Tag Archives: Mac

About the Amazon Trust Services Migration

Post Syndicated from Brent Meyer original https://aws.amazon.com/blogs/ses/669-2/

Amazon Web Services is moving the certificates for our services—including Amazon SES—to use our own certificate authority, Amazon Trust Services. We have carefully planned this change to minimize the impact it will have on your workflow. Most customers will not have to take any action during this migration.

About the Certificates

The Amazon Trust Services Certificate Authority (CA) uses the Starfield Services CA, which has been valid since 2005. The Amazon Trust Services certificates are available in most major operating systems released in the past 10 years, and are also trusted by all modern web browsers.

If you send email through the Amazon SES SMTP interface using a mail server that you operate, we recommend that you confirm that the appropriate certificates are installed. You can test whether your server trusts the Amazon Trust Services CAs by visiting the following URLs (for example, by using cURL):

If you see a message stating that the certificate issuer is not recognized, then you should install the appropriate root certificate. You can download individual certificates from https://www.amazontrust.com/repository. The process of adding a trusted certificate to your server varies depending on the operating system you use. For more information, see “Adding New Certificates,” below.

AWS SDKs and CLI

Recent versions of the AWS SDKs and the AWS CLI are not impacted by this change. If you use an AWS SDK or a version of the AWS CLI released prior to February 5, 2015, you should upgrade to the latest version.

Potential Issues

If your system is configured to use a very restricted list of root CAs (for example, if you use certificate pinning), you may be impacted by this migration. In this situation, you must update your pinned certificates to include the Amazon Trust Services CAs.

Adding New Root Certificates

The following sections list the steps you can take to install the Amazon Root CA certificates on your systems if they are not already present.

macOS

To install a new certificate on a macOS server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain /path/to/certificatename.crt, replacing /path/to/certificatename.crt with the full path to the certificate file.

Windows Server

To install a new certificate on a Windows server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. At the command prompt, type the following command to install the certificate: certutil -addstore -f "ROOT" c:\path\to\certificatename.crt, replacing c:\path\to\certificatename.crt with the full path to the certificate file.

Ubuntu

To install a new certificate on an Ubuntu (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /usr/local/share/ca-certificates/
  4. At the command prompt, type the following command to update the certificate authority store: sudo update-ca-certificates

Red Hat Enterprise Linux/Fedora/CentOS

To install a new certificate on a Red Hat Enterprise Linux (or similar) server

  1. Download the .pem file for the certificate you want to install from https://www.amazontrust.com/repository.
  2. Change the file extension for the file you downloaded from .pem to .crt.
  3. Copy the certificate file to the directory /etc/pki/ca-trust/source/anchors/
  4. At the command line, type the following command to enable dynamic certificate authority configuration: sudo update-ca-trust force-enable
  5. At the command line, type the following command to update the certificate authority store: sudo update-ca-trust extract

To learn more about this migration, see How to Prepare for AWS’s Move to Its Own Certificate Authority on the AWS Security Blog.

Running Windows Containers on Amazon ECS

Post Syndicated from Nathan Taber original https://aws.amazon.com/blogs/compute/running-windows-containers-on-amazon-ecs/

This post was developed and written by Jeremy Cowan, Thomas Fuller, Samuel Karp, and Akram Chetibi.

Containers have revolutionized the way that developers build, package, deploy, and run applications. Initially, containers only supported code and tooling for Linux applications. With the release of Docker Engine for Windows Server 2016, Windows developers have started to realize the gains that their Linux counterparts have experienced for the last several years.

This week, we’re adding support for running production workloads in Windows containers using Amazon Elastic Container Service (Amazon ECS). Now, Amazon ECS provides an ECS-Optimized Windows Server Amazon Machine Image (AMI). This AMI is based on the EC2 Windows Server 2016 AMI, and includes Docker 17.06 Enterprise Edition and the ECS Agent 1.16. This AMI provides improved instance and container launch time performance. It’s based on Windows Server 2016 Datacenter and includes Docker 17.06.2-ee-5, along with a new version of the ECS agent that now runs as a native Windows service.

In this post, I discuss the benefits of this new support, and walk you through getting started running Windows containers with Amazon ECS.

When AWS released the Windows Server 2016 Base with Containers AMI, the ECS agent ran as a process that made it difficult to monitor and manage. As a service, the agent can be health-checked, managed, and restarted no differently than other Windows services. The AMI also includes pre-cached images for Windows Server Core 2016 and Windows Server Nano Server 2016. By caching the images in the AMI, launching new Windows containers is significantly faster. When Docker images include a layer that’s already cached on the instance, Docker re-uses that layer instead of pulling it from the Docker registry.

The ECS agent and an accompanying ECS PowerShell module used to install, configure, and run the agent come pre-installed on the AMI. This guarantees there is a specific platform version available on the container instance at launch. Because the software is included, you don’t have to download it from the internet. This saves startup time.

The Windows-compatible ECS-optimized AMI also reports CPU and memory utilization and reservation metrics to Amazon CloudWatch. Using the CloudWatch integration with ECS, you can create alarms that trigger dynamic scaling events to automatically add or remove capacity to your EC2 instances and ECS tasks.

Getting started

To help you get started running Windows containers on ECS, I’ve forked the ECS reference architecture, to build an ECS cluster comprised of Windows instances instead of Linux instances. You can pull the latest version of the reference architecture for Windows.

The reference architecture is a layered CloudFormation stack, in that it calls other stacks to create the environment. Within the stack, the ecs-windows-cluster.yaml file contains the instructions for bootstrapping the Windows instances and configuring the ECS cluster. To configure the instances outside of AWS CloudFormation (for example, through the CLI or the console), you can add the following commands to your instance’s user data:

Import-Module ECSTools
Initialize-ECSAgent

Or

Import-Module ECSTools
Initialize-ECSAgent –Cluster MyCluster -EnableIAMTaskRole

If you don’t specify a cluster name when you initialize the agent, the instance is joined to the default cluster.

Adding -EnableIAMTaskRole when initializing the agent adds support for IAM roles for tasks. Previously, enabling this setting meant running a complex script and setting an environment variable before you could assign roles to your ECS tasks.

When you enable IAM roles for tasks on Windows, it consumes port 80 on the host. If you have tasks that listen on port 80 on the host, I recommend configuring a service for them that uses load balancing. You can use port 80 on the load balancer, and the traffic can be routed to another host port on your container instances. For more information, see Service Load Balancing.

Create a cluster

To create a new ECS cluster, choose Launch stack, or pull the GitHub project to your local machine and run the following command:

aws cloudformation create-stack –template-body file://<path to master-windows.yaml> --stack-name <name>

Upload your container image

Now that you have a cluster running, step through how to build and push an image into a container repository. You use a repository hosted in Amazon Elastic Container Registry (Amazon ECR) for this, but you could also use Docker Hub. To build and push an image to a repository, install Docker on your Windows* workstation. You also create a repository and assign the necessary permissions to the account that pushes your image to Amazon ECR. For detailed instructions, see Pushing an Image.

* If you are building an image that is based on Windows layers, then you must use a Windows environment to build and push your image to the registry.

Write your task definition

Now that your image is built and ready, the next step is to run your Windows containers using a task.

Start by creating a new task definition based on the windows-simple-iis image from Docker Hub.

  1. Open the ECS console.
  2. Choose Task Definitions, Create new task definition.
  3. Scroll to the bottom of the page and choose Configure via JSON.
  4. Copy and paste the following JSON into that field.
  5. Choose Save, Create.
{
   "family": "windows-simple-iis",
   "containerDefinitions": [
   {
     "name": "windows_sample_app",
     "image": "microsoft/iis",
     "cpu": 100,
     "entryPoint":["powershell", "-Command"],
     "command":["New-Item -Path C:\\inetpub\\wwwroot\\index.html -Type file -Value '<html><head><title>Amazon ECS Sample App</title> <style>body {margin-top: 40px; background-color: #333;} </style> </head><body> <div style=color:white;text-align:center><h1>Amazon ECS Sample App</h1> <h2>Congratulations!</h2> <p>Your application is now running on a container in Amazon ECS.</p></body></html>'; C:\\ServiceMonitor.exe w3svc"],
     "portMappings": [
     {
       "protocol": "tcp",
       "containerPort": 80,
       "hostPort": 8080
     }
     ],
     "memory": 500,
     "essential": true
   }
   ]
}

You can now go back into the Task Definition page and see windows-simple-iis as an available task definition.

There are a few important aspects of the task definition file to note when working with Windows containers. First, the hostPort is configured as 8080, which is necessary because the ECS agent currently uses port 80 to enable IAM roles for tasks required for least-privilege security configurations.

There are also some fairly standard task parameters that are intentionally not included. For example, network mode is not available with Windows at the time of this release, so keep that setting blank to allow Docker to configure WinNAT, the only option available today.

Also, some parameters work differently with Windows than they do with Linux. The CPU limits that you define in the task definition are absolute, whereas on Linux they are weights. For information about other task parameters that are supported or possibly different with Windows, see the documentation.

Run your containers

At this point, you are ready to run containers. There are two options to run containers with ECS:

  1. Task
  2. Service

A task is typically a short-lived process that ECS creates. It can’t be configured to actively monitor or scale. A service is meant for longer-running containers and can be configured to use a load balancer, minimum/maximum capacity settings, and a number of other knobs and switches to help ensure that your code keeps running. In both cases, you are able to pick a placement strategy and a specific IAM role for your container.

  1. Select the task definition that you created above and choose Action, Run Task.
  2. Leave the settings on the next page to the default values.
  3. Select the ECS cluster created when you ran the CloudFormation template.
  4. Choose Run Task to start the process of scheduling a Docker container on your ECS cluster.

You can now go to the cluster and watch the status of your task. It may take 5–10 minutes for the task to go from PENDING to RUNNING, mostly because it takes time to download all of the layers necessary to run the microsoft/iis image. After the status is RUNNING, you should see the following results:

You may have noticed that the example task definition is named windows-simple-iis:2. This is because I created a second version of the task definition, which is one of the powerful capabilities of using ECS. You can make the task definitions part of your source code and then version them. You can also roll out new versions and practice blue/green deployment, switching to reduce downtime and improve the velocity of your deployments!

After the task has moved to RUNNING, you can see your website hosted in ECS. Find the public IP or DNS for your ECS host. Remember that you are hosting on port 8080. Make sure that the security group allows ingress from your client IP address to that port and that your VPC has an internet gateway associated with it. You should see a page that looks like the following:

This is a nice start to deploying a simple single instance task, but what if you had a Web API to be scaled out and in based on usage? This is where you could look at defining a service and collecting CloudWatch data to add and remove both instances of the task. You could also use CloudWatch alarms to add more ECS container instances and keep up with the demand. The former is built into the configuration of your service.

  1. Select the task definition and choose Create Service.
  2. Associate a load balancer.
  3. Set up Auto Scaling.

The following screenshot shows an example where you would add an additional task instance when the CPU Utilization CloudWatch metric is over 60% on average over three consecutive measurements. This may not be aggressive enough for your requirements; it’s meant to show you the option to scale tasks the same way you scale ECS instances with an Auto Scaling group. The difference is that these tasks start much faster because all of the base layers are already on the ECS host.

Do not confuse task dynamic scaling with ECS instance dynamic scaling. To add additional hosts, see Tutorial: Scaling Container Instances with CloudWatch Alarms.

Conclusion

This is just scratching the surface of the flexibility that you get from using containers and Amazon ECS. For more information, see the Amazon ECS Developer Guide and ECS Resources.

– Jeremy, Thomas, Samuel, Akram

Marvellous retrofitted home assistants

Post Syndicated from Alex Bate original https://www.raspberrypi.org/blog/retrofitted-home-assistants/

As more and more digital home assistants are appearing on the consumer market, it’s not uncommon to see the towering Amazon Echo or sleek Google Home when visiting friends or family. But we, the maker community, are rarely happy unless our tech stands out from the rest. So without further ado, here’s a roundup of some fantastic retrofitted home assistant projects you can recreate and give pride of place in your kitchen, on your bookshelf, or wherever else you’d like to talk to your virtual, disembodied PA.

Google AIY Robot Conversion

Turned an 80s Tomy Mr Money into a little Google AIY / Raspberry Pi based assistant.

Matt ‘Circuitbeard’ Brailsford’s Tomy Mr Money Google AIY Assistant is just one of many home-brew home assistants makers have built since the release of APIs for Amazon Alexa and Google Home. Here are some more…

Teddy Ruxpin

Oh Teddy, how exciting and mysterious you were when I unwrapped you back in the mideighties. With your awkwardly moving lips and twitching eyelids, you were the cream of the crop of robotic toys! How was I to know that during my thirties, you would become augmented with home assistant software and suddenly instil within me a fear unlike any I’d felt before? (Save for my lifelong horror of ET…)

Alexa Ruxpin – Raspberry Pi & Alexa Powered Teddy Bear

Please watch: “DIY Fidget LED Display – Part 1” https://www.youtube.com/watch?v=FAZIc82Duzk -~-~~-~~~-~~-~- There are tons of virtual assistants out on the market: Siri, Ok Google, Alexa, etc. I had this crazy idea…what if I made the virtual assistant real…kinda. I decided to take an old animatronic teddy bear and hack it so that it ran Amazon Alexa.

Several makers around the world have performed surgery on Teddy to install a Raspberry Pi within his stomach and integrate him with Amazon Alexa Voice or Google’s AIY Projects Voice kit. And because these makers are talented, they’ve also managed to hijack Teddy’s wiring to make his lips move in time with his responses to your commands. Freaky…

Speaking of freaky: check out Zack’s Furlexa — an Amazon Alexa Furby that will haunt your nightmares.

Give old tech new life

Devices that were the height of technology when you purchased them may now be languishing in your attic collecting dust. With new and improved versions of gadgets and gizmos being released almost constantly, it is likely that your household harbours a spare whosit or whatsit which you can dismantle and give a new Raspberry Pi heart and purpose.

Take, for example, Martin Mander’s Google Pi intercom. By gutting and thoroughly cleaning a vintage intercom, Martin fashioned a suitable housing the Google AIY Projects Voice kit to create a new home assistant for his house:

1986 Google Pi Intercom

This is a 1986 Radio Shack Intercom that I’ve converted into a Google Home style device using a Raspberry Pi and the Google AIY (Artificial Intelligence Yourself) kit that came free with the MagPi magazine (issue 57). It uses the Google Assistant to answer questions and perform actions, using IFTTT to integrate with smart home accessories and other web services.

Not only does this build look fantastic, it’s also a great conversation starter for any visitors who had a similar device during the eighties.

Also take a look at Martin’s 1970s Amazon Alexa phone for more nostalgic splendour.

Put it in a box

…and then I’ll put that box inside of another box, and then I’ll mail that box to myself, and when it arrives…

A GIF from the emperors new groove - Raspberry Pi Home Assistant

A GIF. A harmless, little GIF…and proof of the comms team’s obsession with The Emperor’s New Groove.

You don’t have to be fancy when it comes to housing your home assistant. And often, especially if you’re working with the smaller people in your household, the results of a simple homespun approach are just as delightful.

Here are Hannah and her dad Tom, explaining how they built a home assistant together and fit it inside an old cigar box:

Raspberry Pi 3 Amazon Echo – The Alexa Kids Build!

My 7 year old daughter and I decided to play around with the Raspberry Pi and build ourselves an Amazon Echo (Alexa). The video tells you about what we did and the links below will take you to all the sites we used to get this up and running.

Also see the Google AIY Projects Voice kit — the cardboard box-est of home assistant boxes.

Make your own home assistant

And now it’s your turn! I challenge you all (and also myself) to create a home assistant using the Raspberry Pi. Whether you decide to fit Amazon Alexa inside an old shoebox or Google Home inside your sister’s Barbie, I’d love to see what you create using the free home assistant software available online.

Check out these other home assistants for Raspberry Pi, and keep an eye on our blog to see what I manage to create as part of the challenge.

Ten virtual house points for everyone who shares their build with us online, either in the comments below or by tagging us on your social media account.

The post Marvellous retrofitted home assistants appeared first on Raspberry Pi.

New Police Anti-Piracy Task Force May Get Involved in Site Blocking

Post Syndicated from Ernesto original https://torrentfreak.com/new-police-anti-piracy-task-force-may-get-involved-in-site-blocking-171206/

On a regular basis, major media companies and their associates seek assistance from the authorities in order to curb copyright infringement.

In some cases, this has resulted in special police units that have piracy among their main objectives, such as The City of London Police Intellectual Property Crime Unit (PIPCU) in the UK.

Over in Denmark, the Government greenlighted a similar initiative last week. Justice Minister Søren Pape Poulsen approved a new task force that will operate under police wings, with an exclusive focus on intellectual property crimes.

“This is the culmination of a joint effort among Danish trade organizations’ calls for public engagement in the enforcement of IP crime in Denmark,” Maria Fredenslund, CEO of the local anti-piracy group RettighedsAlliancen (Rights Alliance) tells TorrentFreak.

“Similar to the PIPCU unit in the UK the task force will be specialized in IP crime and will handle existing cases and develop digital enforcement,” she adds.

The new unit will consist of five or six investigators, who will be assisted by prosecutors. The main goal will be to tackle organized crime on as many levels as possible.

The new police task force will first operate on a trial basis. After the first half year, the Government will evaluate its progress and decide if the project will continue. If that happens, the unit may also get involved in website blocking efforts.

Pirate site blockades are not new in Denmark, but thus far these have been the result of civil procedures initiated by copyright holders. According to new plans, which still have to be approved, legislation that’s currently used to block terrorist content may be used against pirate sites as well.

“The Government will look into the possibility to give the police authority to carry out blockades of infringing websites,” Fredenslund says.

This would be possible under a provision in the Administration of Justice Act, which the Danish Parliament recently adopted. While the blocking requests would be submitted by the police unit, instead of copyright holders, a court still has to approve them.

“The decision to block a website is made with a court order by request of the police. The court order shall list the specific circumstances that prove the conditions for the blocking of the website have been met. The court order may be revoked at any time,” the relevant provision reads.

For the time being, the new anti-piracy task force will focus on handling other copyright infringement cases, which these are plenty of.

Rights Alliance is happy with the help they are getting. The anti-piracy group has been working on their own “piracy disruption machine” in recent months and with assistance from law enforcement, they hope to achieve some good results soon.

For now, however, the private blocking requests are continuing as well.

Just yesterday the District Court in Frederiksberg issued an order (pdf) in favor of the Rights Alliance, requiring a local ISP to block dozens of Popcorn Time related domain names. As part of a voluntary agreement, this block will be implemented by other Internet providers as well.

Source: TF, for the latest info on copyright, file-sharing, torrent sites and more. We also have VPN discounts, offers and coupons

Game night 1: Lisa, Lisa, MOOP

Post Syndicated from Eevee original https://eev.ee/blog/2017/12/05/game-night-1-lisa-lisa-moop/

For the last few weeks, glip (my partner) and I have spent a couple hours most nights playing indie games together. We started out intending to play a short list of games that had been recommended to glip, but this turns out to be a nice way to wind down, so we’ve been keeping it up and clicking on whatever looks interesting in the itch app.

Most of the games are small and made by one or two people, so they tend to be pretty tightly scoped and focus on a few particular kinds of details. I’ve found myself having brain thoughts about all that, so I thought I’d write some of them down.

I also know that some people (cough) tend not to play games they’ve never heard of, even if they want something new to play. If that’s you, feel free to play some of these, now that you’ve heard of them!

Also, I’m still figuring the format out here, so let me know if this is interesting or if you hope I never do it again!

First up:

  • Lisa: The Painful
  • Lisa: The Joyful
  • MOOP

These are impressions, not reviews. I try to avoid major/ending spoilers, but big plot points do tend to leave impressions.

Lisa: The Painful

long · classic rpg · dec 2014 · lin/mac/win · $10 on itch or steam · website

(cw: basically everything??)

Lisa: The Painful is true to its name. I hesitate to describe it as fun, exactly, but I’m glad we played it.

Everything about the game is dark. It’s a (somewhat loose) sequel to another game called Lisa, whose titular character ultimately commits suicide; her body hanging from a noose is the title screen for this game.

Ah, but don’t worry, it gets worse. This game takes place in a post-apocalyptic wasteland, where every female human — women, children, babies — is dead. You play as Brad (Lisa’s brother), who has discovered the lone exception: a baby girl he names Buddy and raises like a daughter. Now, Buddy has been kidnapped, and you have to go rescue her, presumably from being raped.

Ah, but don’t worry, it gets worse.


I’ve had a hard time putting my thoughts in order here, because so much of what stuck with me is the way the game entangles the plot with the mechanics.

I love that kind of thing, but it’s so hard to do well. I can’t really explain why, but I feel like most attempts to do it fall flat — they have a glimmer of an idea, but they don’t integrate it well enough, or they don’t run nearly as far as they could have. I often get the same feeling as, say, a hyped-up big moral choice that turns out to be picking “yes” or “no” from a menu. The idea is there, but the execution is so flimsy that it leaves no impact on me at all.

An obvious recent success here is Undertale, where the entire story is about violence and whether you choose to engage or avoid it (and whether you can do that). If you choose to eschew violence, not only does the game become more difficult, it arguably becomes a different game entirely. Granted, the contrast is lost if you (like me) tried to play as a pacifist from the very beginning. I do feel that you could go further with the idea than Undertale, but Undertale itself doesn’t feel incomplete.

Christ, I’m not even talking about the right game any more.

Okay, so: this game is a “classic” RPG, by which I mean, it was made with RPG Maker. (It’s kinda funny that RPG Maker was designed to emulate a very popular battle style, and now the only games that use that style are… made with RPG Maker.) The main loop, on the surface, is standard RPG fare: you walk around various places, talk to people, solve puzzles, recruit party members, and get into turn-based fights.

Now, Brad is addicted to a drug called Joy. He will regularly go into withdrawal, which manifests in the game as a status effect that cuts his stats (even his max HP!) dramatically.

It is really, really, incredibly inconvenient. And therein lies the genius here. The game could have simply told me that Brad is an addict, and I don’t think I would’ve cared too much. An addiction to a fantasy drug in a wasteland doesn’t mean anything to me, especially about this tiny sprite man I just met, so I would’ve filed this away as a sterile fact and forgotten about it. By making his addiction affect me, I’m now invested in it. I wish Brad weren’t addicted, even if only because it’s annoying. I found a party member once who turned out to have the same addiction, and I felt dread just from seeing the icon for the status effect. I’ve been looped into the events of this story through the medium I use to interact with it: the game.

It’s a really good use of games as a medium. Even before I’m invested in the characters, I’m invested in what’s happening to them, because it impacts the game!

Incidentally, you can get Joy as an item, which will temporarily cure your withdrawal… but you mostly find it by looting the corpses of grotesque mutant flesh horrors you encounter. I don’t think the game would have the player abruptly mutate out of nowhere, but I wasn’t about to find out, either. We never took any.


Virtually every staple of the RPG genre has been played with in some way to tie it into the theme/setting. I love it, and I think it works so well precisely because it plays with expectations of how RPGs usually work.

Most obviously, the game is a sidescroller, not top-down. You can’t jump freely, but you can hop onto one-tile-high boxes and climb ropes. You can also drop off off ledges… but your entire party will take fall damage, which gets rapidly more severe the further you fall.

This wouldn’t be too much of a problem, except that healing is hard to come by for most of the game. Several hub areas have campfires you can sleep next to to restore all your health and MP, but when you wake up, something will have happened to you. Maybe just a weird cutscene, or maybe one of your party members has decided to leave permanently.

Okay, so use healing items instead? Good luck; money is also hard to come by, and honestly so are shops, and many of the healing items are woefully underpowered.

Grind for money? Good luck there, too! While the game has plenty of battles, virtually every enemy is a unique overworld human who only appears once, and then is dead, because you killed him. Only a handful of places have unlimited random encounters, and grinding is not especially pleasant.

The “best” way to get a reliable heal is to savescum — save the game, sleep by the campfire, and reload if you don’t like what you wake up to.

In a similar vein, there’s a part of the game where you’re forced to play Russian Roulette. You choose a party member; he and an opponent will take turns shooting themselves in the head until someone finds a loaded chamber. If your party member loses, he is dead. And you have to keep playing until you win three times, so there’s no upper limit on how many people you might lose. I couldn’t find any way to influence who won, so I just had to savescum for a good half hour until I made it through with minimal losses.

It was maddening, but also a really good idea. Games don’t often incorporate the existence of saves into the gameplay, and when they do, they usually break the fourth wall and get all meta about it. Saves are never acknowledged in-universe here (aside from the existence of save points), but surely these parts of the game were designed knowing that the best way through them is by reloading. It’s rarely done, it can easily feel unfair, and it drove me up the wall — but it was certainly painful, as intended, and I kinda love that.

(Naturally, I’m told there’s a hard mode, where you can only use each save point once.)

The game also drives home the finality of death much better than most. It’s not hard to overlook the death of a redshirt, a character with a bit part who simply doesn’t appear any more. This game permanently kills your party members. Russian Roulette isn’t even the only way you can lose them! Multiple cutscenes force you to choose between losing a life or some other drastic consequence. (Even better, you can try to fight the person forcing this choice on you, and he will decimate you.) As the game progresses, you start to encounter enemies who can simply one-shot murder your party members.

It’s such a great angle. Just like with Brad’s withdrawal, you don’t want to avoid their deaths because it’d be emotional — there are dozens of party members you can recruit (though we only found a fraction of them), and most of them you only know a paragraph about — but because it would inconvenience you personally. Chances are, you have your strongest dudes in your party at any given time, so losing one of them sucks. And with few random encounters, you can’t just grind someone else up to an appropriate level; it feels like there’s a finite amount of XP in the game, and if someone high-level dies, you’ve lost all the XP that went into them.


The battles themselves are fairly straightforward. You can attack normally or use a special move that costs MP. SP? Some kind of points.

Two things in particular stand out. One I mentioned above: the vast majority of the encounters are one-time affairs against distinct named NPCs, who you then never see again, because they are dead, because you killed them.

The other is the somewhat unusual set of status effects. The staples like poison and sleep are here, but don’t show up all that often; more frequent are statuses like weird, drunk, stink, or cool. If you do take Joy (which also cures depression), you become joyed for a short time.

The game plays with these in a few neat ways, besides just Brad’s withdrawal. Some party members have a status like stink or cool permanently. Some battles are against people who don’t want to fight at all — and so they’ll spend most of the battle crying, purely for flavor impact. Seeing that for the first time hit me pretty hard; until then we’d only seen crying as a mechanical side effect of having sand kicked in one’s face.


The game does drag on a bit. I think we poured 10 in-game hours into it, which doesn’t count time spent reloading. It doesn’t help that you walk not super fast.

My biggest problem was with getting my bearings; I’m sure we spent a lot of that time wandering around accomplishing nothing. Most of the world is focused around one of a few hub areas, and once you’ve completed one hub, you can move onto the next one. That’s fine. Trouble is, you can go any of a dozen different directions from each hub, and most of those directions will lead you to very similar-looking hills built out of the same tiny handful of tiles. The connections between places are mostly cave entrances, which also largely look the same. Combine that with needing to backtrack for puzzle or progression reasons, and it’s incredibly difficult to keep track of where you’ve been, what you’ve done, and where you need to go next.

I don’t know that the game is wrong here; the aesthetic and world layout are fantastic at conveying a desolate wasteland. I wouldn’t even be surprised if the navigation were deliberately designed this way. (On the other hand, assuming every annoyance in a despair-ridden game is deliberate might be giving it too much credit.) But damn it’s still frustrating.

I felt a little lost in the battle system, too. Towards the end of the game, Brad in particular had over a dozen skills he could use, but I still couldn’t confidently tell you which were the strongest. New skills sometimes appear in the middle of the list or cost less than previous skills, and the game doesn’t outright tell you how much damage any of them do. I know this is the “classic RPG” style, and I don’t think it was hugely inconvenient, but it feels weird to barely know how my own skills work. I think this puts me off getting into new RPGs, just generally; there’s a whole new set of things I have to learn about, and games in this style often won’t just tell me anything, so there’s this whole separate meta-puzzle to figure out before I can play the actual game effectively.

Also, the sound could use a little bit of… mastering? Some music and sound effects are significantly louder and screechier than others. Painful, you could say.


The world is full of side characters with their own stuff going on, which is also something I love seeing in games; too often, the whole world feels like an obstacle course specifically designed for you.

Also, many of those characters are, well, not great people. Really, most of the game is kinda fucked up. Consider: the weird status effect is most commonly inflicted by the “Grope” skill. It makes you feel weird, you see. Oh, and the currency is porn magazines.

And then there are the gangs, the various spins on sex clubs, the forceful drug kingpins, and the overall violence that permeates everything (you stumble upon an alarming number of corpses). The game neither condones nor condemns any of this; it simply offers some ideas of how people might behave at the end of the world. It’s certainly the grittiest interpretation I’ve seen.

I don’t usually like post-apocalypses, because they try to have these very hopeful stories, but then at the end the world is still a blighted hellscape so what was the point of any of that? I like this game much better for being a blighted hellscape throughout. The story is worth following to see where it goes, not just because you expect everything wrapped up neatly at the end.

…I realize I’ve made this game sound monumentally depressing throughout, but it manages to pack in a lot of funny moments as well, from the subtle to the overt. In retrospect, it’s actually really good at balancing the mood so it doesn’t get too depressing. If nothing else, it’s hilarious to watch this gruff, solemn, battle-scarred, middle-aged man pedal around on a kid’s bike he found.


An obvious theme of the game is despair, but the more I think about it, the more I wonder if ambiguity is a theme as well. It certainly fits the confusing geography.

Even the premise is a little ambiguous. Is/was Olathe a city, a country, a whole planet? Did the apocalypse affect only Olathe, or the whole world? Does it matter in an RPG, where the only world that exists is the one mapped out within the game?

Towards the end of the game, you catch up with Buddy, but she rejects you, apparently resentful that you kept her hidden away for her entire life. Brad presses on anyway, insisting on protecting her.

At that point I wasn’t sure I was still on Brad’s side. But he’s not wrong, either. Is he? Maybe it depends on how old Buddy is — but the game never tells us. Her sprite is a bit smaller than the men’s, but it’s hard to gauge much from small exaggerated sprites, and she might just be shorter. In the beginning of the game, she was doing kid-like drawings, but we don’t know how much time passed after that. Everyone seems to take for granted that she’s capable of bearing children, and she talks like an adult. So is she old enough to be making this decision, or young enough for parent figure Brad to overrule her? What is the appropriate age of agency, anyway, when you’re the last girl/woman left more than a decade after the end of the world?

Can you repopulate a species with only one woman, anyway?


Well, that went on a bit longer than I intended. This game has a lot of small touches that stood out to me, and they all wove together very well.

Should you play it? I have absolutely no idea.

FINAL SCORE: 1 out of 6 chambers

Lisa: The Joyful

fairly short · classic rpg · aug 2015 · lin/mac/win · $5 on itch or steam

Surprise! There’s a third game to round out this trilogy.

Lisa: The Joyful is much shorter, maybe three hours long — enough to be played in a night rather than over the better part of a week.

This one picks up immediately after the end of Painful, with you now playing as Buddy. It takes a drastic turn early on: Buddy decides that, rather than hide from the world, she must conquer it. She sets out to murder all the big bosses and become queen.

The battle system has been inherited from the previous game, but battles are much more straightforward this time around. You can’t recruit any party members; for much of the game, it’s just you and a sword.

There is a catch! Of course.

The catch is that you do not have enough health to survive most boss battles without healing. With no party members, you cannot heal via skills. I don’t think you could buy healing items anywhere, either. You have a few when the game begins, but once you run out, that’s it.

Except… you also have… some Joy. Which restores you to full health and also makes you crit with every hit. And drops off of several enemies.

We didn’t even recognize Joy as a healing item at first, since we never used it in Painful; it’s description simply says that it makes you feel nothing, and we’d assumed the whole point of it was to stave off withdrawal, which Buddy doesn’t experience. Luckily, the game provided a hint in the form of an NPC who offers to switch on easy mode:

What’s that? Bad guys too tough? Not enough jerky? You don’t want to take Joy!? Say no more, you’ve come to the right place!

So the game is aware that it’s unfairly difficult, and it’s deliberately forcing you to take Joy, and it is in fact entirely constructed around this concept. I guess the title is a pretty good hint, too.

I don’t feel quite as strongly about Joyful as I do about Painful. (Admittedly, I was really tired and starting to doze off towards the end of Joyful.) Once you get that the gimmick is to force you to use Joy, the game basically reduces to a moderate-difficulty boss rush. Other than that, the only thing that stood out to me mechanically was that Buddy learns a skill where she lifts her shirt to inflict flustered as a status effect — kind of a lingering echo of how outrageous the previous game could be.

You do get a healthy serving of plot, which is nice and ties a few things together. I wouldn’t say it exactly wraps up the story, but it doesn’t feel like it’s missing anything either; it’s exactly as murky as you’d expect.

I think it’s worth playing Joyful if you’ve played Painful. It just didn’t have the same impact on me. It probably doesn’t help that I don’t like Buddy as a person. She seems cold, violent, and cruel. Appropriate for the world and a product of her environment, I suppose.

FINAL SCORE: 300 Mags

MOOP

fairly short · inventory game · nov 2017 · win · free on itch

Finally, as something of a palate cleanser, we have MOOP: a delightful and charming little inventory game.

I don’t think “inventory game” is a real genre, but I mean the kind of game where you go around collecting items and using them in the right place. Puzzle-driven, but with “puzzles” that can largely be solved by simply trying everything everywhere. I’d put a lot of point and click adventures in the same category, despite having a radically different interface. Is that fair? Yes, because it’s my blog.

MOOP was almost certainly also made in RPG Maker, but it breaks the mold in a very different way by not being an RPG. There are no battles whatsoever, only interactions on the overworld; you progress solely via dialogue and puzzle-solving. Examining something gives you a short menu of verbs — use, talk, get — reminiscent of interactive fiction, or perhaps the graphical “adventure” games that took inspiration from interactive fiction. (God, “adventure game” is the worst phrase. Every game is an adventure! It doesn’t mean anything!)

Everything about the game is extremely chill. I love the monochrome aesthetic combined with a large screen resolution; it feels like I’m peeking into an alternate universe where the Game Boy got bigger but never gained color. I played halfway through the game before realizing that the protagonist (Moop) doesn’t have a walk animation; they simply slide around. Somehow, it works.

The puzzles are a little clever, yet low-pressure; the world is small enough that you can examine everything again if you get stuck, and there’s no way to lose or be set back. The music is lovely, too. It just feels good to wander around in a world that manages to make sepia look very pretty.

The story manages to pack a lot into a very short time. It’s… gosh, I don’t know. It has a very distinct texture to it that I’m not sure I’ve seen before. The plot weaves through several major events that each have very different moods, and it moves very quickly — but it’s well-written and doesn’t feel rushed or disjoint. It’s lighthearted, but takes itself seriously enough for me to get invested. It’s fucking witchcraft.

I think there was even a non-binary character! Just kinda nonchalantly in there. Awesome.

What a happy, charming game. Play if you would like to be happy and charmed.

FINAL SCORE: 1 waxing moon

Implementing Dynamic ETL Pipelines Using AWS Step Functions

Post Syndicated from Tara Van Unen original https://aws.amazon.com/blogs/compute/implementing-dynamic-etl-pipelines-using-aws-step-functions/

This post contributed by:
Wangechi Dole, AWS Solutions Architect
Milan Krasnansky, ING, Digital Solutions Developer, SGK
Rian Mookencherry, Director – Product Innovation, SGK

Data processing and transformation is a common use case you see in our customer case studies and success stories. Often, customers deal with complex data from a variety of sources that needs to be transformed and customized through a series of steps to make it useful to different systems and stakeholders. This can be difficult due to the ever-increasing volume, velocity, and variety of data. Today, data management challenges cannot be solved with traditional databases.

Workflow automation helps you build solutions that are repeatable, scalable, and reliable. You can use AWS Step Functions for this. A great example is how SGK used Step Functions to automate the ETL processes for their client. With Step Functions, SGK has been able to automate changes within the data management system, substantially reducing the time required for data processing.

In this post, SGK shares the details of how they used Step Functions to build a robust data processing system based on highly configurable business transformation rules for ETL processes.

SGK: Building dynamic ETL pipelines

SGK is a subsidiary of Matthews International Corporation, a diversified organization focusing on brand solutions and industrial technologies. SGK’s Global Content Creation Studio network creates compelling content and solutions that connect brands and products to consumers through multiple assets including photography, video, and copywriting.

We were recently contracted to build a sophisticated and scalable data management system for one of our clients. We chose to build the solution on AWS to leverage advanced, managed services that help to improve the speed and agility of development.

The data management system served two main functions:

  1. Ingesting a large amount of complex data to facilitate both reporting and product funding decisions for the client’s global marketing and supply chain organizations.
  2. Processing the data through normalization and applying complex algorithms and data transformations. The system goal was to provide information in the relevant context—such as strategic marketing, supply chain, product planning, etc. —to the end consumer through automated data feeds or updates to existing ETL systems.

We were faced with several challenges:

  • Output data that needed to be refreshed at least twice a day to provide fresh datasets to both local and global markets. That constant data refresh posed several challenges, especially around data management and replication across multiple databases.
  • The complexity of reporting business rules that needed to be updated on a constant basis.
  • Data that could not be processed as contiguous blocks of typical time-series data. The measurement of the data was done across seasons (that is, combination of dates), which often resulted with up to three overlapping seasons at any given time.
  • Input data that came from 10+ different data sources. Each data source ranged from 1–20K rows with as many as 85 columns per input source.

These challenges meant that our small Dev team heavily invested time in frequent configuration changes to the system and data integrity verification to make sure that everything was operating properly. Maintaining this system proved to be a daunting task and that’s when we turned to Step Functions—along with other AWS services—to automate our ETL processes.

Solution overview

Our solution included the following AWS services:

  • AWS Step Functions: Before Step Functions was available, we were using multiple Lambda functions for this use case and running into memory limit issues. With Step Functions, we can execute steps in parallel simultaneously, in a cost-efficient manner, without running into memory limitations.
  • AWS Lambda: The Step Functions state machine uses Lambda functions to implement the Task states. Our Lambda functions are implemented in Java 8.
  • Amazon DynamoDB provides us with an easy and flexible way to manage business rules. We specify our rules as Keys. These are key-value pairs stored in a DynamoDB table.
  • Amazon RDS: Our ETL pipelines consume source data from our RDS MySQL database.
  • Amazon Redshift: We use Amazon Redshift for reporting purposes because it integrates with our BI tools. Currently we are using Tableau for reporting which integrates well with Amazon Redshift.
  • Amazon S3: We store our raw input files and intermediate results in S3 buckets.
  • Amazon CloudWatch Events: Our users expect results at a specific time. We use CloudWatch Events to trigger Step Functions on an automated schedule.

Solution architecture

This solution uses a declarative approach to defining business transformation rules that are applied by the underlying Step Functions state machine as data moves from RDS to Amazon Redshift. An S3 bucket is used to store intermediate results. A CloudWatch Event rule triggers the Step Functions state machine on a schedule. The following diagram illustrates our architecture:

Here are more details for the above diagram:

  1. A rule in CloudWatch Events triggers the state machine execution on an automated schedule.
  2. The state machine invokes the first Lambda function.
  3. The Lambda function deletes all existing records in Amazon Redshift. Depending on the dataset, the Lambda function can create a new table in Amazon Redshift to hold the data.
  4. The same Lambda function then retrieves Keys from a DynamoDB table. Keys represent specific marketing campaigns or seasons and map to specific records in RDS.
  5. The state machine executes the second Lambda function using the Keys from DynamoDB.
  6. The second Lambda function retrieves the referenced dataset from RDS. The records retrieved represent the entire dataset needed for a specific marketing campaign.
  7. The second Lambda function executes in parallel for each Key retrieved from DynamoDB and stores the output in CSV format temporarily in S3.
  8. Finally, the Lambda function uploads the data into Amazon Redshift.

To understand the above data processing workflow, take a closer look at the Step Functions state machine for this example.

We walk you through the state machine in more detail in the following sections.

Walkthrough

To get started, you need to:

  • Create a schedule in CloudWatch Events
  • Specify conditions for RDS data extracts
  • Create Amazon Redshift input files
  • Load data into Amazon Redshift

Step 1: Create a schedule in CloudWatch Events
Create rules in CloudWatch Events to trigger the Step Functions state machine on an automated schedule. The following is an example cron expression to automate your schedule:

In this example, the cron expression invokes the Step Functions state machine at 3:00am and 2:00pm (UTC) every day.

Step 2: Specify conditions for RDS data extracts
We use DynamoDB to store Keys that determine which rows of data to extract from our RDS MySQL database. An example Key is MCS2017, which stands for, Marketing Campaign Spring 2017. Each campaign has a specific start and end date and the corresponding dataset is stored in RDS MySQL. A record in RDS contains about 600 columns, and each Key can represent up to 20K records.

A given day can have multiple campaigns with different start and end dates running simultaneously. In the following example DynamoDB item, three campaigns are specified for the given date.

The state machine example shown above uses Keys 31, 32, and 33 in the first ChoiceState and Keys 21 and 22 in the second ChoiceState. These keys represent marketing campaigns for a given day. For example, on Monday, there are only two campaigns requested. The ChoiceState with Keys 21 and 22 is executed. If three campaigns are requested on Tuesday, for example, then ChoiceState with Keys 31, 32, and 33 is executed. MCS2017 can be represented by Key 21 and Key 33 on Monday and Tuesday, respectively. This approach gives us the flexibility to add or remove campaigns dynamically.

Step 3: Create Amazon Redshift input files
When the state machine begins execution, the first Lambda function is invoked as the resource for FirstState, represented in the Step Functions state machine as follows:

"Comment": ” AWS Amazon States Language.", 
  "StartAt": "FirstState",
 
"States": { 
  "FirstState": {
   
"Type": "Task",
   
"Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Start",
    "Next": "ChoiceState" 
  } 

As described in the solution architecture, the purpose of this Lambda function is to delete existing data in Amazon Redshift and retrieve keys from DynamoDB. In our use case, we found that deleting existing records was more efficient and less time-consuming than finding the delta and updating existing records. On average, an Amazon Redshift table can contain about 36 million cells, which translates to roughly 65K records. The following is the code snippet for the first Lambda function in Java 8:

public class LambdaFunctionHandler implements RequestHandler<Map<String,Object>,Map<String,String>> {
    Map<String,String> keys= new HashMap<>();
    public Map<String, String> handleRequest(Map<String, Object> input, Context context){
       Properties config = getConfig(); 
       // 1. Cleaning Redshift Database
       new RedshiftDataService(config).cleaningTable(); 
       // 2. Reading data from Dynamodb
       List<String> keyList = new DynamoDBDataService(config).getCurrentKeys();
       for(int i = 0; i < keyList.size(); i++) {
           keys.put(”key" + (i+1), keyList.get(i)); 
       }
       keys.put(”key" + T,String.valueOf(keyList.size()));
       // 3. Returning the key values and the key count from the “for” loop
       return (keys);
}

The following JSON represents ChoiceState.

"ChoiceState": {
   "Type" : "Choice",
   "Choices": [ 
   {

      "Variable": "$.keyT",
     "StringEquals": "3",
     "Next": "CurrentThreeKeys" 
   }, 
   {

     "Variable": "$.keyT",
    "StringEquals": "2",
    "Next": "CurrentTwooKeys" 
   } 
 ], 
 "Default": "DefaultState"
}

The variable $.keyT represents the number of keys retrieved from DynamoDB. This variable determines which of the parallel branches should be executed. At the time of publication, Step Functions does not support dynamic parallel state. Therefore, choices under ChoiceState are manually created and assigned hardcoded StringEquals values. These values represent the number of parallel executions for the second Lambda function.

For example, if $.keyT equals 3, the second Lambda function is executed three times in parallel with keys, $key1, $key2 and $key3 retrieved from DynamoDB. Similarly, if $.keyT equals two, the second Lambda function is executed twice in parallel.  The following JSON represents this parallel execution:

"CurrentThreeKeys": { 
  "Type": "Parallel",
  "Next": "NextState",
  "Branches": [ 
  {

     "StartAt": “key31",
    "States": { 
       “key31": {

          "Type": "Task",
        "InputPath": "$.key1",
        "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
        "End": true 
       } 
    } 
  }, 
  {

     "StartAt": “key32",
    "States": { 
     “key32": {

        "Type": "Task",
       "InputPath": "$.key2",
         "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
       "End": true 
      } 
     } 
   }, 
   {

      "StartAt": “key33",
       "States": { 
          “key33": {

                "Type": "Task",
             "InputPath": "$.key3",
             "Resource": "arn:aws:lambda:xx-xxxx-x:XXXXXXXXXXXX:function:Execution",
           "End": true 
       } 
     } 
    } 
  ] 
} 

Step 4: Load data into Amazon Redshift
The second Lambda function in the state machine extracts records from RDS associated with keys retrieved for DynamoDB. It processes the data then loads into an Amazon Redshift table. The following is code snippet for the second Lambda function in Java 8.

public class LambdaFunctionHandler implements RequestHandler<String, String> {
 public static String key = null;

public String handleRequest(String input, Context context) { 
   key=input; 
   //1. Getting basic configurations for the next classes + s3 client Properties
   config = getConfig();

   AmazonS3 s3 = AmazonS3ClientBuilder.defaultClient(); 
   // 2. Export query results from RDS into S3 bucket 
   new RdsDataService(config).exportDataToS3(s3,key); 
   // 3. Import query results from S3 bucket into Redshift 
    new RedshiftDataService(config).importDataFromS3(s3,key); 
   System.out.println(input); 
   return "SUCCESS"; 
 } 
}

After the data is loaded into Amazon Redshift, end users can visualize it using their preferred business intelligence tools.

Lessons learned

  • At the time of publication, the 1.5–GB memory hard limit for Lambda functions was inadequate for processing our complex workload. Step Functions gave us the flexibility to chunk our large datasets and process them in parallel, saving on costs and time.
  • In our previous implementation, we assigned each key a dedicated Lambda function along with CloudWatch rules for schedule automation. This approach proved to be inefficient and quickly became an operational burden. Previously, we processed each key sequentially, with each key adding about five minutes to the overall processing time. For example, processing three keys meant that the total processing time was three times longer. With Step Functions, the entire state machine executes in about five minutes.
  • Using DynamoDB with Step Functions gave us the flexibility to manage keys efficiently. In our previous implementations, keys were hardcoded in Lambda functions, which became difficult to manage due to frequent updates. DynamoDB is a great way to store dynamic data that changes frequently, and it works perfectly with our serverless architectures.

Conclusion

With Step Functions, we were able to fully automate the frequent configuration updates to our dataset resulting in significant cost savings, reduced risk to data errors due to system downtime, and more time for us to focus on new product development rather than support related issues. We hope that you have found the information useful and that it can serve as a jump-start to building your own ETL processes on AWS with managed AWS services.

For more information about how Step Functions makes it easy to coordinate the components of distributed applications and microservices in any workflow, see the use case examples and then build your first state machine in under five minutes in the Step Functions console.

If you have questions or suggestions, please comment below.

The Pi Towers Secret Santa Babbage

Post Syndicated from Mark Calleja original https://www.raspberrypi.org/blog/secret-santa-babbage/

Tired of pulling names out of a hat for office Secret Santa? Upgrade your festive tradition with a Raspberry Pi, thermal printer, and everybody’s favourite microcomputer mascot, Babbage Bear.

Raspberry Pi Babbage Bear Secret Santa

The name’s Santa. Secret Santa.

It’s that time of year again, when the cosiness gets turned up to 11 and everyone starts thinking about jolly fat men, reindeer, toys, and benevolent home invasion. At Raspberry Pi, we’re running a Secret Santa pool: everyone buys a gift for someone else in the office. Obviously, the person you buy for has to be picked in secret and at random, or the whole thing wouldn’t work. With that in mind, I created Secret Santa Babbage to do the somewhat mundane task of choosing gift recipients. This could’ve just been done with some names in a hat, but we’re Raspberry Pi! If we don’t make a Python-based Babbage robot wearing a jaunty hat and programmed to spread Christmas cheer, who will?

Secret Santa Babbage

Ho ho ho!

Mecha-Babbage Xmas shenanigans

The script the robot runs is pretty basic: a list of names entered as comma-separated strings is shuffled at the press of a GPIO button, then a name is popped off the end and stored as a variable. The name is matched to a photo of the person stored on the Raspberry Pi, and a thermal printer pinched from Alex’s super awesome PastyCam (blog post forthcoming, maybe) prints out the picture and name of the person you will need to shower with gifts at the Christmas party. (Well, OK — with one gift. No more than five quid’s worth. Nothing untoward.) There’s also a redo function, just in case you pick yourself: press another button and the last picked name — still stored as a variable — is appended to the list again, which is shuffled once more, and a new name is popped off the end.

Secret Santa Babbage prototyping

Prototyping!

As the build was a bit of a rush job undertaken at the request of our ‘Director of Vibe’ Emily, there are a few things I’d like to improve about this functionality that I didn’t get around to — more on that later. To add some extra holiday spirit to the project at the last minute, I used Pygame to play a WAV file of Santa’s jolly laugh while Babbage chooses a name for you. The file is included in the GitHub repo along with everything else, because ‘tis the season, etc., etc.

Secret Santa Babbage prototyping

Editor’s note: Considering these desk adornments, Mark’s Secret Santa gift-giver has a lot to go on.

Writing the code for Xmas Mecha-Babbage was fairly straightforward, though it uses some tricky bits for managing the thermal printer. You’ll need to install the drivers to make it go, as well as the CUPS package for managing the print hosting. You can find instructions for these things here, thanks to the wonderful Adafruit crew. Also, for reasons I couldn’t fathom, this will all only work on a Pi 2 and not a Pi 3, as there are some compatibility issues with the thermal printer otherwise. (I also tested the script on a Pi Zero W…no dice.)

Building a Christmassy throne

The hardest (well, fiddliest) parts of making the whole build were constructing the throne and wiring the bear. Using MakerCase, Inkscape, a bit of ingenuity, and a laser cutter, I was able to rig up a Christmassy plywood throne which has a hole through the seat so I could run the wires down from Babbage and to the Pi inside. I finished the throne by rubbing a couple of fingers of beeswax into it; as well as making the wood shine just a little bit and protecting it against getting wet, this had the added bonus of making it smell awesome.

Secret Santa Babbage inside

Next year’s iteration will be mulled wine–scented.

I next soldered two LEDs to some lengths of wire, and then ran the wires through holes at the top of the throne and down the back along a small channel I had carved with a narrow chisel to connect them to the Pi’s GPIO pins. The green LED will remain on as long as Babbage is running his program, and the red one will light up while he is processing your request. Once the red LED goes off again, the next person can have a go. I also laser-cut a final piece of wood to overlay the back of Babbage’s Xmas throne and cover the wiring a bit.

Creating a Xmas cyborg bear

Taking two 6 mm tactile buttons, I clipped the spiky metal legs off one side of each (the buttons were going into a stuffed christmas toy, after all) and soldered a length of wire to each of the remaining legs. Next, I made a small incision into Babbage with my trusty Swiss army knife (in a place that actually made me cringe a little) and fed the buttons up into his paws. At some point in this process I was standing in the office wrestling with the bear and muttering to myself, which elicited some very strange looks from my colleagues.

Secret Santa Babbage throne

Poor Babbage…

One thing to note here is to make sure the wires remain attached at the solder points while you push them up into Babbage’s paws. The first time I tried it, I snapped one of my connections and had to start again. It helped to remove some stuffing like a tunnel and then replace it afterward. Moreover, you can use your fingertip to support the joints as you poke the wire in. Finally, a couple of squirts of hot glue to keep Babbage’s furry cheeks firmly on the seat, and done!

Secret Santa Babbage

Next year: Game of Thrones–inspired candy cane throne

The Secret Santa Babbage masterpiece

The whole build process was the perfect holiday mix of cheerful and macabre, and while getting the thermal printer to work was a little time-consuming, the finished product definitely raised some smiles around the office and added a bit of interesting digital flavour to a staid office tradition. And it also helped people who are new to the office or from other branches of the Foundation to know for whom they will be buying a gift.

Secret Santa Babbage

Ready to dispense Christmas cheer!

There are a few ways in which I’ll polish this project before next year, such as having the script write the names to external text files to create a record that will persist in case of a reboot, and maybe having Secret Santa Babbage play you a random Christmas carol when you squeeze his paw instead of just laughing merrily every time. (I also thought about adding electric shocks for those people who are on the naughty list, but HR said no. Bah, humbug!)

Make your own

The code and laser cut plans for the whole build are available here. If you plan to make your own, let us know which stuffed toy you will be turning into a Secret Santa cyborg! And if you’ve been working on any other Christmas-themed Raspberry Pi projects, we’d like to see those too, so tag us on social media to share the festive maker cheer.

The post The Pi Towers Secret Santa Babbage appeared first on Raspberry Pi.

AWS Contributes to Milestone 1.0 Release and Adds Model Serving Capability for Apache MXNet

Post Syndicated from Ana Visneski original https://aws.amazon.com/blogs/aws/aws-contributes-to-milestone-1-0-release-and-adds-model-serving-capability-for-apache-mxnet/

Post by Dr. Matt Wood

Today AWS announced contributions to the milestone 1.0 release of the Apache MXNet deep learning engine including the introduction of a new model-serving capability for MXNet. The new capabilities in MXNet provide the following benefits to users:

1) MXNet is easier to use: The model server for MXNet is a new capability introduced by AWS, and it packages, runs, and serves deep learning models in seconds with just a few lines of code, making them accessible over the internet via an API endpoint and thus easy to integrate into applications. The 1.0 release also includes an advanced indexing capability that enables users to perform matrix operations in a more intuitive manner.

  • Model Serving enables set up of an API endpoint for prediction: It saves developers time and effort by condensing the task of setting up an API endpoint for running and integrating prediction functionality into an application to just a few lines of code. It bridges the barrier between Python-based deep learning frameworks and production systems through a Docker container-based deployment model.
  • Advanced indexing for array operations in MXNet: It is now more intuitive for developers to leverage the powerful array operations in MXNet. They can use the advanced indexing capability by leveraging existing knowledge of NumPy/SciPy arrays. For example, it supports MXNet NDArray and Numpy ndarray as index, e.g. (a[mx.nd.array([1,2], dtype = ‘int32’]).

2) MXNet is faster: The 1.0 release includes implementation of cutting-edge features that optimize the performance of training and inference. Gradient compression enables users to train models up to five times faster by reducing communication bandwidth between compute nodes without loss in convergence rate or accuracy. For speech recognition acoustic modeling like the Alexa voice, this feature can reduce network bandwidth by up to three orders of magnitude during training. With the support of NVIDIA Collective Communication Library (NCCL), users can train a model 20% faster on multi-GPU systems.

  • Optimize network bandwidth with gradient compression: In distributed training, each machine must communicate frequently with others to update the weight-vectors and thereby collectively build a single model, leading to high network traffic. Gradient compression algorithm enables users to train models up to five times faster by compressing the model changes communicated by each instance.
  • Optimize the training performance by taking advantage of NCCL: NCCL implements multi-GPU and multi-node collective communication primitives that are performance optimized for NVIDIA GPUs. NCCL provides communication routines that are optimized to achieve high bandwidth over interconnection between multi-GPUs. MXNet supports NCCL to train models about 20% faster on multi-GPU systems.

3) MXNet provides easy interoperability: MXNet now includes a tool for converting neural network code written with the Caffe framework to MXNet code, making it easier for users to take advantage of MXNet’s scalability and performance.

  • Migrate Caffe models to MXNet: It is now possible to easily migrate Caffe code to MXNet, using the new source code translation tool for converting Caffe code to MXNet code.

MXNet has helped developers and researchers make progress with everything from language translation to autonomous vehicles and behavioral biometric security. We are excited to see the broad base of users that are building production artificial intelligence applications powered by neural network models developed and trained with MXNet. For example, the autonomous driving company TuSimple recently piloted a self-driving truck on a 200-mile journey from Yuma, Arizona to San Diego, California using MXNet. This release also includes a full-featured and performance optimized version of the Gluon programming interface. The ease-of-use associated with it combined with the extensive set of tutorials has led significant adoption among developers new to deep learning. The flexibility of the interface has driven interest within the research community, especially in the natural language processing domain.

Getting started with MXNet
Getting started with MXNet is simple. To learn more about the Gluon interface and deep learning, you can reference this comprehensive set of tutorials, which covers everything from an introduction to deep learning to how to implement cutting-edge neural network models. If you’re a contributor to a machine learning framework, check out the interface specs on GitHub.

To get started with the Model Server for Apache MXNet, install the library with the following command:

$ pip install mxnet-model-server

The Model Server library has a Model Zoo with 10 pre-trained deep learning models, including the SqueezeNet 1.1 object classification model. You can start serving the SqueezeNet model with just the following command:

$ mxnet-model-server \
  --models squeezenet=https://s3.amazonaws.com/model-server/models/squeezenet_v1.1/squeezenet_v1.1.model \
  --service dms/model_service/mxnet_vision_service.py

Learn more about the Model Server and view the source code, reference examples, and tutorials here: https://github.com/awslabs/mxnet-model-server/

-Dr. Matt Wood

GPIO expander: access a Pi’s GPIO pins on your PC/Mac

Post Syndicated from Gordon Hollingworth original https://www.raspberrypi.org/blog/gpio-expander/

Use the GPIO pins of a Raspberry Pi Zero while running Debian Stretch on a PC or Mac with our new GPIO expander software! With this tool, you can easily access a Pi Zero’s GPIO pins from your x86 laptop without using SSH, and you can also take advantage of your x86 computer’s processing power in your physical computing projects.

A Raspberry Pi zero connected to a laptop - GPIO expander

What is this magic?

Running our x86 Stretch distribution on a PC or Mac, whether installed on the hard drive or as a live image, is a great way of taking advantage of a well controlled and simple Linux distribution without the need for a Raspberry Pi.

The downside of not using a Pi, however, is that there aren’t any GPIO pins with which your Scratch or Python programs could communicate. This is a shame, because it means you are limited in your physical computing projects.

I was thinking about this while playing around with the Pi Zero’s USB booting capabilities, having seen people employ the Linux gadget USB mode to use the Pi Zero as an Ethernet device. It struck me that, using the udev subsystem, we could create a simple GUI application that automatically pops up when you plug a Pi Zero into your computer’s USB port. Then the Pi Zero could be programmed to turn into an Ethernet-connected computer running pigpio to provide you with remote GPIO pins.

So we went ahead and built this GPIO expander application, and your PC or Mac can now have GPIO pins which are accessible through Scratch or the GPIO Zero Python library. Note that you can only use this tool to access the Pi Zero.

You can also install the application on the Raspberry Pi. Theoretically, you could connect a number of Pi Zeros to a single Pi and (without a USB hub) use a maximum of 140 pins! But I’ve not tested this — one for you, I think…

Making the GPIO expander work

If you’re using a PC or Mac and you haven’t set up x86 Debian Stretch yet, you’ll need to do that first. An easy way to do it is to download a copy of the Stretch release from this page and image it onto a USB stick. Boot from the USB stick (on most computers, you just need to press F10 during booting and select the stick when asked), and then run Stretch directly from the USB key. You can also install it to the hard drive, but be aware that installing it will overwrite anything that was on your hard drive before.

Whether on a Mac, PC, or Pi, boot through to the Stretch desktop, open a terminal window, and install the GPIO expander application:

sudo apt install usbbootgui

Next, plug in your Raspberry Pi Zero (don’t insert an SD card), and after a few seconds the GUI will appear.

A screenshot of the GPIO expander GUI

The Raspberry Pi USB programming GUI

Select GPIO expansion board and click OK. The Pi Zero will now be programmed as a locally connected Ethernet port (if you run ifconfig, you’ll see the new interface usb0 coming up).

What’s really cool about this is that your plugged-in Pi Zero is now running pigpio, which allows you to control its GPIOs through the network interface.

With Scratch 2

To utilise the pins with Scratch 2, just click on the start bar and select Programming > Scratch 2.

In Scratch, click on More Blocks, select Add an Extension, and then click Pi GPIO.

Two new blocks will be added: the first is used to set the output pin, the second is used to get the pin value (it is true if the pin is read high).

This a simple application using a Pibrella I had hanging around:

A screenshot of a Scratch 2 program - GPIO expander

With Python

This is a Python example using the GPIO Zero library to flash an LED:

[email protected]:~ $ export GPIOZERO_PIN_FACTORY=pigpio
[email protected]:~ $ export PIGPIO_ADDR=fe80::1%usb0
[email protected]:~ $ python3
>>> from gpiozero import LED
>>> led = LED(17)
>>> led.blink()
A Raspberry Pi zero connected to a laptop - GPIO expander

The pinout command line tool is your friend

Note that in the code above the IP address of the Pi Zero is an IPv6 address and is shortened to fe80::1%usb0, where usb0 is the network interface created by the first Pi Zero.

With pigs directly

Another option you have is to use the pigpio library and the pigs application and redirect the output to the Pi Zero network port running IPv6. To do this, you’ll first need to set some environment variable for the redirection:

[email protected]:~ $ export PIGPIO_ADDR=fe80::1%usb0
[email protected]:~ $ pigs bc2 0x8000
[email protected]:~ $ pigs bs2 0x8000

With the commands above, you should be able to flash the LED on the Pi Zero.

The secret sauce

I know there’ll be some people out there who would be interested in how we put this together. And I’m sure many people are interested in the ‘buildroot’ we created to run on the Pi Zero — after all, there are lots of things you can create if you’ve got a Pi Zero on the end of a piece of IPv6 string! For a closer look, find the build scripts for the GPIO expander here and the source code for the USB boot GUI here.

And be sure to share your projects built with the GPIO expander by tagging us on social media or posting links in the comments!

The post GPIO expander: access a Pi’s GPIO pins on your PC/Mac appeared first on Raspberry Pi.

[$] A thorough introduction to eBPF

Post Syndicated from corbet original https://lwn.net/Articles/740157/rss

In his linux.conf.au
2017 talk [YouTube]
on the eBPF in-kernel virtual machine, Brendan Gregg
proclaimed that “super powers have finally come to Linux”. Getting
eBPF to that point has been a long road of evolution and design. While
eBPF was originally used for network packet filtering, it turns out
that running user-space code inside a sanity-checking virtual machine
is a powerful tool for kernel developers and production engineers.

Over time, new eBPF users have appeared to take advantage of its
performance and convenience. This article explains how eBPF evolved
how it works, and how it is used in the kernel.

Stretch for PCs and Macs, and a Raspbian update

Post Syndicated from Simon Long original https://www.raspberrypi.org/blog/stretch-pcs-macs-raspbian-update/

Today, we are launching the first Debian Stretch release of the Raspberry Pi Desktop for PCs and Macs, and we’re also releasing the latest version of Raspbian Stretch for your Pi.

Raspberry Pi Desktop Stretch splash screen

For PCs and Macs

When we released our custom desktop environment on Debian for PCs and Macs last year, we were slightly taken aback by how popular it turned out to be. We really only created it as a result of one of those “Wouldn’t it be cool if…” conversations we sometimes have in the office, so we were delighted by the Pi community’s reaction.

Seeing how keen people were on the x86 version, we decided that we were going to try to keep releasing it alongside Raspbian, with the ultimate aim being to make simultaneous releases of both. This proved to be tricky, particularly with the move from the Jessie version of Debian to the Stretch version this year. However, we have now finished the job of porting all the custom code in Raspbian Stretch to Debian, and so the first Debian Stretch release of the Raspberry Pi Desktop for your PC or Mac is available from today.

The new Stretch releases

As with the Jessie release, you can either run this as a live image from a DVD, USB stick, or SD card or install it as the native operating system on the hard drive of an old laptop or desktop computer. Please note that installing this software will erase anything else on the hard drive — do not install this over a machine running Windows or macOS that you still need to use for its original purpose! It is, however, safe to boot a live image on such a machine, since your hard drive will not be touched by this.

We’re also pleased to announce that we are releasing the latest version of Raspbian Stretch for your Pi today. The Pi and PC versions are largely identical: as before, there are a few applications (such as Mathematica) which are exclusive to the Pi, but the user interface, desktop, and most applications will be exactly the same.

For Raspbian, this new release is mostly bug fixes and tweaks over the previous Stretch release, but there are one or two changes you might notice.

File manager

The file manager included as part of the LXDE desktop (on which our desktop is based) is a program called PCManFM, and it’s very feature-rich; there’s not much you can’t do in it. However, having used it for a few years, we felt that it was perhaps more complex than it needed to be — the sheer number of menu options and choices made some common operations more awkward than they needed to be. So to try to make file management easier, we have implemented a cut-down mode for the file manager.

Raspberry Pi Desktop Stretch - file manager

Most of the changes are to do with the menus. We’ve removed a lot of options that most people are unlikely to change, and moved some other options into the Preferences screen rather than the menus. The two most common settings people tend to change — how icons are displayed and sorted — are now options on the toolbar and in a top-level menu rather than hidden away in submenus.

The sidebar now only shows a single hierarchical view of the file system, and we’ve tidied the toolbar and updated the icons to make them match our house style. We’ve removed the option for a tabbed interface, and we’ve stomped a few bugs as well.

One final change was to make it possible to rename a file just by clicking on its icon to highlight it, and then clicking on its name. This is the way renaming works on both Windows and macOS, and it’s always seemed slightly awkward that Unix desktop environments tend not to support it.

As with most of the other changes we’ve made to the desktop over the last few years, the intention is to make it simpler to use, and to ease the transition from non-Unix environments. But if you really don’t like what we’ve done and long for the old file manager, just untick the box for Display simplified user interface and menus in the Layout page of Preferences, and everything will be back the way it was!

Raspberry Pi Desktop Stretch - preferences GUI

Battery indicator for laptops

One important feature missing from the previous release was an indication of the amount of battery life. Eben runs our desktop on his Mac, and he was becoming slightly irritated by having to keep rebooting into macOS just to check whether his battery was about to die — so fixing this was a priority!

We’ve added a battery status icon to the taskbar; this shows current percentage charge, along with whether the battery is charging, discharging, or connected to the mains. When you hover over the icon with the mouse pointer, a tooltip with more details appears, including the time remaining if the battery can provide this information.

Raspberry Pi Desktop Stretch - battery indicator

While this battery monitor is mainly intended for the PC version, it also supports the first-generation pi-top — to see it, you’ll only need to make sure that I2C is enabled in Configuration. A future release will support the new second-generation pi-top.

New PC applications

We have included a couple of new applications in the PC version. One is called PiServer — this allows you to set up an operating system, such as Raspbian, on the PC which can then be shared by a number of Pi clients networked to it. It is intended to make it easy for classrooms to have multiple Pis all running exactly the same software, and for the teacher to have control over how the software is installed and used. PiServer is quite a clever piece of software, and it’ll be covered in more detail in another blog post in December.

We’ve also added an application which allows you to easily use the GPIO pins of a Pi Zero connected via USB to a PC in applications using Scratch or Python. This makes it possible to run the same physical computing projects on the PC as you do on a Pi! Again, we’ll tell you more in a separate blog post this month.

Both of these applications are included as standard on the PC image, but not on the Raspbian image. You can run them on a Pi if you want — both can be installed from apt.

How to get the new versions

New images for both Raspbian and Debian versions are available from the Downloads page.

It is possible to update existing installations of both Raspbian and Debian versions. For Raspbian, this is easy: just open a terminal window and enter

sudo apt-get update
sudo apt-get dist-upgrade

Updating Raspbian on your Raspberry Pi

How to update to the latest version of Raspbian on your Raspberry Pi. Download Raspbian here: More information on the latest version of Raspbian: Buy a Raspberry Pi:

It is slightly more complex for the PC version, as the previous release was based around Debian Jessie. You will need to edit the files /etc/apt/sources.list and /etc/apt/sources.list.d/raspi.list, using sudo to do so. In both files, change every occurrence of the word “jessie” to “stretch”. When that’s done, do the following:

sudo apt-get update 
sudo dpkg --force-depends -r libwebkitgtk-3.0-common
sudo apt-get -f install
sudo apt-get dist-upgrade
sudo apt-get install python3-thonny
sudo apt-get install sonic-pi=2.10.0~repack-rpt1+2
sudo apt-get install piserver
sudo apt-get install usbbootgui

At several points during the upgrade process, you will be asked if you want to keep the current version of a configuration file or to install the package maintainer’s version. In every case, keep the existing version, which is the default option. The update may take an hour or so, depending on your network connection.

As with all software updates, there is the possibility that something may go wrong during the process, which could lead to your operating system becoming corrupted. Therefore, we always recommend making a backup first.

Enjoy the new versions, and do let us know any feedback you have in the comments or on the forums!

The post Stretch for PCs and Macs, and a Raspbian update appeared first on Raspberry Pi.

Implementing Canary Deployments of AWS Lambda Functions with Alias Traffic Shifting

Post Syndicated from Chris Munns original https://aws.amazon.com/blogs/compute/implementing-canary-deployments-of-aws-lambda-functions-with-alias-traffic-shifting/

This post courtesy of Ryan Green, Software Development Engineer, AWS Serverless

The concepts of blue/green and canary deployments have been around for a while now and have been well-established as best-practices for reducing the risk of software deployments.

In a traditional, horizontally scaled application, copies of the application code are deployed to multiple nodes (instances, containers, on-premises servers, etc.), typically behind a load balancer. In these applications, deploying new versions of software to too many nodes at the same time can impact application availability as there may not be enough healthy nodes to service requests during the deployment. This aggressive approach to deployments also drastically increases the blast radius of software bugs introduced in the new version and does not typically give adequate time to safely assess the quality of the new version against production traffic.

In such applications, one commonly accepted solution to these problems is to slowly and incrementally roll out application software across the nodes in the fleet while simultaneously verifying application health (canary deployments). Another solution is to stand up an entirely different fleet and weight (or flip) traffic over to the new fleet after verification, ideally with some production traffic (blue/green). Some teams deploy to a single host (“one box environment”), where the new release can bake for some time before promotion to the rest of the fleet. Techniques like this enable the maintainers of complex systems to safely test in production while minimizing customer impact.

Enter Serverless

There is somewhat of an impedance mismatch when mapping these concepts to a serverless world. You can’t incrementally deploy your software across a fleet of servers when there are no servers!* In fact, even the term “deployment” takes on a different meaning with functions as a service (FaaS). In AWS Lambda, a “deployment” can be roughly modeled as a call to CreateFunction, UpdateFunctionCode, or UpdateAlias (I won’t get into the semantics of whether updating configuration counts as a deployment), all of which may affect the version of code that is invoked by clients.

The abstractions provided by Lambda remove the need for developers to be concerned about servers and Availability Zones, and this provides a powerful opportunity to greatly simplify the process of deploying software.
*Of course there are servers, but they are abstracted away from the developer.

Traffic shifting with Lambda aliases

Before the release of traffic shifting for Lambda aliases, deployments of a Lambda function could only be performed in a single “flip” by updating function code for version $LATEST, or by updating an alias to target a different function version. After the update propagates, typically within a few seconds, 100% of function invocations execute the new version. Implementing canary deployments with this model required the development of an additional routing layer, further adding development time, complexity, and invocation latency.
While rolling back a bad deployment of a Lambda function is a trivial operation and takes effect near instantaneously, deployments of new versions for critical functions can still be a potentially nerve-racking experience.

With the introduction of alias traffic shifting, it is now possible to trivially implement canary deployments of Lambda functions. By updating additional version weights on an alias, invocation traffic is routed to the new function versions based on the weight specified. Detailed CloudWatch metrics for the alias and version can be analyzed during the deployment, or other health checks performed, to ensure that the new version is healthy before proceeding.

Note: Sometimes the term “canary deployments” refers to the release of software to a subset of users. In the case of alias traffic shifting, the new version is released to some percentage of all users. It’s not possible to shard based on identity without adding an additional routing layer.

Examples

The simplest possible use of a canary deployment looks like the following:

# Update $LATEST version of function
aws lambda update-function-code --function-name myfunction ….

# Publish new version of function
aws lambda publish-version --function-name myfunction

# Point alias to new version, weighted at 5% (original version at 95% of traffic)
aws lambda update-alias --function-name myfunction --name myalias --routing-config '{"AdditionalVersionWeights" : {"2" : 0.05} }'

# Verify that the new version is healthy
…
# Set the primary version on the alias to the new version and reset the additional versions (100% weighted)
aws lambda update-alias --function-name myfunction --name myalias --function-version 2 --routing-config '{}'

This is begging to be automated! Here are a few options.

Simple deployment automation

This simple Python script runs as a Lambda function and deploys another function (how meta!) by incrementally increasing the weight of the new function version over a prescribed number of steps, while checking the health of the new version. If the health check fails, the alias is rolled back to its initial version. The health check is implemented as a simple check against the existence of Errors metrics in CloudWatch for the alias and new version.

GitHub aws-lambda-deploy repo

Install:

git clone https://github.com/awslabs/aws-lambda-deploy
cd aws-lambda-deploy
export BUCKET_NAME=[YOUR_S3_BUCKET_NAME_FOR_BUILD_ARTIFACTS]
./install.sh

Run:

# Rollout version 2 incrementally over 10 steps, with 120s between each step
aws lambda invoke --function-name SimpleDeployFunction --log-type Tail --payload \
  '{"function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval" : 120,
  "type": "linear"
  }' output

Description of input parameters

  • function-name: The name of the Lambda function to deploy
  • alias-name: The name of the alias used to invoke the Lambda function
  • new-version: The version identifier for the new version to deploy
  • steps: The number of times the new version weight is increased
  • interval: The amount of time (in seconds) to wait between weight updates
  • type: The function to use to generate the weights. Supported values: “linear”

Because this runs as a Lambda function, it is subject to the maximum timeout of 5 minutes. This may be acceptable for many use cases, but to achieve a slower rollout of the new version, a different solution is required.

Step Functions workflow

This state machine performs essentially the same task as the simple deployment function, but it runs as an asynchronous workflow in AWS Step Functions. A nice property of Step Functions is that the maximum deployment timeout has now increased from 5 minutes to 1 year!

The step function incrementally updates the new version weight based on the steps parameter, waiting for some time based on the interval parameter, and performing health checks between updates. If the health check fails, the alias is rolled back to the original version and the workflow fails.

For example, to execute the workflow:

export STATE_MACHINE_ARN=`aws cloudformation describe-stack-resources --stack-name aws-lambda-deploy-stack --logical-resource-id DeployStateMachine --output text | cut  -d$'\t' -f3`

aws stepfunctions start-execution --state-machine-arn $STATE_MACHINE_ARN --input '{
  "function-name": "MyFunction",
  "alias-name": "MyAlias",
  "new-version": "2",
  "steps": 10,
  "interval": 120,
  "type": "linear"}'

Getting feedback on the deployment

Because the state machine runs asynchronously, retrieving feedback on the deployment requires polling for the execution status using DescribeExecution or implementing an asynchronous notification (using SNS or email, for example) from the Rollback or Finalize functions. A CloudWatch alarm could also be created to alarm based on the “ExecutionsFailed” metric for the state machine.

A note on health checks and observability

Weighted rollouts like this are considerably more successful if the code is being exercised and monitored continuously. In this example, it would help to have some automation continuously invoking the alias and reporting metrics on these invocations, such as client-side success rates and latencies.

The absence of Lambda Errors metrics used in these examples can be misleading if the function is not getting invoked. It’s also recommended to instrument your Lambda functions with custom metrics, in addition to Lambda’s built-in metrics, that can be used to monitor health during deployments.

Extensibility

These examples could be easily extended in various ways to support different use cases. For example:

  • Health check implementations: CloudWatch alarms, automatic invocations with payload assertions, querying external systems, etc.
  • Weight increase functions: Exponential, geometric progression, single canary step, etc.
  • Custom success/failure notifications: SNS, email, CI/CD systems, service discovery systems, etc.

Traffic shifting with SAM and CodeDeploy

Using the Lambda UpdateAlias operation with additional version weights provides a powerful primitive for you to implement custom traffic shifting solutions for Lambda functions.

For those not interested in building custom deployment solutions, AWS CodeDeploy provides an intuitive turn-key implementation of this functionality integrated directly into the Serverless Application Model. Traffic-shifted deployments can be declared in a SAM template, and CodeDeploy manages the function rollout as part of the CloudFormation stack update. CloudWatch alarms can also be configured to trigger a stack rollback if something goes wrong.

i.e.

MyFunction:
  Type: AWS::Serverless::Function
  Properties:
    FunctionName: MyFunction
    AutoPublishAlias: MyFunctionInvokeAlias
    DeploymentPreference:
      Type: Linear10PercentEvery1Minute
      Role:
        Fn::GetAtt: [ DeploymentRole, Arn ]
      Alarms:
       - { Ref: MyFunctionErrorsAlarm }
...

For more information about using CodeDeploy with SAM, see Automating Updates to Serverless Apps.

Conclusion

It is often the simple features that provide the most value. As I demonstrated in this post, serverless architectures allow the complex deployment orchestration used in traditional applications to be replaced with a simple Lambda function or Step Functions workflow. By allowing invocation traffic to be easily weighted to multiple function versions, Lambda alias traffic shifting provides a simple but powerful feature that I hope empowers you to easily implement safe deployment workflows for your Lambda functions.

AWS Cloud9 – Cloud Developer Environments

Post Syndicated from Randall Hunt original https://aws.amazon.com/blogs/aws/aws-cloud9-cloud-developer-environments/

One of the first things you learn when you start programming is that, just like any craftsperson, your tools matter. Notepad.exe isn’t going to cut it. A powerful editor and testing pipeline supercharge your productivity. I still remember learning to use Vim for the first time and being able to zip around systems and complex programs. Do you remember how hard it was to setup all your compilers and dependencies on a new machine? How many cycles have you wasted matching versions, tinkering with configs, and then writing documentation to onboard a new developer to a project?

Today we’re launching AWS Cloud9, an Integrated Development Environment (IDE) for writing, running, and debugging code, all from your web browser. Cloud9 comes prepackaged with essential tools for many popular programming languages (Javascript, Python, PHP, etc.) so you don’t have to tinker with installing various compilers and toolchains. Cloud9 also provides a seamless experience for working with serverless applications allowing you to quickly switch between local and remote testing or debugging. Based on the popular open source Ace Editor and c9.io IDE (which we acquired last year), AWS Cloud9 is designed to make collaborative cloud development easy with extremely powerful pair programming features. There are more features than I could ever cover in this post but to give a quick breakdown I’ll break the IDE into 3 components: The editor, the AWS integrations, and the collaboration.

Editing


The Ace Editor at the core of Cloud9 is what lets you write code quickly, easily, and beautifully. It follows a UNIX philosophy of doing one thing and doing it well: writing code.

It has all the typical IDE features you would expect: live syntax checking, auto-indent, auto-completion, code folding, split panes, version control integration, multiple cursors and selections, and it also has a few unique features I want to highlight. First of all, it’s fast, even for large (100000+ line) files. There’s no lag or other issues while typing. It has over two dozen themes built-in (solarized!) and you can bring all of your favorite themes from Sublime Text or TextMate as well. It has built-in support for 40+ language modes and customizable run configurations for your projects. Most importantly though, it has Vim mode (or emacs if your fingers work that way). It also has a keybinding editor that allows you to bend the editor to your will.

The editor supports powerful keyboard navigation and commands (similar to Sublime Text or vim plugins like ctrlp). On a Mac, with ⌘+P you can open any file in your environment with fuzzy search. With ⌘+. you can open up the command pane which allows you to do invoke any of the editor commands by typing the name. It also helpfully displays the keybindings for a command in the pane, for instance to open to a terminal you can press ⌥+T. Oh, did I mention there’s a terminal? It ships with the AWS CLI preconfigured for access to your resources.

The environment also comes with pre-installed debugging tools for many popular languages – but you’re not limited to what’s already installed. It’s easy to add in new programs and define new run configurations.

The editor is just one, admittedly important, component in an IDE though. I want to show you some other compelling features.

AWS Integrations

The AWS Cloud9 IDE is the first IDE I’ve used that is truly “cloud native”. The service is provided at no additional charge, and you only charged for the underlying compute and storage resources. When you create an environment you’re prompted for either: an instance type and an auto-hibernate time, or SSH access to a machine of your choice.

If you’re running in AWS the auto-hibernate feature will stop your instance shortly after you stop using your IDE. This can be a huge cost savings over running a more permanent developer desktop. You can also launch it within a VPC to give it secure access to your development resources. If you want to run Cloud9 outside of AWS, or on an existing instance, you can provide SSH access to the service which it will use to create an environment on the external machine. Your environment is provisioned with automatic and secure access to your AWS account so you don’t have to worry about copying credentials around. Let me say that again: you can run this anywhere.

Serverless Development with AWS Cloud9

I spend a lot of time on Twitch developing serverless applications. I have hundreds of lambda functions and APIs deployed. Cloud9 makes working with every single one of these functions delightful. Let me show you how it works.


If you look in the top right side of the editor you’ll see an AWS Resources tab. Opening this you can see all of the lambda functions in your region (you can see functions in other regions by adjusting your region preferences in the AWS preference pane).

You can import these remote functions to your local workspace just by double-clicking them. This allows you to edit, test, and debug your serverless applications all locally. You can create new applications and functions easily as well. If you click the Lambda icon in the top right of the pane you’ll be prompted to create a new lambda function and Cloud9 will automatically create a Serverless Application Model template for you as well. The IDE ships with support for the popular SAM local tool pre-installed. This is what I use in most of my local testing and serverless development. Since you have a terminal, it’s easy to install additional tools and use other serverless frameworks.

 

Launching an Environment from AWS CodeStar

With AWS CodeStar you can easily provision an end-to-end continuous delivery toolchain for development on AWS. Codestar provides a unified experience for building, testing, deploying, and managing applications using AWS CodeCommit, CodeBuild, CodePipeline, and CodeDeploy suite of services. Now, with a few simple clicks you can provision a Cloud9 environment to develop your application. Your environment will be pre-configured with the code for your CodeStar application already checked out and git credentials already configured.

You can easily share this environment with your coworkers which leads me to another extremely useful set of features.

Collaboration

One of the many things that sets AWS Cloud9 apart from other editors are the rich collaboration tools. You can invite an IAM user to your environment with a few clicks.

You can see what files they’re working on, where their cursors are, and even share a terminal. The chat features is useful as well.

Things to Know

  • There are no additional charges for this service beyond the underlying compute and storage.
  • c9.io continues to run for existing users. You can continue to use all the features of c9.io and add new team members if you have a team account. In the future, we will provide tools for easy migration of your c9.io workspaces to AWS Cloud9.
  • AWS Cloud9 is available in the US West (Oregon), US East (Ohio), US East (N.Virginia), EU (Ireland), and Asia Pacific (Singapore) regions.

I can’t wait to see what you build with AWS Cloud9!

Randall

Glenn’s Take on re:Invent 2017 Part 1

Post Syndicated from Glenn Gore original https://aws.amazon.com/blogs/architecture/glenns-take-on-reinvent-2017-part-1/

GREETINGS FROM LAS VEGAS

Glenn Gore here, Chief Architect for AWS. I’m in Las Vegas this week — with 43K others — for re:Invent 2017. We have a lot of exciting announcements this week. I’m going to post to the AWS Architecture blog each day with my take on what’s interesting about some of the announcements from a cloud architectural perspective.

Why not start at the beginning? At the Midnight Madness launch on Sunday night, we announced Amazon Sumerian, our platform for VR, AR, and mixed reality. The hype around VR/AR has existed for many years, though for me, it is a perfect example of how a working end-to-end solution often requires innovation from multiple sources. For AR/VR to be successful, we need many components to come together in a coherent manner to provide a great experience.

First, we need lightweight, high-definition goggles with motion tracking that are comfortable to wear. Second, we need to track movement of our body and hands in a 3-D space so that we can interact with virtual objects in the virtual world. Third, we need to build the virtual world itself and populate it with assets and define how the interactions will work and connect with various other systems.

There has been rapid development of the physical devices for AR/VR, ranging from iOS devices to Oculus Rift and HTC Vive, which provide excellent capabilities for the first and second components defined above. With the launch of Amazon Sumerian we are solving for the third area, which will help developers easily build their own virtual worlds and start experimenting and innovating with how to apply AR/VR in new ways.

Already, within 48 hours of Amazon Sumerian being announced, I have had multiple discussions with customers and partners around some cool use cases where VR can help in training simulations, remote-operator controls, or with new ideas around interacting with complex visual data sets, which starts bringing concepts straight out of sci-fi movies into the real (virtual) world. I am really excited to see how Sumerian will unlock the creative potential of developers and where this will lead.

Amazon MQ
I am a huge fan of distributed architectures where asynchronous messaging is the backbone of connecting the discrete components together. Amazon Simple Queue Service (Amazon SQS) is one of my favorite services due to its simplicity, scalability, performance, and the incredible flexibility of how you can use Amazon SQS in so many different ways to solve complex queuing scenarios.

While Amazon SQS is easy to use when building cloud-native applications on AWS, many of our customers running existing applications on-premises required support for different messaging protocols such as: Java Message Service (JMS), .Net Messaging Service (NMS), Advanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), Simple (or Streaming) Text Orientated Messaging Protocol (STOMP), and WebSockets. One of the most popular applications for on-premise message brokers is Apache ActiveMQ. With the release of Amazon MQ, you can now run Apache ActiveMQ on AWS as a managed service similar to what we did with Amazon ElastiCache back in 2012. For me, there are two compelling, major benefits that Amazon MQ provides:

  • Integrate existing applications with cloud-native applications without having to change a line of application code if using one of the supported messaging protocols. This removes one of the biggest blockers for integration between the old and the new.
  • Remove the complexity of configuring Multi-AZ resilient message broker services as Amazon MQ provides out-of-the-box redundancy by always storing messages redundantly across Availability Zones. Protection is provided against failure of a broker through to complete failure of an Availability Zone.

I believe that Amazon MQ is a major component in the tools required to help you migrate your existing applications to AWS. Having set up cross-data center Apache ActiveMQ clusters in the past myself and then testing to ensure they work as expected during critical failure scenarios, technical staff working on migrations to AWS benefit from the ease of deploying a fully redundant, managed Apache ActiveMQ cluster within minutes.

Who would have thought I would have been so excited to revisit Apache ActiveMQ in 2017 after using SQS for many, many years? Choice is a wonderful thing.

Amazon GuardDuty
Maintaining application and information security in the modern world is increasingly complex and is constantly evolving and changing as new threats emerge. This is due to the scale, variety, and distribution of services required in a competitive online world.

At Amazon, security is our number one priority. Thus, we are always looking at how we can increase security detection and protection while simplifying the implementation of advanced security practices for our customers. As a result, we released Amazon GuardDuty, which provides intelligent threat detection by using a combination of multiple information sources, transactional telemetry, and the application of machine learning models developed by AWS. One of the biggest benefits of Amazon GuardDuty that I appreciate is that enabling this service requires zero software, agents, sensors, or network choke points. which can all impact performance or reliability of the service you are trying to protect. Amazon GuardDuty works by monitoring your VPC flow logs, AWS CloudTrail events, DNS logs, as well as combing other sources of security threats that AWS is aggregating from our own internal and external sources.

The use of machine learning in Amazon GuardDuty allows it to identify changes in behavior, which could be suspicious and require additional investigation. Amazon GuardDuty works across all of your AWS accounts allowing for an aggregated analysis and ensuring centralized management of detected threats across accounts. This is important for our larger customers who can be running many hundreds of AWS accounts across their organization, as providing a single common threat detection of their organizational use of AWS is critical to ensuring they are protecting themselves.

Detection, though, is only the beginning of what Amazon GuardDuty enables. When a threat is identified in Amazon GuardDuty, you can configure remediation scripts or trigger Lambda functions where you have custom responses that enable you to start building automated responses to a variety of different common threats. Speed of response is required when a security incident may be taking place. For example, Amazon GuardDuty detects that an Amazon Elastic Compute Cloud (Amazon EC2) instance might be compromised due to traffic from a known set of malicious IP addresses. Upon detection of a compromised EC2 instance, we could apply an access control entry restricting outbound traffic for that instance, which stops loss of data until a security engineer can assess what has occurred.

Whether you are a customer running a single service in a single account, or a global customer with hundreds of accounts with thousands of applications, or a startup with hundreds of micro-services with hourly release cycle in a devops world, I recommend enabling Amazon GuardDuty. We have a 30-day free trial available for all new customers of this service. As it is a monitor of events, there is no change required to your architecture within AWS.

Stay tuned for tomorrow’s post on AWS Media Services and Amazon Neptune.

 

Glenn during the Tour du Mont Blanc

Presenting AWS IoT Analytics: Delivering IoT Analytics at Scale and Faster than Ever Before

Post Syndicated from Tara Walker original https://aws.amazon.com/blogs/aws/launch-presenting-aws-iot-analytics/

One of the technology areas I thoroughly enjoy is the Internet of Things (IoT). Even as a child I used to infuriate my parents by taking apart the toys they would purchase for me to see how they worked and if I could somehow put them back together. It seems somehow I was destined to end up the tough and ever-changing world of technology. Therefore, it’s no wonder that I am really enjoying learning and tinkering with IoT devices and technologies. It combines my love of development and software engineering with my curiosity around circuits, controllers, and other facets of the electrical engineering discipline; even though an electrical engineer I can not claim to be.

Despite all of the information that is collected by the deployment of IoT devices and solutions, I honestly never really thought about the need to analyze, search, and process this data until I came up against a scenario where it became of the utmost importance to be able to search and query through loads of sensory data for an anomaly occurrence. Of course, I understood the importance of analytics for businesses to make accurate decisions and predictions to drive the organization’s direction. But it didn’t occur to me initially, how important it was to make analytics an integral part of my IoT solutions. Well, I learned my lesson just in time because this re:Invent a service is launching to make it easier for anyone to process and analyze IoT messages and device data.

 

Hello, AWS IoT Analytics!  AWS IoT Analytics is a fully managed service of AWS IoT that provides advanced data analysis of data collected from your IoT devices.  With the AWS IoT Analytics service, you can process messages, gather and store large amounts of device data, as well as, query your data. Also, the new AWS IoT Analytics service feature integrates with Amazon Quicksight for visualization of your data and brings the power of machine learning through integration with Jupyter Notebooks.

Benefits of AWS IoT Analytics

  • Helps with predictive analysis of data by providing access to pre-built analytical functions
  • Provides ability to visualize analytical output from service
  • Provides tools to clean up data
  • Can help identify patterns in the gathered data

Be In the Know: IoT Analytics Concepts

  • Channel: archives the raw, unprocessed messages and collects data from MQTT topics.
  • Pipeline: consumes messages from channels and allows message processing.
    • Activities: perform transformations on your messages including filtering attributes and invoking lambda functions advanced processing.
  • Data Store: Used as a queryable repository for processed messages. Provide ability to have multiple datastores for messages coming from different devices or locations or filtered by message attributes.
  • Data Set: Data retrieval view from a data store, can be generated by a recurring schedule. 

Getting Started with AWS IoT Analytics

First, I’ll create a channel to receive incoming messages.  This channel can be used to ingest data sent to the channel via MQTT or messages directed from the Rules Engine. To create a channel, I’ll select the Channels menu option and then click the Create a channel button.

I’ll name my channel, TaraIoTAnalyticsID and give the Channel a MQTT topic filter of Temperature. To complete the creation of my channel, I will click the Create Channel button.

Now that I have my Channel created, I need to create a Data Store to receive and store the messages received on the Channel from my IoT device. Remember you can set up multiple Data Stores for more complex solution needs, but I’ll just create one Data Store for my example. I’ll select Data Stores from menu panel and click Create a data store.

 

I’ll name my Data Store, TaraDataStoreID, and once I click the Create the data store button and I would have successfully set up a Data Store to house messages coming from my Channel.

Now that I have my Channel and my Data Store, I will need to connect the two using a Pipeline. I’ll create a simple pipeline that just connects my Channel and Data Store, but you can create a more robust pipeline to process and filter messages by adding Pipeline activities like a Lambda activity.

To create a pipeline, I’ll select the Pipelines menu option and then click the Create a pipeline button.

I will not add an Attribute for this pipeline. So I will click Next button.

As we discussed there are additional pipeline activities that I can add to my pipeline for the processing and transformation of messages but I will keep my first pipeline simple and hit the Next button.

The final step in creating my pipeline is for me to select my previously created Data Store and click Create Pipeline.

All that is left for me to take advantage of the AWS IoT Analytics service is to create an IoT rule that sends data to an AWS IoT Analytics channel.  Wow, that was a super easy process to set up analytics for IoT devices.

If I wanted to create a Data Set as a result of queries run against my data for visualization with Amazon Quicksight or integrate with Jupyter Notebooks to perform more advanced analytical functions, I can choose the Analyze menu option to bring up the screens to create data sets and access the Juypter Notebook instances.

Summary

As you can see, it was a very simple process to set up the advanced data analysis for AWS IoT. With AWS IoT Analytics, you have the ability to collect, visualize, process, query and store large amounts of data generated from your AWS IoT connected device. Additionally, you can access the AWS IoT Analytics service in a myriad of different ways; the AWS Command Line Interface (AWS CLI), the AWS IoT API, language-specific AWS SDKs, and AWS IoT Device SDKs.

AWS IoT Analytics is available today for you to dig into the analysis of your IoT data. To learn more about AWS IoT and AWS IoT Analytics go to the AWS IoT Analytics product page and/or the AWS IoT documentation.

Tara