "2018-01-10T11:41:04",
    "creation_method": "HUE",
    "first_login": false,
    "user": 1,
    "home_directory": "/user/hue_admin"
  }
},

2.) Store the hue-mysql.json file on persistent storage like Amazon S3.

You can copy the file from the old EMR cluster to Amazon S3 using the AWS CLI or Secure Copy (SCP) client. For example, the following uses the AWS CLI:

$ aws s3 cp ./hue-mysql.json s3://YourBucketName/folder/

3.) Recover/reload the backed-up Hue database into the new EMR cluster.

a.) Use SSH to connect to the master node of the new EMR cluster, and stop the Hue service that is already running.

$ ssh -i ~/key.pem [email protected]
$ sudo stop hue
hue stop/waiting

b.) Connect to the Hue database—either the local MySQL database or the remote database in Amazon RDS for your cluster as shown following, using the mysql client.

$ mysql -h HOST –u USER –pPASSWORD

For a local MySQL database, you can find the hostname, user name, and password for connecting to the database in the /etc/hue/conf/hue.ini file on the master node.

[[database]]
    engine = mysql
    name = huedb
    case_insensitive_collation = utf8_unicode_ci
    test_charset = utf8
    test_collation = utf8_bin
    host = ip-172-31-37-133.us-west-2.compute.internal
    user = hue
    test_name = test_huedb
    password = QdWbL3Ai6GcBqk26
    port = 3306

Based on the preceding example configuration, the sample command is as follows. (Replace the host, user, and password details based on your EMR cluster settings.)

$ mysql -h ip-172-31-37-133.us-west-2.compute.internal -u hue -pQdWbL3Ai6GcBqk26

c.) Drop the existing Hue database with the name huedb from the MySQL server.

mysql> DROP DATABASE IF EXISTS huedb;

d.) Create a new empty database with the same name huedb.

mysql> CREATE DATABASE huedb DEFAULT CHARACTER SET utf8 DEFAULT COLLATE=utf8_bin;

e.) Now, synchronize Hue with its database huedb.

$ sudo /usr/lib/hue/build/env/bin/hue syncdb --noinput
$ sudo /usr/lib/hue/build/env/bin/hue migrate

(This populates the new huedb with all Hue tables that are required.)

f.) Log in to MySQL again, and drop the foreign key to clean tables.

mysql> SHOW CREATE TABLE huedb.auth_permission;

In the following example, replace <id value> with the actual value from the preceding output.

mysql> ALTER TABLE huedb.auth_permission DROP FOREIGN KEY
content_type_id_refs_id_<id value>;

g.) Delete the contents of the django_content_type

mysql> DELETE FROM huedb.django_content_type;

h.) Download the backed-up Hue database dump from Amazon S3 to the new EMR cluster, and load it into Hue.

$ aws s3 cp s3://YourBucketName/folder/hue-mysql.json ./
$ sudo /usr/lib/hue/build/env/bin/hue loaddata ./hue-mysql.json

i.) In MySQL, add the foreign key content_type_id back to the auth_permission

mysql> use huedb;
mysql> ALTER TABLE huedb.auth_permission ADD FOREIGN KEY (`content_type_id`) REFERENCES `django_content_type` (`id`);

j.) Start the Hue service again.

$ sudo start hue
hue start/running, process XXXX

That’s it! Now, verify whether you can successfully access the Hue UI, and sign in using your existing testUser credentials.

After a successful sign in to Hue on the new EMR cluster, you should see a similar Hue homepage as shown following with testUser as the user signed in:

Conclusion

You have now learned how to migrate an existing Hue database to a new Amazon EMR cluster and validate the migration process. If you have any similar Amazon EMR administration topics that you want to see covered in a future post, please let us know in the comments below.


Additional Reading

If you found this post useful, be sure to check out Anomaly Detection Using PySpark, Hive, and Hue on Amazon EMR and Dynamically Create Friendly URLs for Your Amazon EMR Web Interfaces.


About the Author


Anvesh Ragi is a Big Data Support Engineer with Amazon Web Services. He works closely with AWS customers to provide them architectural and engineering assistance for their data processing workflows. In his free time, he enjoys traveling and going for hikes.

Security of Cloud HSMBackups

Post Syndicated from Balaji Iyer original https://aws.amazon.com/blogs/architecture/security-of-cloud-hsmbackups/

Today, our customers use AWS CloudHSM to meet corporate, contractual and regulatory compliance requirements for data security by using dedicated Hardware Security Module (HSM) instances within the AWS cloud. CloudHSM delivers all the benefits of traditional HSMs including secure generation, storage, and management of cryptographic keys used for data encryption that are controlled and accessible only by you.

As a managed service, it automates time-consuming administrative tasks such as hardware provisioning, software patching, high availability, backups and scaling for your sensitive and regulated workloads in a cost-effective manner. Backup and restore functionality is the core building block enabling scalability, reliability and high availability in CloudHSM.

You should consider using AWS CloudHSM if you require:

  • Keys stored in dedicated, third-party validated hardware security modules under your exclusive control
  • FIPS 140-2 compliance
  • Integration with applications using PKCS#11, Java JCE, or Microsoft CNG interfaces
  • High-performance in-VPC cryptographic acceleration (bulk crypto)
  • Financial applications subject to PCI regulations
  • Healthcare applications subject to HIPAA regulations
  • Streaming video solutions subject to contractual DRM requirements

We recently released a whitepaper, “Security of CloudHSM Backups” that provides in-depth information on how backups are protected in all three phases of the CloudHSM backup lifecycle process: Creation, Archive, and Restore.

About the Author

Balaji Iyer is a senior consultant in the Professional Services team at Amazon Web Services. In this role, he has helped several customers successfully navigate their journey to AWS. His specialties include architecting and implementing highly-scalable distributed systems, operational security, large scale migrations, and leading strategic AWS initiatives.

Simplicity is a Feature for Cloud Backup

Post Syndicated from Roderick Bauer original https://www.backblaze.com/blog/distributed-cloud-backup-for-businesses/

cloud on a blue background
For Joel Wagener, Director of IT at AIBS, simplicity is an important feature he looks for in software applications to use in his organization. So maybe it’s not unexpected that Joel chose Backblaze for Business to back up AIBS’s staff computers. According to Joel, “It just works.”American Institute of Biological Sciences

AIBS (The American Institute of Biological Sciences) is a non-profit scientific association dedicated to advancing biological research and education. Founded in 1947 as part of the National Academy of Sciences, AIBS later became independent and now has over 100 member organizations. AIBS works to ensure that the public, legislators, funders, and the community of biologists have access to and use information that will guide them in making informed decisions about matters that require biological knowledge.

AIBS started using Backblaze for Business Cloud Backup several years ago to make sure that the organization’s data was backed up and protected from accidental loss or computer failure. AIBS is based in Washington, D.C., but is a virtual organization, with staff dispersed around the United States. AIBS needed a backup solution that worked anywhere a staff member was located, and was easy to use, as well. Joel has made Backblaze a default part of the configuration management for all the AIBS endpoints, which in their case are exclusively Macintosh.

AIBS biological images

“We started using Backblaze on a single computer in 2014, then not too long after that decided to deploy it to all our endpoints,” explains Joel. “We use Groups to oversee backups and for central billing, but we let each user manage their own computer and restore files on their own if they need to.”

“Backblaze stays out of the way until we need it. It’s fairly lightweight, and I appreciate that it’s simple,” says Joel. “It doesn’t throttle backups and the price point is good. I have family members who use Backblaze, as well.”

Backblaze’s Groups feature permits an organization to oversee and manage the user accounts, including restores, or let users handle that themselves. This flexibility fits a variety of organizations, where various degrees of oversight or independence are desirable. The finance and HR departments could manage their own data, for example, while the rest of the organization could be managed by IT. All groups can be billed centrally no matter how other functionality is set up.

“If we have a computer that needs repair, we can put a loaner computer in that person’s hands and they can immediately get the data they need directly from the Backblaze cloud backup, which is really helpful. When we get the original computer back from repair we can do a complete restore and return it to the user all ready to go again. When we’ve needed restores, Backblaze has been reliable.”

Joel also likes that the memory footprint of Backblaze is light — the clients for both Macintosh and Windows are native, and designed to use minimum system resources and not impact any applications used on the computer. He also likes that updates to the client software are pushed out when necessary.

Backblaze for Business

Backblaze for Business also helps IT maintain archives of users’ computers after they leave the organization.

“We like that we have a ready-made archive of a computer when someone leaves,” said Joel. The Backblaze backup is there if we need to retrieve anything that person was working on.”

There are other capabilities in Backblaze that Joel likes, but hasn’t had a chance to use yet.

“We’ve used Casper (Jamf) to deploy and manage software on endpoints without needing any interaction from the user. We haven’t used it yet for Backblaze, but we know that Backblaze supports it. It’s a handy feature to have.”

”It just works.”
— Joel Wagener, AIBS Director of IT

Perhaps the best thing about Backblaze for Business isn’t a specific feature that can be found on a product data sheet.

“When files have been lost, Backblaze has provided us access to multiple prior versions, and this feature has been important and worked well several times,” says Joel.

“That provides needed peace of mind to our users, and our IT department, as well.”

The post Simplicity is a Feature for Cloud Backup appeared first on Backblaze Blog | Cloud Storage & Cloud Backup.

Hijacking Computers for Cryptocurrency Mining

Post Syndicated from Bruce Schneier original https://www.schneier.com/blog/archives/2018/03/hijacking_compu.html

Interesting paper “A first look at browser-based cryptojacking“:

Abstract: In this paper, we examine the recent trend towards in-browser mining of cryptocurrencies; in particular, the mining of Monero through Coinhive and similar code-bases. In this model, a user visiting a website will download a JavaScript code that executes client-side in her browser, mines a cryptocurrency, typically without her consent or knowledge, and pays out the seigniorage to the website. Websites may consciously employ this as an alternative or to supplement advertisement revenue, may offer premium content in exchange for mining, or may be unwittingly serving the code as a result of a breach (in which case the seigniorage is collected by the attacker). The cryptocurrency Monero is preferred seemingly for its unfriendliness to large-scale ASIC mining that would drive browser-based efforts out of the market, as well as for its purported privacy features. In this paper, we survey this landscape, conduct some measurements to establish its prevalence and profitability, outline an ethical framework for considering whether it should be classified as an attack or business opportunity, and make suggestions for the detection, mitigation and/or prevention of browser-based mining for non-consenting users.